
Vol.:(0123456789)

Air Quality, Atmosphere & Health 
https://doi.org/10.1007/s11869-023-01493-z

Using synthetic data to benchmark correction methods for low‑cost air 
quality sensor networks

Joost Wesseling1  · Derko Drukker1 · Alicia Gressent2 · Stijn Janssen3 · Pascal Joassin4 · Fabian Lenartz4 · 
Sjoerd van Ratingen1 · Vera Rodrigues5 · Jorge Sousa3 · Philippe Thunis6

Received: 22 July 2023 / Accepted: 21 December 2023 
© The Author(s) 2024

Abstract
A benchmark was performed, comparing the results of three different methodologies proposed by three institutions to cali-
brate a network of low-cost PM2.5 sensors, on an hourly basis, using synthetically generated real concentrations and sensor 
measurements. The objective of the network calibrations was to correct the 2000+ sensor measurements in the Netherlands 
for the sensitivity to (local) environmental conditions. The option to use real measurements was dropped because the number 
of low-cost sensors sufficiently close to the 40 reference measurement locations was assessed to be spatially insufficient to 
benchmark the proposed approaches. Instead, synthetic real concentrations were generated to enable validation at all sensor 
locations. Hourly actual sensor and actual fixed concentrations, as well as interpolated concentration maps, were used as 
underlying data to generate the synthetic data sets for the period of 1 month. The synthetic sensor measurement errors were 
constructed by sampling from a collection of differences between actual sensor values and actual measurements. Of the three 
tested calibration methods, two follow a similar approach, although having differences in, e.g., outlier analyses and method of 
grouping sensors, leading also to comparable corrections to the raw sensor measurements. A third method uses significantly 
stricter rules in outlier selection, discarding considerably more sensors because of insufficient quality. Differences between 
the methods become most apparent when analyzing data at a smaller time scale. It is shown that two network calibration 
methods are better at correcting the hourly/daily bias.
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Introduction

Air pollution is recognized as the world’s biggest environmen-
tal health risk (Lelieveld et al. 2020; WHO 2021). In Europe, 
many cities are affected by poor air quality levels and ambi-
ent concentration levels regularly exceed both the European 

standards prescribed by the Ambient Air Quality Directive 
(AAQD) and the guidelines recommended by the World 
Health Organization (WHO) (EEA 2022). For fine inhalable 
particles (PM2.5), the EU limit value is generally met (EEA 
2022), but only a few cities manage to keep concentrations 
below the levels recommended by the WHO (González Ortiz 
et al. 2020; EEA 2022; Thunis et al. 2018; Rodrigues et al. 
2021). As a reference, the AAQD establishes an annual limit 
value of 25 μg/m3 for PM2.5 concentrations, while the WHO 
sets an annual guideline of 5 μg/m3. According to the latest 
report released by the European Environment Agency (EEA) 
on air quality in Europe, the WHO annual guideline level for 
PM2.5 was exceeded by all reporting countries, except Ice-
land, in 2022 (EEA 2023). According to the latest estimates, 
at least 238,000 premature deaths were associated with the 
exposure to PM2.5 (EEA 2023).

To reduce the impacts of air pollution, particularly in 
cities where most of the population lives (e.g., more than 
two-thirds of European population lived in an urban area in 
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2020 (EUROSTAT 2023)), it is important to define effective 
planning strategies for air quality improvement (Monteiro 
et al. 2018; Pisoni et al. 2019; Viana et al. 2020; Oliveira 
et al. 2022). Low-cost sensor (LCS) networks are spread-
ing in a wide variety of designs and capabilities (Wesseling 
et al. 2019; Schneider et al. 2019; Volten et al. 2018; Graça 
et al. 2023) and may have a key role in the definition of 
those strategies. There are still some challenges associated 
with these devices, such as inconsistencies linked to the high 
variability in the performance of similar sensors and the 
variations associated with different meteorological condi-
tions. LCS are also sensitive to developing zero drift and 
ageing effects, which affect the calibration and can lead to 
systematic errors, both for particle sensors as well as gas 
sensors (Ratingen et al. 2021; Woutersen et al. 2022; Wes-
seling et al. 2021). Nevertheless, recent progress highlights 
the potential of this technology (EEA 2019; WMO 2020). 
The European Commission (EC) submitted a proposal to 
revise the Ambient Air Quality Directive as part of a “zero 
pollution” package. The proposal includes new methods to 
measure concentrations or deposition levels of pollutants, 
such as in situ sensors (EC 2022).

The Forum for Air Quality Modeling (FAIRMODE) 
was launched in 2007 as a joint response initiative of the 
European Environment Agency and the European Com-
mission Joint Research Centre (JRC). The forum aims to 
bring together air quality modelers and users to promote 
and support the harmonized use of models by EU Mem-
ber States, with emphasis on model application under the 
European Air Quality Directives. LCS are very relevant 
for FAIRMODE, especially concerning methodologies 
to combine sensor networks with modeled data and offi-
cial fixed measurements. There is a need to elaborate on 
the role of communities like FAIRMODE and AQUILA 
(Network of National Air Quality Reference Laborato-
ries) in the development of data acquisition methodolo-
gies based on the use of LCS. In addition, thought is 
needed on how to facilitate the use of sensor data for air 
quality mapping. The activities of the Working Group 
6 of FAIRMODE focus on understanding the strengths 
and weaknesses of different ways of integrating low-cost 
sensors into air quality assessment protocols. The main 
roles of the group are (i) to exchange concepts and best 
practices about the integration of sensor network data 
in air quality mapping methods and (ii) to explore how 
air quality modeling can contribute to the exploitation 
and validation of an air quality sensor network. Present 
experiences suggest important roles for data fusion/
assimilation approaches and possibly other techniques 
with similar scopes.

In a first common effort, the members of this working 
group compare their strategies for LCS outlier detection 

and calibration on a PM2.5 data set combining LCS 
measurements from (mostly) the Sensor Community, 
reference measurements from the RIVM, and option-
ally, meteorological data from the Royal Netherlands 
Meteorological Institute, KNMI. In order to evaluate 
quantitatively the performance of the different methods, 
knowledge of the true pollution field is required. Since 
the reference values are unavailable at all sites where 
sensors are deployed, a synthetic data set, as representa-
tive as possible of the various LCS fluctuations, has been 
generated and used to benchmark three approaches.

The paper is organized as follows:

• In the “Physical and synthetic sensor data” section, the 
data collection methodology is described in detail, fol-
lowed by a description of the approach used to generate 
synthetic data.

• The “Calibration methods” section describes the different 
approaches to perform data calibration and detection of 
outliers.

• The “Results” section focuses on the results, analysis, 
and interpretation of the results.

• Finally, in the “Discussion and concluding remarks” 
section, the main conclusions are discussed and sum-
marized.

Physical and synthetic sensor data

Dutch low‑cost sensor network

In the Netherlands, the Dutch National Institute for Public 
Health and the Environment (RIVM) runs an infrastructure 
allowing citizens and other parties to provide and display 
data from low-cost sensors for (mainly) air quality. The aim 
of this “Measure Together” (Dutch: “Samen Meten”) pro-
gram is to support citizen science for environmental param-
eters such as air quality, water quality, and noise (Wesseling 
et al. 2019). Measure Together encourages people to do 
these measurements together, to build communities, connect 
with different stakeholders, connect with RIVM and each 
other, exchange information, and combine data to put these 
in a broader context. The data is provided on the website 
https:// senso rs. rivm. nl/. For more technical information on 
the network, see Appendix Annex 1 Fig. 12.

Most of the sensors used in the Netherlands are of the 
type SDS011 from Nova Fitness Co., Ltd.; they are available 
in many webstores. See https:// aqicn. org/ sensor/ sds011/ for 
more information about the SDS011. Recently, also other 
sensors, like the Sensirion SPS30 have become popular. 
For the present analysis, we focus on the calibration of the 

https://sensors.rivm.nl/
https://aqicn.org/sensor/sds011/
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SDS011; other sensors are not taken into account. The use 
of sensors that are less sensitive to environmental conditions 
(like the Sensirion SPS30) to help correct other sensors with 
higher sensitivity (like the SDS011) is the subject of ongo-
ing work at RIVM and is not discussed here.

The discussed calibration methods in this paper are 
particularly applicable to a sensor network with a large 
number of sensors (network calibration). Many indi-
vidual citizens participate in the “Measure Together” 
network; they buy sensors and manufacture their own 
measuring setup using instructions that are available on 
the Internet. Some of the participants use ready-made 
sensor kits. All these sensors provide data on the scale 
of minutes to hours, but the calibration and quality of the 
individual sensors are not known. There is no uniform 
quality control of the sensors; most sensors will work as 
expected, but some of these low-cost sensors will show 
large fluctuations in performance. Furthermore, most 
participants install the sensor around their house, often, 
but not always, at background locations (from an air 
quality perspective).

So, at the level of the “Measure Together” network, 
the challenge is to estimate particular matter concentra-
tions from a large number (at least hundreds, up to thou-
sands) of sensor measurements of unknown and varying 
quality, located at different types of locations. Given 
the anonymous nature of most of the participants with 
sensors, co-located calibration of each individual is not 
feasible. Therefore, a network approach was adopted for 
the Dutch sensors in the “Samen Meten” project (Wes-
seling et al. 2019). The network calibrations discussed 
in this paper perform a calibration every hour and do 
not relate that calibration to sensor specifics. Here they 
differ from other network-oriented calibration schemes, 
like for instance MOMA, where calibration is performed 
on a larger time scale (months) or using drift detection 
(Weissert et al. 2023).

A large advantage of the network-calibration methods 
described in this article is that no specific quality/calibra-
tion information on the individual sensors is needed. A 
drawback of the methods is that they only work for large 
enough networks (i.e., many sensors), that consist of sensor 
that react roughly similar to environmental conditions like 
relative humidity.

Creation of synthetic data

In FAIRMODE/WG6 (low-cost sensors for air quality), 
work is done on methods to calibrate/process the raw 
results of networks of low-cost sensors in such a way that 
the best estimates of the real/actual concentrations can be 
obtained. We define different concentrations, as follows:

Actual fixed concentrations/
measurements

The concentrations measured with 
official EU reference methods 
(or equivalent) at fixed locations

Actual reference concentrations The concentrations we would 
measure if official fixed refer-
ence measurements were avail-
able at every location

Synthetic real concentrations The synthetic concentrations we 
construct to represent the real 
concentrations. So, after the 
sensor data validation and cali-
bration, we should end up with 
these synthetic real concentra-
tions

Synthetic fixed concentrations/
measurements

The synthetic concentrations we 
construct to represent the actual 
fixed concentrations

Actual sensor value The concentrations reported by 
physical sensors in the field at 
every location

Synthetic sensor value The synthetic concentrations we 
construct to represent the behav-
ior of the sensors

RIO concentrations Concentrations calculated using 
the RIO model. These are an 
interpolation of the (back-
ground) fixed concentrations, 
either actual or synthetic

As we work with a large network of (2000+) low-cost 
(<50 Euro) sensors, we do not know how the sensor is posi-
tioned with respect to, e.g., a local street or building, and 
the quality of each sensor is also unknown. We assume that 
the large number of sensors will ensure a sufficiently good 
average performance of the network.

Usually, we do not know the actual reference concen-
trations (and certainly not the true concentrations), so we 
cannot test the quality of different algorithms for calibrating 
the sensors in a simple way. Knowing the actual reference 
concentrations would make it possible to compare results 
from different calibration methods and objectively test the 
effects of variations in calibration strategies. Alternatively, 
a synthetic data set can be generated to represent a real con-
centration field. For every hour in a test period, we take the 
locations of the actual monitoring stations and the physi-
cal sensors to create respectively synthetic fixed and sensor 
data. So, for every location where actual fixed concentrations 
are available, we generate synthetic fixed concentrations, 
and for every location of sensor measurements, we generate 
synthetic sensor concentrations. It is very important for the 
synthetic data to have (roughly) the same systematic and 
individual “chaotic” structure of the deviations from the 
actual values (noise) as actual LCS:

• Individual sensors show very non-standard distributions 
of hourly deviations
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• Systematic deviations due to relative humidity or other 
environmental factors, this means local correlations 
between systematic deviations

• Sometimes individual sensors work well for a period of 
time, sometimes not, this means correlations between 
sensors may change over time

As analytical distributions will probably not fully 
describe the random behavior of LCS, the basic idea for 
creating realistic synthetic sensor data proposed here is to 
use behavior from actual/physical sensors as the basis for 
the synthetic behavior.

Synthetic real concentrations

To create realistic “sensor data,” the starting point has to 
be a set of realistic “actual concentrations” at the locations 
where we want to create synthetic data. By using the hourly 
PM2.5 concentrations physically measured at official fixed 
monitoring locations, an interpolated concentration field can 
be constructed. We assume this field reproduces the average 
concentration distribution in the region/country sufficiently 
well. On top of this average field, we expect local variations, 
minima, and maxima in concentrations, reflecting the many 
local situations in the country.

The hourly average concentration distribution in the Nether-
lands is generated by the RIO model created by VITO. The RIO 
field is generated on an hourly basis from the official measure-
ment data (official measurements are performed by the Dutch 
national network “LML,” managed by RIVM). The resolution 
is 4×4  km2, downscaled (interpolated) to 1×1  km2. Land use 
and historical data are used to fine-tune the results of the model. 
Evidently, due to the relatively coarse resolution, the RIO field 
does not show any variations below 1 km.

We can estimate local variations in concentration from the 
differences between the average background concentrations 
estimated using the RIO model and the actual fixed measure-
ments where these are available. These differences, derived from 
the actual fixed concentrations and the RIO interpolation of the 
actual fixed background measurements, can be used to define a 
distribution for the local variations at the locations of the syn-
thetic sensors and the created synthetic real concentrations at 
those locations. Adding the local variations to the average field 
then yields the synthetic real concentrations

We constructed two methods to generate local variations 
in the software.

(1) The simplest is to sample from all available actual dif-
ferences between RIO interpolations and actual fixed 
measurements in the national network in the Nether-
lands in the considered hour. A drawback is that poten-
tial local differences between RIO and the official 

measurements are not considered by this approach; the 
observed differences are used for synthetic data all over 
the country. However, there will be circumstances when 
RIO will match the measured data better in some parts 
of the country than in other parts. For example, when 
there are strong spatial PM2.5 gradients in the country.

(2) To take this local spatial variability into account, we can 
use the differences between RIO concentrations and the 
actual fixed measurements located closest to the locations 
of the synthetic data to generate the synthetic real con-
centrations. This way, local correlations between concen-
trations are taken into account. We assume that the dif-
ferences are still representative of locations if the closest 
actual fixed measurements are more than (roughly) 10 km 
away as we prefer a potentially poor local approximation 
over no approximation at all.

As the distribution of sensors over the country is not nec-
essarily the same as the distribution of the reference meas-
urement locations, the two approaches ((1) sample from all 
national or (2) only use local differences) will result in dif-
ferent sets of synthetic data. For the benchmark, we used 
the local approach.

Synthetic sensor concentrations

For creating the synthetic sensor data, we need to have an 
approximation for the deviations between the values of phys-
ical sensors in the field and the actual concentrations at those 
locations. The approximation for these deviations must be 
close enough to the real behavior of the sensors, given the 
local conditions. As we do not know the actual reference 
concentrations, we use the RIO values as an approximation 
to these actual reference concentrations. We assume the 
intrinsic random and systematic uncertainties of the sensors 
to be zero on average. The relation between environmental 
conditions and the behavior of many types of low-cost sen-
sor is observed to be of a multiplicative character. Therefore, 
we assume that for sensor k at location (x,y) and hour t:

where:

Csensor,k(x,y,t)  actual value of a physical sensor

CBgr(x,y,t)  actual background concentration

Clocal(x,y,t)  the local contribution to the concentration

εk (x,y,t)  the random deviation of the sensor, with an 
average value of zero

(1)
Csensor,k(x, y, t) = γk(x, y, t)

(

CBgr(x, y, t) + Clocal(x, y, t) + εk(x, y, t)
)
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γk(x,y,t)  a factor, describing the effect of the environ-
mental conditions

We further assume that the result of the RIO model is, on 
average, a sufficient approximation to the background con-
centration, i.e.:

with  CRIO(x,y,t) the (background) concentrations are calcu-
lated using the RIO model. In order to create realistic syn-
thetic sensor data, we need a sufficient approximation for the 
γk(x,y,t). For all sensors, we determine the ratio between the 
RIO concentration at the sensor location and the actual sen-
sor value. So, we use the ratios γ̂ as estimates of how much 
each sensor deviates from the actual concentration:

It is preferred that γ̂ does not deviate too much from the real 
value, i.e., the local contributions and random deviations in (1) 
are relatively small. The ratios γ̂ should not be much smaller 
than the actual effects of the environmental conditions (γk), 
as this would lead to a behavior of the synthetic sensors that 
would be too smooth. As a check, we take the ratio between 
the γk that follows from (1) and the γ̂k in (3):

If there are local contributions to the PM2.5 concentra-
tions, the ratio in (4) is larger than 1, indicating that the 
deviations of the synthetic sensors will be at least as large 
as those of the real sensors. Therefore, we assume that the 
set of all estimated ratios { ̂γk(x,y,t)} of the sensors that were 
actually in use during an hour is a pool of sufficiently realis-
tic sensor ratios that can be used to generate synthetic sensor 
data in that specific hour. We first create a synthetic real 
concentration:

where Δlocal represents the local contributions. It is estimated 
by random sampling from the distribution of differences 
between the RIO value and the actual fixed concentrations 
in the proximity of the location.

We can now create a realistic synthetic sensor value 
 (Csynth_sensor,k (x,y,t)) at that location and time by multiplying 
the synthetic real concentration  (Csynth_real) with a ratio from 
the pool of ratios in the neighborhood of the sensor:

(2)CRIO(x, y, t) ≈ CBgr(x, y, t)

(3)γ̂k(x, y, t) =
Csensor,k(x, y, t)

CRIO(x, y, t)

(4)
γ̂k

𝛾k
=

CRIO + Clocal + 𝜀k

CRIO

≈ 1 +
Clocal

CRIO

+
εk

CRIO

(5)Csynth_real = CRIO(x, y, t) + Δlocal(x, y, t)

(6)
Csynthsensor,k

(x, y, t) = Csynth_real(x, y, t) γ̂k(neighborhood, t)

Taking ratios from the pool of available ratios in the 
neighborhood of a sensor does not take into account that 
there is a temporal trend/correlation in the behavior of each 
sensor. By taking the ratio from a sensor in the neighbor-
hood of a location (in the order of 10 km), the synthetic 
sensor will show the same variations in behavior in time as 
a real sensor does. Optionally, the variations in γk can be 
multiplied by a random factor (around 1.0) every hour.

Test of the distributions

An important test of synthetic sensor data is to compare 
the concentration distribution of these synthetic values to 
the values of the physical sensors during the hour that we 
are creating synthetic data for. By using the actual behavior 
of sensors, there is a risk of creating artificial correlations 
between actual and synthetic data. A test is to calculate the 
correlation between the actual and synthetic data, which 
should be very low. On the other hand, the distributions of 
actual and synthetic data should be very similar, with a high 
correlation. Two examples of real and synthetic concentra-
tions and distributions are shown below in Figs. 1 and 2.

The correlations between the actual concentrations are 
clearly very small, whereas the correlations between the 
concentration distributions are very high, as should be the 
case for a good synthetic approximation. For the benchmark, 
the synthetic random noise of the sensors was assumed to 
be 50% of the estimated random noise of the actual sensors.

Calibration methods

Calibration method INERIS

INERIS has developed a methodology to identify and elimi-
nate outliers in the synthetic sensor dataset before perform-
ing a calibration procedure. A first cleaning of the data is 
performed. Negative values are removed; those values occur 
when the concentrations are below the limit of detection of 
the sensors, so they are not relevant for fine particle meas-
urements. In addition, sensor data identified as (i) belonging 
to a series of “frozen” values (defined as at least three suc-
cessive hourly time points for which the sensor values are 
constant), (ii) including a constant positive bias with respect 
to the reference measurements, (iii) representing very high 
concentration peaks (> 2 times the maximum value of the 
concentrations, measured at the reference stations in the 
study area, i.e., 240 μg/m3) are deleted. These values cor-
respond to 0.4% of the initial dataset.

The outlier detection procedure of the resulting dataset 
is based upon van Zoest et al. (2018), an approach that is 
adapted in this work to PM2.5 sensor data on a national 
scale. Firstly, a classification of the sensor data is performed. 
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Each sensor is assigned to a group depending on the “type of 
pollution” influencing the sensor measurements, i.e., urban 
background, regional background, traffic, or industrial envi-
ronment influence. This classification is based on informa-
tion about land use, then adjusted by population density, 
the road network, and the type of reference stations located 
next to the sensors. Secondly, a clustering is made based 
on the distance of the sensors from each other. Therefore, 
groups of sensors are formed gathering the closest ones with 
a maximum distance of 10 km. This distance is chosen to 
make the link with the spatial scale (urban scale) defined in 
the original application of van Zoest et al. (2018). In this 
way, the distance clustering is independent of the existing 
land use groups which means that the remaining groups are 
an intersection of distance and land use clustering. Finally, 
the sensors are clustered in time into four different seasons. 

In this work, only one season is considered (winter). The 
number of sensor groups obtained from this classification 
is of the order of  ntype *  ndist *  nseason, i.e., 257 groups as 
shown in Fig. 3.

Each group of sensors is considered individually to deter-
mine a confidence interval in which the sensor values must 
lie in order not to be eliminated. This interval is defined as 
described by Expression 6.

where μ is the mean of the (log-transformed)  PM2.5 concen-
trations in μg/m3, σ is the standard deviation, and z is the 
indicator of the size of the confidence interval. Assuming 
independence and normality of the data, the value of z is set 
to 2.97 for an interval of 99.7%, which is then rounded to 
3. For each group of sensors, a logarithmic transformation 

(7)� ± z × �

Fig. 1  Real (horizontal) and synthetic (vertical) concentrations in μg/m3. Left figure January 11th, 2022, 06:00, Right figure February 08th, 
2022, 20:00

Fig. 2  Concentration distribution of real raw sensor data (blue) and synthetic sensor data (orange). Left figure January 11th, 2022, 06:00, right 
figure February 08th, 2022, 20:00
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is applied to the data to justify the use of Eq. 6. A normal 
distribution truncated at 1 μg/m3 is obtained and a maxi-
mum likelihood estimator is used to calculate the mean and 
standard deviation values of the underlying normal distribu-
tion. The confidence interval is then defined based on this 
estimate of the mean and standard deviation. Sensor values 
outside this range are identified as outliers.

Once the sensor data has been cleaned and outliers iden-
tified, a correction of the sensor network data is performed 
based on the method developed by the RIVM (see section 
“Calibration method RIVM”). The INERIS and RIVM meth-
ods differ in the data cleaning/outlier removal process but both 
use a correction factor based on the average cleaned sensor 
concentrations. At each reference station, the closest sensors 
are selected. In particular, sensors that are located in the buffer 
of the maximum representativeness of the station that varies 
from 50 m for stations under the influence of traffic to 25 km 
for stations under the influence of regional background pol-
lution are considered. Then a correction factor is estimated at 
the hourly time step as described in Eq. 7.

with Fi station, the correction factor calculated at the reference 
station; Cref

i station
 , the concentration measured at the station at 

the considered hourly time; and Csensors
i station

 , the average concen-
tration measured by the sensors located near the station. A 
spatial interpolation of the correction factors is performed by 
the IDW (inverse distance weighting) method on the study 

(8)Fi station =
C
ref

i station

Csensors
i station

area. Fig. 4 shows the sensor data correction performed on 
01/09/2021 at 4:00 PM.

Calibration method ISSeP

A low-cost sensor network should ideally have a high 
density of sensor locations but without necessarily being 
homogeneous in terms of spatial distribution. On the 
other hand, the network of official telemetric stations 
(fixed measurements) must be characterized by a reason-
ably homogeneous distribution over the low-cost sensor’s 
deployment area.

The ISSeP calibration method is an iterative process.

• Firstly, a time series of spatial weighted interpolations 
are performed to produce interpolated fields of refer-
ence values (i.e., the best guess for the concentration 
field).

• Secondly, the time series of each sensor is fitted by two 
regression models using collocated time series of the 
interpolated reference values: a linear model and a non-
linear multi-variables model. Each regression model 
provides a set of parameters and a coefficient of deter-
mination. Finally, the parameters of the fits are used to 
calculate the weight of each sensor to be used in the 
interpolation process in the next step.

• The next iteration will now also include sensor data that 
is used in a second series of weighted spatial interpola-
tions producing updated fields for the best estimate of the 
concentration fields.

Fig. 3  The colors in (b) indicate the different clusters, of which there are many. A color scale was therefore omitted
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• The process is repeated at least twice to obtain the final 
calibration results and the resulting best estimate of the 
concentration fields. The steps are described below in 
some more detail.

The interpolations that are used in the processing of the 
sensors are obtained using the spatial interpolation method 
DIVA (Data Interpolating Variational Analysis) (Troupin 
et al. 2012). This tool is developed by the GHER laboratory 
of the University of Liège and consists of an optimal inter-
polation technique based on a finite element mesh (Troupin 
et al. 2013). A first attempt to use DIVA to map atmospheric 
pollutant concentrations at various scales was made for Wal-
lonia and the city of Antwerp (Lenartz et al. 2018).

The interpolation field is combined with a relative error field, 
reflecting locally the uncertainty of the interpolated reference 
values. The hourly value from each sensor can be used in a simi-
lar way as the reference value which is reconstructed by interpo-
lation. The values of the fixed (official) measurements and the 
sensor values are distinguished by a specific weight determining 
their influence during the construction of the interpolation field. 
The weights of the official values are systematically set to a 
maximum value of 1, while the weights of the sensor values are 
initially set to 1/3 and then re-calculated using information from 
the regression models.

To perform the calibration of the sensors, a sampling win-
dow of about 10 days is considered to provide a sufficiently 
robust time series of hourly observations. For each sensor, a 
non-linear multi-variable regression is carried out between the 
sensor values time-series and the interpolated reference values 
at the location of the sensor. Each reference value is replaced 
by a couple of values obtained by multiplying the interpolated 

reference value by [1-ε] and [1+ε] where ε is the interpolation 
relative error at the sensor location. This duplication is only 
considered to compute the coefficient of determination of the 
non-linear multi-variable regression. This regression is based 
on five independent variables, which are the sensor values at 
several different moments in its time series, in the near future 
and past, and at the present moment of the considered inter-
polated reference value. The time delays used are about one 
to a few hours. An exponent is applied to the sensor values, 
which is as close to zero as the used sensor value is more in 
the past or in the future, i.e., away from the present moment.

The calibrated sensor values are obtained from the inter-
polated concentration field at the locations of the sensors. 
The formulation of the used non-linear multi-variable 
regression is:

where:

Ym is the actual reference interpolated value at the con-
sidered present moment
Xm is the actual sensor value at the considered present 
moment
Xa-b-c-d are the sensor values at other moments in the sen-
sor’s time series
a is the observation index in the near past, for example 3 
h before present
b is the observation index in the close past, for example 
1 h before present
m is the observation index at the considered present 
moment

(9)
Ym = CaXa

Ea + CbXb
Eb + CmXm

1 + CcXc
Ec + CdXd

Ed + intercept

Fig. 4  Correction factors a calculated at reference stations and the correction (b the difference between the initial sensor data values and the cor-
rected data values) after interpolation of the factors over the domain on 01/09/2022 at 4PM
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c is the observation index in the close future, for example 
1 h after present
d is the observation index in the near future, for example 
3 h after present
Ea and  Ed are the exponents of near past/future observa-
tions, for example 0.6
Eb and  Ec are the exponents of close past/future observa-
tions, for example 0.8

Coefficients  Ca,  Cb,  Cm,  Cc,  Cd, and the intercept are deter-
mined by a linear least-square fitting method and compose the 
set of six corrective parameters specific to each sensor. A simple 
linear regression is also performed at this stage. It is used to 
evaluate the quality of the sensor through the computation of 
a performance index. The performance index is involved in the 
re-calculation of the weight of the associated sensor. During the 
following iteration, each sensor will provide its newly corrected 

and weighted values to compose the new data sets used for the 
construction of the new best guess of the interpolated concentra-
tion field. This will then be used again in the determination of 
both regression models which will produce the new parameters 
and calibrated values of the low-cost sensors. The sequence of 
iterations leads to the weights of the low-cost sensors converging 
towards a stable limit value. It was found that after three itera-
tions, half of the low-cost sensors showed a weight variation 
of less than 10%, which was the limit applied in the presented 
results.

Calibration method RIVM

The calibration method used by RIVM mainly focusses on 
eliminating the large deviations of low-cost sensors due to 
environmental conditions, like humidity. Due to the large num-
ber of sensors, where individual quality and performance are 

Fig. 5  Comparing the  PM2.5 
concentrations in μg/m3 of the 
sensors within 1 km distance 
of official locations to those 
values before (left) and after 
(right) calibration for Jan 09th, 
16:00 (top) and Jan 15th, 21:00 
(below)
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unknown, it is not feasible to use calibration functions for each 
sensor. Instead, we compare concentrations reported by official 
measurements with groups of sensors to estimate and correct the 
deviations. The method consists of several steps:

(1) Data selection
  In practice, there are two predominant types of mal-

functioning sensors: those that consistently report (1) 
almost zero concentrations or (2) very high concentra-
tions. Therefore, sensors with the lowest and highest 
5% of the concentrations are not included in the calibra-
tion. However, after a calibration is obtained, all sen-
sors are calibrated and reported.

(2) Group sensor data, determine corrections
  For each available official fixed measurement loca-

tion at a particular hour, the surrounding sensors are 

grouped in clusters with a typical maximum distance of 
5 km. The sensors just across the border (Germany and 
Belgium) are also used in this grouping while, for the 
synthetic sensor data, only locations of Dutch sensors 
were used. Depending on the number of sensors in a 
group, the highest and lowest values may be excluded 
from the calibration; i.e., with more than 20 sensors in 
a group, the three highest and lowest sensors are not 
used in the calibration. With 10–20 sensors in a group, 
the highest and lowest two are not used. With less than 
10 sensors, the highest and lowest sensors are not used. 
For each group, the ratio between the average of the 
included sensors and the official measurement is cal-
culated, yielding a map with local calibration factors. 
The effects of the local calibrations are shown in Fig. 5, 
where we compare the official measured fixed concen-

Fig. 6  Locations of the (syn-
thetic) sensors. The color scale 
indicates the average synthetic 
real concentrations during the 
benchmark period in mg/m3

Table 1  Median value of R and 
RMSE of individual sensors. 
Mean absolute value and 
standard deviation of the daily 
bias.

Calibration median R median RMSE
μg/m3

mean abs day bias
μg/m3

stdev day bias
μg/m3

Raw Cal Raw Cal Raw Cal Raw Cal

RIVM 0.84 0.89 7.68 6.02 2.53 1.07 3.14 0.58
INERIS 0.84 0.88 7.65 6.15 2.56 1.15 3.15 0.97
ISSEP 0.84 0.87 7.26 5.43 2.53 2.21 3.17 2.73
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trations and the nearby sensors (<1 km). On January 
09th, the concentrations were low, and meteorologi-
cal conditions resulted in sensors underestimating the 
official fixed measurements. After the calibration, the 
average values are in better agreement; however, few 
sensors with an already high value are also scaled up. 
On January 15th, the mean and the variance of the 
concentrations are much higher. Furthermore, in some 
regions, the average official fixed measurements and 
sensors are comparable whereas in other parts, the 
sensors are substantially larger than the official fixed 
measurements. After the calibration, there is a better 
overall agreement in the whole country.

(3) Interpolate corrections
  It is assumed that the local calibration factors are suf-

ficiently representative of the surrounding areas. All the 
available local calibration factors are then used to inter-

polate a calibration factor for the whole country. For 
simplicity, we applied the inverse distance weighting 
(IDW) with the modified Shepard’s method, using only 
the nearest neighbors. To reduce the typical circular pat-
terns in IDW, the maximum distance of interpolations 
is varied to (almost) always include several neighboring 
local calibration factors in the interpolation.

(4) Calibrate all sensors
  All sensors (including the outliers excluded from the 

calibration step) are calibrated based on the interpo-
lated calibration field. Quality parameters are available 
for each sensor, indicating if the sensor was used in the 
calibration and, if not, why.

For use in a subsequent data fusion process using the cali-
brated sensors, the whole calibration process is repeated many 
times in a bootstrap procedure varying the available official 
measurements and the available sensors to estimate the 95% 
confidence interval of the sensor values.

Fig. 7  Biases of the raw sensor 
data (vertical) versus the cali-
brated sensor data (horizontal). 
All concentrations in μg/m3. 
Shown are results from RIVM 
(top, left), INERIS (top, right), 
and ISSeP (bottom, left)
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Short description of differences between calibration 
methods

The data processing methods of INERIS and RIVM are 
similar. The biggest difference is the extensive clus-
tering of the sensor data performed by INERIS, based 
on a number of parameters. For all clusters, a separate 
outlier detection using log-transformed concentrations 
is performed. Contrary to this, RIVM bases the outlier 
selection on the highest and lowest percentiles of the 
data, followed by an outlier selection in groups of sensors 
surrounding fixed measurement locations. The method 
employed by ISSeP is different, as it compares the sen-
sors to interpolated values of the concentrations at the 
official fixed locations. The sensor values are compared 

to the interpolated values, and the differences are used 
to estimate a correction that is to be applied to the sen-
sors. The methods of RIVM and INERIS method thus 
first compute divergence ratios between official stations 
and sensor measurements and then spatially interpolate 
them whereas the ISSeP method first spatially interpo-
lates official stations combined with weighted sensor 
measurements and then computes divergence ratios.

Results

The three different approaches to calibrating the sensors 
resulted in just over 1.4 million data points from INERIS, 
just below 1.4 million from RIVM, and 1.2 million from 

Fig. 8  Target plots of the raw 
monthly averaged sensor data 
(red) versus the calibrated sen-
sor data (blue). All concentra-
tions in μg/m3. Shown are 
results from RIVM (top, left), 
INERIS (top, right) and ISSeP 
(bottom, left)
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ISSeP. As each method has different schemes to select valid 
data, the number of calibrated sensors that are reported 
depends on the method. For a sensible comparison, only 
the hourly results for sensors with raw (uncalibrated) val-
ues below 250 mg/m3 were compared. Apart from the first 
hours of a new year, this is a concentration level that is not 
expected to occur. For the selected sensors and hours, the 
raw, uncalibrated values and the calibrated values are avail-
able. Figure 6 depicts the locations of the sensors during the 
benchmark period.

To make a first comparison between the three different cali-
bration methods as described in the previous section, a set of 
statistical parameters was calculated. The Pearson correlation 
and the root mean square error were calculated for all raw and 
calibrated sensors individually during the entire measurement 
period. The median values of these individual metrics are 

shown in Table 1. Additionally, the average difference, taken 
over all sensors, between sensors and synthetic real concentra-
tions was calculated for each day in the measurement period. 
The mean absolute value and standard deviation of these daily 
biases are also reported in Table 1. The parameters in the 
table for the raw (uncalibrated) sensor data can still differ 
between the calibration methods because of the differences in 
data points that have been analyzed. All parameters improve 
when comparing calibrated with raw sensor data.

A simple next test is to compare the average values of the raw 
and calibrated sensor values to the synthetic real values. Alter-
natively, the raw and calibrated biases can be compared, i.e., the 
average differences between the raw sensor values and the syn-
thetic real values compared to the average differences between 
the calibrated sensor values and the synthetic real values. The 
results for the methods are shown below in Fig. 7.

Fig. 9  Scatter plots of the daily 
average of all sensors for raw 
data (red) versus the calibrated 
data (blue). All concentrations 
in μg/m3. Shown are results 
from RIVM (top, left), INERIS 
(top, right), and ISSeP (bottom, 
left)
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The raw and calibrated biases are similar in the case of 
the INERIS and RIVM methods, as if the calibration pro-
cess has only a limited effect on the sensors. However, the 
method of ISSeP produces biases that are different before 
and after calibration.

In the Target diagram, developed in the FAIRMODE pro-
ject and implemented in the Delta Tool (Janssen and Thunis 
2020), two sets of data can be compared, models and obser-
vations or other variables. The X and Y axes of the Target 
diagram correspond to the BIAS and the CRMSE (centered 
root mean square error). Depending on whether the CRMSE 
is dominated by the correlation or by the spread in values, 
the value is plotted as either negative or positive, see the 
manual of the Delta Tool for more information. In the stand-
ard Target diagram, the BIAS and CRMSE are normalized 
by the measurement uncertainty and parametrized as part 
of the FAIRMODE work. For the present analysis, we have 
chosen not to normalize the BIAS and CRMSE.

The Target diagrams (Fig. 8) for the three methods 
show more differences between the raw and calibrated 
data than the comparison of biases. The calibrations of 
INERIS, ISSeP, and RIVM all result in slightly smaller 
(absolute) CRMSE’s than are observed in the Target plots 
of the raw sensor data. The BIAS of both INERIS and 
RIVM is, on average, practically zero, whereas the BIAS 
of ISSep is slightly positive. In the Target diagrams, it 
is obvious that the method of ISSeP produces a smaller 
number of calibrated sensor values than the other meth-
ods. After the calibration, there are practically no results 
with positive values of the CRMSE.

The differences between the raw and calibrated sensor values 
become clear when looking at the spatial average values of the 
sensors on a daily basis; see Fig. 9. The raw sensors show sub-
stantial positive deviations from the synthetic real concentrations 
during the 10 days between January 10th and 20 h, probably due 
to relatively high humidity in that period. On the other hand, 
the raw sensors underestimate the synthetic real concentrations 
during the other days of the month. Although the calibrations of 
INERIS and RIVM have significant effects on hours and days 
with large biases, there also are enough days in the benchmark 
period with limited corrections, such that the average effect of 
the calibration over the whole month is limited.

The sensors in the benchmark, the SDS011, are known 
to be very sensitive to moisture (VACUUMS 2021). To 
see if the relative humidity is driving the biases of the 
raw sensors, we have calculated the daily average relative 
humidity of all stations of the Dutch met-office (KNMI). 
Figure 10 shows the daily biases of the uncalibrated sen-
sors in red and the daily average relative humidity. The 
curves show similar behavior over the days of the month. 
During January 10th–19th, the average relative humidity 
is clearly higher than during the other days.

The effects of the three types of calibrations become 
more pronounced when looking at the hourly average 
concentrations of the raw and calibrated sensor data. In 
Fig. 11, the calibrated sensor data (blue dots) seems to 
slightly but systematically overestimate the synthetic real 
concentrations. This is the result of including part of the 
sensors that are not functioning properly, resulting in high 
values, both raw and in the analysis of the benchmark 

Fig. 10  Average daily biases of 
the raw sensors (red) and the 
daily average relative humidity 
(gray), in percent, as a function 
of the day in the month of Janu-
ary 2022
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results. Removing these high value data in the analysis 
eliminates the systematic overestimation but may also 
result in eliminating actually occurring high concentra-
tions. Therefore, we have chosen to include sensors with 
high concentrations in the analysis.

After the calibration using the method of RIVM, the 
results follow the diagonal in a relatively small band. The 

results using the method of INERIS show a similar pat-
tern. The calibration method of ISSeP leads to more scatter 
along the diagonal, in a band that is practically as wide 
as that of the raw sensor data. The different results are 
reflected in the correlation and RMSE, as well as the offset 
and slope of a fit to the raw and calibrated data in Fig. 11, 
shown in Table 2.

Fig. 11  Scatter plots of the 
hourly average of all sensors for 
raw data (red) and the calibrated 
data (blue) versus the synthetic 
real concentrations. All concen-
trations in μg/m3. Shown are 
results from RIVM (top, left), 
INERIS (top, right), and ISSeP 
(bottom, left)

Table 2  Correlation, RMSE, 
offset, and slope of a fit to 
the hourly raw and calibrated 
data for the results of INERIS, 
ISSeP, and RIVM, shown in 
Fig. 11

Correlation R RMSE Offset linear fit Slope linear fit

Raw Cal Raw Cal Raw Cal Raw Cal

RIVM 0.93 0.99 4.0 1.7 2.03 −0.99 0.79 0.99
INERIS 0.93 0.98 4.0 2.1 2.01 −0.31 0.79 0.95
ISSEP 0.92 0.92 3.9 3.3 2.71 0.65 0.77 0.90
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The table shows slightly different values for the raw 
sensor data for RIVM, INERIS, and ISSeP. This is due to 
the fact that the different methods made different selec-
tions of outliers that were returned in the processing.

Discussion and concluding remarks

Based on the tests performed and described in this article, 
several conclusions can be drawn.

First of all, benchmarking is an important and useful 
process to study the effects of different approaches in the 
calibration of data from large networks of low-cost sensors.

For large sensor networks, it is not possible to compare the 
results of raw/calibrated sensors to the results of official fixed 
measurements at the sensor locations as the official data is sim-
ply not available. However, sufficiently realistic synthetic real 
concentrations and synthetic sensor data can be constructed, and 
these are valuable for an objective benchmark of different sensor 
network processing algorithms.

The importance of data cleaning, handling of uncertainty, 
interpolation, and calibration of low-cost sensors is demon-
strated and investigated. The algorithms applied in the bench-
mark for network calibration can substantially correct the influ-
ence of environmental conditions on the performance of the 
SDS011 PM2.5 sensors. The results obtained by INERIS and 
RIVM are comparable. The results obtained by ISSeP, based on 
spatial averages for each hour, show less improvement after the 
calibration. Looking at the extent of the BIAS, the calibrated 
ISSeP data is better centered around zero. This is likely due to 
the fact that the ISSeP method is discarding more data points 
which is an inherent feature of the method.

The methods employed by RIVM-INERIS are suited for 
a calibration approach looking for a robust good mean cali-
bration, with tolerance for a few “bad” corrected sensors, 
whereas the ISSeP method is suited for calibrations with low 
tolerance for badly corrected sensors.

The SDS011 sensor, used as a basis for the synthetic data, 
has a large random uncertainty that cannot be corrected by 
network calibration. As a result, there remains a substantial 
scatter in the results of the sensors which limits individual 
use. Combining the calibrated PM2.5-sensor data with exist-
ing air quality maps in a data fusion approach is expected 
to improve the level of detail and the quality of the air qual-
ity maps, especially when zooming in spatially and in time. 
This will be part of the next phase of sensor processing in 
FAIRMODE Working Group 6; see https:// fairm ode. jrc. ec. 
europa. eu/ activ ity/ ct6.

Appendix

Annex 1. Data collection for the benchmark

As described before, the data used in the benchmark is based 
on citizen data in The Netherlands. This annex gives a short 
technical description of the data collection and processing.

There are no a priori requirements for parties to deliver 
their data. RIVM receives Citizen Science Air Quality 
data from a variety of data streams such as the data from 
the https:// sensor. commu nity/ en/. The key elements in the 
hard- and software configuration for handling and stor-
ing this data are a Node-Red-server, an InfluxDB-server, 
and a PostgresDB-server. The Node-Red receives the data 
and forwards it into an InfluxDB-timeseries database. This 
InfluxDB-server is also used to receive data from (mostly 
older) sensor initiatives that use WiFi as a communication 
medium.

Apart from these push mechanisms, RIVM also pulls 
data from several external APIs and stores these in 
InfluxDB. The data is then transferred and harmonized to 
a PostgresDB-server where it can be combined with other 
data like sensor types, location data, and official data from 
Reference Networks.

Fig. 12  Schematic overview of 
the data flow

https://fairmode.jrc.ec.europa.eu/activity/ct6
https://fairmode.jrc.ec.europa.eu/activity/ct6
https://sensor.community/en/
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The PostgresDB-server is the source for public services 
like the web-based data portal and a “SamenMeten” API, 
https:// api- samen meten. rivm. nl/ v1.0. For the FAIRMODE 
benchmark, the data was also provided in a compressed 
format for all interested parties to develop and test their 
calibration methods.
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