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Abstract

A method of estimating, in urban indoor environments, human exposure to particulate matter with aerodynamic diameter of less
than 1 um (PM1, also referred in the literature as fine-mode or nanometer (nm) particulate matter) is proposed. It defines a
measure of exposure as a surface area concentration of PM1 and the means of its calculation. The calculation algorithm was
constructed using statistical parameters of particulate matter lognormal distribution, with the use of Hatch-Choate equations and
the Maynard method, and extended by the accumulation stage physics of PM1 fraction, including Eggersdorfer’s and Pratsinis’s
findings. Introduction of structure and dynamics of fractal-like agglomerates into the calculation algorithm significantly increased
estimation accuracy of surface area concentrations, in relation to the standard Maynard method, which calculates surface arca

concentrations of only spherical particles.
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Introduction

Current air quality standards regarding particulate matter re-
late to mass concentrations of PM10 and PM2.5.
Nevertheless, the importance of exposure to nanometer par-
ticulate matter (PM1) and its impact on health have been ac-
knowledged in many research works (Chapman et al. 1997,
Jones 1999; Pope III and Dockery 2006). The smaller the
particles the larger their total surface area in relation to the
total mass in a given air volume (Massey et al. 2012). In
studies by Donaldson et al. (2001) and Oberddrster et al.
(2005), a close relationship between the surface concentration
of particles and organism’s inflammatory response was no-
ticed. Small-sized particulate matter may become a potential
carrier of dangerous chemical compounds, which can easily
penetrate to the end parts of airways and circulatory system
(Ljungman 2009), and a site of possible adsorption of sub-
stances that may have allergenic and mutagenic effects
(Posniak et al. 2010). Furthermore, they can cause inflamma-
tion of the lungs, cardiovascular diseases, or even cancer
(Donaldson et al. 2006). Polycyclic aromatic hydrocarbons
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(PAHs), which are mutagenic and carcinogenic substances,
can be found in fine-mode particulate matter both in outdoor
and indoor spaces (Blaszczyk et al. 2017). Traffic emissions
can be a major source of nanometer particulate matter in urban
air (Vu et al. 2018). High-transport intensity areas show that
about 70-80% of toxic trace elements are contained within the
PMI1 fraction (Lin et al. 2005).

The discovery of health hazards that nanometer particulate
matter may cause introduced a period of measurements of
PM1 levels in atmospheric air and indoor spaces. However,
due to lack of standards in this matter, PM1 fraction is studied
from various aspects of its presence in the air, including mea-
surements and estimations of mass, number and surface area
concentrations, and chemical composition. Nevertheless, sur-
face area concentration, which is related to reactivity and tox-
icity of nanometer (nm) particles may accurately reflect hu-
man exposure to PM1 pollution. The physics of typical urban
air also supports the significance of surface area concentra-
tions. Particles up to 100 nm which originate from emissions
(e.g., during combustion processes) and arise as a result of
homogeneous nucleation, otherwise described as condensa-
tion of supersaturated vapors (Jacobson 2002), dominate the
number distribution of a typical urban aerosol (Morawska
et al. 2004). In the accumulation mode, these nucleation par-
ticles grow and accumulate together by transformations, such
as condensation and coagulation, into new structures (with
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dimensions approximately from 100 nm to 1 pum).
Accumulation mode structures dominate the surface area dis-
tribution of typical urban aerosol. Coarse particles, above
1 pum, are mainly formed in mechanical processes and they
dominate the mass distribution of typical urban aerosol.

Accumulation mode products are complex structures;
hence, Euclidean geometry is incapable of describing their
shape effectively. They have been referred to as amorphous
or filamentary. In the late twentieth century, computer tech-
nology and new fractal geometry concepts (Mandelbrot 1977,
1982) initiated experiments and numerical simulations of clus-
ter structures of particles. These studies were carried out main-
ly as a result of a strong need to find an effective and unique
method to describe aerosol particle characteristics and reflect
their origin and physics. Experimental techniques used to in-
vestigate irregularly shaped structures included light scatter-
ing and transmission electron microscopy (TEM) (Lin et al.
1990; Puri et al. 1993; Wentzel et al. 2003). Researchers have
found that atmospheric agglomerates (for, e.g., soot and fly
ash) grow mainly by cluster—cluster coagulation and reveal
self-similarity; hence, they can be called fractal-like structures
that follow the rules of power law scaling (Lee et al. 2003; Zhu
et al. 2005; Lushnikov et al. 2013). Thus, the introduction of
fractal geometry enabled a convenient and effective mathe-
matical description of structures like particulate matter ag-
glomerates and provided a way to parameterize aerosol
properties.

Measurements of PM1 concentrations in the air that direct-
ly surrounds humans are important for the accurate assessment
of possible exposure. Measurements by portable apparatus,
taken in real time, provide immediate results and continuous
recording. Such measurements can follow human daily activ-
ity paths to reveal total and average PM1 levels for a given
period in different environments, instantaneous changes and
peaks when high pollution intensity occurs, and expose aero-
sol concentrations within indoor spaces where people tend to
spend most of their time during the day (Vu et al. 2017).
Currently, a majority of available apparatus for on-line mea-
surements of surface area concentrations are stationary and
use various assumptions to convert measured quantities, for
example, converting electric charge to surface area. Thus, the
calculation algorithm uses results from mass and number con-
centration measurements taken by widely accessible portable
on-line apparatus. These light portable meters enable field
measurements and aerosol particle collection from places
where people live, work, and commute.

Methods

The calculation algorithm for establishing surface area con-
centration of PM1 is partially based on the standard Maynard
method and partially uses a model of fractal-like agglomerates
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(Fig. 1). Such fractal-like agglomerates are common structures
of, among others, soot particles in an accumulation mode
(Shapiro et al. 2012).

The standard method for estimation of surface area concen-
tration, developed by Maynard (2003), uses information from
two independent and simultaneous measurements of mass and
number concentrations. Unimodal, lognormal distribution of
particles, and their spherical shape and fixed density are the
basic assumptions of this method. However, surface area cal-
culations that rely only on measured mass and number con-
centrations require determining the geometrical standard de-
viation o. Maynard has noticed, while analyzing measure-
ments of beryllium aerosol by McCawley et al. (2001), that
the distributions of nanometer aerosol particles are character-
ized by standard deviation values in the range of 1.5 to 2, and
that o = 1.8 more accurately describes surface area distribution
of the studied aerosol. This value was taken as one of the
inputs into the calculation algorithm in the section where the
Maynard method was adopted.

In the Maynard part of the calculations, to estimate surface
area concentration, the count median diameter ¢ needs to be
established. It can be obtained by minimizing discrepancies
(striving to 0) between the measured number N and mass M
concentrations and the theoretical (expected) concentration
values for the assumed lognormal distribution of aerosol par-
ticles. Therefore, c is derived by iterations for the lowest result
of chi-square test (Maynard 2003). Hatch-Choate equations
(Hatch and Choate 1929) describe properties of the lognormal
particle size distribution. From the relationships described
there, between geometric standard deviation ¢ and count me-
dian diameter c, it is possible to calculate the diameter d; for
the average surface area:

d,=cx e (1)

Hence, with the measured number concentration A, surface
area concentration SA,, of spherical particles in the studied
aerosol can be derived with the use of the Maynard method:

r gyr L

radius of gyration (g4 radius of electrical mobility

Fig. 1 Agglomerate model with its characteristic radius metrics
(Betkowska-Wotoczko 2017)
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SAy = N x 7 x d? (2) Ny =kx <ﬂ> (6)
Tpp

The model of a fractal-like agglomerate is an idealistic
form that serves as a foundation for the design of the calcula-
tion algorithm. To construct this model, the nature of forming
structures in accumulation mode and dependencies from the
particle physics domain were used. The additional assumption
was made that the agglomerate model consists of identical
spherical primary particles with diameter d,,,, (monodisperse).
The spatial structure of the agglomerate model can be speci-
fied by the arrangement of primary particles in relation to the
center of its mass. The radius of gyration r,,, represents this
measure—mean square distance from the furthest points to the
center of gravity of the agglomerate (Philippe 2017). The di-
ameter of the electrical mobility of agglomerate d,,, is equal to
the diameter of the sphere, which is characterized by an iden-
tical trajectory in the electric field (Rissler et al. 2013). Hence,
the radius of electrical mobility 7, = %'

The calculation algorithm assumes that the number of iden-
tical agglomerate models is equal to the number of all individ-
ual particles and their clusters occurring in the tested aerosol.
With this assumption, the mass of the agglomerate model 11,6,
can be averaged from the total measured mass concentration
M divided by the measured number concentration N of all
structures:

M
Magg = Npp X My = N (3)
As all agglomerate models are identical, as well as the mass
of primary particles m,,,,, their number can be derived from the
above equation (Eq. 3):
M

Ny =——"— 4

P N X mp, 4)

The mass of monodisperse primary particles in the agglom-
erate model is equal to:

3

Mpp = o~ 76T * oy (5)
where density of primary particles p,, was assumed at
2100 kg'm > (density of soot particles, particles emitted by
diesel engines, measured by pycnometric method (Hougaard
et al. 2008)) and diameter d,,, of primary particles is constant
and amounts to 15 nm. This last value corresponds to high
numerical concentrations of the urban aerosol at the nucle-
ation mode (Morawska et al. 2004). From these individual
particles, agglomerates at the accumulation mode are created.

The number of monodisperse primary particles N,,,,, all with
radius 7,,, and radius of gyration 7, of the agglomerate model
are related with each other in the power functions describing the
nature of fractals (Matsoukas and Friedlander 1991):

where, Dyis a fractal dimension and £ is a factor associated with
Dy

The formation of agglomerates is a phenomenon resulting
directly from physical movements of particles in the air. Both
constants Dyand k depend on the mechanism of formation of
fractal-like agglomerates, spatial distribution of primary parti-
cles, and their diversity (mono- or polydisperse). Products of
agglomeration processes have a fractal dimension Dy that is
usually in the range of 1.3-3.0 (from fractal-like structures to
ideal sphere) and k£~ 0.4-3.5 (Lushnikov 2010; Eggersdorfer
and Pratsinis 2012). Agglomerates with a lower D, have a
more open structure and dendritic shape with larger collision
cross sections but lower mobility. Conversely, agglomerates
which present compact, dense structures up to a spherical
shape reached for D= 3. Thus, it can be concluded that the
spatial distribution of primary particles in the agglomerate
affects its kinetic properties.

It is assumed that the most important mechanism responsi-
ble for the coagulation of nanometer particles in the air is
Brownian diffusion (Otto and Fissan 1999; Chen 2012), as a
collective average behavior of all particles. Forms constructed
in this way resemble diffusion-limited cluster—cluster agglom-
erates (DLCA) (Eggersdorfer and Pratsinis 2014). For this
DLCA formation mechanism, with the Knudsen diffusion
number K, ~0.1-1, and an assumption of monodisperse pri-
mary particles, fractal-related constants were determined: the
mass fractal dimension D= 1.8, which reflects the complexity
of the agglomerate, and the coefficient describing the mecha-
nism of the collision of primary particles forming agglomer-
ates k=1.3.

The surface area concentration of all primary particles SA,,,
in the studied aerosol can be derived with the use of results of
number concentration measurements N, which describe the
number of fractal-like agglomerate models in the studied aero-
sol, and the data on the diameter of spherical primary particles

d,,,» and their number N, in one cluster:

SAp =N X Ny, x 7 x ds, (7)

The calculation algorithm determines the shape of the ag-
glomerate models by the introduced coefficient of spatial mass
distribution g. Its values depend on the agglomerate’s spatial

arrangement of primary particles, described by the radius of
gyration 7),, and their number N,,,,, at a given radius r,,, = %.
The radius of gyration of agglomerate model can be then

determined by combining Eq. 6 with Eq. 4 and Eq. 5:

6 xM )D_f (8)

Poyr = Fpp X
gr pp 3
(ppp><7r><dpp><k><N
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Therefore, with known ry,,, N,,,, and r,,,, the coefficient of
spatial mass distribution g is also known:
Tgyr (9)

¢ (Npp % 1p)

Calculations of surface area concentration of structures
with the lower number of primary particles SA;, up to approx.
5000, are based on the fractal-like agglomerate model and its
ability to fill the space and the Maynard method. Therefore, if
the agglomerate model adopts a more open structure with a
larger radius of gyration, then more primary particles are ac-
cessible for interactions at their surface and the coefficient g
strengthens. Conversely, when primary particles are more
densely packed and the structure resembles a sphere, then
the standard Maynard method for calculating surface area of
spherical particles becomes dominant. These assumptions are
revealed in the below equation which is a merger of Eq. 2, Eq.
7, and Eq. 9:

SA| = SApp X g+SAM X (1_g) (10)

For agglomerates with the number of primary particles N,,,,
above approx. 5000, surface area concentration SA, is calcu-
lated with the use of mobility theory. The diameter of electric
mobility d,, is characteristic and one of the basic measures of
agglomerates. For the DLCA formation mechanism, mobility
diameter d,, is proportional to the primary particles’ diameter
d,,, (Rissler et al. 2013):

dy = d,, x (1072><0.51+0492) « Ngjl (11)

Therefore, the mobility-based surface area concentration
SA, can be derived from the equation reflecting projected
surface area (Rogak et al. 1993) of the agglomerate model,
measured number concentration », and agglomerate mobility
diameter d,,,:

2

d
SAQZNXWXTm (12)

Depending on the calculated number of primary particles
N, in the agglomerate model, the algorithm selects the for-
mula SA; (Eq. 10) or SA, (Eq. 12) from which the surface area
concentration of PM1 is calculated. This division was deter-
mined from calculations of the surface area for one agglom-
erate model based on relationships between characteristic ra-
dius metrics of this structure, as described in Eggersdorfer and
Pratsinis (2014) work for different quantities of primary par-
ticles. It was noticed that calculations of SA; based on the
fractal-like concept complemented with the Maynard method
provide incoherent results for agglomerates with more than
approx. 5000 primary particles. It may be explained by the
nature of the accumulation process, where particles first coag-
ulate creating simple structures and then grow further into
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complex agglomerates. The sizes of primary particles are less
than the mean free path of molecules (68 nm), while the sizes
of the agglomerates may far exceed them. The kinetics of
these structures change during this process. The probability
that the small particles in the collision will rebound from each
other is small, mainly due to their low kinetic energy, while for
complex and dense clusters their mobility starts to be a signif-
icant characteristic. The electrical mobility is directly related
to the quantity of electric charge applied to the accessible
surface area of the structure (Ku 2010); thus, it may describe
complex agglomerates with several, or even tens of thousands
of primary particles, in a more accurate way. Therefore, it was
adopted that for clusters with primary particles number N,,,
exceeding approx. 5000, surface area concentration SA, can
be calculated based on electrical mobility diameter d,, of an
agglomerate model.

Results and discussion

The calculation algorithm was verified with the use of data
from 7 different studies (Park et al. 2009, 2010; Buonanno
et al. 2010; Ham et al. 2012; Jankowska and Pos$niak 2012;
Castro et al. 2015; Spinazze et al. 2015) in which 3 concen-
trations of particulate matter, mass M [commonly used unit
pg'm ], number N [commonly used unit cm ], and surface
area SA [commonly used unit um*m >], were measured si-
multaneously. Measured concentrations of M and N were used
as inputs for both the calculation algorithm and the standard
Maynard method to estimate SA concentrations. Results of SA
concentrations were compared between measured and esti-
mated by the calculation algorithm, and between measured
and calculated by the standard Maynard method for spherical
particles.

Sensitivity of the calculation algorithm is presented in
Table 1, where different input assumptions for an agglomerate
model were tested. The highest coefficient of determination
(R?) can be noticed for primary particles’ diameter dyp =
15 nm, Dy=1.8, and k=1.3. For these parameters, statistical
analysis revealed a very strong correlation between the surface
area concentrations measured and estimated by the calculation
algorithm (Pearson correlation coefficient » = 0.852), signifi-
cantly higher than that in the case of the standard Maynard
method (7 = 0.740). In addition, the Maynard method showed
a statistically significant difference between measured and
calculated surface area concentrations in paired ¢ test.
Conversely, in the case of the calculation algorithm, this rela-
tionship could not be ruled out. The mean squared error
(MSE) of the difference between the measured and estimated
surface area concentration was significantly lower in the case
of'the calculation algorithm (MSE = 0.09) than that in the case
of the standard Maynard method (MSE = 0.41).
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Table 1
agglomerate model types

Calculation algorithm sensitivity with R* and %ASA (difference between estimated and measured surface area concentration) for different

Structure type Fractal dimension Primary particle diameter
dpp =10 nm dpp =15 nm dpp=20 nm
Fractal-like agglomerate chain type Df=1 %AS =111% %AS =91% %AS =49%
k=35 R*=0.83 R*=0.84 R*=0.84
Fractal-like agglomerate open type Df=1.8 %AS =75% Y%AS =15% PDAS=11%
k=13 R*=0.86 R =091 R*=0.86
Fractal-like agglomerate dense type Df=2.8 %AS =8% Y% AS =—24% PDAS=—27%
k=11 R*=0.87 R*=0.90 R*=0.88
Individual spherical particles Df=3 %AS =—16% %AS =—35% %AS =—32%
k=1 R*=0.73 R*=0.79 R*=0.78
Individual spherical particles Maynard %BAS =—40%; R* =0.80

The relationship between measured (literature data) and
estimated (by the standard Maynard method and by the calcu-
lation algorithm) surface area concentrations (precisely their
logarithms) is visualized in Fig. 2.

For all seven studies, slightly over 70% of all calculations
were based on SA; for N, < 5000, and the rest referred to SA,,
which was estimated on the basis of electrical mobility theory.
In calculations of SA,, the g coefficient varied between 3 and
20%. This means that the algorithm accounts for up to 20% of
the calculated surface area of every primary particle in the
agglomerate models and complements it with Maynard’s cal-
culations for spherical particles. Consequently, results of this
study are in line with earlier findings (Ku and Evans 2012;
Wierzbicka et al. 2014) suggesting that the surface area con-
centrations calculated with the standard Maynard method it-
self might have been underestimated, by as much as 40%, due
to the fact that this method does not include structures formed
in an accumulation mode.
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Conclusions

Information on PM1 mass, number, and surface area concen-
tration levels creates a multidimensional description of expo-
sure to nanometer particulate matter in the urban environment.
Surface area concentrations can be applied as the main expo-
sure indicator for PM 1, containing baseline information on the
reactivity of particulate matter. Data on number concentrations
supplement this information with the data on intensity of
sources, whereas results of mass concentrations measure-
ments can be used to compare them with PM2.5 air quality
standards as the nearest reference.

Due to the generalization of the standard Maynard method
to the nucleation and accumulation modes, and the signifi-
cance of the results of statistical analysis, the calculation algo-
rithm could be used to estimate surface area concentrations of
PM1 based on simultaneous mass and number concentration
measurements. Further measurements and comparisons are
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Fig. 2 Correlation of surface area concentrations measured and estimated by the standard Maynard method (/eff) and the calculation algorithm based on
the agglomerate model (right) (Betkowska-Wotoczko 2017). Values are log-transformed
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needed to strengthen this statement. Additional generaliza-
tions, e.g., onto polydisperse primary particles, could enhance
the accuracy of the calculation algorithm.
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