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Abstract
Air pollution from fine particulate matter (PM2.5) has been associated with various health implications that can lead to 
increased morbidity and excess mortality. Epidemiological and toxicological studies have shown that carbonaceous particles 
(black carbon and organic aerosols) may be more hazardous to human health than inorganic ones. Health impact studies and 
emission reduction policies are based on total PM2.5 concentration without differentiating the more harmful components. 
In such assessments, PM2.5 and their sub-component concentrations are usually modeled with air quality models. Organic 
aerosols have been shown to be consistently underestimated, which may affect excess mortality estimates. Here, we use 
the WRF-Chem model to simulate PM2.5 (including carbonaceous particles) over the wider European domain and assess 
some of the main factors that contribute to uncertainty. In particular, we explore the impact of anthropogenic emissions 
and meteorological modeling on carbonaceous aerosol concentrations. We further assess their effects on excess mortality 
estimates by using the Global Exposure Mortality Model (GEMM). We find that meteorological grid nudging is essential 
for accurately representing both PM2.5 and carbonaceous aerosols and that, for this application, results improve more sig-
nificantly compared to spectral nudging. Our results indicate that the explicit account of organic precursors (semi-volatile 
and intermediate-volatile organic carbons—SVOCs/IVOCs) in emission inventories would improve the accuracy of organic 
aerosols modeling. We conclude that uncertainties related to PM2.5 modeling in Europe lead to a ∼15% deviation in excess 
mortality, which is comparable to the risk model uncertainty. This estimate is relevant when all PM2.5 sub-components are 
assumed to be equally toxic but can be higher by considering their specific toxicity.
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Introduction

Particulate matter with an aerodynamic diameter of less than 
2.5 µm (PM2.5) has been widely studied for its impacts on 
human health. The 2015 Global Burden of Disease Study 

estimates that exposure to outdoor fine particulate matter is 
the fifth leading risk factor of death worldwide, accounting 
for 4.2 million deaths and 103.1 million disability-adjusted 
life years (Cohen et al. 2017). In Europe, although air pol-
lution levels have generally decreased over the last decades, 
especially in the large urban and industrial centers, they 
still exceed the World Health Organization (WHO) health 
guideline (annual mean PM2.5 concentrations of 5 µg/m3) 
(WHO 2021). Particular sub-components of PM2.5, such 
as carbonaceous particles (e.g., black carbon: BC, organic 
aerosols: OA), have received great attention in the scientific 
community. These are mostly emitted during the incomplete 
combustion of organic material, for example, from biomass 
burning and diesel exhaust (Raga et al. 2018). There is a 
growing evidence from toxicological studies that these car-
bonaceous particles are particularly hazardous to human 
health and are associated with cardiovascular and respiratory 
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outcomes (including asthma, congestive heart disease, and 
lung cancer) (Bates et al. 2019). A recent epidemiological 
study by Pond et al. (2022) has indicated ten times greater 
cardiopulmonary mortality association for elemental carbon 
(EC) than for total PM2.5 and larger cardiopulmonary mor-
tality risk for secondary organic aerosols and vehicle sources 
within the US National Health Interview Survey cohort com-
pared to other components and sources. On the other hand, 
low or insignificant cardiopulmonary mortality associations 
were found for primary organic aerosols (Pond et al. 2022, 
Pye et al. 2022). These PM2.5 sub-components likely cause 
disproportional harm compared to fine inorganic particles. 
Despite these indications, carbonaceous aerosols are not the 
focus of policymakers due to inconsistencies of component-
specific toxicities (Pond et al. 2022).

Air quality models are useful for air quality studies and 
air pollution health impact studies. They are potentially the 
most powerful tools to capture the complexity of atmos-
pheric pollution life cycles and interactions and are able to 
support emission reduction strategies (Thunis et al. 2022). 
The Weather Research and Forecasting Model coupled 
with online chemistry (WRF-Chem) is a widely used air 
quality model, with several user-defined options, suitable 
for global and regional air quality modeling. Compared to 
offline models, WRF-Chem has the advantage of a tight cou-
pling between meteorology and species transport, as well 
as the consistency between chemical and physical param-
eterizations used in radiation, planetary boundary layer 
(PBL) dynamics, mixing, convection, and photolysis pro-
cesses (Ahmadov et al. 2012). The accuracy of air quality 
modeling is highly dependent on the input data (including 
emissions) and the representation of meteorology. Tempera-
ture, humidity, wind speed, and direction can influence the 
boundary layer stability, cloud/fog formation, and radia-
tion, all of which affect the transport, dispersion, chemistry, 
and photochemistry (Gilliam et al. 2015). Several nudging 
techniques (e.g., spectral and grid-analysis nudging) have 
been introduced to regional climate models to prevent them 
from drifting from actual meteorological conditions. Grid 
analysis nudging uses a relaxation term to adjust the model 
predictions at individual grid points with the same strength 
and is applied for retrospective meteorological modeling 
for air quality applications (Liu et al., 2018). Nudging has 
been shown to improve PM2.5 simulation (Jeon et al. 2015). 
Meteorological grid-analysis nudging is generally more 
appropriate than spectral nudging, but nudging coefficients 
should be chosen to adjust the strength of the nudging force 
in the governing equations (Ma et al. 2016).

PM2.5 modeling has several challenges, especially 
regarding organic species, which contribute a large part of 
PM2.5 mass (20–90%) (Kanakidou et al. 2005). Organic 
aerosols have a complex chemical composition that varies 
depending on the emission source and chemical processes. 

Therefore, the accuracy of emission inventories and the rep-
resentation of the chemical reactions are key aspects. WRF-
Chem has been developed to reproduce many known chemi-
cal reactions effectively; however, the final output depends 
on several features, including the choice of chemical and 
physical parameterizations.

Organic aerosols are derived from multiple sources, both 
primary (POA) (i.e., directly emitted from traffic or combustion 
sources) and secondary organic aerosols (SOA) formed through 
gas-phase oxidation reactions of volatile organic compound 
(VOC) precursors (Baltensperger et al., 2005). Their complex 
and diverse formation pathways are not yet fully known, thus 
their representation in models is incomplete. Several studies 
report that organic aerosols are often underestimated by air 
quality models possibly due to missing key precursors (e.g., 
intermediate and semi-volatile organic carbons: IVOCs and 
SVOCs) and uncertainties in emissions especially for specific 
sources (e.g., residential combustion) (Tuccella et al., 2015; 
Kong et al., 2015; Berger et al., 2016). The emissions of OA 
precursors have been shown to be uncertain due to their spatial 
and temporal variability, the sectoral attribution of emission 
factors, and inconsistencies in measurement or reporting tech-
niques used to determine the emission factors (Borbon et al., 
2013, Kanakidou et al., 2005). Particularly, the emission fac-
tors from residential wood combustion, one of the most impor-
tant sources of organic aerosols in Europe, (Raga et al., 2018; 
Lelieveld et al., 2020; Paunu et al., 2021) are not quantified in a 
harmonized way among the EU countries (Denier Van Der Gon 
et al., 2015). This is because of challenges in obtaining accurate 
activity data and fuel statistics (e.g., for wood), especially from 
rural regions, which leads to missing information and under-
estimated emissions. Another factor contributing to the uncer-
tainty in emission inventories is the sampling conditions, such 
as the temperature, humidity, and dilution ratio during their test 
sampling which can affect the condensation of SVOCs/IVOCs. 
Several studies have highlighted the importance of the so-called 
“condensable organics” in estimated emissions which are typi-
cally not quantified in a harmonized way between countries 
(Kanakidou et al., 2005; Robinson et al., 2007; Denier Van 
Der Gon et al., 2015; et al. Simpson et al, 2020). The key role 
of anthropogenic VOCs to SOA formation and related health 
effects has been discussed in a recent study, where the mitiga-
tion of anthropogenic VOCs emissions has been found to be 
a more efficient strategy in reducing air pollution-associated 
cardiopulmonary deaths than that of nitrogen and sulfur oxides 
(NOx or SOx) (Pye et al. 2022).

The variability in emission estimates can lead to model 
uncertainties and further challenges to health impact stud-
ies and policy design on emissions reduction measures. For 
example, Crippa et al. (2019) have calculated that uncertainties 
related to emissions can contribute to 1.1–3.4 million excess 
death uncertainty intervals, being about 50% of the estimated 
total mortality per year globally. Kushta et al. (2018) suggested 
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that WRF-Chem captures well the variation of fine particu-
late matter over Europe and highlighted that the uncertainties 
related to model resolution and performance are not as signifi-
cant as the uncertainties driven by the relative risk (RR) mod-
els for estimating excess mortality. Other studies have found 
important differences in excess death estimates attributed to 
PM2.5 concentration uncertainties, different ozone precursors 
emissions, and meteorology (J. Liu et al. 2022; Wang et al. 
2019). RRs are currently based on annual PM2.5 mass concen-
tration, and the resulting excess mortality over a large region 
of interest (e.g., at the continental or global scale) is possibly 
not highly impacted by such model uncertainties compared to 
smaller-scale mortality estimates (e.g., at the country or city 
level). However, if the contribution of carbonaceous aerosols 
(CA) to the overall health burden is to be estimated, it is impor-
tant to obtain representative levels of these components, which 
may be more hazardous to human health and can thus contrib-
ute relatively strongly to excess mortality (Bates et al. 2019; 
Daellenbach et al. 2020; Chowdhury et al. 2022). In this study, 
we run the WRF-Chem model over Europe to simulate annual 
PM2.5 levels and the carbonaceous sub-components BC and 
OA, including POA and SOA. We aim to obtain representative 
concentrations of these components that can be used in air pol-
lution health impact studies by investigating the influence of 
several factors (e.g., anthropogenic emissions and meteorologi-
cal nudging) on the modeled OA concentrations. Moreover, we 
investigate the implications of model uncertainties related to 
OA on excess mortality estimations.

Methodology

Model configuration

WRF-Chem-v.3.9.1 (Grell et al. 2005) was used to simulate 
the annual concentrations of PM2.5 and its carbonaceous con-
stituents over Europe. WRF-Chem consists of a meteorologi-
cal core (WRF) that enables the simulation of various mete-
orological processes online with a coupled chemistry core, 
which also enables the simulation of chemical processes, thus 
allowing the interaction between meteorology and chemistry.

We simulate the year 2015 (January 1st to December 31st), 
a representative and well-studied year with full availability 

of emission data. The model performance has been previ-
ously evaluated for the year 2015 using the benchmarking 
evaluation methodology developed in the framework of the 
Forum for Air Quality Modelling in Europe (FAIRMODE). 
The FAIRMODE methodology considers paired series of 
model and observed values of PM2.5 for year-long periods. 
It investigates the model capabilities by introducing an over-
all indicator, namely, the modeling quality indicator (MQI), 
considering the measurement uncertainty of each pollutant 
(Kushta et al. 2019; Thunis et al. 2012).

The model horizontal resolution is 20 × 20 km, with 33 ver-
tical layers, and top level at 50 hPa. The meteorological initial 
and boundary conditions have been obtained from the NCEP 
FNL (Final Operational Global Analysis) data, updated every 
6 h. Besides the main prognostic variables (e.g., temperature, 
wind components, etc.), the FNL data provide information 
of other parameters that would require a long spin-up period 
(e.g., soil moisture and temperature). The chemical boundary 
conditions were obtained from the global Model for Ozone 
and Related chemical Tracers (MOZART-4 (Emmons et al. 
2010), at 1.89° × 1.89° resolution). The mineral dust emis-
sions are calculated online, as well as the biogenic emissions 
which are computed using the Model of Emissions of Gases 
and Aerosols from Nature version 2.1 (MEGAN2.1). The 
chemical/aerosol scheme chosen is the Regional Atmospheric 
Chemical Model coupled with Modal Aerosol Dynamics for 
Europe (MADE) with the Volatility Basis Set (VBS) (RACM/
MADE-VBS). RACM includes 57 chemical species and 158 
gas-phase reactions, and MADE deploys two overlapping log-
normal modes to simulate aerosol size distribution (Tuccella 
et al. 2015; Ahmadov et al. 2012). The VBS is used to cal-
culate SOA formation taking into account the semi-volatile 
nature of OA, ageing processes (homogeneous oxidation of 
organic carbon vapors by OH radicals) and to significantly 
improve the model’s ability to reproduce observed OA con-
centrations (Bergström et al. 2012; Kryza et al. 2020). We 
note that IVOCs are not included in this scheme as SOA 
precursors (default model set-up), while studies have shown 
that they have a significant contribution to SOA formation 
(Karydis et al. 2010; Tsimpidi et al. 2010). More detailed 
information about the VBS scheme used here can be found 
in Ahmadov et al. (2012). Parameterization schemes that are 
common in all simulations are indicated in Table 1.

Table 1   Other physical and 
chemical options that are 
common in all simulations 

Atmospheric process Scheme

Cloud microphysics Morrison double moment (Morrison et al. 2005)
Cumulus parametrization Grell 3D (Grell 1993, 2002)
Longwave radiation RRTM scheme (Mlawer et al. 1997)
Land-surface physics Noah land surface model (Chen and Dudhia 2001)
PBL scheme Yonsei University (YSU) (Hong et al. 2006)
Photolysis scheme Fast-J (Wild et al. 2000)
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Sensitivity tests of anthropogenic emissions

Through this analysis, we aim to improve the model rep-
resentation of PM2.5 and carbonaceous aerosols in Europe 
for health impact estimations of long-term exposure to these 
particles and test the impact of important factors contributing 
to their modeling uncertainties. The model configurations are 
based on previous studies for the region of interest (Denier 
Van Der Gon et al. 2015; Tsimpidi et al. 2010; Zittis et al. 
2018; Georgiou et al. 2020). Several modifications on anthro-
pogenic emissions are applied to investigate the impact of (a) 
combining two different anthropogenic emission inventories, 
specifically for NMVOCs (S4-S7) and (b) the inclusion of 
IVOCs (S3, S6, and S7) and SVOCs (S7) precursors emis-
sions on the final OA concentration (Table 3). IVOCs emis-
sions are reported to be missing in current emission invento-
ries and have been estimated to be a factor of between 0.25 
and 2.8 times the primary organic carbon emissions (Robin-
son et al. 2007; Tsimpidi et al. 2010). In the present study, 
we take into account missing IVOC emissions equal to 1.5 
times the primary organic carbon (POC) emissions (Table 3) 
(Tsimpidi et al. 2010). Anthropogenic emissions are interpo-
lated by the “anthro-emiss” utility to generate daily emissions 
for 2015. The two emission inventories used in this study 
are the EDGARv.5 (Crippa et al. 2020) (https://​edgar.​jrc.​ec.​
europa.​eu) used as the primary, and the CAMS-REG-AP.v4.2 
(DT) (Kuenen et al. 2022) (https://​eccad.​aeris-​data.​fr) used as 

complementary data for NMVOCs from residential combus-
tion and SVOCs emissions. EDGARv.5 does not distinguish 
between filterable and condensable organic carbon. On the 
other hand, CAMS-REG-AP.4.2 (DT) accounts for conden-
sable PM2.5 (condensed SVOCs) emissions that are usually 
not included in emission inventories because they fall outside 
the normal definitions of VOCs. SVOCs are partially in the 
particulate phase shortly after emission due to condensa-
tion upon dilution and cooling. The emissions of condensed 
SVOCs are added as PM2.5 in CAMS-REGv.4.2 (DT) that 
led to considerably higher PM2.5 emissions than EDGARv.5. 
This additional fraction of SVOCs in PM2.5 was used in this 
study (in simulation S7) and added to the primary OC emis-
sions to be interpolated by the “anthro-emiss” utility. The 
main differences between the two emission inventories are 
summarized in Table 2. CAMS-REG combines emission data 
from several sources including the recently updated emission 
inventory for residential wood combustion (RWC) and the 
TNO-newRWC (Denier Van Der Gon et al. 2015). Residen-
tial combustion is one of the dominant sources of organic 
aerosols in Europe, with a strong impact on local air quality 
and health in many EU cities. However, as emissions from 
the RWC sector are often underestimated in the emission 
inventories (Bergström et al. 2012), their contribution is not 
well-identified. The TNO-newRWC was developed follow-
ing a detailed analysis of the nationally reported residential 
emissions. It included data from wood usage, accounted for 

Table 2   Differences between EDGARv.5 and CAMS-REG-AP anthropogenic emission inventories

Detail EDGAR v.5 CAMS-REG-AP (DT)

Year 2015 2015
Domain Global Regional (Europe)
Spatial resolution 0.1° × 0.1° 0.05° × 0.1°
Species included CH4, CO2, N20, NMVOC, CO, SO2, 

NOx, NH3, PM10, BC, OC, PM2.5
CH4, NMVOC, CO, SO2, NOx, NH3, PM10, PM2.5

Methodology Independent activity and technology 
estimation, own gridding

Official national emissions reporting, own gridding, combination of 
data from: IIASA GAINS model, JRC-EDGAR, expert judgement 
includes the TNO-bottom-up emission database for RWC and there-
fore slightly differs from the official CAMS-REG inventory

Table 3   Summary of the 
sensitivity tests on emission 
changes and meteorology

Simulation 
number

Anthropogenic 
NMVOCs (residential 
sector)

Other anthropo-
genic emissions

Temperature 
nudging co-
efficient

IVOCs Includes 
condensable 
PM2.5

1 EDGAR​ EDGAR​ Default (0.0003) Default No
2 EDGAR​ EDGAR​ Strong (0.003) Default No
3 EDGAR​ EDGAR​ Medium (0.001) 1.5 × POC No
4 CAMS-REG EDGAR​ Default (0.0003) Default No
5 CAMS-REG EDGAR​ Strong (0.003) Default No
6 CAMS-REG EDGAR​ Medium (0.001) 1.5 × POC No
7 CAMS-REG EDGAR​ Medium (0.001) 1.5 × POC Yes

https://edgar.jrc.ec.europa.eu
https://edgar.jrc.ec.europa.eu
https://eccad.aeris-data.fr
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appliance type, and spatially distributed the RWC emissions 
based on population density, urban/rural differentiation, and 
access to wood fuel (Paunu et al. 2021). It also used a set of 
more harmonized emission factors between EU countries. 
This resulted in a more consistent emission dataset, inde-
pendent of important country differences. CAMS-REG also 
has a higher resolution (7 × 7 km over Europe) than EDGAR 
(11 × 11 km). Most of the EU emissions are lower than in 
EDGAR but were found to be higher in non-EU countries 
(North Africa, Eastern Europe, and the Middle East), of 
which some are included in our model domain (Kuenen et al. 
2022).

Sensitivity tests on meteorological nudging

Nudging involves the addition of a dynamic relaxation term 
to the prognostic equations based on the difference between 
the model state and a reference field (Zittis et al. 2018). 
Grid and spectral nudging are two techniques that can be 
applied in WRF-Chem. Each approach has its advantages, 
but the results can be sensitive to many factors (the nudging 
coefficients, boundary conditions, the frequency of nudg-
ing, and the selection of variables). Here, we assess whether 
applying these techniques can improve the OA simulation 
in WRF-Chem and which configuration is the most suitable 
for this purpose. Initial test simulations with default grid 
analysis performed better than spectral nudging; therefore, 
it was selected for this application. Analysis nudging was 
applied every 6 h to the zonal and meridional components 
of wind (U and V), temperature (T), water vapor mixing ratio 
(QVAPOR), and geopotential perturbation (PH) in every 
model layer, including the planetary boundary layer (PBL). 
The default nudging coefficient is 0.0003. Temperature is 
an important parameter that directly affects the volatility 
of OA precursors and their partitioning into gas or aerosol 
phases. Thus, we also test the impact of a stronger nudging 
coefficient in temperature on the final OA concentration and 
keep the rest of the nudging coefficients to the default option 
(Zittis et al. 2018). More details in the sensitivity analysis 
regarding meteorological nudging are presented in Table 3. 
The model validation in terms of meteorological parameters 
and the effect of nudging is presented in the Supplementary 
Information (SI). We note that the aerosol-radiation feed-
back is turned on in all simulations.

Comparison with observations

The modeled particle concentrations are compared with 
ground-based observations obtained from EBAS-Nilu 
(http://​ebas.​nilu.​no/) and AirBase (https://​www.​eea.​europa.​
eu/) databases. In total, 996 stations that cover a large part 
of Europe are used for PM2.5. Thirty stations for black 

carbon and 33 for organic carbon are used, which are located 
mostly over central Europe, with less coverage in the north-
ern (e.g., Sweden, Norway, Finland) and some southern 
regions (e.g., Italy and Greece) (Figs. S10–S12). Statisti-
cal metrics such as annual mean bias (MB), mean absolute 
error (MAE), mean normalized bias (MNB), mean fractional 
bias, and mean fractional error (MFB, MFE) are derived 
for each simulation to assess their performance. The sum 
of modeled POA and SOA is compared with organic aero-
sols from observations. The organic carbon to organic mass 
conversion factor of 2.1 (Yazdani et al. 2021) is also used 
to compare the modeled OC. The comparison is focused 
on annual averages since the hazard ratios used to estimate 
excess mortality from long-term exposure to fine particles 
are based on annual mean concentrations. Surface meteoro-
logical variables, including temperature (T), precipitation, 
and wind speed at 10 m (WS10m), are compared with obser-
vations from E-OBS (Cornes et al. 2018) (at 0.25° × 0.25°) 
and ERA-5 (Hersbach et al. 2020) (at 0.1° × 0.1°) datasets. 
ERA-5 is used for wind speed comparison because it has 
better spatial and temporal coverage than the E-OBS for this 
meteorological parameter (for more details, see the Supple-
mentary Information). Ideally, independent observations 
should have been compared with the meteorological fields. 
However, this could not be achieved considering the num-
ber of station observations (part of E-OBS) that are already 
assimilated in the boundary conditions (FNL dataset). The 
model performance is assessed based on the aerosol annual 
mean biases. As proposed by Boylan and Russell (2006) for 
standard modeling applications, the mean fractional bias and 
errors (MFB and MFE) should be below 60 and 75%, respec-
tively, for the model to be considered acceptable for use in 
air quality studies. When the MFB and MFE are below 30% 
and 50%, respectively, the level of accuracy is considered 
to be close to the best a model can be expected to achieve 
(Berger et al. 2016).

Excess mortality calculations

The annual excess deaths are calculated using the age-spe-
cific hazard ratios (HR) for non-communicable diseases and 
lower respiratory infections by Burnett et al. (2018) based 
on the PM2.5 annual mean concentration (Eqs. 1–2). The 
contribution of carbonaceous aerosols to excess deaths can 
be estimated with two approaches. The first approach is to 
calculate new HRs based on PM2.5 concentration without 
CA concentration, and the resulting excess mortality (with-
out CA) is to be deducted from the total. With this approach, 
the new HRs are derived at the tail of the (non-linear) risk 
curve, which might not reflect the actual mortality risk and 
lead to lower numbers of excess deaths. To avoid this limi-
tation, we use a different approach and attribute the excess 
deaths from carbonaceous aerosols to their contribution 

http://ebas.nilu.no/
https://www.eea.europa.eu/
https://www.eea.europa.eu/
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to total PM2.5 concentration as indicated in Eq. 3. BMR 
accounts for age-specific baseline mortality rates that are 
obtained from the Global Burden of Disease Results Tool 
(http://​ghdx.​healt​hdata.​org/​gbd-​resul​ts-​tool) and POP are 
age-specific population data obtained from NASA’s Socio-
economic Data and Applications Center (SEDAC) GPW-v4 
dataset (https://​sedac.​ciesin.​colum​bia.​edu). The 95% con-
fidence interval (CI) is calculated by estimating the upper 
and lower values of the HR functions by using the stand-
ard error of parameter θ in GEMM, obtained from Burnett 
et al. (2018) (see Supplementary Information). The lower 
and upper values of the baseline mortality rates are also 
included in the excess mortality calculations (Eqs. 2 and 3) 
accordingly. The results are calculated at the population’s 
grid resolution (0.042° × 0.042°) and then aggregated at the 
country and European levels. In our European domain, we 
include 45 countries (based on the United Nations’ official 
statistics), including Turkey and part of Russia.

where θ, α, µ, and ν are the parameters of the risk model and 
z = max (0, PM2.5–2.4 µg/m3).

Results

Sensitivity tests

Compared to ground-based observations, annual mean 
PM2.5 concentrations are simulated reasonably well in all 
sensitivity tests (Fig. S4, top left). The PM2.5 bias ranges 

(1)

HR(z) = exp
(

� × log
((

z

a

)

+ 1

)

∕
(

1 + exp
(

−
z − �

�

)))

(2)ExcessMortalityPM2.5
= BMR × POP × HR − 1∕HR

(3)ExcessMortalityCA = ExcessMortalityPM2.5
×

CA

PM2.5

between 1 and 17% and is well within the uncertainties asso-
ciated with the observational dataset, which is in the range 
of 10–15%, except in simulation S2, which resulted in the 
highest mean normalized bias (17%) (Table S2). Detailed 
analysis of all sensitivity test results (S1–S7) is included 
in the Supplementary Information. Here, we focus on the 
differences between the default (S1) and best-performing 
(S7) simulations (Table 4, Fig. 1). Simulation S7, which 
includes both IVOC and SVOC emissions, improved most 
substantially in annual mean PM2.5 concentrations. This led 
to considerably lower biases compared to the default simu-
lation (S1). The inclusion of SVOCs in S7 has lowered the 
annual MB to − 1.28 µg/m3 but led to some overestimation 
of PM2.5 in some stations, mainly at the lower concentra-
tion ranges (below 20 µg/m3). Based on the statistical met-
rics obtained in simulation S7, the model performance for 
PM2.5 reaches beyond the acceptable levels for MFB and 
MFE, which should be lower than 60 and 75%, respectively 
(Table 4). The MFB and MFE are also well within the maxi-
mum limits for the model to be considered accurate (30% 
and 50%, respectively).

Significant differences in the simulation of meteorological 
fields resulted in different seasonal behaviors (Figs. S5–S7). 
The medium nudging coefficient for temperature in S7 led 
to a lower annual mean temperature than S1 and less total 
precipitation (Figs. S5–S6). The relative overestimation of 
precipitation in S1 has been compensated with an under-
estimation of precipitation in simulation S7 that partially 
explains the improved PM2.5.

BC is also well simulated by the model, particularly at 
lower concentrations (Table 4, Fig. 1, upper-right panel). 
Some overestimation of BC is observed in rural stations 
in Germany, Portugal, and the Netherlands, which can be 
attributed to changes in wind speed and prevailing direc-
tion in the abovementioned areas. An intermediate nudg-
ing coefficient in temperature leads to lower MNB for BC 
(in simulations S3, S6, and S7) than the stronger nudging 
and outperforms the default simulation (S1). At the higher 

Table 4   Statistical metrics 
from the default (S1) and best-
performing (S7) simulations, 
including mean bias (MB), 
mean absolute error (MAE), 
mean normalized bias (MNB), 
mean fractional bias (MFB), 
and mean fractional error 
(MFE) for PM2.5, organic 
carbon (OC), total organic 
aerosols (OA), and black carbon 
(BC)

PM2.5 MB (µg/m3) MAE (µg/m3) MNB (%) MFB (µg/m3) MFE (µg/m3)

S1  − 2.9 3.9  − 14.7  − 0.19 0.28
S7  − 1.28 3.23  − 1.04  − 0.05 0.22
OC
S1  − 0.49 0.53  − 35.04  − 0.5 0.56
S7  − 0.33 0.39  − 21.85  − 0.31 0.40
OA
S1  − 1.03 1.11  − 35.04  − 0.5 0.56
S7  − 0.7 0.82  − 21.85  − 0.31 0.40
BC
S1  − 0.1 0.19 9.67  − 0.07 0.46
S7  − 0.06 0.16 17.90 0.04 0.33

http://ghdx.healthdata.org/gbd-results-tool
https://sedac.ciesin.columbia.edu
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concentration ranges (over 0.5 µg/m3), BC is underesti-
mated in two stations but improves at both sites in the 
simulation S7. The persistent underestimation in one of the 
stations could be due to small-scale activities (e.g., urban 
plumes) that might be responsible for the high local BC 
concentrations. Such local effects might need higher spa-
tial resolution to be captured by the model. Furthermore, 
the different techniques that are used for BC measurements 
may contribute to this uncertainty (Genberg et al. 2013). 
However, since BC is mostly influenced by emissions, 
transport, and deposition, the overall good agreement 
between the model and the observations in most of the 
simulations shown in Fig. S1 (top-right) suggests that the 
model is representing the interaction of these three pro-
cesses reasonably well. Based on the statistical indicators 
obtained for the annual averages, the model is well within 
the acceptable and accuracy limits for BC (Table 4).

Here, we focus on the organic fine particles since they 
are shown to be particularly sensitive to model limitations 
and likely more hazardous to human health compared to 
inorganic fine particles. A negative annual mean bias is 
found with all simulations (Fig. S4, bottom-left), which 
ranges between − 22 and − 35%; however, there are notable 
improvements from the different model modifications we 

have applied (Table S2). The sensitivity test results for OA 
are analyzed in the Supplementary Information.

Comparing the default and the best-performing simu-
lations, the annual MB for OA has dropped from − 1.03 
to − 0.7 µg/m3 and the MNB from − 35 to − 22% (Table 4). 
The default simulation did not reach the MFB and MFE 
levels, under which the model can be considered accu-
rate but was within the acceptable ranges (50% and 56% 
for MFB and MFE, respectively). On the other hand, the 
best-performing simulation approached the maximum MFB 
and MFE levels for model accuracy, with 31% and 40%, 
respectively.

Monthly comparison of OA concentration is also per-
formed for the default and best-performing simulations. In 
the default simulation (S1), the modeled OA is underesti-
mated mostly during winter and to a lesser extent in autumn 
and spring (Fig. 2, left panel). This is primarily the case 
in stations with high OA concentrations (above 5 µg/m3). 
This underestimation is improved in simulation S7, where 
we account for the missing IVOCs and SVOCs emissions, 
e.g., from residential heating. These are important SOA 
precursors contributing largely to OA in winter (Ciarelli 
et al. 2017). Furthermore, simulation S7 results in a cold 
bias and a lower temperature than simulation S1, which 

Fig. 1   Annual modeled PM2.5, 
black carbon (BC), and total 
organic aerosols (OA) compared 
to observations from the default 
(S1) and best-performing (S7) 
simulation
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could favor partitioning of the semi-volatile species to the 
aerosol phase. On the other hand, simulation S7 leads to 
some overestimation at the lower concentration ranges dur-
ing the cold months of the year. This can be attributed to 
increased primary OA emissions applied in simulation S7. 
A slight OA overestimation is also observed during summer 
in simulation S1, which is also improved in simulation S7. 
The overestimated OA in simulation S1 compared to S7 can 
be partially attributed to differences in the meteorological 
fields that affect SOA formation during the summer months 
(e.g., changes in PBL height, temperature, or wind speed). 
The default simulation resulted in higher temperatures dur-
ing summer that may compensate for this overestimation 
by enhancing their transport to higher elevations. This is 
consistent with other studies that report an underestima-
tion of OA during summer (Jiang et al. 2019). Furthermore, 
variations in primary OA can affect SOA concentration. The 
partitioning between condensable organic vapors and SOA 
used in the VBS approach depends on the total organic mat-
ter (Ahmadov et al. 2012). Thus, if POA is under-predicted, 
the resulting SOA could also be underestimated (Tuccella 
et al. 2015). Overall, the concentration of OA is better in 
agreement with the observations in S7 during all months, 
especially at the higher concentration levels.

 PM2.5, carbonaceous aerosols, and health 
implications of model uncertainties

Based on the highest accuracy simulation (S7), we esti-
mate that the PM2.5 concentration levels over Europe range 
between 5 and 25 µg/m3. Eastern European countries exhibit 
up to four times higher PM2.5 levels than the recommended 
WHO safety thresholds (Fig. 3). Iceland and the northern 
Scandinavian countries fall within the WHO safety limits 
(below 5 µg/m3). Carbonaceous aerosol concentrations are 
higher in winter (up to 10 µg/m3) than during summer (up 
to 7 µg/m3) (Fig. S13). The contribution of BC to the total 
PM2.5 concentration is relatively low and ranges between 

1 and 3% (Fig. 4 bottom-right panel). On the other hand, 
the OA component contributes to up to 25% of total PM2.5, 
with POA and SOA contribution to PM2.5 varying spatially 
(Fig. 4, top panels). Higher ratios of POA are observed in 
Eastern Europe (up to 25%), which could be attributed to 
solid biofuel combustion emissions used for residential heat-
ing in Eastern Europe (Jiang et al. 2019). The SOA contribu-
tion is shown to be less (up to 10%) with a clear increasing 
gradient going from northwest to southeast Europe.

The best-performing model configuration (S7) adequately 
captures the total PM2.5 concentration to support health 
impact studies. The model results for PM2.5 agree well 
with the observations, with a bias equal to − 1.28 µg/m3 in 
our best simulation. This bias is well within the uncertain-
ties associated with the observational dataset, which is in 
the range of 10–15% (Allan et al. 2022). To investigate to 
what extent our modeling improvements affect the health 
impact estimations, we calculate the excess mortality based 
on PM2.5 levels obtained from the default (S1) and best-
performing simulation (S7). We find a ∼15% difference in 

Fig. 2   Monthly organic aerosol 
(OA) concentrations compared 
with monthly observations for 
simulations S1 (left panel) and 
S7 (right panel). Each dot refers 
to a monthly value, which is 
colored based on the season to 
which each month corresponds

Fig. 3   Annual mean concentration of PM2.5 for the year 2015 based 
on simulation S7
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the total annual excess mortality for the European domain 
that is attributed to different model configurations (S7-S1). 
This would account for a difference of about 105,000 excess 
deaths per year between the two simulations.

Simulation S1 results in 680 (CI: 558–802), and S7 results 
in 785 (CI: 645–925) thousand annual excess deaths over the 
wider European domain. In the view of spatial distribution, 
this difference is shown to be small (Fig. 5). To assess the 

Fig. 4   Ratio of primary organic aerosols (POA, top-left), secondary organic aerosols (SOA, top-right), total organic aerosols (OA, bottom-left), 
and black carbon (BC, bottom-right) to total PM2.5 concentration

Fig. 5   Differences in carbonaceous aerosols concentration (left panel) and in their attributable excess mortality (right panel) in each grid cell 
between simulations S1 and S7
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role of carbonaceous aerosols (as sub-components of PM2.5), 
on health impact estimates, we calculate their contribution to 
total excess mortality (from PM2.5) and investigate whether 
our improvements in OA modeling affect the results.

When we calculate the fraction of excess mortality from 
carbonaceous aerosol concentrations from the default and 
best-performing simulations (S1 and S7) for the whole 
domain, we find that S7 yields almost two times higher 
total excess deaths compared to S1. This is equal to 79 (CI: 
65–93) and 131 (CI: 108–156) thousand excess deaths per 
year from simulations S1 and S7, respectively. Since PM2.5 
levels and total excess mortality differ between S1 and S7, 
we also calculate the percentage contribution of carbona-
ceous aerosols to the total excess mortality being 11 and 17% 
(on average), respectively, for the larger European domain. 
When the population per grid cell is taken into account, this 
is interpreted as 15 and 23 deaths per 100,000 individuals 
(on average) per year in Europe from simulations S1 and S7, 
respectively (Fig. 6).

Furthermore, the relationship between the GEMM (used 
for hazard ratios (HRs) calculation) and PM2.5 concentra-
tion is supra-linear over the lower exposure ranges and then 
near-linear at higher concentrations (Burnett et al. 2018). 
Therefore, the differences in excess mortality estimates can 

depend on whether the improvements of PM2.5 and OA 
appear at lower or higher PM2.5 exposure ranges. However, 
our results do not take into account the increased harmful-
ness of carbonaceous particles compared to inorganic ones, 
which increases their contribution to total excess mortality 
(Lelieveld et al. 2002, 2015; Chowdhury et al. 2022). We 
expect that the uncertainties in OA modeling would have 
a greater impact on studies where the increased toxicity of 
carbonaceous aerosols is accounted for. The uncertainty 
related to model PM2.5 (here estimated 15%) is less than 
the uncertainty related to GEMM risk model (~ 18%). On the 
other hand, the uncertainty related to modeled carbonaceous 
aerosols is higher (~ 65%), highlighting the need for further 
modeling improvements.

Conclusions

Annual PM2.5 and carbonaceous aerosols were simulated 
with the WRF-Chem model over Europe for 2015. Several 
configurations were tested to improve the simulation of OA 
concentrations, which are typically underestimated by air 
quality models and can affect health impact studies. The 
model performance was evaluated by comparing the model 

Fig. 6   Annual excess deaths due to PM2.5 (top panels) and carbonaceous aerosols (bottom panels) exposure in Europe (normalized to the popu-
lation of each grid cell) with the default (left) and best-performing (right) simulations
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output with available ground-based observations. This 
highlighted a lack of information regarding observations of 
organic carbon aerosols in Europe. Although there is a large 
number of stations that measure PM2.5, air quality monitor-
ing of carbonaceous aerosols in Europe is not always ade-
quate in time and space. This lack of observations, combined 
with other factors that can affect PM2.5 simulation, makes 
the model assessment a challenging task. From our simula-
tions, the modeled PM2.5 and BC concentrations agree well 
with the available observations in all simulations and within 
the uncertainties associated with the observational dataset. 
However, OA show a systematic negative bias that ranges 
between − 22 and − 35% depending on the configuration. The 
application of meteorological nudging in WRF-Chem is crit-
ical for achieving accurate PM2.5 simulations. Here, we find 
improvements mainly in near-surface temperature and wind 
speed after the application of nudging. However, caution is 
needed in the selection of nudging coefficients. Our simula-
tion with a stronger nudging coefficient in temperature did 
not improve the concentration of OA due to meteorological 
inconsistencies, mainly during summer, where we find cold 
biases for temperature. From our sensitivity analysis, we find 
that significant improvements in OA are possible, especially 
with the inclusion of anthropogenic SVOC/IVOC emissions. 
Thus, the observed negative bias is partially attributed to 
missing emissions of anthropogenic SOA precursors (e.g., 
SVOC/IVOC) and simplifications of SOA formation in the 
model. However, including these SOA precursors as pri-
mary OC emissions led to partial OA overestimation in some 
regions with low OA concentrations (e.g., below 2 µg/m3). 
At sites with higher concentrations, where SOA dominate 
and are usually not captured well by the model, the added 
SOA precursors improved the modeled total OA.

Our work focuses on the European region and provides 
air pollution information at the European level, complement-
ing similar studies with a national focus. The model 20 km 
resolution is relatively high for the whole domain consider-
ing the computational time needed for the numerous simu-
lations. Our study focused on annual averages for the year 
2015 which are relevant for health impact estimations of 
long-term exposure to PM2.5 and carbonaceous aerosols. 
Furthermore, the comparison of OA can be made either by 
comparing organic carbon that is converted to organic mass 
or by comparing the sum of POA and SOA. The conversion 
factor used for organic carbon to OM (here 2.1) is a sim-
plification commonly used to avoid discrepancies between 
stations when calculating SOA concentrations. In agreement 
with other studies, the OM/OC ratio largely depends on the 
level of oxidation in the organic aerosol; the more oxygen 
associated with carbon in the aerosol, the higher the OM/
OC ratio (Brown et al. 2013). The OM/OC can vary depend-
ing on the location (e.g., rural vs urban areas) and season 
(winter vs summer) and has been found to range between 

1.5 and 2.2. Consequently, using a fixed conversion fac-
tor might under- or overestimate OC concentrations. On 
the other hand, since computed SOA varies between dif-
ferent models and configurations of the same model, this 
approach removes potentially large SOA variations that can 
lead to inaccurate comparison. The agreement between OA 
and observations depends on the chosen approach and the 
station location. Furthermore, the impact of our sensitivity 
tests on inorganic aerosols is not evaluated, but they also 
contribute significantly to PM2.5. Biogenic sources of OA 
are also important, especially in rural sites. Specifically, iso-
prene chemistry has been shown to significantly contribute 
to SOA concentrations in Europe and can partly explain the 
underestimation of OA concentrations in southern Europe 
(Bessagnet et al. 2008). Here, we do not assess the role of 
biogenic OA, but an inadequate treatment of these particles 
in the model or uncertainties in their emissions may contrib-
ute to the general underestimation of OA highlighted in this 
study. Our results highlight the need for a better and more 
consistent methodology for calculating anthropogenic emis-
sions that will take into account condensable organic precur-
sors. There is an ongoing effort from several experts (e.g., 
Simpson et al. 2022) to advance the emissions reporting 
method, but there is still room for improvement and future 
work regarding OA handling in modeling studies.

We find that the model reaches adequate accuracy thresh-
olds for PM2.5 in both the default and best-performing simu-
lations. We note that OA were not accurately modeled in the 
default set-up and required modeling adjustments to obtain 
more accurate results. Based on our analysis, we find that 
our modeling adjustments can contribute to a 15% differ-
ence in the total PM2.5 attributable excess mortality over 
Europe, which is equal to 105,000 additional excess deaths 
per year. From these numbers, 52,000 additional deaths are 
due to carbonaceous aerosols, captured by our modeling 
improvements. These are twice as high as the excess deaths 
obtained in the default simulation. We note that the results 
strongly depend on the shape of the hazard ratio model used, 
which drives the relationship between PM2.5 concentration 
and mortality risk. Additionally, we find that the uncertainty 
related to modeled PM2.5 (15%) is less than the uncertainty 
related to GEMM risk model (~ 18%). However, we identify 
much higher mortality uncertainty related to carbonaceous 
aerosols (~ 65%), suggesting that more effort is needed 
towards improving their representation in the model for 
adequately capturing the representative exposure levels. As 
long as emission inventories do not follow a consistent meth-
odology to account for the emissions of important organic 
precursors, OA modeling will continue to require adequate 
scaling of the emissions.

Our results indicate that the contribution of carbonaceous 
aerosols reaches 17% of total excess mortality with our best-
performing simulation. This is a lower limit since further 
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modeling improvements for OA are possible, and we did not 
consider the potentially increased toxicity of these compo-
nents. Hence, we cannot neglect their significant contribu-
tion on the mortality burden, and we expect that the uncer-
tainties in OA modeling will have a greater impact on studies 
in which the potentially high harmfulness of carbonaceous 
aerosols is accounted for.
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tary material available at https://​doi.​org/​10.​1007/​s11869-​023-​01464-4.
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