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Abstract
The reliability of air quality simulations has a strong dependence on the input emissions inventories, which are associated with
various sources of uncertainties, particularly in regions undergoing rapid emission changes where inventories can be ‘out of date’
almost as soon as they are compiled. This work provides a new methodology for updating emissions inventories by source sector
using air quality ensemble simulations and observations from a dense monitoring network. It is adopted to determine the short-
term trends in carbon monoxide (CO) emissions, an important pollutant and precursor to tropospheric ozone, in a study area
centred around Beijing following the implementation of clean air policies. We sample the uncertainties associated with using an a
priori emissions inventory for the year 2013 in air quality simulations of 2016, using an atmospheric dispersion model combined
with a perturbed emissions ensemble (PEE), which is constructed based on expert-elicited uncertainty ranges for individual
source sectors in the inventory. By comparing the simulation outputs with observational constraints, we are able to constrain the
emissions of key source sectors relative to those in the a priori emissions inventory. From 2013 to 2016, we find a 44–88%
reduction in the transport sector emissions (0.92–4.4×105 Mg in 2016) and a minimum 61% decrease in residential sector
emissions (<3.5×105 Mg in 2016) within the study area. We also provide evidence that the night-time fraction of traffic sources
in 2016 was higher than that in the 2013 emissions inventory. This study shows the applicability of PEEs and high-resolution
observations in providing timely updates of emission estimates by source sector.

Keywords Air qualitymodel .Emissions inventory .Emissions uncertainty .Ensemble simulations .Low-cost sensors .Network
measurements

Introduction

Emissions inventories are essential inputs to air quality model-
ling from global to local scales (Granier et al. 2011; Hoesly
et al. 2018). Pollutant concentrations modelled with these
emissions are often used to assess the disease and mortality
burden (Lelieveld et al. 2015; Silva et al. 2017) or the loss in
crop yields (Tai et al. 2014; Solazzo et al. 2018) caused by
pollution exposure, and serve as the basis for pollution control
legislation and practice. However, emissions inventories are
subject to various types of uncertainties and many studies
have demonstrated that such uncertainties can be propagated
through the modelled concentrations into biases in the health
or vegetation damage estimates. For example, Crippa et al.
(2019) estimated 2.1 million premature deaths related to
PM2.5 pollution globally in 2010, with an uncertainty range
of ±1.1 million solely due to emission uncertainty, which is
comparable to the uncertainties associated with air quality
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models (Liang et al. 2018) and exposure-response functions
(Cohen et al. 2017). Hence, it is crucial to quantify and con-
strain the uncertainties in emissions inventories.

Emissions inventories can be developed following two
broad approaches. The bottom-up approach calculates emis-
sions from each source sector and fuel type by combining spe-
cific emission factors and corresponding activity rates (Liu
et al. 2015). It provides high spatiotemporal detail but requires
a large amount of input data which are likely to contain errors of
various kinds. For instance, several studies quantified the un-
certainties in emission factors (Zhao et al. 2012) and energy
statistics (Hong et al. 2017) for China, the world’s largest en-
ergy consumer and one of the top emitters of air pollutants, the
accuracy of whose emission estimates is of global importance.
The top-down proxy-based approach downscales and allocates
national or regional level statistics into a grid using spatial
proxies representing local activity levels (Raupach et al.
2010). It is less data-intensive but may introduce additional
uncertainties into the distributions of emissions. For example,
Geng et al. (2017) demonstrated that with the same total emis-
sions, modelled NO2 columns for China are sensitive to the
spatial surrogates used. Moreover, the correlation between
emissions and a proxy is often sensitive to the spatial resolution
and tends to break down at finer scales (Oda and Maksyutov
2011). A single inventory can be established incorporating both
approaches (e.g. Zheng et al. 2017), as emission factors and
activity data may not be available for all source sectors and
the use of proxies is essential for gridding; thus, different and
complex types of uncertainties may co-exist.

In addition to the inherent uncertainties in emission esti-
mates, there are uncertainties introduced by the trends of emis-
sions. This arises from the fact that emissions inventories are
inevitably time lagged — they are inventories of past emis-
sions. Depending on the approach(es) adopted, the lag be-
tween the occurrence of emissions and the completion of an
inventory may vary between one and several years (Janssens-
Maenhout et al. 2015). Yet inventories are not only applied in
hindcasting pollutant concentrations for the period when the
emissions occurred (Colette et al. 2017), but are also widely
used in forecasting (Brasseur et al. 2019). This can be partic-
ularly problematic in regions undergoing rapid emission
changes such as the case of China. During the past decade,
China has been actively combating its air pollution problem
through a series of clean air policies (Cheng et al. 2020). The
most up-to-date assessment identified nationwide reductions
in SO2, NOX, CO, PM10 and PM2.5 emissions between 2010
and 2017, while NMVOC and NH3 emissions increased and
plateaued, respectively (Zheng et al. 2018). Many provincial
and city-level governments have also been implementing their
own pollution control measures which are of differing strin-
gency and effectiveness, leading to spatially inhomogeneous
emission changes (Cheng et al. 2019). Hence, when an
existing emissions inventory is used to simulate air quality at

a later point in time, the uncertainties and errors due to emis-
sion trends should also be taken into consideration.

Given these uncertainties, there have been numerous stud-
ies that verify and/or optimise emissions inventories. The ed-
dy covariance technique, originally established to quantify the
biosphere-atmosphere carbon and heat exchange (Baldocchi
2003), is also increasingly used to measure anthropogenic
pollutant fluxes from urban canopies. Vertical fluxes provide
a direct measure of the emission strength from an upwind
source area referred to as the flux footprint, which can be
scaled for comparison with emissions inventories (Lee et al.
2015; Squires et al. 2020). To expand the small footprint areas
associated with tower-based measurements, measurements
from mobile platforms such as towers on vehicles (Moore
et al. 2009) and aircrafts (Vaughan et al. 2016) have been used
to obtain urban-scale estimates. Another key approach is to
infer emission strengths from ambient pollutant concentra-
tions (Tang et al. 2013; Carruthers et al. 2019) but more com-
monly satellite retrievals of total column quantities due to their
wider spatiotemporal coverage (Wang et al. 2010, 2015; Liu
et al. 2016). Statistical inversion techniques span complex
fitting algorithms and mass balance box modelling (de Foy
et al. 2014). Other studies have optimised simulations of
chemical transport models using variational or sequential al-
gorithms (Streets et al. 2013)

In this study, uncertainties in an emissions inventory are
examined using forward modelling with a perturbed emis-
sions ensemble (PEE), analogous to the perturbed physics
ensemble (or perturbed parameter ensemble) in climate
modelling. Like air quality simulations, climate simulations
are subject to various sources of uncertainty, including uncer-
tainties in the initial conditions and formulations of models
and natural climate variability (Palmer 2000). Ensemble ap-
proaches have been widely adopted to quantify such uncer-
tainties. The Intergovernmental Panel on Climate Change
Assessment Reports use multi-model ensembles, i.e. a collec-
tion of simulations that sample a wide range of model struc-
tural choices and internal variability performed by different
modelling centres. Conversely, the perturbed physics ensem-
ble can be used to systematically sample the parameterisation
uncertainty within a single model (Collins et al. 2011).
Perturbations can be made to one parameter at a time
(Murphy et al. 2004). However, any effects of parameter in-
teractions are then ignored. Moreover, the fraction of the pa-
rameter space which can be explored rapidly reduces with
growing number of parameters (Saltelli and Annoni 2010).
To allow for parameter interaction and to increase the sam-
pling efficiency, many studies have simultaneously perturbed
multiple parameters (Lambert et al. 2013). The uncertainty
range for each parameter is commonly determined in consul-
tation with experts in the field (Brierley et al. 2010). Lee et al.
(2013) described rigorous procedures of the Sheffield
Elicitation Framework (Oakley and O’Hagen 2019).

1588 Air Qual Atmos Health (2021) 14:1587–1603



This study aims to reduce the uncertainties in carbon mon-
oxide (CO) emissions in an a priori emissions inventory for
Beijing in the light of recent developments. Apart from being
a major pollutant, CO plays an important role in atmospheric
chemistry as the dominant sink for hydroxyl radicals and a
precursor of tropospheric ozone. CO concentrations in Beijing
have showed a continuous downward trend since 2013 (the
year for which the inventory was compiled) (Li et al. 2020),
which has been attributed to reductions in emissions locally
(Xue et al. 2019) and in the wider region (Jiang et al. 2017).
This could result in large uncertainties when the emissions
inventory is used in simulations of more recent years. By
perturbing key parameters in the inventory within expert-
elicited uncertainty ranges, a PEE was constructed. It was
subsequently used in an atmospheric dispersion model to sim-
ulate CO concentrations. By comparing the simulation outputs
with observations, the initial uncertainty ranges could be
constrained and the trends in emissions could be detected.

Data and methods

Base emissions

A special version of the Multi-resolution Emission Inventory
for China (MEIC) v1.3, developed by Tsinghua University
(http://www.meicmodel.org, last accessed 22 August 2020),
was developed for the UK-China joint research programme
Atmospheric Pollution and Human Health in a Chinese
Megacity (APHH-Beijing) (Shi et al. 2019) and used in this
work. Details of the data and approaches used in developing
the MEIC can be found in Zheng et al. (2018). This version
covers an area of 120 km × 150 km which extends over
Beijing (excluding most of Yanqing, Huairou, Miyun
Districts and the westernmost parts of Mentougou and
Fangshan Districts) and regions in Hebei Province to the east
and south with 3 km × 3 km horizontal resolution. For this
study, a smaller region of 35 × 48 grid cells was cropped
(starting from the northwest corner) and used as the a priori
emissions to be optimised, hereinafter referred to as the base
emissions (Fig. 1). There are seven vertical layers with the
tops of layers at 38, 90, 152, 228, 337, 480 and 660 m above
ground, respectively. This version provides emissions of CO,
NO, NO2, VOC, SO2, PM10 and PM2.5 from four sectors
(industry, power, residential and transport) in the year 2013.
Each sector is characterised by a specific hourly diurnal pro-
file applied to all pollutants. Emissions are monthly varying
with no day-of-week variation. The sectors also differ in their
vertical distributions, with residential and transport sectors
emitting solely in the lowest layer. Industrial sources are dis-
tributed within the lowest three layers. Power emissions are
present in all except the lowest layer.

Observations

Observed concentrations were used to evaluate the PEE sim-
ulations to constrain uncertainty ranges of the base emissions.
The Beijing Municipal Environmental Monitoring Center
(BJMEMC) currently operates 35 long-term air quality mon-
itoring sites, 33 of which were in operation in 2016 and locat-
ed within the study area (Fig. 1, Table S1), determined by the
extent of the base emissions. The sites can be categorised into
five types according to their local environment: urban sites in
the 6 central districts, suburban sites in the outer district cen-
tres, traffic monitoring sites near major roads, regional back-
ground sites that sample pollution from surrounding regions
and one clean site (Chen et al. 2015). All sites were equipped
with continuous automated monitoring systems for CO, NO2,
O3, SO2, PM10 and PM2.5. The CO analysers are required to
have an indication error within ±2% of the full measurement
range (0–58 mg/m3) (Ministry of Environmental Protection of
the People’s Republic of China 2013). Real-time hourly con-
centrations are published on the website of BJMEMC, while
historical data is not openly available. The provisional real-
time data is archived by several providers. We used 2013 data
from http://data.epmap.org (last accessed on 1 April 2021)
and 2016 data available at https://quotsoft.net/air/ (last
accessed on 22 August 2020).

A second dataset was established using low-cost SNAQ
(Sensor Network for Air Quality) boxes during the APHH-
Beijing winter (November–December 2016) and summer
campaigns (May–June 2017) (Shi et al. 2019). The SNAQ
boxes were equipped with electrochemical sensors and optical
particle counters measuring CO, CO2, NO, NO2 and particu-
late matter every 20 s (Popoola et al. 2018). A total of 21
sensor nodes were deployed around Beijing for near-surface
measurements in a variety of microenvironments with one
node outside of the modelling domain (Fig. 1, Table S2).
This dataset has been validated against reference measure-
ments during the campaigns and data from the long-termmon-
itoring sites (Shi et al. 2019). The CO measurements are ac-
curate to within ±10% for concentrations in the range of 0–10
mg/m3.

Model

ADMS-Urban, a state-of-the-art high-resolution, urban-scale,
quasi-Gaussian dispersion model (McHugh et al. 1997; Owen
et al. 2000), was used for the PEE simulations. It has been used
to produce fine-scale air quality simulations in many cities
worldwide (e.g. Hood et al. 2018), which can be further applied
in assessing pollution exposure and health risk (He et al. 2019),
or testing the effectiveness of emission control strategies
(Taksibi et al. 2020). In Beijing, it has also been adopted to
model air quality at the street level (Biggart et al. 2020).
Gaussian dispersion models assume a Gaussian concentration
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distribution in the vertical and crosswind directions in a plume
downwind of a source (Arya 1999). The plume spread param-
eters (i.e. Gaussian distribution parameters) depend on the con-
ditions of the atmospheric boundary layer which are described
in ADMS-Urban using the Monin-Obukhov similarity theory
(Venkatram 1996). The minimum meteorological input data
required are wind direction and speed and at least one of the
Obukhov length (LO), the surface sensible heat flux or the cloud
cover, based on which the atmospheric boundary layer height
(ABLH) is estimated. The model uses the ratio of ABLH to LO
to generate continuous profiles of boundary layer properties
such as the mean wind speed, the turbulent velocity and the
buoyancy frequency, which are then used to calculate plume
spread parameters that also vary with the source and plume
height. Under convective conditions (here defined as
ABLH/LO < −0.3), a positively skewed concentration distribu-
tion is assumed in the vertical (Cambridge Environmental
Research Consults Limited 2017). ADMS-Urban is integrated
with fast chemistry schemes that simulate the NOX-O3-VOC
chemistry and the sulphate chemistry (Azzi et al. 1992; Malkin
et al. 2016). Chemical production and loss of CO are not sim-
ulated. Due to its long lifetime of 1–3 months (Khalil and
Rasmussen 1990) and the small contributions from the photo-
chemical production via VOC oxidation relative to the primary
emissions, CO is commonly modelled as an inert species sub-
ject to dispersion and mixing only at city to regional scales
(Saide et al. 2011; Panagi et al. 2020).

Expert elicitation of emissions uncertainties

To explore the effect of varying magnitudes of source sectors
on CO concentrations, individual emission parameters were
perturbed simultaneously. The choice of parameters was
based on the structure of the base emissions (Table 1).
Three-dimensional emissions were split into ground (the low-
est layer) and elevated emissions (all upper layers) to allow for
perturbations to the vertical emissions profile. As power sector
emissions are present in all but the lowest layer, they were
represented by a single parameter and their vertical distribu-
tion was unaffected. In addition to perturbing the magnitude
of total transport sector emissions, another parameter was in-
troduced to represent the night-time fraction of traffic sources,
defined as those occurring during 11pm–6 am (inclusive) fol-
lowing Biggart et al. (2020).

Uncertainty ranges of the selected parameters were deter-
mined through expert elicitation. Participants included re-
searchers who also used the same emissions inventory and
experts specialised in developing emissions inventories for
the region. They were invited to anonymously suggest a lower
and an upper bound of uncertainty for each parameter, such
that the true parameter value would be unlikely to fall outside
of this range. The range represents an uncertainty range of the
emission trend, i.e. the ratio of 2016 emissions to the base
emissions from 2013, for all parameters except the night-
time fraction of transport sources, for which an uncertainty

Fig. 1 The modelling domain as set by the extent of the base emissions
with the locations of observations, including a zoomed view of those
within the 5th Ring Road in Beijing. Long-term monitoring sites are
colour-coded according to the site type and labelled by their acronyms.

Locations of SNAQ measurements are coloured in grey. Coordinates and
full names of the long-term sites are listed in Table S1. Coordinates of the
SNAQ sites can be found in Table S2. The administrative divisions of
Beijing are shown by light grey contours
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range of the absolute value was sought. The responses from
the first round were sent back anonymously to the experts for
review. The maximum and minimum values given by all par-
ticipants for a parameter in the second round of responses
were used to determine its uncertainty range (Table 1,
column Initial PEE). Inherent uncertainties in the base emis-
sions were not considered as they are mostly likely small
compared to the uncertainties due to emission reductions.
Zhao et al. (2012) estimated an uncertainty range of −20%
to +45% for CO emissions in China in 2005, which was dom-
inated by uncertainties in emission factors. Another study
quantified a 15.6% uncertainty associated with energy statis-
tics for CO2 (co-emitted with CO) emissions in 2012 (Hong
et al. 2017). Though not calculated for the base emissions in
this study, these values are substantially smaller than the un-
certainty ranges in Table 1.

Following the same procedure, six additional parameters
and their uncertainty ranges were determined for NOX emis-
sions which will be constrained in a separate paper. Together
the parameters constitute a 12-dimensional parameter space.
As CO is unreactive in ADMS-Urban, varying NOX emis-
sions have no impact on the modelled CO concentrations
(and vice versa). Hence, all parameters can be perturbed si-
multaneously. To efficiently probe this uncertainty space with
a limited number of simulations, themaximin Latin hypercube
sampling was used. A Latin hypercube design divides the
range of each parameter into n intervals of equal probability
and samples once from each interval (McKay et al. 1979).
There can be a large number of permutations, but some are
not optimal, for instance, when parameters are highly corre-
lated or when the design leaves large areas of the space unex-
plored. A secondary design criterion is thus needed (Joseph
and Hung 2008). The maximin distance criterion is a space-
filling design that maximises the minimum distance between
pairs of sample points (Johnson et al. 1990). Following the n =

10d (d is the number of parameters) rule of thumb (Loeppky
et al. 2009) adopted in statistical emulation studies, 120 sam-
ples were drawn. Using the sampled parameter values, a spa-
tially uniform scaling was applied to the base emissions to
produce an initial 120-member PEE.

Simulation setup and initial evaluation

The initial 120-member PEE and the base emissions were
used to simulate hourly CO concentrations at all observation
locations (see Fig. 1) in 2016. All simulations were forced
with the same lateral boundary conditions including meteorol-
ogy and background pollution concentrations.

Hourly average wind direction and speed, cloud cover and
air temperature observed at the Beijing Capital International
Airport (located in the northeast of the modelling domain) in
2016 were obtained from the NOAA Integrated Surface
Database (Smith et al. 2011). While these near-surface condi-
tions were first assumed to apply throughout the modelling
domain, local perturbations due to friction against obstacles
such as buildings were accounted for through the additional
definition of the roughness length (z0) and the minimum LO.

Based on previous literature (e.g. Stewart and Oke 2012), a z0
of 0.5 m and a minimum LO of 30 m were used for the mete-
orological measurement site in open landscape. For the output
locations mostly in more built-up, yet still heterogenous envi-
ronments as revealed by the site types, the z0 andminimumLO
were set to 1 m and 100 m, respectively. The z0 of 1 m results
in a minimum ABLH of 120 m imposed by the model
(Cambridge Environmental Research Consults Limited
2017), which is broadly consistent with ceilometer measure-
ments during the APHH-Beijing campaigns (Kotthaus and
Grimmond 2018; Shi et al. 2019).

Background pollutant concentrations are required as an in-
put for ADMS-Urban to represent pollution levels not

Table 1 Selected emission
parametersa and the respective
uncertainty ranges sampled by the
initial and the optimised perturbed
emissions ensembles (PEEs)

Parameter Initial PEE Optimised PEE

Min Max Min Max

Industry sector ground level CO emissions 0.3 1.8 0.1 1.8

Industry sector elevated CO emissions 0.3 1.4 0.1 1.4

Power sector CO emissionsb 0.2 1.5 NA NA

Power sector CO emissions below 152 m NA NA 0.1 1.8

Power sector CO emissions above 152 m NA NA 0.1 1.8

Residential sector CO emissions 0.3 1.5 0.1 1.5

Transport sector CO emissions 0.4 2 0.1 1.5

Night-time fraction of transport sector CO emissions 0.1 0.5 0.1 0.3

a The night-time fraction of transport sector CO emissions is defined as a proportion (%) of the daily totals. Other
parameters are defined as ratios of the 2016 emissions to the base emissions from 2013
b Power sector CO emissions in the initial PEE are split into two parameters—power sector CO emissions below
and above 152 m in the optimised PEE
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explicitly modelled (i.e. not included in the input emissions)
and, for reactive species, to constrain the rate coefficients of
reactions (Cambridge Environmental Research Consults
Limited 2017). A baseline CO concentration from the 33
long-term monitoring sites within the modelling domain was
used as the background. It was defined as the 10th percentile
of all measurements in a moving 3-h window to reflect the
expected smooth variation of a baseline (Ruckstuhl et al.
2012) and to account for any measurement errors (Popoola
et al. 2018).

An evaluation of the initial PEE simulations’ performance
in modelling local CO concentrations observed at the long-
term monitoring sites in 2016 is provided in Fig. 2. Local
concentrations were calculated by subtracting the input back-
ground levels from both the modelled and the observed total
signals. Based on the definition of background concentrations
and the fact that CO does not undergo chemical reactions in
ADMS-Urban, it is evident that local CO concentrations rep-
resented concentrations resulting solely from the input CO
emissions, which were to be constrained.

Figure 2 shows the performance of the initial PEE simula-
tions and two simulations using the base emissions for the
year 2013 (hereinafter referred to as the 2013 run) and the year
2016 (hereinafter referred to as the base run). The 2013 run
was forced with meteorology and background concentrations
from 2013, the year for which the base emissions were com-
piled. The modelled CO concentrations showed good agree-

ment with those observed in 2013 overall, with larger discrep-
ancies at a few sites during the autumn and winter months
(Fig. S1). This validated the performance of ADMS-Urban
given correct inputs, for example, an up-to-date emissions
inventory. The base run was forced with the base emissions,
the same meteorology and background concentrations from
2016 as those input in the initial PEE simulations and was
also evaluated against observations from 2016. For all simu-
lations, we calculated the normalised mean bias factors
(NMBF) in local CO concentrations defined as:

NMBF ¼ Mod

Obs
−1; if Mod≥Obs

¼ 1−
Obs

Mod
; if Mod < Obs

ð1Þ

where Mod and Obs are the modelled and observed annual
mean local CO concentrations, respectively. A positive
NMBF indicates an overestimation by a factor of NMBF+1,
while a negative NMBF represents an underestimation by a
factor of 1−NMBF (Yu et al. 2006). The NMBFs showed that
the degree of overestimation at most urban and traffic moni-
toring sites in the base run was substantially reduced in the
2013 run, indicating that the base emissions compiled for the
year 2013 became high biased in 2016, which was expected
given the series of clean air policies implemented.

Fig. 2 Distribution of the normalised mean bias factors (NMBFs) in
hourly local (i.e. background removed) CO concentrations calculated
for the initial perturbed emissions ensemble (PEE) simulations (shown
as light grey box-and-whisker plots), the base run (red line segments) and
the 2013 run (green line segments) at each long-termmonitoring site. The

monitoring sites are colour-coded according to the site type: urban site
(magenta), traffic monitoring site (purple), suburban site (orange), clean
site (light green) and regional background site (green). Performance of the
2013 run could not be evaluated at the sites NSH, DSH and DGC, where
CO observations from 2013 were unavailable
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The initial PEE simulations also resulted in a widespread
overprediction of local CO concentrations. All simulations
overestimated the annual mean local CO concentrations at 6
urban and traffic monitoring sites (Fig. 2). In other words, the
ensemble failed to simulate concentrations comparable to the
observations at these locations; thus, the uncertainty ranges of
emissions could not be constrained. In addition to the
overestimated mean concentrations, the modelled mean diur-
nal variations of local CO concentrations were characterised
by two distinct peaks in the mornings and evenings across the
modelling domain. The observed diurnal profiles were much
flatter at most sites, with other locations showing elevated
concentrations throughout the night (Fig. S2). This suggested
that the diurnal distribution of CO emissions, most likely that
from traffic sources, was also biased in the initial PEE.

Optimised perturbed emissions ensemble

To reduce the high bias in the initial PEE, the lower bounds of
uncertainty of most parameters were decreased (Table 1,
column Optimised PEE). The upper bound of uncertainty of
transport emissions was also reduced. For other parameters,
the elicited upper bounds were retained due to lack of evi-
dence supporting a decrease. The uncertainty range of most
parameters was therefore widened.

Power sector emissions were separated into emissions be-
low and above 152 m based on the vertical distribution of the
base emissions, which peak in the 4th layer (top-of-layer at
152 m). Perturbations to the vertical profile were thus enabled.
The absolute maximum value from expert elicitation was set
as the upper bound and a newly defined lower bound was
used, allowing for a wide uncertainty range.

We also modified the definition of night-time transport
emissions as those occurring between 0 am and 5 am (inclu-
sive), a time frame in which there were no restrictions for any
types of vehicles in 2016 (Zhang et al. 2019). This fraction
represents 9% of the total traffic sources in the base emissions.
As the base run generally overestimated daytime concentra-
tions while underestimating night-time levels (see Fig. S2), we
used an uncertainty range of 10–30%.

The number of emission parameters was thus increased to
14. We drew 140 samples from the new 14-dimensional pa-
rameter space to construct an optimised PEE. Two examples
(with the NOX emissions parameters omitted) are shown in
Fig. 3b, while Fig. 3a summarises the key steps in the meth-
odology presented in this section. The annual total CO emis-
sions and their vertical and mean diurnal distributions in each
optimised PEE member, compared to those in the base emis-
sions, are shown in Fig. 4. The optimised PEE was then used
in simulations forced with the same meteorological data and
background concentrations from 2016 as the initial PEE
simulations.

Results and discussion

As with the evaluation of the initial PEE simulations (see
Section ‘Simulation setup and initial evaluation’), we com-
pared local CO concentrations simulated with the optimised
PEE against those observed at the long-term monitoring sites
in 2016. The mean square error (MSE) in hourly local CO
concentrations was calculated for each simulation at each site.
The MSE is defined as:

MSE ¼ 1

n
∑n

i¼1 modi−obsið Þ2 ð2Þ

where obsi is the local CO concentration observed in hour i,
modi is the corresponding simulation output and n is the length
of the hourly observations available. Following Solazzo and
Galmarini (2016), MSE can be decomposed as the sum of
three components:

MSE ¼ mod−obs
� �2

þ σmod−rσobsð Þ2 þ σobs
2

� 1−r2
� � ð3Þ

where r is the Pearson’s correlation coefficient between the
modelled and observed concentrations.

The first two terms in Eq. (3) represent errors associated
with the bias and the variance, which measure the accuracy
and the precision of simulations, respectively. The last term
reflects the fraction of the observed variance not explained by
the model and is referred to as the minimum achievable MSE
(mMSE). As explained in Section ‘Simulation setup and ini-
tial evaluation’, the NMBF gives the magnitude of the factor
by which simulation outputs differ from observations and its
sense (i.e. over- or underestimation) (Yu et al. 2006), the latter
was essential in adjusting the elicited uncertainty ranges. Yet
NMBF only measures model errors associated with the bias,
whereas theMSE is a more compact metric that estimates both
systematic and random errors (Solazzo and Galmarini 2016).
The benefits of using the MSE for model performance evalu-
ation are demonstrated in the following.

As shown in Fig. 5a, MSEs of the optimised PEE simula-
tions span a wide range at most urban and traffic monitoring
sites, while other sites are mainly associated a narrower range
of MSEs. This indicates higher base emissions and thus larger
variations between PEE members in the central urban areas
than the periphery with the same perturbations. The sites LLH,
YLD, YF (regional background sites) and DX (a suburban
site), all located in the south of the modelling domain, are
associated with the largest MSEs. This is evident from the
minimum MSEs (i.e. the lower end of the whiskers) which
are the largest at these sites. MSE breakdown in Fig. 5b shows
that the variance and bias errors are larger than the mMSEs at
most sites. The MSEs at these four sites, however, are domi-
nated by the mMSEs, which can be further decomposed

1593Air Qual Atmos Health (2021) 14:1587–1603



according to Eq. (3). As the correlation coefficients are low
at all sites due to removal of background concentrations
(Fig. 5c), the mMSEs are mostly made up of the variance
in observations. The four sites are in fact associated with the
highest observed variance, mainly from the winter months
(Fig. 5d). The overall higher variance in CO concentrations
in winter results from the frequent occurrence of severe
pollution episodes in the study area due to enhanced emis-
sions and stagnant weather conditions (Chen and Wang
2015). The particularly high variance at the aforementioned
sites can be caused by local concentrations well above net-
work averages during such episodes. Hua et al. (2018)
found that the much higher CO, NO2 and PM2.5 concentra-
tions compared to the city-wide means at the site LLH in
winter 2015/2016 could be attributed to local coal combus-
tion and biomass burning for residential heating, while nat-
ural gas powered central heating (with much lower emis-
sions) was provided in urban Beijing. The sites YLD, YF
and DX were likely affected by similar emissions.

Each PEE simulation is associated with 33 MSEs (i.e. one
for each monitoring site), the distribution of which is skewed
due to high values as discussed above. Therefore, we used the
median MSE to represent a simulation’s average performance
across the modelling domain (Fig. 6), instead of the mean
MSE which is inflated by the extreme values. The UK
Department for Environment, Food and Rural Affairs also
uses the median to represent network average concentrations
in their ‘Air Pollution in the UK’ reports. It is more robust than
the arithmetic mean particularly when a site with extreme
concentrations starts or ceases operating (Department for
Environment Food and Rural Affairs 2020). Different combi-
nations of emission parameters may result in the same con-
centration at a particular location. By using observations from
a site network that samples a wide range of emission strengths
and source mixes, the risk of fitting the PEE to just one of
several possible parameter settings can be reduced. Figure 6
reveals that in the top performing optimised PEE simulations,
the bias and variance components are small and the remaining

Fig. 3 (a) Main steps of the methodology presented in this paper. (b)
Design of the optimised perturbed emissions ensemble (PEE) with two
members as examples. The NOX emissions parameters are omitted as
they are beyond the scope of this work. Each axis of the hexagon repre-
sents a CO emissions parameter, the uncertainty range of which is la-
belled in black. Note that the uncertainty ranges vary between parameters,

but the same scale is used on all axes with labels shown on one (red). Blue
dots show the values set for individual parameters in a specific member.
The shaded area connecting the dots represents how the multidimensional
uncertainty space is sampled by that member. The parameter for the
night-time fraction of transport emissions is also not shown, as its uncer-
tainty range substantially differs from those shown here
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MSEs are mostly made up of the mMSE. As the bias is mainly
introduced by external forcings, it is greatly reduced with im-
proved emissions estimates. The variance error and the mMSE
are associated with internal processes in the model; thus, they
are more relevant from a model development viewpoint, less
so in the context of model application (as is the purpose of
constraining emission estimates). The mMSE is the least trou-
blesome amongst the error components (Solazzo and
Galmarini 2016), because it reflects non-systematic errors in-
cluding noise in the observations as discussed above.

We also calculated each optimised PEE simulation’s MSE
in the annual mean diurnal variations of local CO concentra-
tions at each monitoring site. This was to constrain the uncer-
tainty range of the night-time fraction of traffic emissions

which affects the diurnal distribution of concentrations. The
medianMSE associated with a simulation was again used as a
measure of its overall skill in simulating the diverse diurnal
profiles within the modelling domain.

Figure 7 shows the average performance of individual
optimised PEE simulations against the value set for each emis-
sion parameter in Table 1. It is evident from Fig. 7f that trans-
port emission estimates are substantially lower in the top
performing simulations (as measured by the median MSE in
hourly local CO concentrations) than those in the base run. In
simulations with a median MSE within the 1st quartile, trans-
port emissions are 11–86% of those in the base emissions.
This range reduces with decreasing median MSE, such that
in simulations with a median MSE below the 5th percentile,

Fig. 4 (a) Annual total CO
emissions and contributions from
individual source sectors in the
optimised perturbed emissions
ensemble (PEE) and the base
emissions (marked by the red ar-
row). (b) Vertical distribution of
the annual total CO emissions in
the optimised PEE and the base
emissions. The height is given as
the top of layer height above
ground. (c) Annual mean diurnal
variations in total CO emissions
in the optimised PEE and the base
emissions. In panels (b) and (c),
the base emissions are coloured in
red and the optimised PEE mem-
bers are colour-coded according
to their total CO emissions with
darker colour indicating higher
values
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Fig. 5 Distribution of (a) the
mean square errors, (b) the com-
ponents of mean square errors and
(c) the Pearson’s correlation co-
efficients in hourly local (i.e.
background removed) CO con-
centrations calculated for the
optimised perturbed emissions
ensemble (PEE) simulations
(shown as dim grey box-and-
whisker plots) and the base run
(red line segments) at each long-
term monitoring site. (d) Annual
and seasonal variance in the ob-
served hourly local CO concen-
trations at each site. Winter (DJF)
variances are represented by the
y-axis on the right, while vari-
ances in other seasons and the
annual variances are represented
by the y-axis on the left. In all
panels, the monitoring sites are
colour-coded according to the site
type: urban site (magenta), traffic
monitoring site (purple), subur-
ban site (orange), clean site (light
green) and regional background
site (green)

Fig. 6 Median mean square
errors in hourly local (i.e.
background removed) CO
concentrations of the optimised
perturbed emissions ensemble
(PEE) simulations and the base
run (marked by the red arrow),
sorted in ascending order and
decomposed into bias, variance
and minimum achievable mean
square error

1596 Air Qual Atmos Health (2021) 14:1587–1603



traffic sources are reduced to 12–56% of those in the base
emissions. As discussed earlier, this predominantly reflects
the trends in emissions between 2013 (the year for which the
inventory was compiled) and 2016 (when the observations
were made). It is also worth noting that 1% of a 140-
member ensemble only consists of two members. As shown
in Fig. 6, differences in the median MSEs of the top
performing simulations are small; thus, the parameter ranges
constrained by the top 1% were regarded as not robust. In
addition to the total traffic emissions, Fig. 7g reveals that the
uncertainty range for the night-time proportion can also be
constrained. Amongst the top 5% of the simulations for
modelling the mean diurnal cycles, the night-time fraction of

traffic emissions varies between 16% and 26%, substantially
higher than the 9% in the base emissions. Unlike the transport
sector, though the maximum parameter value for residential
emissions (Fig. 7e) also decreases with improving simulation
performance, the minimum value is fixed at its lower bound of
uncertainty (see Table 1) except in the top performing 1%. It
cannot be ruled out that the true minimum may be smaller. In
other words, the uncertainty range can only be constrained on
one side — residential emissions are likely to be below 39%
of those in the base emissions, if the top performing 5% of the
simulations are considered. In terms of industry and power
sector emissions (Fig. 7a–d), however, values in the top
performing 25% of the simulations often span the entire

Fig. 7 Performance of the
optimised perturbed emissions
ensemble (PEE) simulations (dim
grey bars) and the base run (red
bars) as a function of emission
parameter values. The scales on
the x-axes correspond to the un-
certainty ranges in Table 1. Green
shades mark the range of param-
eter values in the top performing
1%, 5%, 10%, 15%, 20% and
25% of the simulations, as mea-
sured by their median mean
square errors in hourly local (i.e.
background removed) CO con-
centrations at the long-term mon-
itoring sites across the modelling
domain (see Fig. 6) in all subplots
except in (g), where median mean
square errors in the mean diurnal
variations of local CO concentra-
tions are used (note the different
scale on the y-axis)
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uncertainty range of the individual parameters. The ranges
only start to decrease when the median MSE falls below the
10th percentile. Even ranges in the top 1% are wider than
those for the transport and residential sectors. Hence, the cur-
rent PEE and existing observations do not provide enough
constraints for these emission parameters.

Figure S3 reveals that the contribution of power sector
emissions to the annual mean local CO concentration is min-
imal at all long-termmonitoring sites in the base run, as power
sources are negligible in the total base emissions (see Fig. 4a).
An increase by 80% (i.e. upper bound of uncertainty, see
Table 1) is too small to be reflected in changes in the simulated
concentrations, particularly as the output locations are not
within the influence region of any power sources, which are
only present in a few grid cells. This can also be seen in the
source apportionment by grid cell for the site TZ (Fig. S4).

There are several possible explanations for the relatively
small contributions to the CO concentrations at most sites
from industrial emissions (Fig. S3), which makes up approx-
imately 1/3 of the total base emissions (see Fig. 4a). Industrial
sources may be under-constrained as emissions were split into
two parameters and perturbed simultaneously (i.e. not in a
correlated manner) for varying vertical profiles (see
Table 1). The perturbed range of the sum of the two parame-
ters, the total industrial emissions, thus may not be large
enough to capture the real emissions. Additionally, the
existing ground-based observations may not provide suffi-
cient constraints for the vertically distributed emissions.
Moreover, it is evident from Fig. S4 that most industrial
sources are concentrated in the east and south of the modelling
domain; thus, their influence on the concentrations at most
monitoring sites may have a stronger dependence on the wind
direction, compared to the more ubiquitous residential and
transport sources. To test this hypothesis, we further evaluated
the performance of the optimised PEE simulations in each
season. As can be seen from Fig. 8, the ranges in industrial
ground and elevated CO emissions reduce with decreasing
median MSE in hourly local CO concentrations in spring
and summer, when the winds are mainly from the south. In
autumn and winter with prevailing northerly winds (Zhao
et al. 2011), the ranges are only reduced when the median
MSE falls below the 5th percentile. This indicates that indus-
trial emissions have a larger influence on the CO concentra-
tions at the monitoring sites when located in the upwind di-
rection. However, unlike the residential and transport sectors
(see Fig. 7e and f), no conclusion can be drawn with regard to
the sector total emissions in 2016.

Finally, we also evaluated the performance of the
optimised PEE in simulating local CO concentrations mea-
sured by SNAQ boxes during the APHH-Beijing winter cam-
paign (Fig. S5). Using this short-term, independent set of ob-
servations and the evaluation method described above, we
were again able to constrain the uncertainty range of the

transport sources and (partly) that of the residential emissions
(Fig. S6). Uncertainty ranges of the traffic and residential
sources in the top 5% of the simulations are identical to those
found using the full year’s reference measurements as con-
straints, i.e. 12–56% and <39% of the base emissions, respec-
tively, providing further support for the robustness of the
results.

Discussion and conclusion

Annual CO emissions from the industry, power, transport and
residential sectors are 9×105, 2.6×104, 7.9×105 and 9.1×105

Mg, respectively, in the base emissions from 2013 for the
study area covering most of Beijing and parts of Hebei
Province. In 2016, transport and residential sources likely de-
creased to 0.92–4.4×105 Mg and under 3.5×105 Mg (i.e. 44–
88% and >61% reductions from 2013), respectively, based on
the uncertainty ranges constrained by the top performing 5%
of the optimised PEE simulations. These emission reductions
provide strong and independent evidence for the effectiveness
of relevant pollution control measures implemented in the
study area. Annual industrial and power sector emissions in
2016 could not be constrained with the current PEE and
existing observations. Hence, though our analysis suggested
a downward trend in the total anthropogenic CO emissions
within the study area from 2013 to 2016 (see Fig. 2), the
magnitude of which could not be quantified.

Squires et al. (2020) compared the same base emissions
with pollutant fluxes measured from a tower in central
Beijing. On average, 90% of the flux was contributed by a
footprint within 2 km from the tower, but contributions from
up to 7 km away were measured depending on wind and
atmospheric stability. They found that using CO base emis-
sions from 2013 overestimated the observed fluxes by a mean
factor of 4.8 during the APHH-Beijing winter campaign in
2016 and a mean factor of 10 during the summer campaign
in 2017. Reducing the base emissions by 30% in winter and
43% in summer, the modelled fluxes were still on average 3.4
and 5.6 times higher in the respective seasons. They further
considered only the traffic and residential sectors, as no indus-
trial or power sources were identified within the footprint, and
overestimations with a factor of 3.1 in winter and 5.2 in sum-
mer were still identified. Our findings suggest the sum of
traffic and residential sources was likely below 7.9×105 Mg
(taking the upper bound of uncertainty for both sectors) in
2016. The corresponding value in the 2013 base emissions is
thus at least 2.2 times higher. This result has been derived for
the entire modelling domain with no spatiotemporally varying
changes assumed. It is broadly consistent with the factor of 3.1
found for the much smaller flux footprint during the APHH-
Beijing winter campaign by Squires et al. (2020). They also
revealed an underestimated night-time fraction in the diurnal

1598 Air Qual Atmos Health (2021) 14:1587–1603



profile of CO base emissions (as the sum of the transport and
residential sources) compared to flux measurements.

The standard MEIC v1.3 provides provincial-level totals
from which the base emissions were downscaled and gridded
(Zheng et al. 2017). The open-access version includes emis-
sion estimates for 2012, 2014 and 2016 (http://www.
meicmodel.org, last accessed 22 August 2020). The
emission reductions are smaller than those in our findings.
In Beijing, transport emissions in 2016 were 63% and 91%
of those in 2012 and 2014, respectively. Residential sources in
2016 were 71% and 86% of those in 2012 and 2014. Even
smaller reductions were calculated for Hebei. Another
bottom-up inventory for Beijing (Xue et al. 2019) revealed a

40% reduction in total CO emissions from 2013 to 2015.
Different source categories were used such that there was no
residential sector comparable to that in the MEIC, but a 43%
decrease in mobile sources (including on-road and non-road
vehicles) was found, more consistent with the 44–88% de-
crease in transport emissions between 2013 and 2016 found
in this study. The China Vehicle Environmental Management
Annual Reports calculated 26% and 0.4% reduction in on-
road vehicle emissions from 2013 to 2016 for Beijing and
Hebei, respectively. Conversely, the vehicle population grew
by 6% and 78%, reflecting the effects of tougher emission
standards, cleaner fuel standards and fleet turnover (Ministry
of Environmental Protection of the People’s Republic of

Fig. 8 Seasonal performance of
the optimised perturbed emissions
ensemble (PEE) simulations (dim
grey bars) and the base run (red
bars) as a function of the values
set for the parameter industry
sector ground level and elevated
CO emissions. The scales on the
x-axes correspond to the uncer-
tainty ranges in Table 1. Green
shades mark the range of param-
eter values in the top performing
1%, 5%, 10%, 15%, 20% and
25% of the simulations, as mea-
sured by their median mean
square errors in hourly local (i.e.
background removed) CO con-
centrations at long-term monitor-
ing sites across the modelling do-
main, calculated for each season
(note the different scales on the y-
axes in different rows)
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China 2014, 2017). Yet no exact comparisons can be made
between these figures and our estimates due to the different
spatial extents and time frames of the inventories used.

We were unable to constrain the uncertainties in the annual
industrial and power sector CO emissions in 2016. This can
partly be attributed to a lack of adequate observations, particular-
ly those within the region of influence of large point sources,
while the more diffuse traffic and residential sources are better
sampled by the current ground-based monitoring network. We
have also demonstrated that parameters can be under-constrained
when their uncertainty ranges are poorly defined, highlighting
the importance of a rigorous expert elicitation. Lastly, our find-
ings are subject to several sources of uncertainty. We have not
quantified the inherent uncertainties in the base emissions which
may arise from inadequate emission factors or energy statistics,
yet these are most likely small compared to the uncertainties
associated with emission trends (see Section ‘Expert elicitation
of emissions uncertainties’). Though we have not directly
assessed the uncertainty in the input meteorology, we have dem-
onstrated that the modelled local CO concentrations are much
more sensitive to variations in the input emissions than the inter-
annual variability in meteorology (Fig. S7). The effect of any
uncertainties in the observations on the results is also expected
to be small, as suggested by the identical results obtained using
an independent set of observationals. Overall, we believe this
method of combining PEEs with observations (including short-
term, low-cost sensor measurements) is widely applicable in pro-
viding timely updates of emission estimates by source sector for
regions undergoing rapid changes and testing the effectiveness of
the implemented emission reduction measures.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s11869-021-01041-7.
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