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Abstract
Aircraft engine emissions (AEEs) generated during landing and takeoff (LTO) cycles are important air pollutant sources that 
directly impact the air quality at airports. Although the COVID-19 pandemic triggered an unprecedented collapse in the civil 
aviation industry, it also relieved some environmental pressure on airports. To quantify the impact of COVID-19 on AEEs, 
the amounts of three typical air pollutants (i.e., HC, CO, and NOx) from LTO cycles at airports in central eastern China were 
estimated before and after the pandemic. The study also explored the temporal variation and the spatial autocorrelation of 
both the emission quantity and the emission intensity, as well as their spatial associations with other socioeconomic fac-
tors. The results illustrated that the spatiotemporal distribution pattern of AEEs was significantly influenced by the policies 
implemented and the severity of COVID-19. The variations of AEEs at airports with similar characteristics and functional 
positions generally followed similar patterns. The results also showed that the studied air pollutants present positive spatial 
autocorrelation, and a positive spatial dependence was found between the AEEs and other external socioeconomic factors. 
Based on the findings, some possible policy directions for building a more sustainable and environment-friendly airport 
group in the post-pandemic era were proposed. This study provides practical guidance on continuous monitoring of the 
AEEs from LTO cycles and studying the impact of COVID-19 on the airport environment for other regions or countries.

Keywords  Aircraft engine emission · Coronavirus pandemic · Hydrocarbons · Carbon monoxide · Nitrogen oxides · Spatial 
dependence

Introduction

The civil aviation industry has witnessed decades of steady 
growth until the outbreak of the novel coronavirus disease 
2019 (COVID-19). While air travel has made it possible 
for passengers to reach more remote destinations in less 
time and at affordable costs, it has also contributed to the 
global spread of infectious diseases (Sun et al. 2020; Linka 
et al. 2021). To slow down the transmission of COVID-
19, up to 194 countries have implemented measures to 
restrict individuals’ mobility in response to the pandemic 

(Lee et al. 2020). The heavy travel restrictions, together 
with the unprecedented decrease in passenger demand, 
have adversely impacted the civil aviation industry (Dube 
et al. 2021). Airlines have placed numerous aircraft types 
into temporary storage to avoid significant financial loss 
from flying empty planes (Adrienne et al. 2020). And many 
airports had to close their runways to make room for air-
craft parking or just significantly limited their operations, 
awaiting traffic to pick up again. Consequently, there was a 
substantial decline in domestic and international passenger 
flights worldwide (Sun et al. 2021). According to Interna-
tional Civil Aviation Organization (ICAO 2020), the overall 
number of passengers by April had fallen 92% from 2019 
levels, an average of a 98% drop-off in international traffic 
and 87% in domestic air travel. Evidence showed that the 
decline in air passenger traffic caused by COVID-19 was far 
more significant than that caused by other effects in literature 
(Xue et al. 2021b). Although flight suspensions negatively 
affect many aspects of society, it is expected to have some 
positive effects on the environment.
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One of the most prominent influences that aviation has on 
the environment is air pollution (Brasseur et al. 2016). Air-
craft engines exhaust gases and particles, including carbon 
monoxide (CO), nitrogen oxides (NOx), sulfur oxide (SOx), 
hydrocarbons (HC), particulate matter (PM), and so forth 
(Kurniawan and Khardi 2011). Conventionally, the opera-
tions of aircraft are divided into two phases: The landing 
and takeoff (LTO) phase, which occurs at an altitude below 
3000 ft, and the cruise phase, which takes place at an alti-
tude above 3000 ft (Kurniawan and Khardi 2011). Aircraft 
engine emissions (AEEs) at the cruising altitude are directly 
released into the upper troposphere and the lower strato-
sphere, which mainly impact climate change (Brasseur et al. 
2016), while AEEs from LTO cycles are primarily associ-
ated with the deterioration of air quality at the ground level 
(Amato et al. 2010; Hsu et al. 2012). Although aircraft emits 
gases and particles primarily during the cruise phase, AEEs 
from LTO cycles have aroused increasing public concern 
in recent years due to the following reasons: (i) In the year 
2019, researchers from the Massachusetts Institute of Tech-
nology have uncovered that aviation causes twice as much 
damage to air quality as it does to the climate (Lang 2019); 
(ii) AEEs from LTO cycles have a more direct effect on 
human health, local eco-system, and cultural heritage, which 
are closely related to the living standards of human beings 
(Song et al. 2019; Aygun and Caliskan 2021; Głowacki et al. 
2022). Therefore, the estimation of AEEs from LTO cycles 
has been recognized as an important issue for developing 
strategies as future guidelines for airport environmental 
sustainability.

It is widely acknowledged that 2020 is an unusual year 
for the civil aviation industry as the COVID-19 outbreak 
is the first major global pandemic in the era of passenger 
jet air transportation since the late 1950s (Elias 2020). 
Accordingly, this study intends to explore the positive 
environmental impacts of travel restrictions from the per-
spective of AEEs at the ground level. Although several 
researches have focused on the estimation and analysis 
of AEEs from LTO cycles at both the local scale (Yılmaz 
2017; Kuzu 2018; Tokuslu 2020) and the regional 
scale (Kesgin 2006; Hu et al. 2020; Yu et al. 2021), the 
research on AEEs from LTO cycles in the context of the 
COVID-19 pandemic is still scarce. Furthermore, there 
has never been any analysis of the relative change in air 
pollution at airports between the COVID-19 era and the 
pre-COVID-19 era, either from a temporal or spatial per-
spective. In addition, the spatial spillover effect of AEEs 
and the spatial association with local socioeconomic fac-
tors have not been studied yet. Therefore, we explore this 
area to better comprehend the disparities in the variation 
patterns of AEEs and its correlations with both COVID-
19-related factors and socioeconomic factors.

This paper aims to answer the following research ques-
tions: (i) How do the relative changes of the studied AEEs 
distributed temporally and geographically? And how do the 
spread of COVID-19 and pertinent policy responses impact 
the variation patterns? (ii) Does the variation of AEEs at 
airports with similar characteristics and functional posi-
tions follow a specific pattern? (iii) Are AEEs at airports 
in the studied region spatially dependent? (iv) Does spatial 
association exist between the socioeconomic status of cit-
ies nearby and the AEEs at local airports? To answer these 
questions, we first analyzed the distribution patterns of 
relative change on both geographical and temporal scales. 
Using a modified k-means clustering algorithm, the studied 
airports were then categorized into groups based on their 
AEE variation characteristics. Furthermore, some spatial 
statistical indicators, including univariate and bivariate 
Moran’s Index (i.e., Moran’s I), were calculated to assess 
the existence of spatial autocorrelation and spatial associa-
tion. Based on the results and discussions, the correspond-
ing policy implications were provided.

The remainder of this study is organized as follows. In the 
second section, relevant literature is briefly reviewed. The 
third section presents the geographical scope, data sources, 
variables, and methods. The results are presented and dis-
cussed in the fourth section. The fifth section suggests the 
policy implications. The last section provides the main con-
clusions and recommendations for future research.

Literature review

A number of studies have investigated the impacts of 
COVID-19 on transport-related air pollution. Table 1 
summarizes the main findings in existing studies on the 
effects of COVID-19 on traffic-caused air pollution. 
Compared to road and marine traffic, air pollution caused 
by air traffic received comparatively less attention. The 
majority of the studies, which measured the AEEs at air-
ports, were conducted before the outbreak of COVID-19. 
Yılmaz (2017) estimated the HC, CO, and NOx from the 
LTO cycle at Kayseri Airport, Turkey. Similar research 
was also conducted at Los Angeles International Air-
port (Shirmohammadi et al. 2017), Detroit Metropolitan 
Airport (Ashok et al. 2017), Atatürk International Air-
port (Kuzu 2018), and Georgian International Airport 
(Tokuslu 2021). However, these studies mainly focused 
on investigating the distribution of total LTO emissions 
for each operation mode at a single airport. As for the 
regional multi-airport scale, Song and Shon (2012) cal-
culated the emissions of greenhouse gases at four major 
international airports in Korea. It was found that monthly 
and daily emissions do not vary significantly. Yu et al. 
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(2021) analyzed the trend of AEEs at some airports in 
mainland China from 1970 to 2017 and found that the 
average emission per passenger has declined for the dura-
tion. Bao et al. (2021) revealed some simple regional dis-
tribution of AEEs from LTO cycles during the pandemic 
but failed to thoroughly compare the AEEs at airports in 
2020 to the year when the pandemic had not yet occurred. 
Although these studies have provided valuable insights 
for investigating the ground-level AEEs from a regional 
cooperative perspective, they rarely consider the spatial 
interaction and spatial spillover effects within the region 
and how their effects on the distribution of emission quan-
tity (EQ) and emission intensity (EI, i.e., emission per 
passenger). In addition, to the authors’ knowledge, the 
spatial correlation between AEEs from LTO cycles and 
other socioeconomic factors has not been examined using 
spatial econometric methods in any literature.

Overall, research on AEEs from LTO cycles in the con-
text of the COVID-19 pandemic is still limited. Although 
several attempts have brought valuable results of emissions 
from the aircraft engines during each operation mode of a 
typical LTO, the impact of COVID-19 on the spatiotem-
poral distribution of EQ, EI, and their relative change still 
needs further research. The LTO emission data at an indi-
vidual airport has rarely been viewed as geo-referenced data, 
which considers the impact of the adjacent areas. Given this, 
we found it necessary to fill the aforementioned research 
gaps. With the employment of some other analytical meth-
odologies, the following contributions have been made in 
this research compared to the previous studies: (i) To better 
comprehend the COVID-19 impact on airport environment, 
special attention was devoted to both EQ and EI, as well 
as their relative changes between the pre-COVID-19 era 

and the year 2020. (ii) The temporal variation patterns of 
AEEs during the COVID-19 pandemic were classified, and 
the potential causes were analyzed. (iii) The spatial depend-
ence effect of both the EQ and EI, and their association with 
other socioeconomic factors were investigated in this paper.

Materials and methods

Geographical scope

The Yangtze River Delta (YRD), which consists of 
Jiangsu province, Zhejiang province, Anhui province, 
and Shanghai municipality, is a major metropolitan area 
located in the east of China (Fig. 1). Accounting for about 
23% of the total gross domestic product (GDP) and 11% 
of the total population, the YRD is widely recognized 
as a significant driving force for the nation’s economy. 
In December 2019, the government issued an outline for 
the integrated development of the YRD. Tasks specified 
in the outline include establishing a world-class regional 
airfield complex. Table 2 shows the basic information 
of the airports at the YRD. Currently, there are 22 civil 
airports in the YRD, including 2 airports in Shanghai, 
9 airports in Jiangsu, 6 airports in Zhejiang, and 5 air-
ports in Anhui province. And the 4 largest airports, which 
served more than 100,000 flights in 2020, are the air-
ports in Shanghai, Hangzhou, and Nanjing. The outline 
pointed out that it is crucial to ensure that the airports are 
under coordinated management within the region. Despite 
the region’s outstanding performance in civil aviation, 
the extensive air pollution related to air traffic is still a 
challenging problem due to the high volume of flights. 

Table 1   Literature on the effects of COVID-19 on traffic-caused air pollution

Study Type of traffic Major finding

Xiang et al. (2020) Road Due to the stay home order (SHO) restriction, the median PM2.5, NOx, and CO levels near the 
freeway in downtown Seattle significantly declined by 33%, 30%, and 17%, respectively

Wu et al. (2021) Road CO declined by 28.8% at roadside stations in Shanghai due to the COVID-19 lockdown. The 
decrease in NOx from vehicles led to an increase in ozone on the roadside (30.2%)

Collivignarelli et al. (2020) Road The restriction of mobility led to a significant decrease in the concentration of air pollutants mainly 
due to vehicular traffic (PM2.5, PM10, BC, benzene, CO, and NOx)

Nakada and Urban (2020) Road During the partial lockdown in São Paulo, Brazil, an increase of approximately 30% in ozone con-
centration was observed, probably related to NOx decreases influenced by vehicle traffic

Shi and Weng (2021) Water As a result of the strict COVID-19 quarantine measures, the emissions from cargo ship are signifi-
cantly reduced, while the emissions from the container ships and tankers slightly decreased

Ju and Hargreaves (2021) Water A significant decrease in CO2 occurred from June to August 2020 in Singapore as most of the 
marine transport of essential goods remained normal despite the COVID-19 epidemic

Xue et al. (2021a, b) Air Since the second quarter of 2020, daily fuel consumption and aircraft emissions have been rising in 
four Chinese international airports. In the fourth quarter, the ratio of 2020 to 2019 is 0.875

Cui et al. (2022) Air Affected by the epidemic, the average emissions from the climbing, cruising, and descending stages 
of the routes decreased significantly in South America
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Fig. 1   The map of the Yangtze River Delta, China

Table 2   The basic information 
of airports in the Yangtze River 
Delta

Province Airport name IATA codes City Flight 
demand of 
2020

Shanghai Shanghai Pudong International Airport PVG Shanghai 325,678
Shanghai Hongqiao International Airport SHA Shanghai 219,404

Jiangsu Changzhou Bennou International Airport CZX Changzhou 22,000
Huaian Lianshui International Airport HIA Huaian 34,135
Lianyungang Baita International Airport LYG Lianyungang 11,826
Nantong Xingdong International Airport NTG Nantong 28,454
Sunnan Shuofang International Airport WUX Wuxi 53,901
Xuzhou Guanyin International Airport XUZ Xuzhou 34,568
Yancheng Nanyang International Airport YNZ Yancheng 18,799
Yangzhou Taizhou International Airport YTY​ Yangzhou 42,154
Nanjing Lukou International Airport NKG Nanjing 181,724

Zhejiang Ningbo Lishe International Airport NGB Ningbo 75,373
Taizhou Luqiao Airport HYN Taizhou 9492
Wenzhou Yongqiang International Airport WNZ Wenzhou 73,717
Yiwu Airport YIW Jinhua 13,677
Zhoushan Putuoshan Airport HSN Zhoushan 20,250
Hangzhou Xiaoshan International Airport HGH Hangzhou 237,362

Anhui Anqing Tianzhushan Airport AQG Anqing 5328
Chizhou Jiuhuashan Airport JUH Chizhou 3034
Fuyang Xiguan Airport FUG Fuyang 13,712
Huangshan Tunxi International Airport TXN Huangshan 5526
Hefei Xinqiao International Airport HFE Hefei 74,391
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The outline also stressed that priority should be given to 
environmental protection. Therefore, to better understand 
aviation-related environmental issues, it is necessary to 
study the spatiotemporal pattern of the AEEs generated 
during LTO cycles at the airports in the YRD.

Data resources

Different types of data are needed for estimating the amount 
of AEEs released during LTO cycles. Firstly, the informa-
tion on daily flights at 22 airports in the YRD from Janu-
ary 1, 2019 to December 31, 2020 was obtained from the 
Official Airline Guide (OAG) company (www.​oag.​com), the 
world’s leading travel data provider. With the world’s largest 
network of flight information data, OAG provides access to 
the most accurate airline schedules and flight records. The 
historical flight status database includes records of flight 
information, which contains the flight number, the operating 
time, the carrier, the origin airport, the departure airport, 
the aircraft name, which can be specific to a certain series 
of an aircraft type, etc. The number of daily LTO cycles 
and the accurate aircraft type of each flight were collected 
from those records. The aircraft-engine combination was 
determined by the information from the official websites of 
aircraft manufacturers and airlines. In an entire LTO cycle, 
the power setting (%), the time spent (minutes), fuel flow 
(kg/s), and the emission indices of the HC, NOx, and CO 
of a certain engine type for each operation mode (i.e., idle, 
approach, climb out, and takeoff) were obtained from the 
ICAO engine emission databank.

Methodology

Aircraft emission calculation model

HC, CO, and NOx are the reference AEEs defined in ICAO 
standards against which engines are certificated (Nielsen 
et al. 2019). To best reflect actual emission quantity of HC, 
CO, and NOx, we employed an advanced approach recom-
mended by ICAO (2016). The equation below shows the 
formula to calculate the AEEs during LTO cycles.

Where i is the type of AEEs (i.e., HC, CO, and NOx); j is 
the type of aircraft; m is the operation mode in a typical 
LTO cycle (i.e., idle, approach, takeoff, and climb out); EQi 
is the total emission of pollutant i , in grams (g); LTOJ is the 
number of the LTO cycle for aircraft j ; NEj is the number 
of engine of aircraft j;FCj,m is the fuel consumption of air-
craft j in mode m , in kilograms per second (kg/s); TIMj,m 

(1)

EQi =

∑
j

4∑
m=1

LTOj × NEj × FCj,m ×

(
TIMj,m

60

)
× EIi,j,m

is the duration (abbreviation of time in mode) of mode m 
for aircraft j , in minutes (min); EIi,j,m is the emission factor 
for pollutant i , aircraft j in operating mode m , in grams per 
pollutant per kilogram of fuel (g/kg of fuel) for each engine 
on aircraft j.

Clustering algorithm

Clustering analysis can search for correlations among time 
series data (Wu et al. 2022). To classify the temporal vari-
ation pattern of the AEEs, a modified k-means clustering 
algorithm is used to partition the variations of AEEs at dif-
ferent airports into homogeneous subgroups. Firstly, the per-
centage of the change in the emissions between every two 
consecutive months in 2020 was calculated. Then, to best 
feature the variation of the emission between each consecu-
tive 2 months, we further classify the change of AEEs into 
five categories: (i) substantial decrease, i.e., a decline that 
is smaller than − 50%; (ii) moderate decrease, i.e., a decline 
from − 50 to − 10%; (iii) stability, i.e., a decline from − 10 
to 0% and a growth from 0 to 10%; (iv) moderate increase, 
i.e., a growth from 10 to 50%; (v) substantial increase, i.e., a 
growth that is larger than 50%. The five variation categories 
are labeled − 2, − 1, 0, 1, and 2, respectively. Since there are 
11 intervals between 12 months, each airport in the YRD can 
be labeled by 11 numbers based on the variation trend of the 
AEEs. The series of numbers of different airports are then 
selected to be the input dataset for the clustering algorithm. 
And the airports can, therefore, be categorized into clusters 
using the K-means clustering method. Airports that belong 
to the same cluster have similar variation trends.

Spatial dependence analysis

Spatial dependence is an essential property within the geo-
graphic space: characteristics at adjacent locations tend to be 
positively or negatively correlated. Such a phenomenon results 
from several spatial effects, including spatial interaction, spa-
tial hierarchies, and spatial spillover (Cartone et al. 2021).

A spatial weight matrix quantifies the spatial relation-
ships between the observational units in a spatially refer-
enced dataset (Fotheringham and Brunsdon 1999). It is an 
n × n positive symmetric matrix, denoted as W  , with ele-
ment wij at location i , j for n locations. According to the 
spatial data type, the spatial weights can be classified into 
two categories: contiguity-based weights and distance-based 
weight. Contiguity-based weights are commonly adopted to 
measure the adjacency of polygons, and contiguity means 
that two spatial units share a common border of non-zero 
length. In comparison, distance-based weights are usually 
adopted for measuring the relative locations between points 
(Negret et al. 2020). Since the observations of the study are 

http://www.oag.com
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not based on cities (whose shapes are polygons) within the 
research region but on the airports (which can be seen as 
separate points) within each city, the distance-based spa-
tial weight matrix is more suitable to represent the spatial 
structure of the research data. The most widely used dis-
tance-based weighting method is inverse distance squared 
weighting, which is in accordance with the logic of Tobler’s 
geography law (Musashi et al. 2018). Taking the theory of 
impedance and distance decay into consideration (Simini 
et al. 2012), the inverse distance squared weighting assumes 
that each measured point has a local influence on the others 
that diminishes with distance, and the superiority of it in 
modeling autocorrelation function has been demonstrated 
in several literatures (Ping et al. 2004; Musashi et al. 2018). 
Therefore, the element in the weight matrix is calculated by 
the following formula:

Where dU is the distance from the center of unit i to the 
neighboring unit j

To investigate whether the AEEs from LTO cycles at the 
studied airports in the YRD are spatially correlated, a spatial 
autocorrelation analysis is conducted by calculating both the 
global and the local Moran’s I developed by Moran (1950) 
and Anselin (1995). The value of Moran’s I ranges from − 1 
to 1. A positive Moran’s I indicates the clustering of similar 
values, while a negative Moran’s I indicates the clustering of 
dissimilar values (i.e., dispersion). A value of 0 for Moran’s 
I typically indicates no autocorrelation, which means that 
the values are randomly distributed. The larger the absolute 
value of Moran’s I is, the stronger the spatial autocorrela-
tion exists. The global Moran’s I assesses the overall spatial 
autocorrelation in the research region, as shown in Eq. (3). 
The local Moran’s I is the statistic for local indicators of 
spatial association (LISA), which is a localized measure of 
the spatial aggregation of AEEs around airport i, as shown 
in Eq. (4).

where IU refers to the global univariate Moran’s I; IUi rep-
resents the local univariate Moran’s I for airport i; ∙ wij is 
the element of the spatial weight matrix; xi and xj are the 
amounts of AEEs at airport i and airport j , respectively; x 
is the average amount of AEEs; n is the number of airports 
in the YRD.

(2)wij =
1

d2
ij

(3)

IU =

�
n∑n

i=1

∑n

j=1
wij

��∑n

i=1
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j=1
wij
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xi − x

��
yi − y

�
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i=1

�
xi − x

�2
�

(4)IUi =
n
�
xi − x
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i=1
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xi − x
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�n

j=1
wij

�
wj − x

�

To explore how AEEs at airports spatially correlate with 
other socioeconomic factors in the adjacent areas within the 
research region, a cross-correlation analysis is conducted 
by calculating the bivariate Moran’s I. Common bivariate 
association measures, such as Person’s correlation coeffi-
cient, fail to recognize the spatial interaction of the dataset. 
Tobler (1979) summarizes the first theory of geography as, 
“Everything is related to everything else, but near things are 
more related than distant things.” According to this theory, 
no region is isolated, and each region is continuously devel-
oping in accordance with its correlation with other regions 
(Ma et al. 2015). Therefore, by adopting both the concept of 
the Person’s correlation and univariate Moran’s I, bivariate 
Moran’s I was developed to capture bivariate spatial depend-
ence (Lee 2001). In this study, the global bivariate Moran’s 
I measures the overall spatial dependence between AEEs 
and other socioeconomic factors, as defined in Eq. (5). In 
contrast, the bivariate LISA can reveal the spatial disparity 
of the association at the local level, as defined in Eq. (6). 
The pseudo-significance of the bivariate Moran’ I statistics 
is evaluated at the 5% level based on 10,000 randomization 
permutations, which can reduce the uncertainty to an accept-
able level. The bivariate Moran’s I with p-values below 5% 
indicates that the amount of AEEs at a particular airport is 
associated with the socioeconomic status in the neighbor-
ing regions.

Where IB refers to the global bivariate Moran’s I; IBi rep-
resents the local bivariate Moran’s I for airport i ; xi is the 
amount of AEEs at airport i ; xi is the amount of AEEs at 
airport i and x is the average amount of AEEs; yi is the value 
of the socioeconomic factors at city j and y is the average 
amount of them.

Results and discussions

Analysis of the relative change

The COVID-19 pandemic has inflicted a heavy toll on the 
civil aviation industry, but it has also eased the environ-
mental pressure on airports in 2020. Table 3 shows the 
descriptive statistics of EQ and EI at 22 airports in the YRD. 
Figure 2 shows the spatial distribution of relative changes 
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in EQ and EI at each airport between 2020 and 2019.With 
the Jenks natural breaks optimization method, the relative 
changes were classified into 5 degrees and represented by 
different cycle sizes in Fig. 2. Such a classification method 
can ensure that the features are divided into classes whose 
boundaries are set where there are relatively big differ-
ences in the data values. Overall, it is evident that there is 
a decline in EQ of the studied AEEs at all airports. The 
relative change of EQ ranges from − 47.7 to − 1.13% for 
HC, − 35.79 to − 0.79% for CO and − 39.55 to − 1.57% for 
NOx. In general, the EQ emitted at airports in Shanghai, 
western Jiangsu province, and southern Anhui province 
decreased more significantly in 2020, indicating that the 
civil aviation industry in these regions has suffered a greater 
blow than other regions in the YRD. In contrast, there was 
an increase in EI at all airports in the YRD, especially for 
airports located in the middle and southern parts of Zhejiang 
province and Jiangsu province, southern Anhui province, 
and Shanghai. Given that the aircraft types on certain routes 
connecting the airports in the YRD barely changed in 2020 
compared to 2019, the impact of aircraft type on the EI could 
be ignored. The EI of a trip strongly depends on the pas-
senger load factor (Dhital et al. 2022). Defined by the ratio 
of the passengers onboard to the total number of available 
seats, the passenger load factor measures how much of the 
passenger carrying capacity is used. The significant rise in 
EI at all airports in the YRD indicated the decline in the 
load factor of passengers during the COVID-19 pandemic, 
which can be explained by the following two reasons: (i) the 
collapse in air travel demand caused an oversupply of seats 
on flights. And it has been reported that some airlines were 
flying essentially empty aircraft to avoid losing their slots 
at slot-constrained airports (Sun et al. 2021); (ii) to limit 
the “touchpoint” opportunities for COVID-19 to spread via 
close physical proximity between passengers on flights, the 
CAAC urged that airlines should ensure social distancing 
when assigning seats onboard in 2020. Therefore, it can be 

inferred that the decline in the aircraft occupancy rate sig-
nificantly contributes to EI growth.

To study how the COVID-19 pandemic affected the AEEs 
at airports in the YRD, we further analyzed the relationship 
between the spread of COVID-19 and the monthly varia-
tion of relative changes in the AEEs. Policy responses to 
the pandemic are also taken into consideration. Figure 3 
shows the relative changes in EQ and the number of newly 
confirmed cases in 2020. Figure 4 demonstrates the daily 
difference in the new confirmed cases, existing confirmed 
cases of COVID-19, and the total confirmed cases between 
different cities in the research region.

In the YRD, the first confirmed case of COVID-19 was 
identified in Shanghai on January 20, 2020. Three days 
later, infections were reported in all provinces of the YRD. 
At the same time, all regions in the YRD have initiated the 
highest level of public health emergency responses. The 
number of daily new cases gradually climbed and peaked 
during late January and early February. And numerous 
flights were canceled due to the vigorous restrictions on 
air transportation services. Consequently, the Chinese 
New Year Festival (CNYF) of 2020 (from January 24 to 
February 8) witnessed a sharp decline in flights and the 
AEEs at all airports in the YRD. The decline was unprec-
edentedly significant in February as the CNYF was usually 
a peak season for air traffic. Compared to the same period 
in 2019, the average EQ of HC, CO, and NOx at airports 
in the YRD decreased by 30.16%, 16.68%, and 40.66%, 
respectively. However, as the number of new cases turned 
zero in the YRD by the end of February, the travel restric-
tions have been slightly relaxed. Different neighborhoods 
and townships are categorized into high, medium, or low 
risk, depending on the number of confirmed cases and 
whether there are cluster cases, which formed the basis for 
the gradual easing of lockdown measures. This policy also 
led to the rise of the AEEs at some airports in the study 
area since March.

Table 3   Descriptive statistics of 
EQ and EI at 22 airports, YRD

Type Period Min Max Mean St.d

Emission Quantity
(t)

HC 2020 1.12 97.30 17.28 26.59
2019 1.21 167.44 23.93 41.15

CO 2020 16.17 1583.54 274.28 408.52
2019 21.57 2391.33 341.84 567.69

NOx 2020 19.76 2578.96 468.22 716.84
2019 32.68 4195.48 614.39 1043.37

Emission Intensity
(g/pax)

HC 2020 1.49 5.48 2.55 1.00
2019 0.97 3.39 2.00 0.52

CO 2020 30.62 73.51 40.58 10.44
2019 25.02 41.27 30.42 4.52

NOx 2020 50.64 89.80 64.40 12.04
2019 40.11 68.84 51.19 7.61
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To resolutely contain the increasing risks of imported 
COVID-19 cases, the information on international flight 
plans (Phase Five) was released by the Civil Aviation 
Administration of China (CAAC) on March 12. Two weeks 
after, notice on further reducing international flights was 
issued by CAAC. But, still, foreign-imported infections 
began to account for almost all the resurgence of COVID-
19 cases in Shanghai, which made Shanghai the city with 
the most infections in the research region in 2020. Because 
of the restricted quarantine policies for the inbound pas-
sengers, Shanghai successfully prevented new cases from 
spreading exponentially in 2020. On April 30, there were 
no existing infections in the three provinces, indicating that 
the COVID-19 pandemic had been successfully controlled 
in the YRD by the end of April. At that time, the relative 
change of the EQ began to rebound. The post-pandemic 
reopening of the economy has again boosted the demand 
for domestic air travel, which significantly offset the reduc-
tion in international flights. As a result, the next 2 months 
witnessed a considerable increase in the AEEs at most air-
ports in the YRD. During the second half of 2020, airlines in 
China have been restoring flights and regaining passengers 
for domestic services. The reviving domestic business has 
slightly boosted the local civil aviation industry. In Septem-
ber, there was a drastic growth in the AEEs. And, for the first 
time in 2020, the emissions of the studied AEEs surpassed 
the values in the same period in 2019. The EQ of AEEs 
continued to climb, and the relative change peaked at around 
20% in October, when people in China enjoyed 10 days off 
to celebrate the National Day and Mid-Autumn Festival. 
The public holidays stimulated the tourism market, which, 
in turn, boosted the demand for air transportation. Thus, 
the amount of AEEs at airports became relatively higher in 
October, with an average change of 14.43% for HC, 19.49% 
for CO, and 21.71% for NOx, respectively. However, as the 
weather turned colder in November and December, the rela-
tive change of the three types of AEEs plummeted again 
because of a growing public fear of COVID-19 infection.

Classification of temporal variation patterns

The EQ of AEEs at different airports experienced different 
variation patterns in the year 2020. According to the results 
obtained from the modified k-means clustering algorithm, 
some common shapes can be used to illustrate the variation 
patterns of the AEEs during the first half of 2020, includ-
ing the shape of letters “W,” “U,” and “V.” Fig. 5 shows the 

classification result of CO for the first half of 2020 (from 
January to June). And these classification results are similar 
for the other two AEEs as well.

A W-shaped pattern refers to the type of variation that resem-
bles the letter “W” when charted. The W-shaped variation pat-
tern of AEEs at an airport indicated that the civil aviation indus-
try in that region began to recover rapidly after the significant 
decrease during the most challenging period of the COVID-19 
pandemic but then turned down into another decline. Such a 
double-dip variation pattern may exhibit a false sign of recov-
ery at first, but the industry just crashed again in the second 
round. Four airports are categorized into the W-shape, and three 
(FUG, AQG, and JUH) experienced a second decline in May, 
followed by another increase in June (43.88%, 54.99%, and 
50.16%, respectively). According to CAAC (2015), the four 
airports in this category (i.e., HYN, FUG, AQG, and JUH) 
are all small branch-line airports that serve only domestic and 
intra-provincial flights, and their annual passenger throughput 
is less than 2 million. Another similarity is that these airports 
have a larger portion of tourist traffic as they are in cities with 
proximity to tourist attractions. Therefore, they are relatively 
less resilient in the face of the pandemic disruption compared to 
the airports that serve a large proportion of business passengers 
who travel regularly. That may explain why these airports show 
a fluctuated variation of AEEs during the first half of 2020.

A U-shaped pattern refers to the type of variation that 
takes on the shape of the letter “U” when charted. A 
U-shaped pattern, in this case, presents that the AEEs at 
these airports did not begin to increase until April at the 
earliest, even though the coronavirus cases in the YRD 
are under control in March and the economies began to be 
reopened. Airports that experienced a U-shaped variation 
pattern include two hub airports (SHA and PVG) located 
in Shanghai with dense international and domestic routes 
and two mainline airports located at the capital city (NKG 
and HGH). However, there still exists some disparity in the 
variations, even for the airports classified in the same cat-
egory. For example, the growth of AEEs at PVG in May 
is much smaller than the other U-shaped airports, with an 
increase of only 23.16% for HC, 12.92% for CO, and 28.38% 
for NOx. In contrast, the average growth of AEEs at other 
airports is 43.01% for HC, 37.93% for CO, and 42.04% for 
NOx. Such disparity is associated with the difference in the 
functional positions of the airports. As one of the major 
aviation hubs of East Asia, PVG handles a larger propor-
tion of international flights. In comparison, other airports 
mainly serve domestic and regional flights. After the five 
international flight plans (phase five) issued by CAAC, the 
number of international routes and inbound flights from 
other nations slumped to an unprecedented low level that 
has not been experienced for years. And this could explain 
the more minor increase in AEEs from PVG compared to 
other airports.

Fig. 2   Spatial distribution of relative changes between 2020 and 
2019 in EQ and EI. a Absolute of relative changes of the EQ of HC; 
b absolute of relative changes of the EQ of CO; c absolute of relative 
changes of the EQ of NOx; d relative changes of EI of HC; e relative 
changes of EI of CO; f relative changes of EI of NOx

◂
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Fig. 3   Relative changes in EQ 
of the AEEs between 2019 and 
2020, and the number of newly 
confirmed cases in 2020

Fig. 4   The COVID-19 situation in the YRD, 2020. a Daily new cases of COVID-19 at each province and Shanghai in the YRD, 2020. b The 
existing cases of COVID-19 at each province and Shanghai in the YRD, 2020. c The total confirmed case at each city in the YRD, 2020
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A V-shaped pattern refers to the type of variation that 
resembles the letter “V.” Nearly half of the airports in 
the YRD exhibited a V-shaped variation pattern, which 
was characterized by a quick and sustained increase after 
the continuous sharp declines in the AEEs. However, for 
most airports, the variation of AEEs did not always fol-
low a full V-shape, because it was extremely difficult 
for the right side to peak at the pre-crisis level in such 
a short time, considering the huge recession that avia-
tion suffered from the COVID-19 pandemic. The great-
est difference between V-shaped and U-shaped patterns 
is that a V-shaped variation does not bump along the 
bottom. Airports that experienced a V-shaped variation 
pattern include 5 airports in Jiangsu province, 3 airports 
in Zhejiang province, and 2 airports in Anhui province. 
Except for HFE, all the airports that are classified into 

this category are medium-sized airports located in non-
capital cities of the provinces. The strength of the recov-
ery in one certain area is closely associated with the 
severity of the preceding impact of COVID-19, as well as 
the airport’s resilience to severe events. For most of the 
airports, the continuous downward trend ends in April.

The control of the COVID-19 pandemic allowed the 
recovery of domestic air transportation at most of the 
airports in the YRD during the second half of 2020. The 
increasing confidence in air travel also resulted in an 
upsurge in the AEEs. Generally, there are three types of 
tendencies for the variation patterns of AEEs in the sec-
ond half of 2020: upward trend, fluctuation, and downward 
trend. Figure 6 shows the classification result of CO for the 
second half of 2020 (from July to December). And this clas-
sification result holds true for the other two AEEs as well.

Fig. 5   The classification results of variation patterns during the first half of 2020. a The W-shaped variation patterns of CO; b the U-shaped 
variation patterns of CO; c the V-shaped variation patterns of CO

Fig. 6   The classification results of variation patterns during the second half of 2020. a The variation patterns of CO with an upward trend; b the 
variation patterns of CO with a fluctuated trend; c the variation patterns of CO with a downward trend
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Airports that presented an upward trend of the varia-
tion patterns of the AEEs are small airports (except for 
PVG) with relatively fewer annual flights in the YRD. 
The marked surge of AEEs at these airports indicated that 
smaller airports in the research region were more resilient 
to the COVID-19 pandemic. As for airports that presented 
a fluctuation trend, almost all these airports experienced 
some levels of increase in the AEEs in August 2020. The 
increase ranged from 8.61 to 45.58% for HC, 4.48 to 
33.64% for CO, and 11.58 to 41.3% for NOx, indicating 
a further recovery of civil aviation in most areas of the 
research region. From August to December, the amount 
of AEEs from LTO cycles at these airports slightly fluc-
tuates around the same level as July (the change ranges 
from − 20 to 20%). And airports that witnessed this type 
of variation trend are usually intermediate or large air-
ports that are busy for the whole year. In comparison, 
airports that experienced greater changes are smaller air-
ports (e.g., AQG, JUH, LYG, HIA, and FUG) that relied 
greatly on the local tourism industry. As for these air-
ports, there are sharp rises in the amount of AEEs in the 
peak season of tourism and declines in the off-season of 
tourism. As can be seen in Fig. 6 (c), only JUH and NKG 
witnessed downward trends of AEEs. JUH was specially 
built to serve tourists who come to visit Jiuhua Moun-
tain. Because November is one of the worst seasons to 
travel to Jiuhua Mountain, it is reasonable that the AEEs 
plummet at that time. As for NKG, the variation patterns 
of the AEEs experienced a noticeable rise in September, 
followed by a significant decline in October. Such a phe-
nomenon may be explained by the fact that Nanjing is 
one of the cities with the most universities and institutes 
in China. Given that September is the beginning of a new 
semester, numerous students flied to Nanjing from all 
over the country at this time, which contributed to the 
sharp rise in AEEs in September 2020.

Spatial dependence analysis

Spatial autocorrelation analysis

Table 4 shows that the global Moran’s I of EQ, EI, and other 
socioeconomic factors (i.e., GDP, GDP per capita, popula-
tion, and population density) are all greater than 0, indicat-
ing the presence of positive spatial autocorrelation in the 
YRD. The Moran’s I of the AEEs is relatively lower com-
pared to the Moran’s I of these socioeconomic indicators. 
Several reasons may account for this. Firstly, affected by the 
localized management mechanism of air transportation, the 
distribution of resources for airports is uneven. For instance, 
the government of Jiangsu province established the China 
East Airport Group (EAG) in 2018, which is responsible 
for the general planning and co-construction of all airports 
in Jiangsu province except for WUX and NTG. Accord-
ingly, there still exists a large gap between the development 
of civil aviation in different cities. Some airports received 
more investments in constructing airport facilities than their 
neighbors, leading to significant unbalanced development 
within the studied region. Secondly, the YRD has a well-
developed expressway network and a high-speed railway net-
work. As of the end of 2019, 20 high-speed rail lines have 
opened in the region, making the YRD the region with the 
highest density of high-speed rail in China. However, supe-
rior ground transportation has suppressed the interaction and 
coordinated development among airports in the study area. 
Furthermore, the aviation business in the YRD is currently 
highly concentrated in some major cities due to the disparity 
in economic development. In 2019, the passenger through-
put of 8 major airports in Shanghai, Hangzhou, Nanjing, 
Ningbo, Wenzhou, Hefei, and Wuxi reached approximately 
240 million passengers, accounting for about 90% of the 
total amount in the YRD. In contrast, the cumulative pas-
senger throughput of the other 14 airports in the research 
region did not reach the level of 30 million passengers. Some 
airports are facing the problem of the saturation of operation 
capacity, while others are challenged by the serious shortage 
of business volume. The novel findings of the spatial auto-
correlation analysis offered the opportunity to explore and 
disclose the problems behind the coordinated development 
of the airport group in the research region.

Figure 7 is the LISA map of EQ, which demonstrates 
the classification of the airports with an assessment of 
significance. In this case, there are three types of cluster-
ing patterns with points that are significant (p ≤ 0.05 ): (1) 
high-high clustering (SHA and PVG)- airports with high 
AEEs are adjacent to airports with high AEEs; (2) low-low 
clustering (AQG, JUH, and TXN)- airports with low AEEs 
are adjacent to airports with low AEEs; (3) low–high clus-
tering (WUX, NTG, and HSN)- airports with low AEEs 
are adjacent to airports with high AEEs. Generally, the 

Table 4   Univariate global Moran’s I

*Statistically significant at the 10% level; **significant at the 5% 
level; ***significant at the 1% level.

Variable Global Moran’s I

EQ of AEE HC 0.155841**

CO 0.125544***

NOx 0.169038**

EI of AEE HC 0.128533***

CO 0.119157**

NOx 0.110603***

Economic indicator GDP 0.291022*

GDP per capita 0.579645**

Demographic indicator Population 0.144057*

Population density 0.276255**
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high-high and low-low clustering spots, which contribute 
significantly to the positive global spatial autocorrelation, 
are polarized in the YRD. The high-high spots are distrib-
uted in the east, while the low-low spots are scattered in the 
west. The two airports in Shanghai belong to the high-high 
cluster, which indicate a great concentration of the AEEs 
from LTO cycles in Shanghai. The low-low cluster covers 
three cities in the southwest of Anhui province, suggesting 
a less-developed civil aviation industry across this domain. 
Compared to Jiangsu province and Zhejiang province, Anhui 
province has fewer air passenger demands, less developed 
airport construction, and lower airport utilization efficiency. 
Except for the HFE in the capital city, Hefei, which has more 
routes and flights, none of the airports in Anhui Province can 
compete with airports in Jiangsu Province. Therefore, it is 
reasonable that airports in the low-low cluster are in three 
adjacent cities in Anhui Province. The airports that belong 
to the low–high cluster are in Wuxi, Nantong, and Zhoushan, 
respectively. These cities are all close to Shanghai, which 
have a relatively larger population density and a higher level 
of economic development. Because of the high density of 
airports and extensive air routes in the region, the airspace 
and time resources of the YRD tend to be saturated (Shi 
et al. 2021). Airway congestion has become a prominent 
problem in the research region. Given the fact that Shanghai 
is the aviation hub in the Asia–Pacific region, the growth of 
air traffic in the three airports (i.e., WUX, NTG, and HSN) 
has been greatly suppressed to ensure the normal operation 
of SHA and PVG in Shanghai. The results of local spatial 

autocorrelation of the EI with an assessment of significance 
are presented in Fig. 8. It is noteworthy that airports located 
in southern Anhui province (i.e., AQG, JUH, and TXN) are 
categorized as high-high clusters, whereas airports located 
in the southeast Zhejiang province are identified as low-
low clusters. One of the primary causes that may explain 
this result may be the economies of scale, as the converted 
throughput per airport in southeast Zhejiang province was 
much higher than in southern Anhui province.

Spatial association analysis

The bivariate Moran’s I model is used to address the 
closely pertinent question: is there any spatial correla-
tion between AEEs and other socioeconomic factors? 
Table 5 shows the bivariate Moran’s I statistics and the 
corresponding p-values. The values of bivariate Moran’s 
I show that GDP, GDP per capita, population, and popu-
lation density are all spatially correlated with AEEs at 
airports in a positive way. And the interactions of those 
factors between the cities with closer geographic posi-
tions are relatively significant (all Moran’s I values > 0, 
p-values ≤ 0.05). An increase in any of these socioeco-
nomic factors would promote the corresponding AEEs at 
airports for other cities that were geographically nearby 
at the same time. This result is consistent with extensive 
literature, which argues that socioeconomic factors have 
always been the important driving force for the aviation 
sector (Wang et al. 2020; Liu et al 2021). The strongest 

Fig. 7   The results of local spatial autocorrelation of the EQ. a The LISA map; b the significance map
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spatial correlation is observed between the AEEs and 
GDP per capita (mean Moran’s I: 0.404), suggesting that 
the higher the economic welfare and living standard is 
in the neighboring region, the larger amount of AEEs 
at local airports is likely to be generated. This situation 
is probably due to the mutually supportive relationship 
between the local economy and the civil aviation indus-
try (Addepalli et al. 2018). Generally, the contribution 
of air transport and related civil aviation industries to 

local economies includes the output and jobs directly 
attributable to civil aviation, as well as the multiplier 
or ripple effect upon other industries throughout the 
economy. Meanwhile, the local economy contributes to 
the aviation industry by boosting passenger demand for 
the transport of passengers, mail, freight, and other ser-
vices. Since AEEs from LTO cycles are highly reliant on 
flight demand, the strong positive spatial relationship 
between AEEs and local economic conditions is, there-
fore, reasonable.

The Bi-LISA cluster map (Fig. 9) depicts the spatial 
clustering and spatial outliers of the studied AEEs by the 
lagged values of GDP per capita, GDP, population, and 
population density. Similar to the univariate LISA map 
mentioned above, it can be observed that AQG, JUH, 
and TXN also appeared in the low-low region on all the 
Bi-LISA cluster maps, indicating that the three airports, 
which have a relatively smaller amount of AEEs, are sur-
rounded by cities with poorer economic performance, 
smaller population, and smaller population density. 
Being the financial center of the YRD, the two airports in 
Shanghai are again identified as the significant high-high 
region, which is consistent with the fact that Shanghai 
has apparent economic externalities and a spatial spill-
over effect on its neighboring cities in terms of many 
socioeconomic aspects. Besides, slight differences can 
be found between the clustering patterns of GDP and 
per capita GDP. On the Bi-LISA map for the AEEs and 
GDP per capita, more spatial units are included in the 

Fig. 8   The results of local spatial autocorrelation of the EI. a The LISA map; b the significance map

Table 5   Bivariate global Moran’s I in the YRD

*Statistically significant at the 10% level; **significant at the 5% 
level; ***significant at the 1% level.

First variable (X) Second variable (Y) Moran’s I

HC GDP 0.244632**

CO GDP 0.231359**

NOx GDP 0.248902**

HC GDP per capita 0.406193***

CO GDP per capita 0.396324***

NOx GDP per capita 0.409726***

HC Population 0.163799*

CO Population 0.154004*

NOx Population 0.167640*

HC Population density 0.242420**

CO Population density 0.239702*

NOx Population density 0.247184**
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high-high and low–high regions. NKG is identified as a 
high-high cluster, indicating that NKG has AEEs more 
than the average amount, and the contiguous cities also 
present a higher per capita GDP value than the average. 
In contrast, NKG is not significant on the Bi-LISA mapr 
for the AEEs and GDP. Besides, except for WUX and 
NTG, CZX and YTY are also classified as the low–high 
spatial outliers when using per capita GDP as the second 

variable. This can be explained by the fact that these air-
ports are all close to the airports classified as high-high 
clusters. The Bi-LISA maps for the AEEs and population 
and population density present the same distribution pat-
tern. In general, regions predominantly from the west of 
the YRD are relatively less developed in terms of civil 
aviation and other socioeconomic aspects, which, in turn, 
resulted in fewer AEEs released from LTO cycles.

Fig. 9   The bivariate LISA map for the YRD. a AEEs and GDP; b AEEs and GDP per capita; c AEEs and population; d AEEs and population 
density
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Policy implications

Based on the results and discussion above, we provide 
recommendations for building a more sustainable and 
environment-friendly airport group in the YRD.

Reducing the aircraft taxiing time with integrated 
methods

The air pollutant emissions released during a typical LTO 
cycle are closely related to the time spent in each mode 
of the operation (i.e., idle, approach, takeoff, and climb 
out). From the perspective of the airport authorities, the 
most feasible way to cut the AEEs at the ground level is 
to reduce the operation time of the aircraft at the airport. 
Previous studies have suggested that the taxi mode of the 
aircraft contributes the biggest portion of the total LTO 
emissions (Song and Shon 2012; Yılmaz 2017). It has also 
been estimated that fuel burned during taxiing accounts for 
up to 6% of the total fuel consumption by an airline fleet 
for short-haul flights (Brownlee et al. 2018), and a shorter 
taxiing time can potentially save one-third of the fuel (Hao 
et al. 2017). Therefore, reducing the aircraft taxiing time 
should be considered a critical issue in alleviating aircraft 
emissions at airports. With this aim, the optimization of 
the ground movement of aircraft on the taxiway has been 
the focus of extensive studies over the past decades, which 
involves the routing problems and the scheduling problems 
(Adacher et al. 2018). With the development of computer 
science, different algorithms are capable of solving the 
problems, such as the adapted heuristic algorithm (Zhang 
et al. 2018) and modified Dijkstra’s short-path algorithms 
(Brownlee et al. 2018). Some other integrated approaches 
to optimizing the ground movement of aircraft include 
optimizing gate allocation (Chow et al. 2022; Jiang et al. 
2022a, b) and runway sequencing (Jiang et al. 2022a, b). In 
addition, potential approaches to increase the taxi efficiency 
of the aircraft may include increasing the airport capacity, 
using more advanced automation and information manage-
ment system to improve the performance of air traffic con-
trol (ATC) and so forth. By adopting these approaches at 
the airports, the idling time of aircraft on the taxiway can be 
minimized, and, thus, the pollutant emissions from aircraft 
at ground levels can be hopefully reduced.

Improving demand management and air traffic 
management

The occurrence of severe public emergencies, such as 
COVID-19, led to unpredictable f luctuations in the 
demand for air transportation. The plunge in air passen-
gers, as well as the stringent social distancing standards 

during flights, has forced the airlines to cut down the 
seating capacity, which consequently resulted in the 
surge of emission intensity per passenger at the airports. 
Traditionally, each air route is designated with a certain 
type of aircraft based on the historical average demand. 
However, this strategy does not fit the ever-changing 
civil aviation market. During the post-COVID-19 era, 
airlines should be encouraged to enhance the ability to 
predict passenger demand and increase the flexibility 
when assigning aircraft to a specific route to avoid the 
huge oversupply of seats onboard. It would be more 
environment-friendly so that the capacity of the desig-
nated aircraft can better match the demands of specific 
air routes. Furthermore, the ever-changing air traffic 
level during the COVID-19 pandemic has also brought 
great challenges to air traffic management (ATM), as 
the system and air traffic controllers had to respond 
quickly to variable situations and simultaneously main-
tain efficiency and performance. Previous studies have 
argued that the performance of air traffic controllers 
was negatively impacted by the COVID-19 pandemic, 
leading to rising concerns about longer f light delays 
and more aircraft emissions (Vink 2021). Hopefully, the 
application of advanced air traffic management tech-
nologies may greatly reduce human errors and provide 
tactical decision support (Xue et al. 2021a). Aiming at 
increasing flight efficiency, ICAO has been proposing 
the Communication, Navigation, and Surveillance for 
ATM (CNS/ATM) (2). As a key component, the Auto-
matic Dependent Surveillance-Broadcast (ADS-B) can 
offer accurate and reliable real-time aircraft positions 
(Xue et al. 2021a) and, thus, improve ATM efficiency. 
Besides, switching the traditional ground naviga-
tion system to a satellite navigation system should be 
encouraged to strike a balance between flight demands 
and airport capacity (Xue et al. 2022). In addition, the 
arrival manager (AMAN) and the departure manager 
(DMAN) are useful sequencing tools that can help air 
traffic controllers to improve their situational aware-
ness and to anticipate the flow of traffic (Insaurralde 
and Blasch 2022). The adoption of coupled AMAN-
DMAN allows for optimization of the arrival and 
departure sequence, and, thus, helps ensure efficient 
demand coordination and reduce the fuel burn of air-
craft (Liang et al. 2018). Other technologies that can be 
adopted by the airport to improve ATM and reduce the 
AEEs include terminal f light data manager (TFDM), 
airport surveillance radar (ASR-11), trajectory-based 
operations (TBO), and so forth. By improving demand 
management and air traffic management, airports and 
airlines would be able to look beyond the pandemic and 
adapt to the long-term realities of COVID-19.
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Enhancing coordinated development of civil 
aviation in the YRD

The development of civil aviation in the YRD is highly unbal-
anced, which can be reflected by the spatial clustering patterns 
of the AEEs at airports in the YRD. Currently, a great number 
of airports in the YRD are challenged by a shortage of flights, 
while airports in megacities (e.g., Shanghai, Hangzhou, Nan-
jing) are facing severe problems of capacity saturation. Con-
sequently, extensive delays and longer operation time on the 
ground are caused by capacity saturation, resulting in the esca-
lation of air pollutant emissions from the aircraft. Therefore, 
airports with larger traffic need to make better use of airport 
resources and improve the ability to manage airflow so that 
emissions caused by congestion and delays can be reduced. 
Besides, communication and cooperation between different 
airports should also be encouraged as the shared information 
is beneficial for building a more sustainable airport group. In 
addition, the regional government should be encouraged to seek 
a balance between unified management strategies and differenti-
ated policies based on the functional position of the airports and 
the according local development characteristics. The recom-
mendations above for building a more sustainable airport group 
can all be achieved by implementing collaborative decision 
making (CDM). As a joint government and industry initiative, 
CDM aims to improve traffic flow and capacity management 
performance by encouraging different aviation stakeholders to 
work together and make decisions based on shared informa-
tion (Corrigan et al. 2015). The successful implementation of 
CDM at many airports in the world has proved its advantages 
in improving the efficiency and quality of airport operation, 
assisting the decision-making process of aviation community 
stakeholders, and enhancing the collaboration between different 
aviation stakeholders (Okwir et al. 2017).

Conclusions

The dramatic drop in the demand for air travel, together with 
the traffic restrictions, led to the decline in AEEs from LTO 
cycles at airports. Compared to 2019, the EQ of HC, CO, 
and NOx decreased greatly at airports in the YRD in 2020. 
However, there was a significant rise in the EI, mainly due 
to the decline of passenger load factors during the COVID-
19 pandemic. The temporal variation patterns of the studied 
AEEs were significantly influenced by the policy responses to 
the epidemic and the severity of the COVID-19. The monthly 
variation pattern of the AEEs during the first half of 2020 was 
classified into W-shaped, U-shaped, and V-shaped patterns. 
During the second half of 2020, three types of tendencies 
for the variation patterns were observed, including upward 
trend, fluctuation, and downward trend. The positive spatial 

autocorrelation was found in both the EQ and EI of AEEs at 
airports in the YRD. As for EQ, the high-high cluster and low-
low clusters were polarized in the YRD. The high-high cluster 
was located in the east, while the low-low cluster was located 
in the west. As for EI, airports distributed in the southern YRD 
presented stronger spatial dependence. The positive spatial 
association was found between the AEEs and the external 
socioeconomic factors (i.e., GDP, GDP per capita, population, 
and population density) of the cities in close proximity. The 
strongest spatial association was observed between the AEEs 
and GDP per capita, indicating that the higher the economic 
welfare and living standard is in the neighboring, the more 
AEEs from LTO cycles are likely to be generated.

Several limitations exist in this study. Firstly, it should be 
noted that the engine performance can be affected by airport 
meteorological conditions. Therefore, it would be valuable 
to include the meteorological factor when calculating the 
amount AEEs in the future. Moreover, due to limited data 
access and permission, this research only took the Yangtze 
River Delta located in central eastern China as an exam-
ple to study the variations of AEEs and their relationship 
with other external factors. Further research can expand the 
study area to the whole nation and other countries.
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