
Vol.:(0123456789)1 3

Air Quality, Atmosphere & Health (2023) 16:1141–1152 
https://doi.org/10.1007/s11869-023-01330-3

Impact of traffic on air pollution in a mid‑sized urban city 
during COVID‑19 lockdowns

Nathan Hay1 · Otito Onwuzurike2 · Somesh P. Roy2  · Patrick McNamara1 · Margaret L. McNamara1 · 
Walter McDonald1 

Received: 5 December 2022 / Accepted: 17 February 2023 / Published online: 6 March 2023 
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
In this study, we evaluated the changes in air pollutant concentrations around Milwaukee, WI, during and after lockdown 
due to the COVID-19 pandemic for a period of 126 days. Measurements of particulate matter  (PM1,  PM2.5, and  PM10), 
 NH3,  H2S, and  O3 +  NO2, were made on a 74-km route of arterial and highway roads from April to August 2020 using a 
Sniffer 4D sensor mounted to a vehicle. Traffic volume during measurement periods were estimated from smartphone-
based traffic data. From lockdown (March 24, 2020–June 11, 2020) to post-lockdown (June 12, 2020–August 26, 2020) 
median traffic volume increased roughly 30–84%, depending upon the road type. In addition, increases in mean concen-
trations of  NH3 (277%), PM (220–307%), and  O3 +  NO2 (28%) were also observed. For both traffic and air pollutants, 
abrupt changes in the data were observed mid-June, shortly after lockdown measures were lifted in Milwaukee County. 
Indeed, traffic was able to explain up to 57% of PM, 47% of  NH3, and 42% of  O3 +  NO2 variance in pollutant concentra-
tions on arterial and highway road segments. Two arterial roads that did not have statistically significant changes in traffic 
patterns during the lockdown exhibited no statistically significant trends between traffic and air quality parameters. This 
study demonstrated that COVID-19 lockdowns in Milwaukee, WI, caused significant decreases in traffic, which in turn 
had a direct impact on air pollutants. It also highlights the need for traffic volume and air quality data at relevant spatial 
and temporal scales for accurately assessing source apportionment of combustion-based air pollutants, which cannot be 
captured with typical ground-based sensor systems.
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Introduction

Air pollution is a significant threat to human health and 
a rising cause of illness and mortality around the world 
(Manisalidis et  al. 2020). In the USA, air pollution is 
responsible for between 5 and 10 percent of all prema-
ture deaths (Joint and Organization 2006; Landrigan et al. 
2018). Many of the air pollutants that negatively impact 
human health are driven by combustion emissions from 
various sources including traffic and power generation. 
These pollutants include particulate matter (PM) and 
ammonia  (NH3), which can cause respiratory diseases, 
nervous system dysfunctions, and cancers (Brugha and 
Grigg 2014; Chen et al. 2016; Wu et al. 2018). Other com-
bustion pollutants in high levels, such as nitrogen dioxide 
 (NO2) and ozone  (O3), can negatively affect respiratory 
and cardiovascular systems (Guo et al. 2021; Huangfu and 
Atkinson 2020; Valavanidis et al. 2013).

 * Walter McDonald 
 walter.mcdonald@marquette.edu

 Nathan Hay 
 nathan.hay@marquette.edu

 Otito Onwuzurike 
 otito.onwuzurike@marquette.edu

 Somesh P. Roy 
 somesh.roy@marquette.edu

 Patrick McNamara 
 patrick.mcnamara@marquette.edu

 Margaret L. McNamara 
 margaret.mcnamara@marquette.edu

1 Civil, Construction and Environmental Engineering, 
Marquette University, 1637W Wisconsin Ave., Milwaukee, 
WI, USA

2 Mechanical Engineering, Marquette University, 1637W 
Wisconsin Ave., Milwaukee, WI, USA

http://orcid.org/0000-0002-7365-2304
http://orcid.org/0000-0002-9217-7908
http://crossmark.crossref.org/dialog/?doi=10.1007/s11869-023-01330-3&domain=pdf


1142 Air Quality, Atmosphere & Health (2023) 16:1141–1152

1 3

Traffic is a significant portion of these combustion pollut-
ants in many urban areas and has been shown to contribute 
up to 34% of particulate matter (Ouyang et al. 2015a, b; 
Thurston et al. 2011), 61% of  NH3 (Durbin et al. 2002; Elser 
et al. 2018; Pan et al. 2020), 25% of  O3 (Li et al. 2016; Pay 
et al. 2019; Valverde et al. 2016), and 50% of  NO2 emis-
sions (Environmental Protection Agency (EPA), 1999; 
Nguyen et al. 2018). However, despite evidence of the con-
tribution of traffic combustion to air pollutants, it is unclear 
if and to what extent traffic management strategies could 
improve urban air quality due to a lack of post-evaluation of 
implemented strategies (York Bigazzi and Rouleau 2017). 
This unclarity in how traffic management strategies could 
improve air quality stems, in part, from a lack of spatial and 
temporal experimental data on the impacts of traffic reduc-
tions on air quality.

The lockdowns during the COVID-19 pandemic pre-
sented an opportunity to help fill this gap through an unprec-
edented change in traffic patterns. Across the world, there 
were significant decreases in traffic due to the COVID-19 
lockdowns. For example, in South Korea, traffic decreased 
9.7% (Du et al. 2021), and in the USA, traffic was reduced to 
40–65% (Hudda et al. 2020; Xiang et al. 2020). Air quality 
also changed during this period, with observed decreases in 
air pollutants in many cities and countries across the world 
(Adam et al. 2021; Chauhan and Singh 2020; Gkatzelis et al. 
2021), such as an observed 25% reduction in  PM2.5 in cities 
in northern China (Bao and Zhang 2020) and a 32% decrease 
in  NO2 in England (Ropkins and Tate 2021).

Not surprisingly, studies have emerged that evaluate the 
relationship between traffic volume and air pollution dur-
ing the COVID-19 lockdowns. However, the connection 
between traffic reductions and air quality during COVID 
lockdowns was not always clear or uniform across the world. 
There was a 53–60% decrease in air pollutants from traffic 
sources  (NO2, CO) during the lockdowns in Nanjing, China 
(Wang et al. 2020a, b), and in Somerville, MA, USA, there 
was a decrease in ultrafine particle number concentrations 
(45–69%) and black carbon (22–46%) that were attributed 
to traffic (Hudda et al. 2020). In addition, traffic reductions 
(48–60%) in six cities in Italy were observed alongside 
reductions in  NO2 (25–59%) and PM (17–32%) (Gualtieri 
et al. 2020), and in California, traffic reductions (24–29%) 
were observed alongside decreases in NO (32–35%) and 
 NO2 (15–29%) (Liu et al. 2020). Across northern China, air 
quality sensors in 366 urban centers were evaluated against 
traffic data, and it was found that traffic volume correlated 
between 11 and 44% to air pollutant concentrations  (PM2.5, 
 PM10, CO,  SO2,  NO2, and  O3) (Wang et al. 2020a, b). Others 
found less significant decreases in air pollutants due to traf-
fic. Traffic-related emissions caused a decrease in pollutants 
(PM, NO,  NO2, and NOx) between 3 and 12% in Seattle, WA 
(Xiang et al. 2020), and there was no observable decrease 

in  PM2.5 and  NO2 in Memphis, TN, USA, even though traf-
fic decreased 57% (Jia et al. 2020). The variations in find-
ings could be due to differences in methods used to measure 
pollutants (e.g., remote sensing, fixed stations, or vehicle-
mounted sensors), the specific pollutants measured, and 
unique meteorological or physiographic conditions of each 
city. In addition, these previous studies were either tempo-
rally constrained to traffic data at an average daily or hourly 
interval, spatially constrained to traffic and air pollutant data 
at single point sources, or both. This in turn limits the abil-
ity to derive relationships between traffic and air pollutants 
at the spatial scale of a single road segment, where traffic 
volumes and air pollutant concentrations can vary signifi-
cantly. Therefore, additional studies that shed light on the 
changes in air quality due to the COVID-19 lockdown using 
data in high spatial and temporal resolutions are essential 
to improve our understanding of the impact of traffic on air 
pollution in urban environments.

The goal of this research project was to fill this gap by 
monitoring air pollutants and traffic volume at high spatial 
resolutions to determine the impact of the COVID-19 lock-
down on traffic and air pollution. To that end, we hypoth-
esized that over the study period from lockdown to post 
lockdown, the lifting of stay-at-home orders would increase 
vehicle-related pollutants due to increases in traffic volume. 
The specific objectives to test this hypothesis were to (1) 
measure air quality pollutants on Milwaukee roads using a 
mobile-based sensor, (2) evaluate changes in traffic on Mil-
waukee roads using street-level traffic counts derived from 
smartphone data, and (3) explore the relationship between 
air quality changes and traffic data. Specifically, this pro-
ject used a Sniffer4D air quality sensor that collected  PM1, 
 PM2.5,  PM10,  NH3, and  O3 +  NO2. These air pollutants were 
chosen because they (1) are driven by combustion emissions, 
including traffic, (2) have a direct impact on public health, 
and (3) were available through the mobile sensor technology 
that was provided. Ultimately, this work contributes to our 
understanding of how COVID lockdowns and traffic changes 
influenced air quality and more broadly the relationship 
between human activities and air pollutants in urban areas.

Methodology

Study area

A route for data collection within Milwaukee County was 
determined based upon criteria that included a spatial dis-
tribution across the city, a range in road types (highway and 
arterial), and the ability to complete the route within a 2-h 
drive. The final route chosen encompassed different areas of 
the city including downtown, several suburbs, and the lake 
shore, as well as a variety of road types (Fig. 1). In total, the 
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route covered over 74 km and took between one and a half 
to 2 h to complete depending upon traffic (Fig. 1).

Air pollutant data collection

Air quality was measured with a Sniffer 4D that was 
mounted to the roof of a vehicle (inset of Fig. 1). This sen-
sor measured six air pollutants  (PM1,  PM2.5,  PM10,  NH3, 
 H2S, and  O3 +  NO2, without any speciation between  O3 and 
 NO2), as well as temperature, pressure, and humidity, and 
all data was referenced using an internal GPS unit. Accord-
ing to the manufacturer, the speed ranges of a typical car 
on roads or highways do not affect the accuracy of the data 
(Soarability 2023). After each route was completed, data 

from the Sniffer 4D was downloaded from the sensor and 
processed using Sniffer 4D Mapper software. This software 
was used to visualize the magnitude and spatial distribu-
tion of the air quality data, as well as to format and export 
the data into text files. Next, these text files were imported 
into ESRI’s ArcMap and transformed into point shapefiles 
using the latitude and longitude associated with each data 
point. These data points contained the date, time, pollutants 
measured, and latitude and longitude and were then used in 
the data analysis as described in a later section.

In total, we conducted 15 road surveys between April and 
August during which air pollutants were measured. Stay-at-
home orders were issued on March 24 in the State of Wis-
consin and were lifted in Milwaukee County on June 11. 

Fig. 1  Map of the route driven 
and a picture of the Sniffer 4D 
sensor on the roof to the vehicle
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Therefore, the study does not capture conditions prior to the 
lockdown but does effectively cover a majority of the stay-
at-home period and the months after the lifting of restric-
tions. Using the established route and Sniffer 4D sensor, we 
then selected days and times to collect data. Air pollution 
due to vehicles in metro areas occurs largely as a function 
of when commuters enter into and leave the city for work 
(Amin et al. 2017; Batterman et al. 2015); however, there 
may be different traffic patterns on the weekends depending 
upon subsistence, maintenance, and leisure (Agarwal 2004). 
Therefore, to capture both weekday and weekend trends, as 
well as peak traffic conditions, we collected data on Wednes-
days and Saturdays between approximately 4 PM and 6 PM. 
Choosing a fixed time during the day also allowed us to 
maintain consistency in the data collection throughout the 
study period.

Traffic data collection

To evaluate trends in traffic volume over the sampling 
period, we obtained traffic data for individual road segments 
using smartphone-based vehicle volume data (StreetLight 
2021). Using this data source, we determined both the total 
number of trips per day on each road segment, as well as 
the average number of trips during the sampling time period 
(4–6 PM). The estimated trip counts included all sampled 
bi-directional traffic sources including vehicles, trucks, and 
motorcycles. Data was collected on Wednesdays and Sun-
days around 4–6 PM between February 1 and August 31, 
2020. This data was then applied to evaluate the change in 
traffic over time, as well as the relationship between traffic 
and air quality as discussed in the following section.

Data analysis

To evaluate the air quality and traffic along the route in this 
study, eight different road segments were chosen to ana-
lyze. These road segments chosen covered 75% of the total 
route and included four signalized arterial roads, which are 
Capitol (3.9 km), Lincoln (7.6 km), Oklahoma (12.5 km), 
and State Highway 32 (6.5 km), and four highways: I-43 
(5.9 km), I-94 (8.9 km), I-41 (4.4 km), and I-794 (5.2 km). 
The air pollution data collected on each day was summa-
rized for each individual road (i.e., mean, median, standard 
deviation). Using these summary statistics, the data across 
all days were analyzed for temporal trends to identify the 
effect of the lockdown order and subsequent re-opening on 
air quality within Milwaukee.

To do so, we performed two statistical analysis tests on 
the median air quality parameters for each road to determine 
if gradual or abrupt trends were present in the data. To evalu-
ate if there were any gradual trends over time, we performed 
a Mann–Kendall test, which is a non-parametric test that 

tests for the occurrence of a monotonic trend in the data 
(Helsel et al. 2020). To determine if there were any abrupt 
changes, we used the Pettitt test (Pettitt 1979). The Pettit test 
is an adaptation of the rank-based Mann–Whitney statistic 
that tests whether two samples come from the same popula-
tion and is effective at detecting abrupt changes. For all tests, 
the significance level was set to 5%. By using both methods, 
we sought to detect whether the lifting of restrictions caused 
a gradual or abrupt increase in both air quality and traffic. In 
addition to tests of gradual and abrupt trends, we used the 
t-test to determine if the mean pollutant concentrations on 
each road were statistically different between samples during 
and after the lockdown.

To further evaluate the influence that traffic had on air 
quality, we performed simple linear regression to predict the 
average concentration of pollutants on each road based upon 
the number of total trips on the road from the smartphone-
based traffic data. This is shown in the following equation:

where y  is the independent variable (i.e., average air qual-
ity concentration on a segment of a road), � represents the 
regression coefficients, and x represents the dependent vari-
ables (i.e., the volume of traffic on a segment of a road).

In addition, there were 3 days during the data collection 
period in which the previous 24 h had a rainfall depth that 
exceeded one inch (June 12, July 16, and August 11), which 
resulted in significant low outliers in the air pollutant data. 
This is most likely due to the effect that rainfall has on wash-
ing out pollutants (Luan et al. 2019; Ouyang et al. 2015a, b); 
therefore, to account for these meteorological effects on the 
data, these days were removed from the temporal analysis 
due to their influence and leverage on the dataset.

Results and discussion

Temporal trends in air quality

Detection of gradual and abrupt changes

Four of the measured pollutants  (PM1,  PM2.5,  PM10, and 
 NH3) displayed a statistically significant (p < 0.05) posi-
tive monotonic trend during the data collection period 
(April–August 2020) on all the roads as indicated by posi-
tive Kendall’s Tau values in Fig. 2. These positive Kendall’s 
Tau values indicated that over the course of the measurement 
period—from the beginning of the lockdown until the end of 
August—these pollutants were gradually increasing in con-
centration on the road segments (data shown in Fig. SI-1). 
While  O3 +  NO2 had positive Kendall’s Tau values on each 
road segment, 7 of the 8 road segments were not statistically 

y = �
0
+ �

1
x
1
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significant. The exception to positive Kendall’s Tau values 
was in  H2S, which while negative for six of the eight roads, 
none were statistically significant. These negative Kendall’s 
Tau values and lack of statistical significance may be due 
to the fact that  H2S is not emitted in traffic or combustion 
emissions, and therefore less traffic and human activity may 
not result in changes in  H2S concentrations.

Using the Pettit test, a statistically significant (p < 0.05) 
abrupt change in pollution was detected for all roads for 
 NH3,  PM1,  PM2.5, and  PM10 on or around June 13, 2020 
(Table 1). In addition, for  O3 +  NO2, six of the roads (Okla-
homa, Lincoln, Capitol, 794, 94, and 32) exhibited an 
abrupt increase in pollution on June 13, 2020. This date 
corresponds to 2 days after the lifting of Milwaukee County 

lockdown measures on June 11, 2020.  H2S did not have any 
statistically significant abrupt changes and therefore was 
omitted from Table 1.

Differences during and after lockdown

The median air pollutant concentrations of all vehicle-emit-
ted pollutants  (PM1,  PM2.5,  PM10,  NH3, and  O3 +  NO2) sig-
nificantly increased after the lockdown was lifted (p < 0.05) 
based upon t-test. This finding is represented by Fig. 3, 
which illustrates the distribution of the mean air pollut-
ant concentrations before and after the lockdown (June 11, 
2020) across all eight roads. The mean  PM1,  PM2.5, and 
 PM10 increased 307%, 270%, and 220%, respectively; the 
mean  NH3 and  O3 +  NO2 increased 277% and 28%, respec-
tively. Finally,  H2S decreased 11%, but this was not statisti-
cally significant at the 0.05 level.

Trends in traffic

Traffic volumes derived from the smartphone-based traffic 
data indicates a clear change in traffic over the course of the 
lockdown. Figure 4 illustrates the mean Wednesday daily 
traffic volume for the eight segments of road evaluated in 
this study from February to August 2020. As illustrated, 
traffic began to suddenly decrease in the beginning of March 
after stay-at-home orders were issued for Milwaukee. Then, 
beginning in late March and early April, daily traffic vol-
umes begin to increase before plateauing during the summer. 

p-value

Fig. 2  Kendall’s Tau and significance test for monotonic trends in air quality data. This figure illustrates Kendall’s Tau value for each test, which 
represents the strength of a trend (− 1 to 1) with those that are statistically significant (p < 0.05) shown in blue

Table 1  Results of the Pettit test on time series of mean pollutant 
concentrations

*Not statistically significant (p < 0.05)

Road PM1.0 PM2.5 PM10 NH3 O3 +  NO2

Oklahoma 6/13 6/13 6/13 6/13 6/13
Lincoln 6/13 6/13 6/13 6/13 6/13
Capitol 6/13 6/13 6/13 6/17 6/13
Rt-32 6/13 6/13 6/13 6/13 6/13
I-794 6/13 6/13 6/13 5/16 6/13
I-94 6/13 6/13 6/13 6/17 6/13*
I-43 6/13 6/13 6/13 6/17 6/13*
I-41 6/13 6/13 6/17 6/17 7/4*
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To further evaluate these trends, we summarized the dis-
tribution of traffic volumes on each Wednesday during the 
lockdown (March 18–June 10) and after the lockdown (June 
11–August 30) as illustrated in Fig. 5. All roads exhibited 
a statistically significant increase in traffic volume between 
30 and 84%, with a median increase of 42% across all roads.

The Mann–Kendall and Pettit tests were used to detect if 
monotonic trends and abrupt shifts existed in the data from 
lockdown (March 18) until the end of August. As illustrated 
in Fig. 6, the traffic volume over the entire day showed sta-
tistically significant increasing monotonic trends, while the 
4–6 pm traffic showed statistically significant increasing 
trends for 6 of 8 streets. The two roads that did not have sta-
tistically significant trends were arterial roads in the south of 
the city. A statistically significant abrupt shift was detected 
in the data from the Pettit test for all eight roads, and for 
six of the eight, this shift occurred on June 10 (Table 2). 
This date corresponds with the lifting of the Milwaukee 
County stay-at-home order on June 11, 2020. This date also 
corresponds closely with the time of the abrupt shifts that 
occurred in the air pollutant data (June 13). Because of the 
similarities between air pollutants and traffic volume as it 
relates to the change in mean values, increasing monotonic 
trends, and the timing of abrupt changes, the relationship 

between air pollutant concentrations and traffic volume was 
evaluated as described in the following section.

Relationship between traffic and air pollutants

Linear regression was applied to predict the mean pollutant 
concentration on each road segment based upon the traffic 
volume over the measurement period (4–6 pm), and results 
indicated that the relationship varied broadly depending 
upon the road segment and the pollutant (Fig. 7). In terms 
of pollutants, particulate matter showed the strongest corre-
lation with traffic explaining up to 56% of the variance (I-43) 
as indicated by the R2 value, and a median of 33% across 
all particulate matter  (PM1,  PM2.5, and  PM10). In general, 
all three particulate matter sensors had similar relationships 
with a stronger correlation for smaller particles with few 
exceptions. Traffic explained up to 43% of the variance in 
 O3 +  NO2 concentrations with a median of 29%. Finally, traf-
fic explained up to 47% of the variance in  NH3 concentra-
tions with a median of 22%.

Results from the linear regression suggest that the rela-
tionship between pollutants and traffic vary by road. Lincoln 
Avenue had the highest correlations with traffic explaining 
43–52% of the variance in vehicle-based pollutants. This 

All Roads All Roads 

Fig. 3  Differences in the distribution of mean concentrations across all roads during and after the lockdown
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segment of road runs north and south along the shoreline 
of Lake Michigan and for several miles is buffeted by a 
cliff face. Therefore, this segment of the road may be less 
impacted by other anthropogenic sources of pollutants. In 
general, the goodness of fit is lowest for roads in the south-
west portion of the study area (e.g., Fig. 8), with no statisti-
cally significant trends for Rt-32 and Oklahoma. These are 
signalized arterial roads that are subject to stopping, idling, 
and starting, which may impact emissions, unlike the unin-
terrupted flow on the interstate highways. Additionally, both 

Rt-32 and Oklahoma were found to have no statistically sig-
nificant monotonic increasing trend in the 4–6 PM traffic 
volume over this time period. Therefore, given the lack of a 
trend in the traffic data, it is not surprising to see little cor-
relation between traffic volume on these roads and changes 
in air pollutants. In addition, these roads are near land uses 
that are dominated by commercial and heavy industrial, 
which may explain the lack of correlation between the meas-
ured pollutants and traffic volume due to other surrounding 
anthropogenic sources of air pollutants.

I-41 I-43

I-94 I-794

Fig. 4  Graph of the weekday 24-h traffic count from February through the end of August 2020 with a moving average trendline
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Discussion

This study captured the changes in air pollution and traf-
fic volume in Milwaukee, WI, a city of approximately one 

million people, during the COVID-19 lockdown. Results 
demonstrated that air pollutants were found to increase 
from lockdown to post lockdown, including increases 
in mean concentrations of  NH3 (277%), particulate mat-
ter (220–307%), and  O3 +  NO2 (28%). The increase in 
 O3 +  NO2 once the lockdown was lifted may be largely 
due to increased traffic emissions of  NO2. Other studies 
found that during COVID-19 lockdowns, the NO2 levels 
decreased, while  O3 levels either remained unchanged or 
increased (Gkatzelis et al. 2021; Gualtieri et al. 2020), 
with the increase in  O3 attributed largely to the reduction 
of nitrogen oxide that leads to a lower O3 consumption 
or titration. This was followed by a subsequent increase 
in  NO2 and decrease in  O3 once the lockdown was lifted 
(Ropkins and Tate 2021). Tests for abrupt changes dem-
onstrated that for all combustion pollutants, there was a 
change that occurred on June 13, 2020 on most roads. 

Rt-32 Rt-32

Fig. 5  Distribution of weekday traffic on each road during (March 18–June 10) and after (June 17–August 26) for the 24-h traffic volume (left) 
and 4–6 PM traffic volume (right)

Fig. 6  Mann–Kendall test of 
the traffic volume for 24 h and 
4–6 PM on weekdays

Table 2  Results of abrupt changes in traffic on weekdays from the 
Pettit test

Road Date p Value

Capitol 20-May-20 0.025
Lincoln Ave 20-May-20 0.029
Oklahoma 10-Jun-20 0.005
Rt. 32 10-Jun-20 0.002
I-41 10-Jun-20 0.001
I-43 10-Jun-20  < 0.0001
I-794 10-Jun-20 0.001
I-94 10-Jun-20  < 0.0001



1149Air Quality, Atmosphere & Health (2023) 16:1141–1152 

1 3

This corresponds to shortly after the lockdown was lifted, 
indicating that the lockdowns had a direct impact on air 
quality.

In addition to changes in air pollution, traffic increased 
from lockdown to post-lockdown by 30–84%, depending 
upon the road. These findings correspond to other stud-
ies that found similar changes in traffic in other studies 
within the USA (Hudda et al. 2020; Jia et al. 2020; Xiang 
et al. 2020). Mann Kendall tests confirmed a monotoni-
cally increasing trend in traffic from the time the lockdown 
occurred until the end of the monitoring period, and a Pettit 
test for abrupt changes confirmed a change in traffic pat-
terns near the lifting of the lockdowns on June 11, 2020. 
Therefore, due to the observed similarities in air pollut-
ants and traffic volume, we sought to evaluate the influence 
that traffic has on explaining the variance in air pollutant 
concentrations.

The results from the linear regression reveal that traffic 
was able to explain some of the variances in the pollutant 

I-41 I-43 I-94 I-794 Rt.-32 Oklahoma Capitol Lincoln

Traffic Volume 4-6 PM

****

* indicates statistically sig. slope p<0.05

**
****

****

****

*

Fig. 7  Relationships between pollutants and traffic volume for each road segment

Fig. 8  Spatial distribution of the goodness of fit (R2) for  PM1.0
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concentrations, including up to 47% of  NH3 (median 22%), 
57% of particulate matter (median 33%), and 42% of 
 O3 +  NO2 (median 29%). These estimates are within the 
broad range of other studies that have estimated the impact 
that traffic had on the reduction in air pollutants during the 
lockdown (Hudda et al. 2020; Jia et al. 2020; Wang et al. 
2020a, b; Wang et al. 2020a, b; Xiang et al. 2020). However, 
these previous studies were either temporally constrained 
to traffic data at an average daily or hourly interval, spa-
tially constrained to traffic and air pollutant data at single 
point sources, or both. Those that do use mobile-based sen-
sors (Hudda et al. 2020; Wang et al. 2020a, b) were able to 
evaluate changes in air quality and differences between road 
types; however, these studies were also constrained to traffic 
data at single points on a highway within the road network, 
requiring assumptions in traffic changes on roads for which 
traffic data was not available.

An advantage of this study is the use of both mobile-
based pollutant sensors and localized traffic volume data to 
evaluate changes at road-level spatial scales. Specifically, 
we were able to leverage this data to evaluate the differences 
in pollutant concentrations across road types and regions of 
the city, as well as compare changes in air pollutants to local 
traffic conditions at the source where data was collected. In 
doing so, we found that while both air pollutants and traffic 
increased on all roads over the study period and have abrupt 
changes at similar times, the correlation of traffic volume 
to air pollutant concentrations varied widely. This could be 
due to the unique conditions at the site-level that control air 
pollutant concentrations near the roads. For example, Lin-
coln Drive has the strongest relationship between pollutants 
and traffic, which could be due to the location between the 
lake and a cliff face making local air quality more depend-
ent upon road traffic than other locations that are nearer to 
industrial and commercial centers of the region.

Furthermore, arterial roads in the south of the city were 
found to have little to no relationship between traffic and 
combustion-related air pollutants. This may be because these 
roads exhibited no statistically significant changes in traffic 
during the 4–6 PM data collection period. If these street-
specific traffic volume data were not available for this study, 
a generalization of traffic changes across the city may have 
resulted in a type I error that incorrectly attributed changes 
in air pollutants to changes in local traffic. In addition, these 
locations are closer to industrial and commercial areas of 
the city where other sources of combustion pollutants may 
be present or dominate air pollutant concentrations. This 
aligns with other studies using mobile-based sensors that 
have similarly found streets near industrial and commercial 
areas where industrial emissions make up the most signifi-
cant portion of pollutants (Wang et al. 2020a, b). Overall, 
these outcomes highlight the value of air quality data at 

relevant spatial and temporal scales for assessing the influ-
ence of traffic on air pollutants in urban areas.

There are several limitations that influence the interpre-
tation of this study. First, this study does not have data on 
air pollutants prior to the lockdown nor does it have data 
on air pollutants in previous years during the same seasons. 
Therefore, there is no way to account for seasonal effects or 
yearly trends that may be occurring within the air pollut-
ant data itself. However, the strong changes, coupled with 
supporting literature, largely support the attributions of 
traffic to changes in air pollutants articulated in this study. 
Secondly, this study does not capture the variation in other 
sources of pollutants or background concentrations and is 
limited to evaluating changes in traffic only. There may be 
other sources, such as industrial activity, airports, or power 
plants, that may make up a significant portion of the source 
from local areas. A simple dispersion modeling (briefly dis-
cussed in the Appendix) using AERMOD (U.S. EPA 2022) 
performed on two of the road segments showed that the 
background concentration have non-negligible effect in the 
local variation of pollutants. Finally, as this data is limited to 
Milwaukee, WI, the findings from this study may not trans-
late to other cities that have different meteorological and 
anthropogenic characteristics that influence air pollutants.

What impact these changes at a local scale have on air 
pollutant concentrations more regionally is also unclear. 
A synthesis of  PM2.5 and ozone concentrations during the 
lockdowns across the USA found a variation in changes in 
those pollutants, with some increasing and others decreasing 
(Bekbulat et al. 2020). This may be due to meteorological 
or regional influences on  PM2.5 and ozone that contribute to 
regional concentrations. In fact, recently, it has been found 
that more than half of premature mortality from air pollution 
can come from out-of-state pollutant sources (Dedoussi et al. 
2020). Therefore, it may be challenging to make regional 
inferences on pollutant concentrations from this localized 
data.

Overall, these results have important implications for the 
management of air pollutants. The reduction in traffic due to 
the COVID-19 lockdowns provided an opportunity to evalu-
ate and test the impact of traffic reductions on the environ-
ment, which in turn can help inform management decisions. 
For example, the World Health Organization recommends 
a 5 µg/m3 annual mean concentration for  PM2.5 due to the 
adverse impact that it has on public health (World Health 
Organization 2021). In this study,  PM2.5 had a median con-
centration of 3 µg/m3 across all roads during the lockdown, 
while the lifting of the lockdown increased median concen-
trations to 13 µg/m3—exceeding recommended concentra-
tions. Therefore, this study shows that this type of interven-
tion could be effective at reducing concentrations of  PM2.5 
to levels that are closer to WHO recommendations. To that 
end, long-term solutions may be achieved by changes in 
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both vehicle composition (e.g., transition from combustion 
engines to electric vehicles) or the mode of traffic (e.g., shift 
from passenger cars to public transportation). As such, these 
results, among other findings, can be utilized by decision-
makers to inform management decisions related to traffic 
and air pollution.

Conclusions

This study presents an analysis of the air pollutant and traffic 
changes during the COVID lockdown in Milwaukee, WI. 
Results indicated that the lifting of the lockdown measures 
resulted in statistically significant monotonic increases in 
both traffic volume and air pollutant concentrations over the 
study period, and abrupt changes in traffic volume and air 
pollutant concentrations near the time Milwaukee County 
lockdown restrictions were lifted. Traffic volume was able 
to explain up to 42–57% of the variance in air pollutants on 
roads. These findings, therefore, have practical implications 
at the intersection of traffic management and air quality in 
urban areas.
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