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Abstract 
The factors that determine the concentrations of air pollutants (NO,  NO2,  SO2,  O3), measured in 8 monitoring stations (4 
rural background, 3 urban, and 1 industrial) in Estonia, are studied applying the factor analysis. The factor analysis reveals 
remarkable impact of COVID-19 lockdown, effects caused by dramatic decrease in oil-shale based energy production in 
Estonia provoked by new socio-economic conditions such as elevated price for  CO2 emission quota, differences between rural 
and urban stations, maritime-continental difference for  NO2 and ozone, and specific industrial impact in case of  SO2. The 
multiple regression analysis to predict the ozone concentration in one rural background station at Tahkuse was performed, 
based on the ozone concentrations measured in other stations and the concentrations of NO,  NO2, and  CO2, recorded in 
the same station. It was found that the ozone concentration at Tahkuse is rather well predictable (determination coefficient, 
i.e., correlation coefficient squared, R2 = 0.714), using only the concentrations from another rural station at Saarejärve that 
is about 110 km away from Tahkuse. Adding all the available data into the list of regression analysis arguments, the model 
predictability is improved moderately (determination coefficient R2 = 0.795). Large model residuals above all tend to occur 
with the values measured and predicted at summer nights. Surprisingly, neither NO nor  NO2 concentration measured in the 
Tahkuse station did appear a good predictor for ozone (R2 = 0.02 and 0.05, respectively), possibly long-range transport of 
ozone (that has also experienced NO and/or  NO2 influence during transport) overrides the local effects of NO and/or  NO2.
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Introduction 

The composition and concentrations of trace (pollutant) 
gases and aerosol particles in the ambient air depend on 
many factors, e.g., on natural and anthropogenic (pollut-
ant) emissions and transport, air chemistry, and planetary 
boundary layer mixing state. The links between these air 
pollutant concentrations and the links with environmental 
parameters are topics of extensive studies, e.g., Nogarotto 
and Pozza (2020). The review paper by Nogarotto and Pozza 
also evaluates the mathematical methods employed for such 
tasks. Regression models combining air pollution concentra-
tion with air mass trajectories, principal component analysis 

(PCA), and factor analysis are examples of the common 
methods.

Factor analysis enables to reveal the latent factors that 
determine the variations in the observed concentrations of a 
set of investigated variables. The latent factors may include 
meteorological parameters (humidity, temperature, wind, 
etc.) but also some other environmental parameters, like the 
concentrations of specific chemical compounds that may 
better help to identify the sources of the pollutants under 
interest. Shubhankar and Ambade (2016) studied spatial 
and temporal variation of patterns of ambient air pollutants. 
They concluded that three factors were responsible for the 
variability of most of the observed variables, whereas emis-
sions from the transport and industrial output were among 
these factors. Chan and Mozurkewich (2007) determined the 
origins of the measured particulate matter using absolute 
principal component analysis. They revealed three to four 
common factors, e.g., long-range transport, and few addi-
tional factors that mostly characterize specific measurement 
site(s), e.g., local industry. The emphasis of the paper Chan 

 * Aare Luts 
 aare.luts@ut.ee

1 Institute of Physics, Tartu University, Ostwaldi str. 1, Tartu, 
Estonia

2 Estonian Environmental Research Centre, Tallinn, Estonia

http://orcid.org/0000-0002-5663-557X
http://orcid.org/0000-0002-2082-4272
http://orcid.org/0000-0002-9234-1034
http://orcid.org/0000-0002-2381-0968
http://orcid.org/0000-0001-7178-9430
http://crossmark.crossref.org/dialog/?doi=10.1007/s11869-022-01261-5&domain=pdf


26 Air Quality, Atmosphere & Health (2023) 16:25–36

1 3

and Mozurkewich (2007) is on the procedure development, 
and all the factors are not clearly identified. Tai-Yi Yu (2010) 
demonstrated the use of emission inventory, concentrations 
of ambient air pollutants, and PCA approach to provide new 
information about particulate matter PM2.5 concentrations. 
Four components out of 76 rotational components were cited 
as major factors. Liu et al. (2020) studied PM origin using 
the links with certain chemical compounds. The main five 
factors found out were secondary inorganic aerosol, coal 
combustion, crustal dust, vehicle exhaust, and biomass 
burning.

Several factors can be specific to certain particular meas-
urement site. Studies of such specificity can be related to 
the problem of proper allocation of measurement sites (e.g., 
establishment of new measurement stations). In case the var-
iations of investigated variables observed at some particular 
site cannot be described (simulated) by common factors, the 
measurement results obtained at this site contain a unique 
information. He and Lu (2012) employed multiple regression 
and principal component analysis to predict ozone levels at 
two sites from the data set on air pollutants and meteorologi-
cal variables. They concluded that the ozone level depends 
on many parameters, but the ratio  NO2/NOx explained 
75% of variation of the ozone level at Sha Tin and 83% at 
Kwun Tong, Hong Kong, China. When they looked for the 
predicted ozone concentration at a certain site, the ozone 
concentrations measured at another site were not consid-
ered. Lu et al. (2011) and Araki et al. (2015) searched for an 
optimal location of the environmental monitoring stations, 
applying the criterion that they adequately represented the 
air pollutant concentrations in the domain of interest. They 
demonstrated that for each air pollutant, the monitoring sta-
tions could be grouped into different classes based on their 
air pollution patterns. Li et al. (2022) implemented a multi-
factor linear model to predict PM concentrations in Beijing 
region, including socioeconomic factors. Recently, several 
machine learning algorithms like online sequential extreme 
learning machine (OS-ELM that is in essence a modification 
of neural network) are tested to predict the distribution of 
polluting gases and particles, e.g., by Sharma et al. (2020). 
As an outcome, the results by OS-ELM for several datasets 
can yield better results that the ones obtained by traditional 
methods like multiple linear regression, but in other cases, 
the traditional methods are quite on a par with the new algo-
rithms. Xu et al. (2022) evaluated several methods including 
PCA for reducing the dimensionality of the data to model 
spatial variation of gaseous air pollutants. They discovered 
that in several cases, the random forest method yielded the 
best results, in certain other cases different methods, includ-
ing linear regression model performed better. Wang et al. 
(2020) employed a complex method for air quality index 
forecasting and discovered that a complex method that con-
tains various signal processing and optimization methods, 

e.g., the Hampel identifier, variational mode decomposition 
(VMD), sine cosine algorithm (SCA), and extreme learn-
ing machine, yields better results than the simpler meth-
ods. Unfortunately, this method resembles a mathematical 
“black box” that is not easily interpretive and, in addition, 
this method is not openly available.

In this study, we aim to find out the links between the pat-
terns of the atmospheric gas composition changes measured 
in various parts of Estonia, in background air monitoring 
stations and urban stations. We also search for a model that 
can predict the ozone concentration at one station. Besides 
new knowledge, such model makes it possible to fill the 
occasional gaps in the data with approximated values better 
than any interpolations can do. Filling in the data gaps, in 
turn, facilitates to calculate certain proxies that depend on 
the ozone concentrations.

The results of this study add new knowledge about the 
(latent) factors that determine selected trace gas concentra-
tion variations in Estonia and the ability of factor analy-
sis to reveal such relationships in the cases that study the 
spatial–temporal distribution of trace gas concentration 
variations. Additionally, the results clarify the influence 
of the restrictions enforced during COVID pandemic. The 
outcomes of the comparison of several regression methods 
demonstrate that in certain cases, the linear methods can 
be considered optimal. The elaborated model that can pre-
dict the ozone concentration once more demonstrates the 
typical parts of common and local factors, enables to fill the 
occasional gaps in the data with approximated values, and 
also points out certain guidelines about directions of future 
studies.

The paper is organized as follows. First, we introduce 
the used data sources likewise the used methods. The latter 
part includes the results of comparison of certain regression 
methods. Then, we discuss the concentration variation pat-
terns of atmospheric gases and the discovered latent factors 
that determine the patterns. Next, we introduce and discuss 
the elaborated regression model that can predict the ozone 
concentration variations in the one measurement station 
(Tahkuse). Finally, we integrate the outcomes by discus-
sion and summary.

Methods

We have used the measured about 6-year (from 
01.01.2016 to 30.09.2021) data on hourly averaged con-
centrations of atmospheric trace and polluting gases  O3, 
NO,  NO2, and  SO2 from the Estonian national air quality 
monitoring stations: background stations Lahemaa, Vil-
sandi (maritime, on a small island), and Saarejärve; urban 
stations Tallinn-Liivalaia, Tallinn-Õismäe, and Tartu; 
and industrial station Kohtla-Järve (all these stations are 
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operated by Estonian Environmental Research Centre), 
and also the data from the Tahkuse rural air monitoring 
station operated by the University of Tartu. All above 
mentioned monitoring stations are contributing to the 
national air quality monitoring system (http://õhuseire.
ee/en). The data about concentrations have been meas-
ured using the gas analysers and the procedures com-
monly approved in the field of routine environmental gas 
composition monitoring. The procedures include regular 
calibration and maintenance of the devices. Gas analys-
ers used in monitoring stations are listed in Tables 1 and 
2. Available time resolution refers to data collected by 
national air quality monitoring system.

In the time series for factor analysis and regression 
analysis, at each particular hour, the data from all the 
stations must be present; otherwise, this particular hour 
remains out of analysis. Within the whole nearly 6-year 
time interval, about 85% from all hours met this data 
integrity criteria.

Entire time series of measurements 2016–2021 has 
been divided into two sub-periods of 2016–2019 and 
2020–2021 to find out the possible effects of COVID-19 
pandemic–related restriction measures to atmospheric 
air quality. Also, since late 2019, operation of oil-shale-
fired thermal power plants was almost suspended due 
to high price of  CO2 quota, thus making the secondary 
difference in emissions for 2020–2021.

We performed factor analysis (Varimax rotated) to 
search for the latent factors that determine the gas con-
centrations in those stations. Factor analysis is a statisti-
cal data reduction technique used to explain observed 
variations among observed variables (e.g., the concen-
trations measured at specific stations) in terms of fewer 
new variables named factors (e.g., long-range transport 

factor that can explain certain part of observed varia-
tions). Varimax rotation is a statistical technique used 
to clarify the relationship among factors. It is intended 
to maximize the variance shared among items. By maxi-
mizing the shared variance, results more discretely rep-
resent how data correlate with each factor component. 
The measurement sites of monitoring network are con-
sidered representative for certain pollution types: rural 
background in various parts of the country at different 
distances from the sea (Tahkuse, Saarejärve, Lahemaa, 
Vilsandi), urban-industrial (Kohtla-Järve), urban back-
ground (Tallinn-Õismäe, Tartu), and urban street (Tal-
linn-Liivalaia). Therefore, the combination of the factors 
should reveal the processes that determine the air pollu-
tion pattern in Estonia.

We also apply the regression analysis techniques to 
model and predict the ozone concentration at Tahkuse 
station, using the measured data from the other moni-
toring stations surrounding Tahkuse, as independent 
variables. One application of such a model is to fill gaps 
within the time series of the measurement results. There 
are several known techniques for that caps-filling task, 
discussed e.g. by Junninen et  al. (2004), but none of 
these methods performs best in all the cases. Now, we 
can use the data from other (nearby) stations; therefore, 
the first choice was to use these data to build a model for 
predicting the values at Tahkuse, not just to try fill the 
gaps in the data according the methods discussed by Jun-
ninen et al. (2004). The predicted results are compared to 
original one recorded at Tahkuse to estimate the quality 
of used model. This way, we can assess the common and 
the specific components within the ozone concentration 
variations.

Table 1  Gas analyzers used in 
Lahemaa, Vilsandi, Saarejärve, 
Liivalaia (Tallinn), Õismäe 
(Tallinn), Tartu, and Kohtla-
Järve monitoring stations

Measured quantity Instrument Company Available 
time resolu-
tion

NOX, NO, and  NO2 APNA-360 ambient NOx monitor Horiba Ltd 30 min
SO2 APSA-360 ambient sulfur dioxide monitor Horiba Ltd 30 min
O3 APOA-360 ambient ozone monitor Horiba Ltd 30 min

Table 2  Gas analyzers of 
Tahkuse air monitoring station

Measured quantity Instrument Company Available 
time resolu-
tion

NOX, NO, and  NO2 Model 42i-TL TRACE Level NOx Analyzer Thermo Scientific™ 30 min
SO2 43i-TLE enhanced trace level  SO2 analyzer Thermo Scientific™ 30 min
O3 Model 49i ozone analyzer Thermo Scientific™ 30 min
CO2,  CH4,  H2O Model 911–0010 Greenhouse Gas Analyzer 

FGGA-24EP
Los Gatos Research 30 min
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Regression model can be built by several methods: 
multiple linear regression abbreviated as MLR, neural 
networks, decision trees, support vector machines abbre-
viated as SVM, etc. We have tested these methods, and a 
summary of the comparison results is presented in Table 3. 
The methods are trained and implemented separately 
for subperiods of 2016–2019 (period a) and 2020–2021 
(period b) and evaluated both by the test data sets taken 
randomly from the “own” subperiod (e.g., “Model a test 
with a”) and by the data from the other subperiod (e.g., 
“Model a test with b”).

The model trained by the data taken from “period a” 
is marked by “model a”; the one trained by the data from 
“period b” is marked by “model b.” The names of the 
combinations in Table 3 include both the model name 
and the name of the period where the test data are taken 
from, e.g., “model a test with b” means that the model a 
is tested with the data taken from the period b.

According to the RMSE (root-mean-square error) values, 
two better methods are multiple linear regression and neu-
ral network. We tested several versions of neural network, 
and the best one among these included three layers with ten 
nodes in every layer and node activation by RELU (rectified 
linear unit) function. Decision tree models demonstrated the 
worst RMSE values. The results achievable by SVM models 
depended on the dataset. These models are also rather hard 
to interpret; therefore, we omitted the SVM models from 
further study. Then, we carried out a bootstrapping analysis 
using random datasets from the whole time series to train 
and test the linear and neural network models. According to 
this analysis, the differences in the RMSE values obtained by 
linear and neural network models are statistically relevant at 
all test cases, whereas sometimes neural network performs 
better. Nevertheless, the differences in the RMSE values 
(although statistically relevant) are not large (within ca one 
per cent from the corresponding RMSE values), and the pre-
dicted vs measured scatterplots look rather similar for both 
methods. Whereas the training of a neural network is up to 
several tens of times slower and a linear model is easier to 
interpret, we selected multiple linear regression model for 
subsequent analysis.

Results

The NO concentration variation patterns

The results of factor analysis are presented in Tables 4 and 5.
All the factor scores are calculated by using the 

Real Statistics package (2021). When compared with 
the other studied trace gases  (NO2,  SO2, and ozone), 
the NO concentrations are most location-specific. This 
feature can be understood as a result of rapid chemical 
conversion of NO, before advected at long distances. 
In the period 2016–2019, the concentrations at Kohtla-
Järve, Õismäe, and Liivalaia stations behave remarkably 
similarly, but in the period 2020–2021, the same is valid 
for the concentrations at Õismäe, Liivalaia, and Tartu. 
In the earliest period, the concentrations at Tartu vary 
in different way; in the later period, the variations at 
Kohtla-Järve are different. Saarejärve and Tahkuse sites 

Table 3  Comparison of the RMSE (root-mean-square error) values 
obtained by several methods

Combination MLR Neural network Decision tree SVM

Model a training 11.84 11.85 12.27 11.67
Model a test with a 11.84 11.71 12.72 12.10
Model a test with b 10.96 10.82 11.79 11.03
Model b training 10.63 10.69 11.22 10.61
Model b test with b 10.69 10.54 11.03 10.59
Model b test with a 12.2 12.24 12.48 11.99

Table 4  The scores of the first five factors that determine NO concen-
tration variations at specific stations (2016–2019) and the determina-
tion powers of the factors

Station Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Kohtla-Järve NO  − 0.51 0.10 0.06  − 0.26  − 0.11
Õismäe NO  − 0.46  − 0.11 0.00 0.03  − 0.03
Liivalaia NO  − 0.40  − 0.08  − 0.02 0.00 0.01
Tartu NO 0.13  − 0.03  − 0.01 1.02  − 0.01
Saarejärve NO  − 0.01 0.38 0.05  − 0.09 0.11
Tahkuse NO 0.10 0.85 0.03 0.00  − 0.19
Lahemaa NO 0.09  − 0.10 0.06 0.01 1.01
Vilsandi NO 0.01  − 0.04  − 1.01 0.00  − 0.07
Factor power, % 29.2 16.0 11.9 10.7 9.6
Cumulative 

power, %
29.2 45.2 57.0 67.7 77.2

Table 5  The scores of the first five factors that determine NO concen-
tration variations at specific stations (2020–2021) and the determina-
tion powers of the factors

Station Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Kohtla-Järve NO 0.13 0.00 0.03  − 0.01  − 1.03
Õismäe NO  − 0.50  − 0.06 0.01 0.00 0.05
Liivalaia NO  − 0.40  − 0.06  − 0.04 0.00 0.03
Tartu NO  − 0.39 0.06 0.05  − 0.04 0.14
Saarejärve NO  − 0.05 0.44  − 0.03  − 0.03 0.03
Tahkuse NO 0.11 0.82 0.10  − 0.06 0.01
Lahemaa NO 0.03  − 0.04 0.05 1.01 0.01
Vilsandi NO 0.03  − 0.01  − 1.00  − 0.04 0.03
Factor power, % 26.8 15.6 12.1 11.4 10.1
Cumulative 

power, %
26.8 42.4 54.5 65.9 76.5
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constitute another group that demonstrates somewhat 
analogous features. The concentrations at both Vilsandi 
and Lahemaa vary clearly in their own way.

The  NO2 concentration variation patterns

NO2 concentrations are essentially determined by three fac-
tors (Tables 6 and 7). The  NO2 concentrations at rural sta-
tions Saarejärve, Tahkuse, and Lahemaa demonstrate similar 
variations both in the period 2016 – 2019 (Table 6, factor 2) 
and also in the period 2020–2021 (Table 7, factor 1).

There are certain differences in the particular variations 
during both sub-periods, too, but within the less essential 
factors 4 and 5. The Tallinn Liivalaia station in the centre 
of the city and the urban background station Õismäe form 
another joint group according to the factor scores. Liivalaia 
station, a traffic-affected site, has a stronger impact onto the 

factors. According to the factors 1–3, the concentrations 
at Tartu and Kohtla-Järve show certain common features 
(rather small, but similar factor scores), but they differ by 
factors 4 and 5. The Vilsandi station demonstrates clearly 
distinctive variations in the concentrations. The factor 4 
(weight about 8%) shows some anticorrelation considering 
Tartu city station and Lahemaa background air monitoring 
station data during the period 2016–2019. During the period 
2020–2021 (Table 7), the contribution of Lahemaa  NO2 to 
factor scores is weaker in general, and beside the factor 
1, it is showing very weak or insignificant effect. During 
the period 2020–2021 (Table 7), the factor related to  NO2 
variations recorded in background air monitoring stations 
became to the first place, while it was in the second position 
in the period 2016–2019. Vilsandi background air monitor-
ing station, located in the Vilsandi Island differs from other 
background stations, probably due to well-expressed marine 
conditions.

Table 6  The scores of the first five factors that determine  NO2 con-
centration variations at specific stations (2016–2019) and the deter-
mination powers of the factors

Station Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Kohtla-Järve  NO2 0.19  − 0.25 0.00 0.04  − 1.10
Õismäe  NO2  − 0.45  − 0.06 0.02  − 0.16  − 0.05
Liivalaia  NO2  − 0.80  − 0.05 0.01  − 0.16 0.33
Tartu  NO2 0.15  − 0.02  − 0.01 1.05 0.11
Saarejärve  NO2 0.12 0.49  − 0.11 0.08 0.13
Tahkuse  NO2 0.00 0.47  − 0.05 0.11 0.29
Lahemaa  NO2  − 0.02 0.43  − 0.10  − 0.50  − 0.26
Vilsandi  NO2  − 0.01  − 0.15 1.05 0.00 0.01
Factor power, % 42.2 17.8 9.9 7.8 7.0
Cumulative 

power, %
42.2 60.0 69.9 77.7 84.7

Table 7  The scores of the first five factors that determine  NO2 con-
centration variations at specific stations (2020–2021) and the deter-
mination powers of the factors

Station Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Kohtla-Järve  NO2 0.12 0.15  − 0.01  − 0.11  − 1.11
Õismäe  NO2 0.08  − 0.42 0.06  − 0.15  − 0.11
Liivalaia  NO2 0.03  − 0.81 0.01  − 0.12 0.32
Tartu  NO2 0.16 0.16 0.00 1.14 0.10
Saarejärve  NO2  − 0.49 0.14  − 0.18  − 0.01 0.01
Tahkuse  NO2  − 0.55  − 0.02  − 0.12 0.03 0.31
Lahemaa  NO2  − 0.36  − 0.01  − 0.08  − 0.18 0.00
Vilsandi  NO2 0.21  − 0.03 1.09  − 0.02  − 0.01
Factor power, % 42.8 18.8 8.6 8.2 7.3
Cumulative 

power, %
42.8 61.6 70.2 78.4 85.7

Table 8  The scores of the first five factors that determine  SO2 con-
centration variations at specific stations (2016–2019) and the deter-
mination powers of the factors

Station Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Kohtla-Järve  SO2  − 0.01  − 0.04  − 1.00  − 0.02 0.00
Õismäe  SO2 0.56 0.07  − 0.02  − 0.05  − 0.11
Liivalaia  SO2 0.59 0.10 0.00  − 0.01  − 0.15
Tartu  SO2 0.03 0.17  − 0.01 0.91  − 0.07
Saarejärve  SO2  − 0.19  − 0.23 0.08 0.28 0.21
Tahkuse  SO2  − 0.10  − 0.51  − 0.01 0.03  − 0.01
Lahemaa  SO2 -0.10 0.11 0.01  − 0.02 1.04
Vilsandi  SO2  − 0.03  − 0.62  − 0.03  − 0.21  − 0.13
Factor power, % 33.8 15.1 12.9 11.3 9.4
Cumulative 

power, %
33.8 49.0 61.9 73.2 82.6

Table 9  The scores of the first five factors that determine  SO2 con-
centration variations at specific stations (2020–2021) and the deter-
mination powers of the factors

Station Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Kohtla-Järve  SO2 0.05 0.04 0.03  − 1.00 0.00
Õismäe  SO2 0.49 0.04  − 0.03  − 0.03  − 0.05
Liivalaia  SO2 0.56 0.05 0.00 0.00  − 0.21
Tartu  SO2  − 0.15  − 0.79  − 0.13 0.00 0.05
Saarejärve  SO2 0.03  − 0.48 0.09 0.05  − 0.17
Tahkuse  SO2  − 0.07 0.03 1.01  − 0.02  − 0.06
Lahemaa  SO2 0.16 0.05  − 0.05  − 0.03 0.16
Vilsandi  SO2  − 0.12 0.09  − 0.07  − 0.01 1.02
Factor power, % 31.6 14.2 12.7 11.4 9.6
Cumulative 

power, %
31.6 45.8 58.5 69.9 79.5
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The  SO2 concentration variation patterns

The main results of factor analysis are presented in Tables 8 
and 9. The  SO2 concentrations are remarkably determined by 
the first two factors, but the site-specific factors are impor-
tant, too. However, factors 3–5 do not describe much more 
than the  SO2 measured in each of the stations highly con-
tributing to those factors, because these factors contain only 
one large factor score.

Firstly, Tallinn urban stations Liivalaia and Õismäe can 
be grouped together according to the similar variations in 
 SO2 concentrations. The similarity of variations in other 
stations depends on the time period. During the period 
2016–2019, the concentration variations at Tahkuse and 
Vilsandi background stations show common features (fac-
tor 2), but during the period 2020–2021, these variations 
are clearly distinct each other according the factors 3 and 5. 
The variations at Kohtla-Järve station have clearly individual 
character; mostly the same is valid also for the Lahemaa sta-
tion, especially for the period 2016–2019.

The ozone concentration variation patterns

Ozone concentrations are essentially determined by the first 
factor. According to the factor analysis, the most important 
first factor accounts the nearly equal contribution from all 
stations; the local individualities of stations become evident 
within the next factors (Tables 10 and 11). The behaviour 
of ozone concentration at the monitoring stations can be 
allocated to a few more closely bounded groups, and also 
to certain groups where the links are weaker, the groups 
are mentioned below. The links between the stations also 
depend on the time period. During both periods, the varia-
tions at Liivalaia and Vilsandi stations are the most essential 
terms within factors 2 and 3, even though within the factor 3 

the impact of Liivalaia station is opposite to the one of Vil-
sandi station. During 2020–2021, the variations in Tartu and 
Tahkuse stations are the most important terms of the factor 4 
with effects that have the opposite signs. During 2016–2019, 
only the variations in Tartu dominate within the factor 4. 
Factor 5 is largely determined by the variations at Kohtla-
Järve station. During the period 2016–2019, this factor also 
contains large part that is induced only by the variations at 
Tahkuse station, whereas during the period 2020–2021, the 
second and the third roles within this factor are induced by 
the variations at both Tartu and Tahkuse stations.

The model to predict the ozone concentrations 
at Tahkuse

We made attempts to estimate the ozone concentrations at 
Tahkuse by multiple linear regression method using the data 
from Tahkuse as dependent variable and from other stations 
as independent variables. We also added the concentrations 
of NO,  NO2, and  CO2, measured in Tahkuse station, into 
the list of independent arguments and studied their impact 
onto the power of the model to predict the actual ozone con-
centrations observed in Tahkuse station. We performed the 
analysis separately for two periods: for years 2016–2019 
and for 2020–2021. When to consider the simple regres-
sions with only one argument, the highest coefficient of 
determination R2 corresponds to the regression where the 
ozone data from Saarejärve are used as independent vari-
able: R2 = 0.677 for the period 2016–2019 and R2 = 0.714 
for the period 2020–2021. In the case of the multiple linear 
regression, where the data from Vilsandi and Lahemaa were 
added to Saarejärve, the values of coefficient R2 become 
equal to 0.739 for the period 2016–2019 and 0.754 for the 
period 2020–2021. Tahkuse and Saarejärve are the two most 

Table 10  The scores of most important factors that determine ozone 
concentration variations at specific stations (2016–2019) and the 
determination powers of the factors

Station Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Kohtla-Järve 
ozone

 − 0.19  − 0,39  − 0.19  − 0.48  − 1.05

Õismäe ozone  − 0.12 0.34  − 0.30  − 0.19  − 0.03
Liivalaia ozone  − 0.15 0.91  − 0.64 0.10 0.28
Tartu ozone  − 0.15  − 0.28 0.02 1.63  − 0.03
Saarejärve ozone  − 0.11  − 0.36 0.01  − 0.05  − 0.18
Tahkuse ozone  − 0.17  − 0.40 0.17  − 0.41 1.63
Lahemaa ozone  − 0.14  − 0.20  − 0.16  − 0.45  − 0.30
Vilsandi ozone  − 0.12 0.52 1.25  − 0.09  − 0.29
Factor power, % 72.9 7.6 6.2 5.0 3.8
Cumulative 

power, %
72.9 80.4 86.6 91.6 95.4

Table 11  The scores of most important factors that determine ozone 
concentration variations at specific stations (2020–2021) and the 
determination powers of the factors

Station Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Kohtla-Järve 
ozone

 − 0.17  − 0.31  − 0.14  − 0.25  − 1.24

Õismäe ozone  − 0.13 0.29  − 0.41 0.20  − 0.07
Liivalaia ozone  − 0.15 0.76  − 0.85 0.22 0.39
Tartu ozone  − 0.15  − 0.28  − 0.02  − 1.44 0.92
Saarejärve ozone  − 0.12  − 0.41 0.13 0.16  − 0.05
Tahkuse ozone  − 0.17  − 0.43 0.38 1.05 0.97
Lahemaa ozone  − 0.14  − 0.23  − 0.13 0.20  − 0.63
Vilsandi ozone  − 0.12 0.74 1.19  − 0.18  − 0.24
Factor power, % 76.7 7.3 5.0 3.7 3.2
Cumulative 

power, %
76.7 83.9 88.9 92.7 95.9
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continental rural background stations in Estonia. Vilsandi 
represents relatively clean environment and marine condi-
tions; the Lahemaa station (6 km from the coast of Gulf 
of Finland) is another site considerably affected by coastal 
mesoscale weather patterns.

In the case of the multiple regression, where the ozone 
data from all the stations (Saarejärve, Lahemaa, Vilsandi, 
Kohtla-Järve, Õismäe, Liivalaia, and Tartu) and also the NO, 
 NO2, and  CO2 concentrations  (CO2 in ppm, other gases in 
µg  m−3) measured at Tahkuse station were used as independ-
ent variables, the determination coefficients R2 = 0.767 for 
the period 2016–2019 and 0.795 for the period 2020–2021, 
whereas without the  CO2 concentrations, the R2 values are 
0.745 and 0.762, respectively. When using the NO and/or 
 NO2 concentrations as sole independent arguments, the 
determination coefficients R2 stay below 0.05; therefore, we 
can leave these concentrations out from the list of the param-
eters of the model. Using only  CO2 concentrations in the role 
of independent argument enables to yield the determination 
coefficient R2 values up to 0.26. Inclusion of the  CO2 con-
centrations to the list of independent arguments in addition 
to ozone data from the other measurement stations certainly 
enhances the R2 values. Unfortunately, in these cases, cer-
tain unpleasant side effects appear: such a model too often 
predicts negative ozone concentrations (usually in the case 
of high  CO2 concentrations recorded in summer nights with 
low winds), which is physically intolerable. For that reason, 
we omit the  CO2 concentrations from the list of independ-
ent arguments, despite the fact that  CO2 can numerically 
enhance the R2 values by about 2–3%. As concentration of 
ozone has obvious diurnal pattern, we also tried to include 

time as an independent parameter, but without any remark-
able success. Below we discuss the model with argument 
list that contains the concentrations of ozone measured in 
Saarejärve, Vilsandi, and Lahemaa stations. In this case, the 
determination power of the model is almost so good as in the 
case of longer lists of arguments. Only  CO2 can enhance the 
R2 values by some extent, but it was excluded by the physical 
reasons as described above.

The multiple regression models are different for the peri-
ods 2016–2019 (Eq. 1) and 2020–2021 (Eq. 2). Below we 
also discuss the results obtained when Eq. 1 was applied to 
the period 2020–2021 and when Eq. 2 was applied to the 
period 2016–2019.

where C1, C2, and C3 are the concentrations measured in 
Saarejärve, Lahemaa, and Vilsandi, respectively, and Y is 
the predicted concentration for Tahkuse station (µg  m−3).

The ozone prediction model results for Tahkuse station 
are depicted in Fig. 1 (Eqs. 1 and 2 applied to the period 
2016–2019) and Fig. 2 (Eqs. 1 and 2 applied to the period 
2020–2021). Figures 1 and 2 contain the colour plots (pre-
dicted concentrations vs measured ones) and the trendlines 
with the trendline equations shown. The summary statis-
tics of comparison of the models is presented in Table 12. 
The first column contains list of the parameters that can be 
used to evaluate the model (Willmott et al., 1985). RMSE is 
root-mean-square error, RMSE_s is systematic part of root 

(1)Y = 0.4635C
1
+ 0.3455C

2
+ 0.1797C

3
+ 0.6139

(2)Y = 0.5806C
1
+ 0.2071C

2
+ 0.2034C

3
+ 2.634

Fig. 1  Concentrations of ozone (µg  m−3) for years 2016–2019: a pre-
dicted from regression Eq. 1 and b) predicted from regression Eq. 2. 
Colour scale represents the number of cases in 5 by 5 µg  m−3 square. 

Trendlines with and without intercept are presented with dashed and 
solid black line, respectively
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mean square error, RMSE_d is unsystematic part of root 
mean square error, parameter d is index of agreement, and 
R is correlation coefficient. The columns 2–5 contain the 
parameters computed for particular cases, where “Eq. 1” 
means Eq. 1, “Eq. 2” means Eq. 2, and the equations were 
applied to the period 1 (2016–2019) and/or to the period 2 
(2020–2021). We can see that Eqs. 1 and 2 are remarkably 
equipotent for the ozone concentration prediction purpose, 
but the prediction power depends on the period. For the 
period 2016–2019, that is longer and with more extensive 
concentration variations, all the residuals (characterized by 
parameters RMSE, RMSE_s, and RMSE_d) are larger and 
index of agreement (d) is smaller.

Ozone and  NOx participate in the same chemical reac-
tions in the atmosphere, and therefore, a considerable anti-
correlation between the time series of these variables was 
sometimes observed in the data of Tahkuse measurements, 
likewise the observed anticorrelation with  CO2 concentra-
tions. Therefore, a remarkable regression between the ozone 
 (O3) and NO and/or  NO2 concentrations could be expected, 
but actually, the determination coefficient (R2) was only up 
to 0.05. Also, considering the inclusion of the NO and/or 

 NO2 concentrations measured at Tahkuse to the list of inde-
pendent variables of the above described multiple regression 
model (in addition to the concentrations of ozone measured 
at the other stations) only yield a negligible enhancement 
in the determination coefficient below about 0.05. The 
absence of remarkable link between NO and/or  NO2 con-
centrations and ozone concentrations is somewhat surpris-
ing, also because some studies (e.g., He and Lu 2012) have 
established notable relationship between the measured ozone 
and  NO2. The reasons that cause these different outcomes at 
Tahkuse station are not definitely known yet, but hypotheti-
cally the long-range transport of ozone (that has also experi-
enced NO and/or  NO2 influence at that remote location) can 
override the ozone formation and sink pathways determined 
by nearby occurring NO and/or  NO2 concentrations.

The time series of developed ozone prediction model 
residuals (measured concentrations minus predicted by 
model concentrations) are shown in Figs. 3 and 4, and the 
results of more detailed analysis are presented in Figs. 5 and 
6. Larger residuals in the first place belong to the predic-
tions implemented at summer nights, often accompanied 
with small values of observed ozone concentrations at 

Fig. 2  Concentrations of ozone (µg  m−3) for years 2020–2021: a pre-
dicted from regression Eq. 2 and b) predicted from regression Eq. 1. 
Colour scale represents the number of cases in 5 by 5 µg  m−3 square. 

Trendlines with and without intercept are presented with dashed and 
solid black line, respectively

Table 12  The parameters 
commonly used to evaluate the 
model performance (Willmott 
et al., 1985) applied to our 
models

Parameter Eq. 1 to period 1 Eq. 1 to period 2 Eq. 2 to period 1 Eq. 2 to period 2

RMSE 11.84 10.96 12.2 10.63
RMSE_s 6.2068 5.6685 6.9870 5.2844
RMSE_u 10.2250 9.3789 10.2615 9.2620
d 0.9174 0.9224 0.9110 0.9262
R 0.8548 0.8656 0.8518 0.8686
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Fig. 3  The ozone prediction model residuals (µg m.−3) for years 2016–2019

Fig. 4  The ozone prediction model residuals (µg m.−3) for years 2020–2021

Fig. 5  The averaged extent of the residuals of the model as a function 
of month Fig. 6  The averaged extent of the residuals of the model as a function 

of time (hours from midday)
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Tahkuse station. This combination results in large negative 
residuals, because in these cases, the model overestimates 
the values predicted for Tahkuse. Figure 6 demonstrates 
few abrupt changes in the residual values at certain specific 
hours, which can be due some extraordinary observed values 
within the period 2016–2019. In the period 2020–2021, all 
the curves that present variations in the residual values are 
far smoother.

Discussion and conclusions

To understand the differences in the factors that determine 
the concentrations of atmospheric trace and pollution gases 
and distribution patterns during the period 2016–2019 ver-
sus 2020–2021, mentioned several times above, we keep in 
mind two big changes, which took place:

(1) COVID-19 lockdown that started during first wave of 
pandemic in March–April 2020 and proceeded through 
temporary and partial relaxation and new restriction 
periods through 2020 and 2021;

(2) rapid increase of the price of European carbon emis-
sion quota, which caused dramatic decrease in oil-shale 
based energy production in Estonia, thus reducing 
industrial emissions from a certain area in North-East-
ern Estonia a lot.

COVID-19 lockdown reduced the urban traffic flows and 
relevant  NOx emissions in urban centres worldwide, but 
simultaneously, it increased in some areas the residential 
heating due to bigger fraction of time spent at home; thus, 
the impact to the emissions of  SO2 and particulate matter 
emissions was more ambivalent (Sokhi et al. 2021). The 
concentrations of ozone even increased in some areas due to 
decrease in  NO2, an ingredient which is known as suppress-
ing the ozone in urbanized areas.

The oil-shale power plants in the North-East Estonia 
are the dominant emission sources of sulphur dioxide and 
important sources of nitrogen oxides in Estonia (about 25% 
from all NOx pollution). The major source of  NOx is trans-
port (about 40%). According to national statistical survey, 
emissions started dramatically decrease in 2019, when about 
60% less of  SO2 was emitted from power plants and 45% 
from the whole Estonia, when compared to the average of 
2016–2018. In 2020–2021, the emissions decreased even 
more, as these power plants were nearly suspended most 
of time.

In five-factor set determined by factor analysis for  NO2 
concentrations, the first and second factors are swapped in 
2020–2021 set, compared to 2016–2019. Obviously, the 
first factor that describes the earlier period (similar to the 
second factor that describes the later period) represents the 

influence of street transport (dominated by Liivalaia and 
Õismäe urban stations in capital city Tallinn). The second 
factor is dominated by continental rural background sta-
tions Saarejärve, Tahkuse, and Lahemaa, whereas indus-
trial Kohtla-Järve and maritime Vilsandi indicate weakly 
opposite effects. Swap of these two factors may have 
occurred due to cleaning the urban air due to lockdowns, 
which diminishes the importance of urban-type pollution 
patterns. The third factor of both periods is dominated by 
rather unique maritime Vilsandi site, whereas fourth fac-
tor might be interpreted as influenced by residential heating 
(Tartu), opposing to the cleanest continental site, by means 
of local pollution sources, in the Lahemaa national park. The 
fifth factor is likely dominated by industrial emissions from 
oil-shale-based industries and power plants (Kohtla-Järve), 
with slightly opposing street station Liivalaia and rural 
background at Tahkuse, which is at largest distance from 
oil-shale processing facilities, considering the continental 
stations. Nevertheless, we have to consider that the descrip-
tion ability of the last factors is quite weak, and therefore, 
the uncertainties are considerable.

The factors of NO are partially similar to  NO2, with a 
few exceptions. There are obvious reasons for different time-
dependent patterns in different site types; e.g., the diurnal 
course is more pronounced in urban sites due to changes in 
traffic and residential heating. The first and the second fac-
tors, representing respectively urban and rural-continental 
influences, are not swapped between periods, but stay respec-
tively at first and second place. We have to keep in mind 
that in contrary to the oxidation product  NO2, which is also 
dependent on long-range transport of air pollutants, the NO 
represents a “fresh” pollution that dominates near the source. 
It is reasonable to assume that close to the urban street emis-
sion sources, the primary emissions retain their importance 
despite somewhat lower concentrations. On the other hand, 
the Kohtla-Järve site, which nearly entirely determines the 
fifth factor in later period (2020–2021), contributes more to 
the “urban” factor 1 in earlier period (2016–2019). It can be 
that after the lockdown-induced decrease of street transport, 
the industrial emissions started to dominate in that indus-
trial town even above the usually street-emission-dominated 
NO concentrations. Finally, the Lahemaa-dominated “clean-
continental” factor moved from fifth to fourth place, which 
may be due to cleaning the air due to lockdown.

First of the  SO2 factors is defined nearly equally by urban 
stations Liivalaia and Õismäe in Tallinn — as a rule, the con-
centrations of  SO2 are rather low there, but additionally slight 
influence of urban-scale industrial and residential heating 
sources takes place. Next factors are different in mentioned 
two time periods, which may be due to dramatic decrease of 
 SO2 emissions from oil-shale based power plants at about 
2020. These power plants are located close to Kohtla-Järve, 
about 110 km away from Lahemaa and Saarejärve background 
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stations, but far away from Tahkuse (about 200 km) and Vil-
sandi (about 375 km) rural stations. Indeed, these two far-away 
stations dominate in the second factor during 2016–2019, but 
get separated in 2020–2021 by factors 3 and 5, as most prob-
ably the other pollution mechanisms start to dominate over 
weakened impact of power plant emissions. Remarkably, the 
“industrial” factor dominated by Kohtla-Järve, is moved from 
third (2016–2019) to fourth (2020–2021) place, which likely 
refers to decreased influence of those emissions. It should 
be kept in mind that Kohtla-Järve is located in the region 
of oil-shale-based industries, which emissions,  SO2 most 
remarkable among them, were a lot lower in second period 
(2020–2021). Lahemaa is the closest rural station to the oil-
shale operated power plants (60–110 km), often remarkably 
affected by their emissions, and sometimes also influenced by 
shipping emissions from Gulf of Finland.

Ozone is generated by chemical reactions initiated by solar 
UV radiation; therefore, the main factor could be the rural back-
ground conditioned by the definite meteorological situation 
mixed by urban-industrial conditions. The first, most powerful 
factor with high certainty corresponds to the meteorological situ-
ation in the presence of anticyclonic air system that covers the 
entire Estonia and, therefore, influence the change (rise) of  O3 
concentration in all the stations. Long-range transport of ozone 
can also belong to this factor. The factors 2 and 3 are largely 
determined by Vilsandi and Liivalaia, the first station represents 
clear maritime conditions, and the second one represents the 
strong urban (traffic) effects. These effects have rather opposite 
character, which can bring up the opposite signs within the factor 
3. Uniqueness of Liivalaia station, which is strongly related with 
factors 2 and 3, is obviously related to its location next to a street 
with heavy vehicular emissions. In such sites, the production of 
ozone is hindered by high concentration of NO. Contribution 
of Vilsandi to factor 2 is not well understood and needs further 
research. Factor 4 patterns are rather similar for both periods with 
high scores for Tartu and Tahkuse with opposite signs. This may 
be due to the absence of high traffic on streets and a lot of resi-
dential heating just nearby the measurement station, whereas the 
opposite signs of the participations may be caused by the extents 
of the characteristic effects. The factor 5 could correspond to 
some other (industrial) pollution, because the values of the cor-
responding factor scores are large for the industrial region station 
Kohtla-Järve. The effects of Kohtla-Järve seem to be opposite to 
the ones characteristic for Tahkuse (period 2016–2019) and for 
both Tahkuse and Tartu (period 2020–2021).

The model designed for estimation and forecast of ozone 
values at a specific location (Tahkuse), based on the known 
concentrations measured at several other locations (in this case 
at Saarejärve, Vilsandi and Lahemaa), was able to predict the 
general trends of ozone concentrations (the determination coef-
ficients were R2 = 0.745 for the period 2016–2019 and 0.762 
for the period 2020–2021). However, the model is still is not 
able to predict several specific concentrations that are apparently 

driven by certain local factors. The latter especially applies to the 
cases (time intervals) when the ozone concentration measured at 
Tahkuse was low, but the concentrations measured at other loca-
tions were not that low. These cases are characterized by large 
negative residuals as is observable in the Figs. 3 and 4. These 
large negative residuals, first of all, tend to occur at summer 
nights with high  CO2 levels (Figs. 5 and 6). At daytime (from 
about midday minus 6 h to about midday plus 7 h) and during 
the colder season, the regression model performs significantly 
better. The cases when the concentrations measured at Tahkuse 
exceed the predicted values take place as well, but the cases with 
large negative residuals are far more prominent. Therefore, even 
though the variations in ozone concentrations are predominantly 
determined by only one factor (the first one) as discussed above, 
the local factors cannot be omitted, and therefore, the actual 
continuous ozone monitoring cannot be substituted by estimates 
based on the results observed at other locations. The latter is 
certainly valid for the Tahkuse station, even though generally 
the values can be estimated. The estimates can be used at cer-
tain extraordinary cases, e.g., when the data are not available 
because of some break in continuous measurements. Here, we 
performed the regression analysis of Tahkuse ozone data, but 
it is also interesting to know, in what extent the concentration 
trends at all nearby stations are linked (and can be predicted 
from other data), but this study is to be accomplished in future.
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