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Abstract
Recent studies conducted in the USA have shown that adverse health effects of fine particulate matter  (PM2.5) persist at 
levels below the national air quality standards. More recently, particle radioactivity has also been associated with adverse 
health effects. However, the importance of particle radioactivity at low  PM2.5 levels has not been thoroughly explored. The 
present paper investigates the temporal trends and the relationship of particle gross β-activity (PM-β) and  PM2.5 mass in the 
48 states of the contiguous USA during the period of 2001–2017. With the implementation of stringent air pollution control 
policies, national ambient  PM2.5 concentrations decreased by 38.5% during this period. However, a smaller decrease of 9.4% 
was observed for PM-β, while the mean PM-β/PM2.5 ratio increased by 49.1%. PM-β is mostly associated with radon emis-
sions and its progeny, which do not change much with time. The largest  PM2.5 and PM-β reductions were observed in the 
Southeast, while the smallest were found in the West. When the aggregated PM-β to  PM2.5 ratio is stratified by  PM2.5 levels, 
the ratio was found to be highest when  PM2.5 is <3 μg/m3, with a median PM-β to  PM2.5 ratio of 0.77 (0.64–0.88; 25th–75th 
percentiles). Overall, when not stratified by  PM2.5 levels, the greatest state-wide overall PM-β /PM2.5 ratios were found in 
Wyoming (0.69) and South Dakota (0.51), areas with higher radon, while the lowest (0.17) were in Delaware followed by 
New Jersey (0.18). These results indicate that the ratio of ambient particle radioactivity to particle mass concentration typi-
cally is higher at low  PM2.5 levels, and consequently, the toxicity per unit mass is expected to be higher.
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Introduction

Exposure to  PM2.5 (concentration of airborne particles with 
diameters less than 2.5 μm) is an important environmen-
tal risk. According to the Global Burden of Diseases study 
(Cohen et al. 2017), it ranks quite high among the avoidable 
causes of non-communicable diseases and presents a critical 
exposure risk factor (Murray et al. 2020).  PM2.5 air pollution 
is classified as a group 1 human carcinogen by the World 
Health Organization International Agency for Research on 
Cancer (IARC 2013) and is arguably the largest environ-
mental risk to public health, responsible for over 7 million 

pre-mature deaths annually (WHO 2021).  PM2.5 is a com-
plex mixture with varying particle size and chemical com-
position, which varies across space and time. Ambient  PM2.5 
can be both directly emitted by sources (primary) or formed 
from photochemical reactions (secondary) (Harrison 2020). 
Particle radioactivity (PR) is a radiometric characteristic of 
airborne particles and is attributed to radionuclides bound 
on their surfaces.

Radionuclides are present in the atmosphere due to 
anthropogenic, cosmogenic, and terrestrial sources (Papaste-
fanou 2010; Dlugosz-Lisiecka 2016). In the absence of 
anthropogenic sources, radioactive radon decay products 
are the most important contributors to PM-β. Radon decay 
produces radioactive nanoparticles, which rapidly attach to 
particles in the accumulation mode (Liu et al. 2020). In turn, 
these radionuclides gain the properties of the carrier parti-
cles (Reineking and Porstendorfer 1990; Papastefanou 2012) 
and may contribute to the overall toxicity of  PM2.5.

Inhaled particle-bound radionuclides deposit onto the 
lung airways and, subsequently are circulated through the 

 * Vasileios N. Matthaios 
 vmatthaios@hsph.harvard.edu

1 Department of Environmental Health, Harvard T.H. 
Chan School of Public Health, 401 Park Drive, Boston, 
MA 02215, USA

2 School of Geography Earth and Environmental Science, 
University of Birmingham, Birmingham B15 2TT, UK

http://orcid.org/0000-0002-0134-8637
http://crossmark.crossref.org/dialog/?doi=10.1007/s11869-023-01377-2&domain=pdf


1834 Air Quality, Atmosphere & Health (2023) 16:1833–1838

1 3

body, where they continue to decay and emit radiation, gen-
erating an internal dose of α, β, and γ radiation, causing cell 
damage and chronic inflammation (Nie et al. 2012). Recent 
studies have reported associations between PM-α, PM-β, 
PM-γ, and telomere length (Scherthan et al. 2016), neuro-
degenerative diseases, inflammation, impaired lung func-
tion, oxidative stress, and elevated blood pressure (Nyhan 
et al. 2018, 2019; Santos et al. 2020). While emission con-
trol policies and regulations have been effective at reducing 
ambient  PM2.5, radon is a naturally occurring gas whose 
emission rates are geologically determined so its ambient 
concentrations have remained relatively stable. This study 
explores the temporal trends of PM-β and  PM2.5 concen-
trations across the 48 contiguous states of America during 
2001–2017 and focuses on the spatiotemporal patterns of the 
PM-β/PM2.5 ratio under changeable  PM2.5 levels.

Materials and methods

PM2.5 data

Daily  PM2.5 data were obtained from the Environmental Pro-
tection Agency (EPA) Air Quality System (AQS) (https:// 
www. epa. gov/ aqs) that reports ambient air pollution data 
collected by EPA, state, local, and tribal air pollution control 
agencies from over a thousand monitoring sites. Information 
about monitoring stations including geographic location, 
classification, monitoring methods, and data quality assur-
ance/quality procedures is also reported by AQS (https:// 
www. epa. gov/ aqs/ aqs- manua ls- and- guides). The  PM2.5 data 
that we included was collected using a variety of methods, 
and data were selected based on the county of each city. 
The first option was to include hourly  PM2.5 measurements 
from continuous monitors (normally beta attenuation, light 
scattering, or laser absorption instruments). In the absence 
of hourly measurements, we included  PM2.5 integrated daily 
averages that were measured using gravimetric techniques 
that determine  PM2.5 levels from collected air filters. For 
cities with more than one sampling site, the following pro-
cedure was followed to standardize daily measurements for 
all monitors within a city boundary and prevent missing days 
from one monitor from adding false variability to the daily 
value (Zanobetti and Schwartz 2009): (1) daily deviations 
from the annual mean for each monitor were calculated; (2) 
each monitor’s daily deviations were standardized by divid-
ing by its annual standard deviation; (3) mean daily stand-
ardized deviations were calculated for each city by averaging 
the daily standardized deviations for all monitors assigned 
to the city; (4) multiplied this mean daily deviation value by 
the standard deviation of all monitors within the city, and 
added back the annual mean of all monitors within the city.

PM‑β data

The US EPA RadNet is a national monitoring network 
for particle-phase environmental radiation in ambient air 
(Fraass 2015). We obtained PM-β data from 129 monitors 
with more than 265 days for every year (Blomberg 
et al. 2019) or at least 1 year of monitoring data (when 
the city had 2 or more monitors) during the study period 
of 2001–2017, and the same procedure as described 
above (see “PM2.5 data”) was carried out to calculate city 
values. The monitors at each site use high volume air 
samplers equipped with polyester fiber filters to collect 
total suspended particles (TSP) over a 24-h period. The 
filters are sent twice a week to the National Analytical 
Radiation Environmental Laboratory for analysis to 
measure PM-β (USEPA 2012). The gross beta analysis 
was performed using a gas flow proportional detector. 
This type of detector measures beta radiation by counting 
the number of ionizing events that occur within a gas-
filled chamber. As beta radiation released from the sample 
passes through the chamber, it ionizes the gas molecules, 
creating a photon that can be detected and counted by the 
instrument. Despite using TSP and not  PM2.5 in PM-β (in 
this study), Liu et al. (2020) showed that measurements of 
PM-β from the RadNet TSP samples showed only slightly 
smaller concentrations than co-located filter samples 
of coarse and fine particles, indicating that most beta 
emissions come from the accumulation mode  (particle 
sizes below 2.5 microns). It should be noted that the filters 
are analyzed offline, 1 to 2 weeks after collection, so 
that practically almost all the short-lived radon progeny 
have decayed. Therefore, most of the measured PM-β is 
related to longer-lived radon progeny. In addition, while 
PM-β is also associated with other radionuclides such as 
Potassium-40 and Uranium-238, and Berrilum-7, their 
contributions to the measured values are expected to be 
negligibly low.

Data analysis

Data were processed and displayed using R version 4.2.0 
(R Core Team 2022) using R packages ggplot2 (Wick-
ham 2011), openair (Carslaw and Ropkins 2012), and 
mcgv (Wood  2003). The statistical method followed 
for trend calculation is a non-parametric Mann-Kendall 
approach. The trend slope was calculated with the Theil-
Sen (Theil 1950; Sen 1968) method available in the 
R-openair package. Briefly, for a given set of n x, y pairs, 
the slopes between all pairs of points are calculated and 
the median was taken as an estimate of the most prob-
able slope (trend). This method is robust to outliers and 
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can be used in both non-normal and heteroscedastic (non-
constant error variance) data series. For the trend analysis, 
the data was de-seasonalized by applying the smoothing 
locally estimated scatterplot smoothing (LOESS) func-
tion which is a non-parametric regression method used 
to fit a smooth curve to a scatterplot of data (Cleveland 
et al. 1990). LOESS is a popular technique for explora-
tory data analysis and can be used to identify trends and 
relationships between variables (Matthaios et al. 2019). 
The LOESS function works by fitting a series of local 
regression models to subsets of the data, where each subset 
consists of a small number of nearby data points. We also 
applied bootstrap re-sampling for the calculation of confi-
dence intervals at the 95% level and p-values. A trend was 
statistically significant when p < 0.05 (represented with a 
“*” symbol), meaning that the trend was not random at a 
95% probability; p < 0.01 and p < 0.001, marked by “**” 
and “***,” respectively, indicate very highly significant 
trends, while p > 0.05 and p < 0.1 indicate partly signifi-
cant trends.

Results and discussion

Figure 1 shows the aggregated (across the 48 contiguous 
states) normalized trend of PM-β,  PM2.5, and PM-β/PM2.5 
annual ratios for 2000–2017. Figures S1–S4 show the 
trends in West, Midwest, South, and Southeast USA, while 

Tables S1–S3 show the state trends of  PM2.5, PM-β, and 
PM-β/PM2.5 ratio for different states. On average,  PM2.5 
levels decreased by 38.5% over the study period. This is 
consistent with EPA assessment that the national annual 
 PM2.5 concentrations declined on average by 42% between 
2000 and 2016 (USEPA 2022). This decline was due to the 
stringent air quality standards implemented over the last 
20 years. Note the sharp decrease (~15%) in  PM2.5 from 
2007 to 2009. This sharp reduction is most likely caused by 
the 1997 EPA NAAQS revisions to apply both annual and 
24-h standards for  PM2.5. A further sharp decrease of 20% 
in  PM2.5 levels was observed between 2011 and 2017. EPA 
again revised the 24-h NAAQS from 65 to 35 μg/m3 in 2006, 
which resulted in reductions across the USA since more 
counties followed national pollution standards as of 2007 
compared with previous years (USEPA 2010). We observed 
the largest  PM2.5 decreases (50%) in the southeastern USA 
(Fig. S1) most likely due to stricter emission reduction 
policies (Zhang et al. 2018), while a smaller  PM2.5 reduction 
(28.3%) observed in the Western USA (Fig. S3) most likely 
due to the impact that wildfires have on the ambient  PM2.5 
(McClure and Jaffe 2018).

In contrast to the large reductions in  PM2.5 levels across 
the USA, PM-β levels exhibited only a modest decline. From 
2001 to 2017, PM-β dropped by 9.4% on average across 
the USA. During the study period, while the PM-β/PM2.5 
ratio increased by 49.1%. The smallest and largest increases 
in the PM- β/PM2.5 ratio were observed for the Southern 

Fig. 1  US aggregated times 
series of PM-β,  PM2.5 mass, 
and their ratio. The times series 
were normalized using 2001 as 
the base year and were set equal 
to 100. The brackets indicate the 
confidence interval of the slope. 
** indicate trend significance at 
p < 0.01.* indicates significance 
at p < 0.05
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(35.5%) and Midwestern (56.6%) regions, respectively. The 
Midwest includes states with relatively high background 
radon concentrations, such as South Dakota, Ohio, Iowa, 
Wisconsin, and Illinois. Consequently, despite having the 
second highest  PM2.5 concentration decreases in this region, 
PM-β activity only dropped by 8%, which was the second 
lowest. In contrast, the Southern region, despite having 
only the second lowest  PM2.5 decreases, had the second 
largest decrease in PM-β. Overall, the trend analysis showed 
that  PM2.5 levels dropped significantly (p < 0.01) by 2.5% 
(CI: 2.63, 2.37) per year, while PM-β levels decreased by 
only 0.90% (CI: 1.02,0.79) per year, as shown in Fig. 1. 
Therefore,  PM2.5 dropped 2.8 times faster than PM-β 
activity, most likely due to the actions taken to control 
 PM2.5 emissions.

Figure 2 shows the aggregated monthly PM-β/PM2.5 
ratios for different  PM2.5 levels. The ratio is greater for 
lower  PM2.5 levels, e.g.,  PM2.5 concentrations <3 μg/m3. 
The median ratio is 0.77 (25th–75th: 0.64–0.88) and is two 
times greater than that for the 3–6 μg/m3  PM2.5 range of 
0.39 (25th–75th: 0.32–0.47). Table S4 shows the ratio for 
each state. The greater  PM2.5 reduction compared to that 
of PM-β is understandable, since pollution control policies 
do not impact radon emissions. As a result, the amount of 

PM-β per  PM2.5 mass has increased. Based on our health 
effects studies reported above, increasing the amount of 
radioactivity per particle mass may enhance particle tox-
icity. However,  PM2.5 controls have also helped to reduce 
PM-β to some extent. As  PM2.5 surface concentration 
decreases, more of the unattached radon progeny can be 
removed from the atmosphere through dry deposition and 
to some extent by wet deposition. A similar phenomenon 
takes place in indoor environments where more unattached 
radon progeny diffuses to the walls and furniture (plate 
out) when indoor  PM2.5 are low (Matthaios et al. 2021).

The steady decline in  PM2.5 concentrations in the 
USA has helped to improve public health (Schraufnagel 
et al. 2019). However, recent studies have found adverse 
 PM2.5 effects even below the NAAQS standards with 
no threshold level (Di et al. 2017; Yazdi et al. 2021; 
Shi et  al.  2022). This suggests that there might be 
toxic components which are still present at low  PM2.5 
levels. As shown in Fig.  2, the higher PM-β/PM2.5 
ratios observed at lower  PM2.5 concentrations suggest 
that these particles have relatively more radioactivity 
per unit mass. Therefore, future studies should test the 
hypothesis that particle radioactivity enhances  PM2.5 
toxicity.

Fig. 2  Distribution of monthly 
PM-β/PM2.5 ratios correspond-
ing to different  PM2.5 level 
ranges aggregated across the 
USA during 2001–2017. The 
figure shows interquartile ranges 
(IQR), the horizontal line is the 
median, and whiskers extend 
to 1.5 times the IQR above the 
75th and below the 25th percen-
tiles. Dots are values beyond 1.5 
times the IQR
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