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Abstract
Air pollution is a public health issue of global importance and a risk factor for developing cardiorespiratory diseases. These 
contaminants induce reactive oxygen species (ROS) and increased pro-inflammatory cytokines such as IL-1β, IL-6, and IL-8, 
triggering the inflammatory response that alters cell and tissue homeostasis and facilitates the development of diseases. The 
effects of air pollutants such as ozone, particulate matter (PM10, PM2.5, and PM0.1), and indoor air pollutants on respiratory 
health have been widely reported. For instance, epidemiological and experimental studies have shown associations between 
hospital admissions for individual diseases and increased air pollutant levels. This review describes the association and 
relationships between exposure to air pollutants and respiratory viral infections, especially those caused by the respiratory 
syncytial virus and influenza virus. The evidence suggests that exposure to air contaminants induces inflammatory states, 
modulates the immune system, and increases molecules’ expression that favors respiratory viruses’ pathogenesis and affects 
the respiratory system. However, the mechanisms underlying these interactions have not yet been fully elucidated, so it is 
necessary to develop new studies to obtain information that will allow health and policy decisions to be made for the adequate 
control of respiratory infections, especially in the most vulnerable population, during periods of maximum air pollution.
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Introduction

Industrial activities, the combustion of fossil products, and 
some natural processes generate chemical and biological 
substances that alter air quality. These pollutants can be clas-
sified as primary or secondary, depending on whether they 
are emitted directly into the atmosphere or they are the result 
of chemical reactions between the different atmospheric 

pollutants present (Bernstein et  al. 2004); furthermore, 
they can be classified into four categories according to their 
physio-chemical characteristics:

1. Gaseous pollutants:  SO2 (sulfur dioxide), NOx (nitrogen 
oxides), ozone, volatile organic compounds, CO (carbon 
monoxides).

2. Persistent organic pollutants: polycyclic aromatic hydro-
carbons, aldrin, dioxins, and furans.

3. Heavy metals: lead, mercury.
4. Particulate matter: PM10, PM2.5, and PM0.1.

These contaminants represent a risk to human health, 
increasing the incidence of cardiovascular and respiratory 
diseases and the mortality associated with these pathologies, 
becoming one of the most critical public health problems. In 
this sense, environmental pollution was responsible for 4.9 
million deaths worldwide in 2017, related to COPD (chronic 
obstructive pulmonary disease), asthma, respiratory infec-
tions, lung cancer, and strokes (Stanaway et al. 2018; Arias-
Pérez et al. 2020).
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It has been proposed that deleterious effects of pollutants 
are related to their ability to induce reactive oxygen spe-
cies (ROS), which trigger oxidative stress and inflammation 
in the airways (Barraza-Villarreal et al. 2008). Eventually, 
these events can become systemic processes and promote 
prothrombotic mechanisms, alter heart rhythm and blood 
flow, and generate vascular dysfunction (Stieb et al. 2018). 
For example, it has been described that  SO2 and PM2.5 can 
activate inflammatory pathways increasing fibrinogen and 
IL-8 (Chen et al. 2017); likewise, it has been reported that 
ozone can cause direct oxidation of the vasculature, thus 
favoring the development of hypertension, atherosclerosis, 
and heart failure (Bourdrel et al. 2017). On other hand, it has 
been proposed that environmental pollution is a risk factor 
for viral respiratory infections (Troeger et al. 2018), includ-
ing as possible mechanisms inflammation, cell death, oxida-
tive stress, and expression of viral receptors, among others, 
which will be addressed later.

Respiratory diseases and air pollution

Exposure to air pollutants has been linked to respiratory 
diseases such as asthma, COPD, and lung cancer, mainly 
in children and older adults. In China, a decrease in lung 
function and increased incidence of children with allergic 
rhinitis, related to pollutants exposure, were reported. The 
authors also reported a slight increase in other respiratory 
diseases such as recurrent infections, pneumonia, asthma, 
tracheitis, and bronchitis (Chen et al. 2019). Besides, He 
et al. (He et al. 2019) found that increased exposure to NOx 
in the womb, infancy, and childhood is associated with 
decreased lung function and wheezing, characteristic symp-
toms of COPD.

The acute effects of air pollution in people with COPD 
have been previously described. For example, in Spain, high 
concentrations of CO,  NO2,  O3, and PM10 were reported to 
be significantly associated with the number of hospitaliza-
tions and mortality due to exacerbation of COPD, demon-
strating the role of air pollutants in the development and 
clinical outcome of COPD (Miguel-Díez et al. 2019). In this 
sense, it has been proposed that short-term exposure to con-
taminants induces epigenetic modifications, inflammatory 
processes, and production of ROS, which can affect the func-
tion of the respiratory tract, alter the immune response, and 
activate different signaling pathways, favoring the exacerba-
tion of COPD, and increased susceptibility to other patholo-
gies such as cancer (Lichtenfels, et al. 2018; Eze et al. 2020).

In this sense, an epidemiological association between 
lung cancer mortality and exposure to air pollutants has 
been observed (Pope et al. 2002). Also, the relationship 
between exposure to air pollutants (PM10,  SO2, and  NO2) 
and hospital admissions for respiratory diseases has been 

explored, reporting significant increases for each 10 μg/m3 
of the pollutants, with the elderly and women being the most 
vulnerable (Tao et al. 2014). Additionally, children under 
5 years of age showed a higher number of hospital admis-
sions for respiratory diseases associated with increases in 
environmental levels of  O3,  NO2, and PM10 (Gouveia and 
Fletcher 2000).

Impact of airborne contaminants 
on respiratory viral infections

Acute viral infections are the most common diseases glob-
ally, with children under 5 years of age being the most 
susceptible (Arbefeville and Ferrieri 2017). These infec-
tions are caused by various etiological agents, with high 
frequency, for viruses such as human Orthopneumovirus 
(formerly known as a respiratory syncytial virus—RSV), 
influenza virus (A, B, and C), and human rhinovirus, which 
can cause clinical conditions ranging from mild infections to 
laryngitis, bronchiolitis, episodes of wheezing, pneumonia, 
asthma attacks, and pharyngotonsillitis (Valero et al. 2009). 
According to epidemiological data, lower respiratory tract 
infections were the sixth leading cause of death globally, and 
the first in children under 5 years of age. Among the most 
common etiologies, RSV was the second leading etiology, 
to which 76,612 deaths were attributed (in children under 
5 years of age, it was the cause of 54% of fatalities); while 
the influenza virus was associated with non-fatal episodes 
and was positioned as the fourth etiological agent (Troeger 
et al. 2018). It was also established that the main associated 
risk factors were malnutrition, air pollution, and exposure to 
environmental particles; the latter can act in a more harm-
ful way and acts in conjunction with certain viruses, thus 
conditioning the development of infectious diseases (Wang 
et al. 2021).

Correlations between infection by different viruses and 
air pollutants have been reported. It has been described that 
the increase in contaminants such as benzene is positively 
correlated with the detection of rhinovirus in the nasal pas-
sages, suggesting that air quality affects the viral infectivity 
(Rodrigues et al. 2019). According to this, in vitro assays 
have described a synergism between the exposure to  NO2 
and the rhinovirus infection in nasal and bronchial epithelial 
cells. This phenomenon is associated with increased expres-
sion of pro-inflammatory cytokines such as IL-8, and the 
intracellular adhesion molecule 1 (ICAM-1), which acts as 
the primary receptor of the virus (Spannhake et al. 2002). 
Other contaminants, such as biomass smoke derived from 
wood burning, can modulate the inflammation produced by 
rhinovirus by inducing pro-inflammatory mediators produc-
tion (i.e., IL-6 and IL-8) (Capistrano et al. 2016). Similarly, 
sand dust can induce the expression of IFNγ, IL-1β, IL-6, 
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and IL-8 in nasal epithelial cells and promote rhinovirus rep-
lication (Yeo et al. 2010), besides stimulating the expression 
of mucins (MUC4 and MUC5B), necessary for the mainte-
nance of mucosal defense (Kim et al. 2011).

RSV infection is also influenced by air pollution. It has 
been described a positive correlation between the RSV 
incidence and the levels of air pollutants such as benzene, 
NOx,  SO2, PM10, and PM2.5 (Nenna et al. 2017). In vitro 
assays have demonstrated that RSV-infected dendritic cells 
exposed to NO have a positive effect on viral replication by 
decreasing the function of the nitric oxide synthase, which 
facilitates the viral spread (Hobson and Everard 2008).

Although the SARS-CoV-2 virus was recently discovered, 
it has been suggested that airborne contaminants, and espe-
cially PM2.5, CO, and  NO2, may be implicated in the inci-
dence and severity of clinical manifestations of COVID-19 
(Conticini et al. 2020; Pansini and Davide 2020; Copat et al. 
2020). In the USA, long-term exposure to PM2.5, of only 
1 μg/m3, has been found to cause an 8% increase in the mor-
tality rate of COVID-19, demonstrating the importance of 
environmental pollution control measures to protect human 
health during the COVID-19 pandemic (Wu et al. 2020). 
Additionally, a study in northern Italy examined the cor-
relation between SARS-CoV-2 mortality and air pollution, 
providing evidence that people living in an area with high 
levels of contaminants are more likely to develop respiratory 

disease, including that associated with viral infections such 
as SARS-CoV-2 (Conticini et al. 2020). These associations 
can be explained by the presence, in the regulatory region 
of the ACE-2 (angiotensin-converting enzyme 2) gene, of 
consensus motifs for the transcription factor AhR, which 
is stimulated by molecules present in the PM. Therefore, 
prolonged exposure to PM causes overexpression of ACE-2 
receptor in the human airways and favors SARS-CoV-2 
infectivity (Borro et al. 2020).

The effects of pollutants such as PM10, PM2.5,  SO2, and 
 NO2, on respiratory viral infections, are mainly mediated by 
the increase of pro-inflammatory cytokines, the alteration 
of the immune response, and, in the case of rhinovirus, the 
rise in the expression of its receptor (ICAM-1). Together, 
these mechanisms facilitate viral pathogenesis, as evidenced 
by the increase of hospitalizations and incidence of viral 
infections.

Particulate matter

Environmental PM is a mixture of suspended particles, 
which, according to their aerodynamic diameter, can enter 
several anatomical sites in the airways and trigger differ-
ent effects (Fig. 1). It is classified into three categories: 
PM10 or coarse, with a diameter less than 10 μm, PM2.5 

Fig. 1  Main effects and anatomical reach of particulate mat-
ter. Depending on the aerodynamic diameter (< 0.1  µm, 2.5  µm, or 
10 µm), PM has the capacity to enter different anatomical sites of the 

respiratory tract, where it can remain or spread to other organs and 
tissues, causing diverse effects on them, and increasing susceptibility 
to human pathologies, including COPD
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with a diameter less than 2.5 μm, and PM0.1 or ultrafine 
with a diameter less than 0.1 μm (Bernstein et al. 2004). 
PM formation occurs primarily through a combination of 
particles derived from fossil fuel combustion, road traffic, 
and emissions from power and agricultural plants. The 
acute effects of this material are mainly based on inflam-
mation and cytotoxicity. In contrast, chronic effects have 
been associated with DNA damage, destruction of the 
lung parenchyma, lung fibrosis, or granuloma formation 
(Nemmar et al. 2013). Additionally, it has been associ-
ated with acute lower respiratory tract infections. This is 
because it can modulate the innate immune system of the 
respiratory tract through mechanisms such as inflamma-
tion mediated by alveolar macrophages (with decreased 
phagocytic and microbicidal capacity), recruitment of 
neutrophils, disruption of barrier defenses, and upregu-
lation of receptors and molecules involved in the invasion 
of pathogens (Lee et al. 2015).

PM10

PM10 exposure has been associated with high oxida-
tive potential related to ROS generation, cytotoxicity, 

inflammation, and DNA damage, resulting in neutrophil 
recruitment and altered endothelial permeability (Schilirò 
et al. 2010; Ghanbarian et al. 2019). In addition, PM modu-
lates the innate immune system and several genes related 
to metabolic pathways (Mishra et al. 2020), which together 
make it more susceptible to attack by various pathogens and 
facilitate their infectivity and replication.

Studies in Italy found an association between PM10 
exposure and increased risk of hospitalization for bron-
chiolitis caused by RSV in children under one year of age 
(Carungo et al. 2018). Accordingly, increased survival of 
RSV viral particles was reported when bound to PM10. 
Furthermore, when the mixture of PM10 and virus is in 
contact with epithelial cells, they increased the secre-
tion of pro-inflammatory mediators such as IL-6 and 
IL-8, compared with the same dose of virus alone (Cruz 
Sánchez et al. 2013) (Fig. 2), explaining the high rates 
of RSV hospitalizations in the presence of high levels of 
PM10.

It has been observed that PM10 can remain for long 
periods, in the respiratory tract, before being eliminated. 
This prolonged exposure of epithelial cells may contribute 
to the secretion of pro-inflammatory cytokines such as 

Fig. 2  Effects of different air pollutants on RSV. Different studies 
have evaluated the main effects caused by exposure to air pollutants 
such as ultrafine particles, PM10, and indoor air pollution on the cells 
and tissues of the respiratory system, obtaining as fundamental mech-

anisms the alteration of the immune response, signaling pathways, 
and cytokine production, which has been observed to have a direct 
impact on RSV infection

108 Air Quality, Atmosphere & Health (2022) 15:105–114



1 3

IL-1β, in response to influenza A infection, in an NLRP3-
dependent mechanism. This suggests that exposure to 
high concentrations of PM10 may increase the immune 
response to subsequent viral infections, having implica-
tions on the development of respiratory disease (Hirota 
et al. 2015) (Fig. 3). It was also found that PM10 and 
temperature are associated with pediatric cases of infec-
tions by the influenza A virus. Both factors can synergize 
in children’s respiratory tract, resulting in increased infec-
tion susceptibility by the influenza virus (Xu et al. 2013; 
Zhang et al. 2021).

PM2.5

PM2.5 can induce an aberrant cell cycle through the overex-
pression of microRNA155 (miR155). The miR155 induces 
epigenetic modulation of the SOCS1/STAT3 signaling path-
way, contributing to the imbalance of pulmonary homeosta-
sis, associated with inflammatory and oncogenic processes, 
which may contribute to the susceptibility to pathogens 
(Xiao et al. 2019).

Additionally, it has been observed in murine mod-
els that exposure to PM2.5 induces pathological changes 
such as recruitment and activation of inflammatory cells 
(mainly macrophages and neutrophils), secretion of 

pro-inflammatory factors (CNTF, IL-6, MCP-1, RAGE, 
MMP-8, TIMP-1, and chemokine thymic 1), production 
of free radicals (MDA,  H2O2, and NO), and destruction of 
extracellular matrix, evidenced by an increase of MMP-9 
and elastase. Together, these factors led to the activation 
of the inflammatory response, resulting in damage of the 
alveolar-capillary barrier and increased vascular permeabil-
ity. Thus, making the respiratory system more susceptible 
to deposited PM2.5 and exacerbating the pathogenesis of 
respiratory diseases (Yang et al. 2018). An epidemiological 
study showed a 5% increase in hospitalizations for respira-
tory infections in children, after a rise of 10 ug/m3 of PM2.5 
in Chile, reflecting the synergism between PM and the pres-
ence of the virus in the environment (Matus and Oyarzún 
2019).

The acute in vivo exposure to PM2.5 and subsequent 
infection with the influenza A virus increased the survival 
rate compared to mice infected in the absence of PM2.5, 
due to an increase in the antiviral mechanisms induced by 
PM. However, the prolonged exposure to PM2.5 causes a 
state of immune exhausting in the lung, characterized by 
a decrease in the secretion of IL-6 and IFN-β, favoring 
the infection progression (Ma et al. 2017). Furthermore, 
PM2.5 induces ROS production, expression of adhesion 
molecules, such as ICAM-1 and VCAM-1, and activation 

Fig. 3  Effects of different pollutants on influenza virus. It has been 
observed that air pollutants such as ozone, indoor air pollution, 
PM10, and PM2.5 can alter the immune response and production of 
different cytokines and other molecules in the cells and tissues of the 

respiratory system exposed, modifying their function and integrity, 
and can also alter the viral particle, thus directly affecting the infec-
tion of the influenza virus
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of NF-κB in endothelial cells (Rui et al. 2016), favoring 
the influenza virus infection (Nimmerjahn et al. 2004). 
Other studies have shown that newborn mice (with an 
immature immune system) exposed to PM2.5-associated 
free radicals have increased regulatory T cells and IL-10 
following influenza A infection. This modulation of 
the immune response inhibits the activity of CD8 + and 
CD4 + T lymphocytes, essential for the elimination of the 
virus (Jaligama et al. 2017). This phenomenon, together 
with the pulmonary oxidative stress, increases the suscep-
tibility and severity of influenza virus infection, decreas-
ing the survival rate (Lee et al. 2014) (Fig. 3). This asso-
ciation has also been observed in epidemiological studies, 
showing an increase in disease incidence by the influenza 
virus associated with higher levels of PM2.5 (Liang et al. 
2014; Lu et al. 2020).

Other studies have also found the relationship between 
PM2.5 levels and RSV disease. In Chile and Polonia, for 
example, it was reported that for each increase of 10 μg/
m3 of PM2.5, the number of hospitalizations for respira-
tory diseases caused by RSV increased between 2 and 5% 
(Matus and Oyarzún 2019; Wrotek et al. 2021). Likewise, 
in the USA, an increase in bronchiolitis risk attributable to 
chronic exposure to vehicle traffic particles was found (Karr 
et al. 2009).

PM0.1

PM0.1 has a greater capacity to alter lung function, because 
of its small size, it can penetrate deeply and remain in the 
airways for long periods, having more significant inflam-
matory, oxidative, and cytotoxic potential, and causing 
changes in lung permeability (Renwick et al. 2004). It has 
been reported that dendritic cells exposed to PM0.1, showed 
increased expression of CD83 and CCR7, potentiating the 
proliferation of CD8 + T lymphocytes and their production 
of IFN-γ, TNF-α, IL-13, and granzymes. This enhanced 
cytotoxic response could be associated with pathological 
inflammation during concurrent infections, increasing air-
way damage (Pfeffer et al. 2018). Furthermore, it has been 
described that ultrafine particles trigger endocytosis and 
autophagy in respiratory epithelial cells, essential processes 
for PM-induced inflammation and mucus overproduction, 
related with the activation of NF-κB and AP-1 pathways, 
and subsequent production of IL-8, IL-6, and mucin 5AC 
(Chen et al. 2016).

Previous exposure of bronchial epithelial cells to envi-
ronmental nanoparticles increases the susceptibility to 
RSV infection, with increased efficiency of viral replica-
tion. The underlying mechanisms involve the autophagy 
and apoptosis pathways, thus facilitating viral replication, 
and rapid spread of the infection (Chakraborty et al. 2017). 
Also, a synergistic effect between exposure to ultrafine 

carbon particles and RSV infection has been described 
in mice, in which a worsening of airway hyperreactiv-
ity, lung inflammation (i.e. infiltration of neutrophils and 
lymphocytes), and high production of chemokines (MCP-1 
and MIP-1α) have been found (Lambert et al. 2003). The 
cells of the immune system attracted to the respiratory 
epithelium in addition to acting against infection can con-
tribute to the inflammatory process and the development 
of lesions in the tissue. For instance, neutrophils releasing 
ROS and enzymes of their granules degrade components 
of the extracellular matrix and activate other inflammatory 
cells such as macrophages, which produce inflammatory 
mediators such as TNF-α, IL-1β, and IL-6, among others 
(Fig. 2).

Ozone

Ozone is a gas produced in the environment by oxida-
tion–reduction reactions between NOx precursors such 
as nitric oxide (NO) and nitrogen dioxide  (NO2), volatile 
organic compounds (VOCs), and primary hydrocarbons con-
taining -OH radicals (Holland and Turekian 2005). Acute 
exposure to this gas alters lung and bronchial tissue, pro-
ducing lesions with desquamation and hypercellularity, loss 
of cilia, necrosis, and bronchiolar interstitial inflammation. 
These effects are mediated by the modulation of pathways 
involved in tissue repair and regeneration, the production 
of eicosanoids and reactive nitrogen species, and oxidative 
damage, among others (Sunil et al. 2013). In addition, ozone 
exposure induces the expression of inflammatory markers, 
including IL-6, CXCL1, CCL2, and myeloperoxidase (Holze 
et al. 2018).

Acute exposure to ozone increases the susceptibility to 
influenza A virus infection by several mechanisms. It has 
been reported that oxidative stress induced by ozone alters 
cellular membranes and increases the susceptibility to pro-
teases secreted by the respiratory nasal epithelium, thus 
activating the influenza A virus, and favoring its infectivity 
(Kesic et al. 2012) (Fig. 3). Epidemiological studies have 
shown associations between ozone concentrations and influ-
enza cases. In Hong Kong, it was observed that for every 
10 μg/m3 increase in ozone concentration, mortality and 
hospitalization due to influenza infection increase (Wong 
et al. 2009). Similar results were reported in China where it 
was also related to cold seasons (Meng et al. 2021). How-
ever, conflicting results have been reported (Ali et al. 2018). 
This could be explained by the antiviral potential attributed 
to ozone against several viruses such as influenza, rhino-
virus, adenovirus, poliovirus, and enterovirus 71, causing 
genome damage (Ji et al. 2019) and affecting the production 
of viral progeny by modulating the immune response (Lin 
et al. 2007).
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Indoor air pollutants

Indoor air pollutants result from activities such as smok-
ing, the use of cleaning and personal care products, and the 
use of household appliances which can release compounds 
such as CO, nitrogen oxides, metals, and gases that, when 
added to outdoor air pollutants, are highly harmful to human 
health (Carazo Fernández et al. 2013). Deteriorating indoor 
air quality has a significant impact on respiratory health and 
has been associated with an increased risk of respiratory 
diseases such as COPD, pneumonia, asthma, and infections 
(Gordon et al. 2014). In this regard, the relationship between 
acute exposure to domestic pollution caused by solid fuels 
in poorly ventilated homes and respiratory diseases has been 
reported (Nsoh et al. 2019).

Foster et al. (Foster et al. 2003) reported the effect of two 
biologically active indoor air contaminants on RSV replica-
tion. For this, respiratory epithelial cells were exposed to 
lipopolysaccharide (LPS), or Der p 1, an allergen of house 
dust mites. The results showed that RSV infection and IL-8 
production decreased in a dose-dependent manner with LPS, 
in contrast with Der p 1, which increased viral progeny pro-
duction and IL-8 expression (Foster et al. 2003). These results 
are explained by the ability of LPS to interact with the cellular 
receptors involved in RSV infection, inhibiting virus-cell adhe-
sion and thus decreasing virus infectivity, and the production 
of IL-8 (Hallak et al. 2000). In the same way, Der p 1, due to its 
proteolytic activity, has been attributed the capacity of splitting 
cellular receptors such as CD25, which causes a decrease in 
the proliferation of T lymphocytes, the production of IFN-γ, 
and increase of IL-4, favoring the synthesis of IgE (Ghaemma-
ghami et al. 2001). Besides, it polarizes the immune response 
towards the Th2 profile (Comoy et al. 1998), modulating the 
immune response thus favoring viral replication.

Different epidemiological studies have evaluated the rela-
tionship between exposure to tobacco smoke and RSV infec-
tion. It has been found that passive exposure to these parti-
cles constitutes a risk factor for diseases by RSV, mainly in 
infants under 5 years old, which is evidenced by an increase 
in hospital admissions due to complications derived from 
the infection by this virus (Maedel et al. 2018). Among the 
mechanisms involved are cigarette smoke’s ability to induce 
necrosis during RSV infection facilitates viral replication in 
the respiratory tract (Groskreutz et al. 2009). Additionally, 
RSV can negatively modulate the antiviral response medi-
ated by interferon, as well as diminish the production of 
cytokines and chemokines, such as IL-1β, CXCL10 (Castro 
et al. 2011), and leukemia inhibitory factor (LIF), which 
has an important role in the prevention of lung injury (Poon 
et al. 2019), thus increasing the susceptibility to infection, 
particularly in those individuals exposed to cigarette smoke 
in a chronic way (Modestou et al. 2010) (Fig. 2).

Analysis of air from daycare centers, health centers, and 
airplanes showed that the influenza A virus has the capacity 
to associate with PM, which enables its dissemination and 
entry to the body (Yang et al. 2011). On the other hand, 
it was demonstrated that the exposure to cigarette smoke 
before the infection by the influenza A virus decreases the 
production of IFN-g by lung T lymphocytes in a process 
mediated by the phosphorylation of transcription factors 
such as CREB, ATF-2, and c-Jun, leading to reduced immu-
nity and increased symptoms caused by the influenza virus 
(Feng et al. 2011). Additionally, it has been reported that 
the immune response triggered by the influenza A virus in 
the presence of cigarette smoke activates the oligoadenylate 
synthase 2′-5/RNAse L system in the lungs, triggering an 
exaggerated antiviral and inflammatory immune response 
and favoring the development of other pathologies such as 
COPD (Zhou et al. 2013). Finally, chronic exposure to ciga-
rette smoke, before infection by the influenza virus, leads 
to an oxidative inhibition of BAFF (B cell-activating fac-
tor belonging to the TNF family) and consequently of the 
secretory immunoglobulin A in the lung, in addition to a 
decrease of the AICDA gene, which contributes to a higher 
incidence and severity of viral infections in smokers (Wang 
et al. 2015).

Conclusion

In recent decades, worldwide concern has increased about 
the decrease in air quality, and its negative impact on 
human health. Among the observed effects, experimental 
studies show that exposure to different air pollutants favors 
the pathogenesis of viral respiratory infections, through 
common mechanisms. In the first steps, these pollutants 
have the ability to induce ROS production, leading to an 
oxidative state, the activation of the transcription fac-
tors NF-kB and AP-1, and the subsequent production of 
cytokines such as IL-1β, IL-6, IL-8, IL-13, and TNF-α, 
among others. Furthermore, the air pollutants can affect 
the cellular cycle, by inducing cytotoxicity and genotoxic-
ity. Together, these mechanisms exacerbate the inflamma-
tory state, and the hyperreactivity of the respiratory tract, 
altering the respiratory tract’s homeostasis and making it 
more susceptible to viral infections, including influenza 
and RSV. Besides, the epidemiological evidence has shown 
that the increase in clinical manifestations, hospitaliza-
tions, and emergency room visits related to these infections 
are associated with high air pollution periods. However, the 
mechanisms involved and the comprehensive understand-
ing of air pollutants’ consequences on the clinical course, 
pathogenesis, or prognosis of specific viral infections still 
require research.
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