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Abstract
The worldwide outbreak of COVID-19 disease has caused immense damage to our health and economic and social life. This
research article helps to determine the impact of climate on the lethality of this disease. Air quality index and average humidity are
selected from the family of climate variables, to determine its impact on the daily new cases of COVID-19-related deaths in
Wuhan, China. We have used wavelet analysis (wavelet transform coherence (WTC), partial (PWC), and multiple wavelet
coherence (MWC), due to its advantages over traditional time series methods, to study the co-movement nexus between our
selected data series. Findings suggest a notable coherence between air quality index, humidity, and mortality in Wuhan during a
recent outbreak. Humidity is negatively related to the COVID-19-related deaths, and bad air quality leads to an increase in this
mortality. These findings are important for policymakers to save precious human lives by better understanding the interaction of
the environment with the COVID-19 disease.
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Introduction

Wuhan, the capital and the largest city of Hubei province,
China, was the first major city detected for the novel corona-

virus disease, namely COVID-19 (Zhou et al. 2020). The first
confirmed case of COVID-19 inWuhan, China was noticed in
late 2019. Since then, although the Chinese government took
some serious and bold steps of shutting down the road, rail,
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and air transports and closing industries in the whole province,
to tackle this deadly COVID-19 virus, still the spread across
the entire country could not be stopped (Du et al. 2020).

As of 17 April 2020, the Chinese National Health
Commission has reported more than 82,692 confirmed cases
and over 4,632 casualties all over the country. Figure 1 shows
the time trend of daily new COVID-19 deaths in Wuhan. In
addition to China, other countries are also badly affected by
this virus, and it has become an acute public health issue
worldwide (Zhu et al. 2020). Consequently, as of 30 April
2020, the data from World Health Organization (WHO)
shows that more than three million people are infected, and
217,896 have died worldwide due to this pandemic (World
Health Organization 2020a). Figure 2 is indicating a map of
the Wuhan epidemic on 31 March 2020.

COVID-19 is a new type of coronavirus similar to the
severe acute respiratory syndrome coronavirus (SARS-
CoV) which is highly contagious. Due to the widespread
transmission of the COVID-19, the WHO officially de-
clared an emergency on March 11, 2020 (World Health
Organization 2020b). Generally, COVID-19 patients ex-
hibit common symptoms, including sore throat, cough,
high fever, myalgia, and fatigue (Huang et al. 2020). The
transmission and spread of COVID-19 may be affected by
numerous factors, including medical care quality, climate
condition (humidity, temperature, and air quality, etc.), and
population density (Wang et al. 2020b). Therefore, it is
essential to observe and understand the relationship be-
tween environmental factors and the transmission of
COVID-19. Figure 3 demonstrates the air quality index
which is based on a number of variables (O3 + SO2 +
NO2 + PM2.5 + PM10 + CO).

Previous research shows that cold and dry weather are
instrumental in the spread and survival of droplet-
mediated contagious diseases, like flu (Shaman and
Kohn 2009; Li 2011). Figure 4 shows the time trend of
daily, hourly averaged humidity graph in Wuhan.

A recent study checked the impact of humidity and tem-
perature on COVID-19 mortality in Wuhan (Ma et al. 2020).
However, our study is different in many aspects; first, we have
used the revised data of COVID-19 deaths of Wuhan city
(Wuhan revised the numbers of COVID-19 cases and fatali-
ties on 17 April 2020, China Global Television Network
(CGTN) reported1). Second, we employed a novel methodol-
ogy that extracts events localized in time. The Wavelet tech-
nique is robust to the abnormalities in data and determines bi-
directional (positive and negative) co-movements at the same
time in different time-frequency frames. Third, another differ-
ence lies in the humidity-related observations; where other
studies are using maximum and minimum values to calculate
average humidity (Zhu and Xie 2020; Zhu et al. 2020), we
have collected hourly observations and then converted into
daily averages. Finally, yet another unique feature is that we
have combined air quality index with humidity for studying
COVID-19 mortality which is absent in other studies of this
kind.

Literature review

Initially detected in the Chinese city of Wuhan, COVID-19
has spread like a fire across the world due to the fast mobility
and advanced communication infrastructure available in the
modern-day world (Huang et al. 2020). It is an acute respira-
tory disease with a highly contagious nature. On average, a
patient can infect 2–5 other persons which is a way higher
than seasonal influenza and even the SARS outbreak of
2003 (Shao et al. 2020). The COVID-19 infection causes
influenza-like symptoms in the majority of the patients.

Fig. 1 Daily new COVID-19
deaths in Wuhan

1 The total COVID-19 confirmed cases were revised up by 325 to 50,333 and
the number of deaths up by 1290 to 3869. The revised figure raised China’s
overall COVID-19 confirmed cases to 82,692 and death toll to 4,632. The
revisions were made by the Wuhan municipal headquarters as per rules and
regulations of being responsible for history, the people, and the dead.
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Since pollution and related climatic factors play an important
role in the transmission and lethality of respiratory diseases,
so, air quality index and humidity can have a fair part in that
role too, that may be instrumental in COVID-19 deaths as a
result (Wong et al. 2009).

A recent study in South Korea found a significant influence
of weather, especially temperature and humidity on several
influenza cases; higher relative humidity caused more infec-
tions (Park et al. 2020). The role of temperature in containing
COVID-19 is mixed while patients should be provided with a
comfortable environment for faster recoveries (Iqbal et al.
2020; Shahzad et al. 2020).

Since COVID-19 is caused by a novel virus that belongs to
the corona-virus family, it may behave like SARS when it
comes to different atmospheric conditions, including humidity
and air quality index (AQI). Casanova et al. (2010) empha-
sized that SARS corona-virus could survive for longer on

surfaces at average relative humidity and typical room tem-
perature (with air-conditioning). SARS corona-virus could
survive on smooth surfaces for longer at a higher relative
humidity (Chan et al. 2011).

Prolonged life on surfaces results in an increased number of
infections and faster spread. A recent study involving Italy,
the USA, and China, on the relationship between AQI and
COVID-19 outbreak finds that the level of CO (carbon mon-
oxide) and SO2 (sulphur dioxide) in the air, is positively relat-
ed with the number of infections, and lower air quality is
causing more deaths (Pansini and Fornacca 2020). This im-
plies that areas with poor air quality may be more vulnerable
to severe COVID-19 outbreaks. Another study on 72 cities of
China, indicates that an increase in PM2.5 and PM10 particles
in the air leads to a higher number of daily COVID-19 infec-
tions, even after controlling for the absolute humidity (Wang
et al. 2020a). This implies that more pollution leads to a higher

Fig. 2 Map showing confirmed
cases in Hubie, Province.
C O V I D - 1 9 M a p o n 3 1
March 2020

Fig. 3 Daily air quality index in
Wuhan
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number of COVID-19 infections and faster spread in China.
Similar results are reported for Italy where a high level of
PM10 airborne particles in the northern part seems to have
played a role in the fast spread of COVID-19 (Setti et al.
2020). An increase in humidity is negatively related to the
doubling time of COVID-19 infections in the whole of
China (Oliveiros et al. 2020).

The spread of COVID-19 in Jakarta, the capital city of
Indonesia, is found to be correlated with the weather, espe-
cially temperature and humidity (Tosepu et al. 2020). A study
on 63 cities of China suggests that a higher level of NO2 (a
component of AQI) in the air might have led to increasing the
R0 (spread-ability) of COVID-19 (Yao et al. 2020). As air
pollution can cause a number of respiratory problems, a study
on 120 cities of China relates air pollution with COVID-19
outbreak and finds majority of the components of air pollution
(PM2.5, PM10, NO2, NO3) linked positively with the COVID-
19 infections (Zhu et al. 2020). Air pollution overall, while
PM10 and PM2.5 specifically, are linked with the millions of
deaths in the world annually by causing acute respiratory dis-
eases, like asthma and lungs inflammation (Lelieveld et al.
2015, 2019). A meta-analysis study found that outdoor air
pollution is significantly related to asthma and respiratory dis-
eases (Anderson et al. 2013). The particles PM2.5 and O3 are
found to be significantly related to premature deaths and acute
health issues according to a study in the USA (Fann and
Risley 2013). These studies imply that COVID-19 patients
may find it more difficult to recover in case of bad air quality
(Contini 2020).

A study on the latitude analysis and community outbreaks
of COVID-19 around the world finds that low levels of spe-
cific and relative humidity are positively linked with signifi-
cant community outbreaks (Sajadi et al. 2020). This is consis-
tent with many other studies mentioned above, suggesting that
an increase in humidity can lead to a decrease in COVID-19
cases.

All of these mentioned studies show that air quality and
humidity are significantly linked with the speed of COVID-19
spread. Most of these authors report a positive link of COVID-
19 spread with poor air quality and negative with an increase
in humidity. However, we have employed a different method-
ology with several advantages over traditional time series
models and econometric techniques to study this relationship.

Data and methodology

Data

Daily new deaths due to COVID-19 for the Wuhan city, be-
tween 21 January 2020 and 31 March 2020 were collected
from the reports of the official website of the Chinese
National Health Commission (CNHC, http://www.nhc.gov.
cn/). Daily data of air pollution index of Wuhan city were
manually obtained from an online platform (https://www.
aqistudy.cn), analyzing and monitoring the air quality based
on six factors including carbon monoxide (CO), ozone (O3),
sulfur dioxide (SO2), nitrogen dioxide (NO2), particles with
diameters ≤ 10 μm (PM10), and particles with diameters ≤ 2.
5 μm (PM2.5). The humidity data of Wuhan was collected on
an hourly basis and then manually converted into daily
averages, obtained from (https://www.wunderground.com).

Methodology

We have used the wavelet methodology for our time series
analysis. Specifically, we employed wavelet transform coher-
ence (WTC), partial wavelet coherence (PWC), and multiple
wavelet coherence (MWC) for the detection of the pattern of
co-movements and associations in our data series. The use of
wavelet analysis allows us to analyze the non-normal and non-
stationary time series. We employed this methodology

Fig. 4 Daily hourly average
humidity (%) in Wuhan
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because of its least assumptions and ability to analyze local-
ized interactions from a time-frequency perspective.

The two main types of wavelet transform are discrete
wavelet transform and continuous wavelet transform. We
have used continuous wavelet transform (CWT) due to its
suitability here in our data set. Multiple wavelet functions
have been developed according to the nature of variability in
a data set. We have used “Morlet wavelet,” which is also the
most extensively used wavelet function among others. Monte
Carlo method helps to determine the level of significance here.
The detailed wavelet methodology has been adopted from
earlier studies (Ng and Chan 2012; Aloui et al. 2018; Hkiri
et al. 2018).

The WTC determines the direction and strength of the as-
sociation between two series x1 and x2 by extracting localized
time-frequency events. The cone of influence (COI) splits the
whole wavelet power spectrum into dark and light shades,
providing significant edge effects. The values beyond the
COI indicate the significance level of each scale in the wavelet
coherence (Torrence and Compo 1998). The following is the
mathematical equation of wavelet transforms coherence:

R2 m; nð Þ ¼
N
�
N−1Wxy m; nð Þ

���
���
2

N
�
N−1 Wx m; nð Þj j2N

�
N−1 Wy

�
m; n

����
���
2 ð1Þ

The values of wavelet coherence remain between 0 and 1,
0 ≤ R2(m, n) ≤ 1, where zero is the indication of no coherence
while 1 represents the perfect coherence between the
variables.

Partial wavelet coherence (PWC)

The partial wavelet coherence follows the concept of simple
correlation. The PWC determines the co-movement between
two series after canceling the effects of another confounder
variable. The Eqs. 2 to 7 represent the co-movements (WTC)
between different combinations of x1, x2, and y.

R x1; x2ð Þ ¼ S W x1; x2ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S W x1ð Þ½ �S W x2ð Þ½ �p ; ð2Þ

R2 x1; x2ð Þ ¼ R x1; x2ð Þ:R x1; x2ð Þ*; ð3Þ

R x1; yð Þ ¼ S W x1; yð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S W x1ð Þ½ �S W yð Þ½ �p ; ð4Þ

R2 x1; yð Þ ¼ R x1; yð Þ:R x1; yð Þ*; ð5Þ

R x2; yð Þ ¼ S W x2; yð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S W x2ð Þ½ �S W yð Þ½ �p ; ð6Þ

R2 x2; yð Þ ¼ R x2; yð Þ:R x2; yð Þ*; ð7Þ

The following equation shows the PWC between two var-
iables while cancelling the effects of another (third) confound-
er variable.

RP2 y; x1; x2ð Þ ¼
R y; x1ð Þ−R

�
y; x2

�
:R
�
y; x1

�
*

���
���
2

1−R y; x2ð Þ½ �2 1−R x2; x1ð Þ½ �2 ð8Þ

Multiple wavelet coherence (MWC)

The MWC enables us to study nexus between more than two
variables at the same time. Actually, it calculates the com-
bined effects of the independent variables on a dependent
variable at varying time-frequency spaces. The following
Eq. (9) presents the mathematical expression of multiple
wavelet coherence.

RM2 y; x2; x1ð Þ

¼ R2 y; x1ð Þ þ R2 y; x2ð Þ−2Re R y; x1ð Þ:R y; x2ð Þ*:R x2; x1ð Þ*½ �
1−R2 x2; x1ð Þ ;

ð9Þ

The use of wavelet methodology has unique features as
compared with traditional time series techniques. We can an-
alyze non-stationary and non-normally distributed data effi-
ciently. The most significant advantage of this method is its
ability to identify competing (positive and negative) types of
the association at the same time. We can check if the variables
are positively correlated at one time-frequency spot and neg-
atively correlated with others. In this way, we can extract
every localized interaction and co-movement in multiple se-
ries of data. This feature is unique as compared to traditional
correlation and regression models which only tell us about an
overall average relationship during the whole observation
period.

Due to the abovementioned advantages, this method can
give us better results and a good understanding of the phe-
nomenon under observation. That is why it is extensively used
in modeling signal processing and oceanic technology.

Table 1 shows the summary statistics and correlation be-
tween observed variables. The average number of daily deaths
stands at 36, ranging from a minimum of 1 to a maximum of
131. Daily humidity ranges from 44.08 to 89.58% while av-
eraging at 71.51%. Theminimum andmaximum value of AQI
remained 20 and 128 respectively, averaging at 59.56. The
AQI shows a significant and strong negative relationship with
both humidity (− 0.61) and COVID-19 (− 0.70). The humidity
and COVID-19 are also negatively correlated (− 0.51) but the
coefficient is insignificant.

Figure 5a represents COVID-19 deaths in the city of
Wuhan after continuous wavelet transform. Red color means
more variation while the blue shows no significant variation.

Air Qual Atmos Health (2020) 13:673–682 677



Numbers along the y-axis represent different frequencies
while the x-axis shows time. The red island-shaped areas in-
side the black lining can be seen in front of frequency bands of
0–4 and 4–8, during the third and fourth weeks of observation.
This shows a significant variation in deaths during the given
time period.

Figure 5b shows the result of the CWT of daily average
percentage of humidity in Wuhan. Two red-colored islands
with black outlines are fairly visible, one small-circular while
other long-oval shaped in the frequency range of 0–4 during
the third and seventh-eighth weeks of observation,
respectively.

Figure 5c offers a CWT of daily air quality index in
Wuhan. Two prominent dark red colored oval shapes with
thick black lining show significant variations in the frequency
domain of 0–4 and 4–8 during the second and third weeks of
the observation period. Another small dark red-colored circle
is also present on the upper left corner of the figure in the
frequency domain of 0–4 during the first week of observation.

Figure 6a shows the WTC between COVID-19 deaths and
average humidity in Wuhan. A red-colored circular shape can
be observed in front of the frequency band of 4–8 during the
fourth week of the observation period. Small arrows’ clusters
are visible throughout which represent coherence between
COVID-19 deaths and average humidity in Wuhan. Left and
upwards direction of arrows inside the circular shape means
out phase coherence running from humidity to COVID-19
deaths. This implies a negative relationship between humidity
and COVID-19 deaths in Wuhan, during this specific time-
frequency domain. Another red-colored, thin oval shape is
observable in the frequency range of 8–16 periods during
the sixth and seventh weeks of observation. Arrows inside this
oval-shape are pointing left and downwards, showing an out

phase coherence running from COVID-19 deaths to humidity.
These results suggest a bi-directional negative relationship
between humidity and COVID-19 deaths in Wuhan, during
our observation period at different frequency domains.

Fig. 5 Continuous wavelet transforms of COVID-19, HUM, and AQI

Table 1 Descriptive statistics

Variable COVID-
19

HUM AQI

Mean 35.958 71.519 59.563

Std. dev. 34.147 11.067 23.273

Min 1 44.083 20

Max 131 89.583 128

Jarque-Bera 12.92 8.520 7.376

p value 0.001 0.013 0.025

Correlation matrix

COVID-19 1

HUM − 0.511 1

0.000

AQI − 0.610* − 0.705* 1

0.000 0.000

*Shows the 5% level of significance

Air Qual Atmos Health (2020) 13:673–682678



Figure 6b shows the WTC between COVID-19 deaths and
the air quality index in Wuhan. Few small and red-colored
circular shapes can be found scattered throughout the figure.
In the frequency band of 0–4, there are two circles during the
first and fifth weeks of observation. Other circles lie in the
frequency bands of 4–8, 8–16, and onwards during the fifth
and sixth weeks of observation. A large red area on the bottom
and a small circle above that, contain arrows pointing right
and downwards showing an in phase coherence between AQI
and COVID-19 deaths, running fromAQI to COVID-19. This
implies that an increase in AQI (bad air quality) is leading to
more deaths caused by COVID-19 in the long term, remaining
within our observation time period. Other circles are showing
arrows pointing towards various directions implying a mixed
association during those specific time-frequency bands.

Figure 6c shows the WTC between average humidity and
air quality index in Wuhan. Two significant and large red
areas are observable inside the black linings. One island is in
the frequency band of 4–8 during second to third weeks of
observation while the other lies in the frequency range of 8–16
and onwards during third to seventh weeks in the time do-
main. The arrows inside these islands are pointing towards
left and upwards dominantly, indicating an out phase coher-
ence, running from air quality index to average humidity. This
implies a negative relationship between humidity and air qual-
ity in Wuhan during our observation period.

Figure 7a shows the results of the PWC, involving COVID-
19 deaths, average humidity, and air quality index inWuhan. In
simple words, it describes the wavelet coherence between
COVID-19 deaths and average humidity after taking out the
common effects of air quality index on the relationship between
COVID-19 deaths and humidity. Small red areas inside the
black linings show the coherence in frequency bands of 0–4
and 4–8 during the fourth week of observation. If we compare
Fig. 7a with the WTC results between COVID-19 deaths and
humidity from Fig. 6a, we notice some differences between the
two figures. These differences represent that AQI has a signif-
icant influence over wavelet coherence (relationship) between
humidity and COVID-19 deaths. In simple words, the role of
AQI in the association between humidity and COVID-19
deaths can be thought of as a “confounding variable.”

If we compare Fig. 7cwith an earlier Fig. 6c shows the results
of WTC between humidity and air quality, there are not many
significant differences. Red-colored islands lie almost at similar
time-frequency spots in both of these figures. This implies that
COVID-19 deaths have little if any role in the coherence
(relationship) between humidity and air quality index inWuhan.

Figure 7e demonstrates the PWC involving AQI, COVID-
19 deaths, and humidity is significant because there are visible
differences as compared to Fig. 6b showing WTC results be-
tween AQI and COVID-19 deaths. This implies that humidity
plays a vital role in the coherence (relationship) between AQI
and COVID-19 deaths. A few small red-colored islands on the

Fig. 6 Wavelet coherence transform of COVID-19, HUM, and AQI

Air Qual Atmos Health (2020) 13:673–682 679



upper side, in the frequency band of 0–4 show a significant
coherence between AQI and COVID-19 deaths even after
controlling for the effects of humidity during the first, fourth,
fifth, and sixth weeks of observation.

Figure 7b shows the result of the MWC involving COVID-
19 deaths in Wuhan as a dependent while humidity and AQI
as independent variables. Specifically, it tells us how good the
combined effect of humidity and AQI predicts COVID-19-
related deaths in Wuhan. A thin vertical bar on the right side
of the figure shows different levels of association tied up with
different colors. As it moves from bottom to top (blue to red),
the strength of the relationship keeps on increasing, reaching

its maximum level of 1 represented by the dark red color.
Large and small islands with red color inside and clear black
outlining are scattered within different time-frequency combi-
nations. These red shapes show the combined predictive pow-
er of humidity and AQI in determining the number of
COVID-19-related deaths. As evident from the figure, humid-
ity and AQI show significant MWCwith COVID-19 deaths in
all frequency bands during different periods of observation. In
the middle of the observation period, during the fourth, fifth,
and sixth weeks, a large island is found at the bottom of the
figure, indicating a significant coherence. Another two islands
are prominent on the top of this island during the fourth and

Fig. 7 Partial and multiple wavelet coherence of COVID-19, HUM, and AQI
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fifth weeks of observation in the frequency bands of 0–4 and
4–8. Overall results reveal a significant coherence between
humidity-AQI and COVID-19-related deaths in Wuhan.

Figure 7d presents MWC results taking humidity as a de-
pendent while AQI and COVID-19 deaths as independent
variables. A significant coherence can be observed in frequen-
cy bands of 4–8, 8–16, and onwards during the second and
fourth, second-third, and third-seventh weeks of observation
indicated by large red-colored shapes. Two small islands can
also be found in the 0–4 frequency band during the fourth and
eighth weeks of observation.

Figure 7f of MWC shows AQI as a dependent while hu-
midity and COVID-19 deaths as independent variables. In
a frequency band of 0–4, some islands are present during the
first, fourth, fifth, sixth, and eighth weeks of observation.
More red areas are present in 4–8, 8–16, and onwards frequen-
cy bands during the second-sixth, third-seventh, and fourth-
fifth weeks. Overall results present a noticeable coherence
between AQI and the combination of humidity and COVID-
19 deaths. Dark red color inside these island type shapes can
be compared with a level of matching association between
0.80 and 1.00, according to the vertical bar on the right side.

Conclusion

The environment played an important role in the COVID-19-
related deaths in Wuhan. A rise in average humidity leads to a
decrease in COVID-19-related deaths as revealed by theWTC
at varying time-frequency spots. Deteriorating air quality re-
sulted in more COVID-19 deaths in the medium run during
our observation period. The air quality index further had an
important role in the negative coherence between humidity
and COVID-19 deaths. Bad environment conditions caused
more COVID-19-related deaths, not only directly but also
indirectly by exerting a negative influence on the role of av-
erage humidity. These results imply that COVID-19 patients
should be provided with a clean environment for an early and
smooth recovery.

Our results are limited to the context of cities with similar
weather conditions and containment measures as of Wuhan
and future studies should consider a larger dataset including
varying weather conditions.
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