Skip to main content
Log in

Emissions and health risk assessment of process-based volatile organic compounds of a representative petrochemical enterprise in East China

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Emission control of volatile organic compounds (VOCs) from industrial sources is a frontline defense against air pollution in China. Owing to the complexity of chemical processing technologies and reaction mechanisms of VOCs, it is extremely difficult to pinpoint specific emission sources in a large-scale industrial region due to the synergy of various chemical processes. In this research, a comprehensive on-site emission profile of a representative petrochemical industrial park in East China is set up with measurements conducted using photochemical assessment monitoring stations (PAMSs) and the TO-15 method as per the United States Environmental Protection Agency. This is followed by a quantitative ozone formation potential (OFP) analysis, toxification analysis, and an on-site health risk assessment, covering each of 18 major facilities’ three sections: the refinery, chemical manufacturing zone, and wastewater treatment zone. The number of facilities and detected species studied in this research exceeds that of a former similar study. This study shows that the majority of VOC emissions from those enterprises possessing the largest impact on the environment are hydrocarbons: alkanes, olefin (alkenes, alkynes), and aromatics (91% in total). Aromatics and olefins show the maximum contribution to OFP, which is consistent with the results of similar studies. VOCs, such as 1,3-butadiene, from refineries are key factors leading to long-term health impacts, with aromatics being a leading carcinogenic and noncarcinogenic factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alghamdi MA, Khoder M, Abdelmaksoud AS, Harrison RM, Hussein T, Lihavainen H, Al-Jeelani H, Goknil MH, Shabbaj II, Almehmadi FM, Hyvärinen AP, Hämeri K (2014) Seasonal and diurnal variations of BTEX and their potential for ozone formation in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Air Qual Atmos Health 7(4):467–480. https://doi.org/10.1007/s11869-014-0263-x

    Article  CAS  Google Scholar 

  • Axelsson G, Barregard L, Holmberg E, Sallsten G (2010) Cancer incidence in a petrochemical industry area in Sweden. Sci Total Environ 408(20):4482–4487. https://doi.org/10.1016/j.scitotenv.2010.06.028

    Article  CAS  Google Scholar 

  • Bari M, Kindzierski WB (2018) Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: sources and screening health risk assessment. Environ Pollut 235:602–614

    Article  CAS  Google Scholar 

  • Barletta B, Meinardi S, Simpson IJ, Zou S, Sherwood Rowland F, Blake DR (2008) Ambient mixing ratios of nonmethane hydrocarbons (NMHCs) in two major urban centers of the Pearl River Delta (PRD) region: Guangzhou and Dongguan. Atmos Environ 42(18):4393–4408. https://doi.org/10.1016/j.atmosenv.2008.01.028

    Article  CAS  Google Scholar 

  • Bo L, Xiang Y, Haipeng M, Liu D, Qingqing H, Mi T (2019) Health risk assessment and source apportionment of VOCs inside new vehicle cabins: a case study from Chongqing, China. Atmos Pollut Res 10(5)

  • Carter WPL (1994) Development of ozone reactivity scales for volatile organic compounds. Air Waste 44(7):881–899. https://doi.org/10.1080/1073161x.1994.10467290

    Article  CAS  Google Scholar 

  • Carter WPL (1995) Computer modeling of environmental chamber measurements of maximum incremental reactivities of volatile organic compounds. Atmos Environ 29:2513–2527

    Article  CAS  Google Scholar 

  • Chang C, Chen T, Lin C, Yuan C, Liu S (2005) Effects of reactive hydrocarbons on ozone formation in southern Taiwan. Atmos Environ 39(16):2867–2878. https://doi.org/10.1016/j.atmosenv.2004.12.042

    Article  CAS  Google Scholar 

  • Chen WH, Chen ZB, Yuan CS, Hung CH, Ning SK (2016) Investigating the differences between receptor and dispersion modeling for concentration prediction and health risk assessment of volatile organic compounds from petrochemical industrial complexes. J Environ Manage 166:440–449. https://doi.org/10.1016/j.jenvman.2015.10.050

    Article  CAS  Google Scholar 

  • Chiu KH, Wu BZ, Chang CC, Sree U, Lo J-G (2005) Distribution of volatile organic compounds over a semiconductor industrial park in Taiwan. Environ Sci Technol 39:973–983

    Article  CAS  Google Scholar 

  • Cirera L, Cirarda F, Palencia L, Estarlich M, Montes-Martinez A, Lorenzo P, Daponte-Codina A, Lopez-Abente G (2013) Mortality due to haematological cancer in cities close to petroleum refineries in Spain. Environ Sci Pollut Res Int 20(1):591–596. https://doi.org/10.1007/s11356-012-1152-1

    Article  CAS  Google Scholar 

  • Colman Lerner JE, Sanchez EY, Sambeth JE, Porta AA (2012) Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina. Atmos Environ 55:440–447. https://doi.org/10.1016/j.atmosenv.2012.03.041

    Article  CAS  Google Scholar 

  • Cui H (2016) Source profile of volatile organic compounds (VOCs) of a petrochemical industry in the Yangtze River Delta, China. Chem Eng Trans 54:6. https://doi.org/10.3303/CET1654021

    Article  Google Scholar 

  • Czader BH, Byun DW, Kim S-T, Carter WPL (2008) A study of VOC reactivity in the Houston-Galveston air mixture utilizing an extended version of SAPRC-99 chemical mechanism. Atmos Environ 42(23):5733–5742. https://doi.org/10.1016/j.atmosenv.2008.01.039

    Article  CAS  Google Scholar 

  • Duan X, Zhao X, Wang B, Chen Y, and Cao S (n.d.) Highlights of the Chinese exposure factors handbook (adults). Science Press, Beijing. 92 pages, ISBN: 978–0–12–803125–4, Copyright © 2015 China Science Publishing & Media Ltd. Published by Elsevier Inc.

  • Durmusoglu E, Taspinar F, Karademir A (2010) Health risk assessment of BTEX emissions in the landfill environment. J Hazard Mater 176(1–3):870–877. https://doi.org/10.1016/j.jhazmat.2009.11.117

    Article  CAS  Google Scholar 

  • Edokpolo B, Yu QJ, Connell D (2015) Health risk assessment for exposure to benzene in petroleum refinery environments. Int J Environ Res Public Health 12(1):595–610. https://doi.org/10.3390/ijerph120100595

    Article  CAS  Google Scholar 

  • Feng Y, Xiao A, Jia R, Zhu S, Gao S, Li B, Shi N, Zou B (2020) Emission characteristics and associated assessment of volatile organic compounds from process units in a refinery. Environ Pollut 265:115026. https://doi.org/10.1016/j.envpol.2020.115026

  • Gallego E, Roca FJ, Perales JF, Gadea E (2018) Outdoor air 1,3-butadiene monitoring near a petrochemical industry (Tarragona region) and in several Catalan urban areas using active multi-sorbent bed tubes and analysis through TD-GC/MS. Sci Total Environ 618:1440–1448

    Article  CAS  Google Scholar 

  • Glass DC, Armstrong TW, Pearlman ED, Verma DK, Schnatter AR, Rushton L (2010) Ensuring comparability of benzene exposure estimates across three nested case-control studies in the petroleum industry in support of a pooled epidemiological analysis. Chem Biol Interact 184(1–2):101–111. https://doi.org/10.1016/j.cbi.2009.11.003

    Article  CAS  Google Scholar 

  • Hajizadeh Y, Teiri H, Nazmara S, Parseh I (2018) Environmental and biological monitoring of exposures to VOCs in a petrochemical complex in Iran. Environ Sci Pollut Res Int 25:6656–6667

    Article  CAS  Google Scholar 

  • Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue NM, George C, Goldstein AH, Hamilton JF, Herrmann H, Hoffmann T, Iinuma Y, Jang M, Jenkin ME, Jimenez JL, Kiendler-Scharr A, Maenhaut W, McFiggans G, Mentel ThF, Monod A, Prévôt ASH, Seinfeld JH, Surratt JD, Szmigielski R, Wildt J (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236. https://doi.org/10.5194/acp-9-5155-2009

    Article  CAS  Google Scholar 

  • Huang B, Lei C, Wei C, Zeng G (2014) Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts, and current remediation technologies. Environ Int 71:118–138

    Article  CAS  Google Scholar 

  • Le Bras G, Mellouki A, Magneron I, Bossoutrot V, Laverdet G (2002) Atmospheric chemistry of oxygenated VOCs, book chapter, pp. 85–90. In: Barnes I (eds) Global atmospheric change and its impact on regional air quality. NATO Science Series (Series IV: Earth and Environmental Sciences), vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0082-6_13

  • Liu Y, Shao M, Fu L, Lu S, Zeng L, Tang D (2008) Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos Environ 42(25):6247–6260. https://doi.org/10.1016/j.atmosenv.2008.01.070

    Article  CAS  Google Scholar 

  • Liu Y, Han F, Liu W, Cui X, Luan X, Cui Z (2020) Process-based volatile organic compound emission inventory establishment method for the petroleum refining industry. J Clean Prod 263:121609. https://doi.org/10.1016/j.jclepro.2020.121609

    Article  CAS  Google Scholar 

  • Ministry of Environmental Protection (2015) HJ 759–2015 ambient air-determination of volatile organic compounds collected by specially-prepared canisters and analyzed by gas chromatography/mass spectrum. National Environmental Protection Standard for the People’s Republic of China

  • Mo Z, Shao M, Lu S, Qu H, Zhou M, Sun J, Gou B (2015) Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China. Sci Total Environ 533:422–431. https://doi.org/10.1016/j.scitotenv.2015.06.089

    Article  CAS  Google Scholar 

  • Ramirez N, Cuadras A, Rovira E, Borrull F, Marce RM (2012) Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site. Environ Int 39(1):200–209. https://doi.org/10.1016/j.envint.2011.11.002

    Article  CAS  Google Scholar 

  • Rumchev K, Brown H, Spickett K (2007) Volatile organic compounds: do they present a risk to our health. Rev Environ Health 22:39–55

    Article  CAS  Google Scholar 

  • Shaw JT, Rickard AR, Newland MJ, Dillon TJ (2020) Rate coefficients for reactions of OH with aromatic and aliphatic volatile organic compounds determined by the multivariate relative rate technique. Atmos Chem Phys 20:9725–9736. https://doi.org/10.5194/acp-20-9725-2020

    Article  CAS  Google Scholar 

  • Soni V, Singh P, Shree V, Goel V (2018) Effects of VOCs on human health. In: Sharma N, Agarwal A, Eastwood P, Gupta T, Singh A (eds) Air pollution and control. Energy, environment, and sustainability. Chapter 3, pp 119–142, Springer, Singapore. https://doi.org/10.1007/978-981-10-7185-0_8

  • State Environmental Protection Administration, (20HJ/T 55–2000: translated English of Chinese standard. HJT 55–2000, HJ/T55–2000, HJT55–2000): technical guidelines for fugitive emission monitoring of air pollutants. (Proposed and approved by Department of Science, Technology and Standards, Ministry of Environmental Protection of the People’s Republic of China)

  • Suthawaree J, Tajima Y, Khunchornyakong A, Kato S, Sharp A, Kajii Y (2012) Identification of volatile organic compounds in suburban Bangkok, Thailand and their potential for ozone formation. Atmos Res 104–105:245–254. https://doi.org/10.1016/j.atmosres.2011.10.019

    Article  CAS  Google Scholar 

  • Tsai SP, Chen VW, Fox EE, Wendt JK, Cheng Wu X, Foster DE, Fraser AE (2004) Cancer incidence among refinery and petrochemical employees in Louisiana, 1983–1999. Ann Epidemiol 14(9):722–730. https://doi.org/10.1016/j.annepidem.2004.01.005

    Article  Google Scholar 

  • USEPA (2020) Integrated Risk Information System online information source, IRIS program outlook update (October 2020), and other IRIS resources, available at https://www.epa.gov/iris

  • Vilavert L, Nadal M, Figueras MJ, Domingo JL (2012) Volatile organic compounds and bioaerosols in the vicinity of a municipal waste organic fraction treatment plant. Human health risks. Environ Sci Pollut Res 19:96–104

    Article  CAS  Google Scholar 

  • Wang Q, Li S, Dong M, Li W, Gao X, Ye R, Zhang D (2018) VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan. Atmos Environ 182:234–241

    Article  CAS  Google Scholar 

  • Wei W, Cheng S, Li G, Wang G, Wang H (2014) Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China. Atmos Environ 89:358–366. https://doi.org/10.1016/j.atmosenv.2014.01.038

    Article  CAS  Google Scholar 

  • Wong O, Raabe GK (2000) A critical review of cancer epidemiology in the petroleum industry, with a meta-analysis of a combined database of more than 350,000 workers. Regul Toxicol Pharmacol 32(1):78–98. https://doi.org/10.1006/rtph.2000.1410

    Article  CAS  Google Scholar 

  • Wu R, Xie S (2017) Spatial distribution of ozone formation in China derived from emissions of speciated volatile organic compounds. Environ Sci Technol 51(5):2574–2583. https://doi.org/10.1021/acs.est.6b03634

    Article  CAS  Google Scholar 

  • Yang Y, Ji D, Sun J, Wang Y, Yao D, Zhao S, Yu X, Zeng L, Zhang R, Zhang H, Wang Y, Wang Y (2019) Ambient volatile organic compounds in a suburban site between Beijing and Tianjin: concentration levels, source apportionment and health risk assessment. Sci Total Environ 695:133889. https://doi.org/10.1016/j.scitotenv.2019.133889

    Article  CAS  Google Scholar 

  • Zhang Z, Yan X, Gao F, Thai P, Wang H, Chen D, Zhou L, Gong D, Li Q, Morawska L, Wang B (2018) Emission and health risk assessment of volatile organic compounds in various processes of a petroleum refinery in the Pearl River Delta, China. Environ Pollut 238:452–461. https://doi.org/10.1016/j.envpol.2018.03.054

    Article  CAS  Google Scholar 

  • Zheng J, Min S, Weiwei C, Lijun Z, Liuju Z, Yuanhang Z, Divid S (2009) Speciated VOC emission inventory and spatial patterns of ozone formation potential in the Pearl River Delta, China. Environ Sci Technol 43:8580–8586. https://doi.org/10.1021/es901688e

    Article  CAS  Google Scholar 

  • Zheng H, Kong S, Yan Y, Chen N, Yao L, Liu X, Wu F, Cheng Y, Niu Z, Zheng S, Zeng X, Yan Q, Wu J, Zheng M, Liu D, Zhao D, Qi S (2020) Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River. Sci Total Environ 703(135505):1–11

    Google Scholar 

  • Zhong Z, Sha Q, Zheng J et al (2017) Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China. Sci Total Environ 583:19–28

    Article  CAS  Google Scholar 

Download references

Funding

This study was partially supported by the National Natural Science Foundation of China under Grant Nos. 21777026, 21976031, and 41775113.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanshan Wang or Bin Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Zhang, Z., Wang, Q. et al. Emissions and health risk assessment of process-based volatile organic compounds of a representative petrochemical enterprise in East China. Air Qual Atmos Health 15, 1095–1109 (2022). https://doi.org/10.1007/s11869-021-01117-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-021-01117-4

Keywords

Navigation