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Abstract It has been well established that both meteorologi-
cal attributes and air pollution concentrations affect human
health outcomes. We examined all cause nonaccident mortal-
ity relationships for 28 years (1981–2008) in relation to air
pollution and synoptic weather type (encompassing air mass)
data in 12 Canadian cities. This study first determines the
likelihood of summertime extreme air pollution events within
weather types using spatial synoptic classification. Second, it
examines the modifying effect of weather types on the relative
risk of mortality (RR) due to daily concentrations of air
pollution (nitrogen dioxide, ozone, sulfur dioxide, and partic-
ulate matter <2.5 μm). We assess both single- and two-
pollutant interactions to determine dependent and independent
pollutant effects using the relatively new time series technique
of distributed lag nonlinear modeling (DLNM). Results dis-
play dry tropical (DT) and moist tropical plus (MT+) weathers
to result in a fourfold and twofold increased likelihood, re-
spectively, of an extreme pollution event (top 5 % of pollution
concentrations throughout the 28 years) occurring. We also

demonstrate statistically significant effects of single-pollutant
exposure on mortality (p<0.05) to be dependent on summer
weather type, where stronger results occur in dry moderate
(fair weather) and DT or MT+ weather types. The overall
average single-effect RR increases due to pollutant exposure
within DT and MT+ weather types are 14.9 and 11.9 %,
respectively. Adjusted exposures (two-way pollutant effect
estimates) generally results in decreased RR estimates, indi-
cating that the pollutants are not independent. Adjusting for
ozone significantly lowers 67 % of the single-pollutant RR
estimates and reduces model variability, which demonstrates
that ozone significantly controls a portion of the mortality
signal from the model. Our findings demonstrate the mortality
risks of air pollution exposure to differ by weather type, with
increased accuracy obtained when accounting for interactive
effects through adjustment for dependent pollutants using a
DLNM.
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Introduction

Recent studies pertaining to weather and atmospheric effects
on humans have established associations between human
health outcomes and meteorological conditions (e.g., Basu
and Samet 2002; Doyon et al. 2008; Gosling et al. 2009) It
is well documented that there is a complex relationship be-
tween climate, air pollution, and specific human health out-
comes in North America (Hanna et al. 2011; Vanos et al.
2014a; b). Air pollution has been shown in many studies to
be a contributing factor to human morbidity and mortality
(Hanna et al. 2011; Ramlow and Kuller 1990; Schwartz
1994; Vanos et al. 2014a; b) and is also related to synoptic
weather patterns, which cover large regions up to ~1,000 km2

(Davis et al. 2010; Greene et al. 1999). Spatial synoptic
classification (SSC; Sheridan 2002) allows for the accounting
and understanding of how humans respond to a combination
of meteorological variables simultaneously. Although
temperature alone has been shown to be a satisfactory
predictor of health outcomes such as mortality and morbidity
(Anderson and Bell 2009; Curriero et al. 2002; Díaz
et al. 2005; Hajat et al. 2010), it is known that human
physiology responds to the complex synergistic effects
of all external elements of ambient air—including air
pollution—expressed at the synoptic level as well as by
weather type (Greene et al. 1999; Vanos et al. 2014a;
Vanos et al. 2014b).

Holistically accounting for all elements of a weather situ-
ation is important to provide more accurate results in model-
ing. Time series models have become more prevalent in
literature as a means to measure the short-term health effects
of weather as well as modifying and synergistic effects of such
atmospheric variables (e.g., Anderson and Bell 2009; Bell
et al. 2004; Cakmak et al. 2010; Dominici et al. 2006; Guo
et al. 2011; Samet et al. 2000a; b). For example, using a case-
crossover approach (Stafoggia et al. 2008) estimated the effect
of particulate matter <10 μm (PM10) on mortality to be greater
on days with higher temperature, indicating positive
interactions, yet were commonly not statistically significant.
Anderson and Bell (2009) made use of a Poisson generalized
additive model demonstrating an increase of 3.0 % in the risk
of death from high temperatures in 107 US communities. Yet
when controlling for the confounding factor of air pollution
(ozone (O3) and particulate matter <10 μm (PM10)), they
found the model signal to be slightly lowered (~0.4 % on
average) due to the interactions between weather and air
pollution on mortality; however, this was not significant,
and little air pollution data were available in the chosen
communities. Additionally, Bell et al. (2004) found that when
using both constrained and unconstrained distributed lag
models (DLMs), a 10-ppb increase in O3 was associated with
an 0.52-% increase in daily mortality based on 7-day delayed
effects.

Conventional DLMs rely on the assumption of a linear
effect between exposure and outcome; however, accounting
for the known nonlinear relationships is vital (Braga et al.
2001; Gasparrini and Armstrong 2010; Gasparrini 2011).
Further, using only exposure-response curve methods does
not capture the nonlinear associations and can create difficul-
ties when comparing disparate climates across the country
(Anderson and Bell 2009). The delayed effects of temperature
and/or air pollution across a range of values and time
lags can be modeled using a distributed lag nonlinear model
(DLNM) (Armstrong 2006; Gasparrini and Armstrong 2010;
Gasparrini 2011) with sufficient sample sizes present. Addi-
tional effects rather than just temperature are also present,
which are not captured in merely temperature-mortality
models, and further studies are needed to evaluate these
additional effects (e.g., duration, lags, air pollution) (Rocklov
et al. 2012).

There remains a considerable amount to discover
concerning the modifying effects of weather types and specif-
ic variables on air pollution-health interactions (Dear et al.
2005; Hajat et al. 2010). As the urban mix of air pollutants is
complex, more careful studies needed to determine which
aspects are most harmful to humans (Brook et al. 2007). Given
the variety of weather elements affecting pollution levels, a
synoptic meteorology approach is well-suited to study city-
specific pollution variations (Greene et al. 1999; Rainham
et al. 2005). Rainham et al. (2005) found minimal consistency
in the pattern between health effects of air pollution during
both the summer and winter seasons in Toronto, Canada, yet
pollution concentrations were dependent on weather type.

Inconsistencies in results also necessitate further research
into air pollution and interactive effects relating climate to
mortality. Despite the long-standing research on potential
human health impacts due to changing temperatures, along
with future climate change predictions (Dessai 2003; Gosling
et al. 2009, 2012; Greene et al. 2011), there has been minimal
application of synoptic weather types to climate-air pollution
interactions with mortality. Accordingly, the goal of this study
is to conduct a large-scale investigative analysis, using
28 years of data (1981–2008) for the summer season (Jun-
Jul-Aug; JJA), assessing the short-term effects of exposure to
the air pollutants nitrogen dioxide, ozone, sulfur dioxide, and
particulate matter <2.5 μm on the relative risk of mortality
(RR). We examine the modifying effects of weather type on
RR using a daily spatial synoptic classification (SSC;
Sheridan and Dolney 2003; Sheridan 2002). Modifying ef-
fects are first investigated with a single-pollutant model. We
then adjust these effects for the remaining three pollutants to
determine dependent pollutant effects on mortality risk. Both
city-specific and pooled relative risks of mortality are
calculated. Urban variations of extreme pollution levels
in the 12 large Canadian cities are also assessed based on SSC
weather type.
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Methods

Mortality data

Daily nonaccidental-related mortality data from 1981–2008
were obtained from the Canadian Vital Statistics databases at
Statistics Canada (via the Public Health Agency of Canada)
for Vancouver, BC; Calgary, AB; Edmonton, AB; Regina,
SK; Winnipeg, MB; Toronto, ON; Windsor, ON; Ottawa,
ON; Montreal, QC; Quebec City, QC; Halifax, NS; and St.
John’s, NF. Data availability for Quebec City and Montreal
extend only to the year 2000; hence, we complete the analysis
for these cities for 20 rather than 28 years. Causes of death
were categorized using codes from the International Classifi-
cation of Diseases (ICD) 9th revision (codes <800) and ICD
10th revision (codes A00 to R99) (World Health Organization
WHO 2010). All nonaccidental mortality is considered, rather
than only heat-related, as significant undercounts by the cor-
oner when identifying heat deaths commonly occur (Dixon
et al. 2005). The mortality rate per 100,000 people was calcu-
lated based on yearly population values for each city accessed
from Statistics Canada.

Spatial synoptic classification data

A suite of routinely monitored meteorological parameters is
used to identify each weather situation as one of six weather-
type categories, plus a transition category (where one weather
type yields to another). The current study focuses on the five
warm or hot weather types, with descriptions specific to
Canadian summers as follows (see Rainham et al. (2005) for
further detail):

Dry moderate (DM) A pleasantly warm, dry weather type that
is common throughout much of southern Canada in the sum-
mer and is associated with mostly sunny conditions.

Dry tropical (DT) The combined hottest and driest weather
type, with sunny, clear skies and occurs subsequent to, or
during, anticyclone events with large regional subsidence of air.

Moist moderate (MM) Mild, humid, cloudy, unstable weather
often bringing rain showers and occurs with warm fronts or
from modification of moist tropical air in the summer.

Moist tropical (MT) Combined hottest and most humid
weather type. Skies are partly cloudy in the summer due to
instability and convection.

Moist tropical plus (MT+) Extreme subset of MT, in which
morning and afternoon apparent temperatures are both above
the corresponding MT mean temperatures for the specific
location.

Developed by Sheridan (2002), the SSC is a semi-
automated classification system that derives from an algo-
rithm comparing listed surface observations to days that are
most representative of the various weather types at each
monitoring station. The SSC is based on “sliding seed days”
representing expected and observed meteorological condi-
tions at each location throughout the year for each weather
type. To select seed days for each season and location, thresh-
olds for typical weather variables are quantified for each
weather type (i.e., air and dew point temperatures, air
pressure, wind velocity, cloud cover), which define that
weather type for the given location and time of year.
Each day can then be classified into one of the six
weather types based on representativeness of the local cli-
mate (see Sheridan (2002) and Hondula et al. (2013) for
specific methodology). The SSC accounts for relative tempo-
ral and spatial variability and hence lends itself well to under-
standing city-specific health outcomes. For example, a sum-
mer MT+ day in Toronto is warmer (0300 h Tavg=30.3 °C)
than a summer DT day in Quebec City (Tavg=28.6 °C) (see
Table 1).

Meteorological data used to classify weather types into
SSC categories for each of the 12 cities are obtained from
first-order airport weather stations maintained by the Meteo-
rological Service of Canada. Table 1 lists the city-specific
information pertaining to each weather type, including the
summertime frequencies, mean 1500 h air temperatures,
and air pollution concentrations. The SSC has been
implemented in many human health-climate studies
(e.g., Hajat et al. 2010; Hanna et al. 2011; Vanos et al.
2013a; b; Sheridan et al. 2009). The weather types most
commonly associated with increases in mortality (and there-
fore designated as “offensive” weather types) are MT+ and
DT (Sheridan and Kalkstein 2004).

Air pollution data

Air pollution data from the National Air Pollution Surveil-
lance Network (NAPS) database were collected for the period
of 1981–2008. Measurements of average hourly concentra-
tions of ozone (O3, ppb), nitrogen dioxide (NO2, ppb), partic-
ulate matter <2.5 μm in diameter (PM2.5, μm m−3), and daily
sulfur dioxide (SO2, ppb) were utilized in this analysis. Hourly
measurements were averaged to obtain daily concentrations of
these pollutants. For PM2.5, the earliest year for which data
were available was 1998. For both SO2 and O3, com-
plete datasets were available for the 1981–2008 period
for all cities except St. John’s (data from 1989–2008).
NO2 data were complete for all cities in the given years
except for Calgary and St. John’s (available data beginning in
1990 and 1989, respectively). Days with no recorded
data were considered as missing data and treated as such in
the model.
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Table 1 Descriptive summertime statistics for 12 Canadian cities within five weather types (1981–2008): weather type frequency for Jun-Jul-Aug (JJA)
(%), relative mortality, 2011 population, mean 1600 h air temperature (Ta), and ambient pollution concentrations (NO2, O3, SO2, PM2.5)

City
population

Synoptic
category

Frequency
(%)

Relative
mortality

SD Air temp (Ta)
(°C)

SD NO2

(ppb)
SD O3

(ppb)
SD SO2

(ppb)
SD PM2.5

(μg m−3)
SD

Calgary
1,214,839

DM 33.4 1.10 0.38 24.07 3.03 19.66 6.15 25.03 6.30 2.34 1.92 9.95 9.16

DT 3.2 1.11 0.38 29.61 2.22 21.77 5.29 26.79 6.20 2.84 2.05 17.11 16.69

MM 11.9 1.11 0.35 18.72 2.88 18.07 6.37 22.99 5.91 2.09 1.71 8.27 4.20

MT 0.5 1.27 0.35 27.41 2.78 17.14 5.66 26.61 4.88 2.50 2.02 12.88 3.64

MT+ 0.0 NA NA NA NA NA NA

Edmonton
1,159,869

DM 19.5 1.37 0.48 24.67 2.84 16.13 8.62 28.60 7.39 1.86 1.49 10.73 9.54

DT 1.1 1.36 0.57 28.88 3.07 15.64 10.54 35.50 8.71 1.44 1.28 12.50 5.16

MM 8.1 1.38 0.49 19.78 2.72 12.57 6.08 23.81 6.26 1.43 1.14 7.81 6.37

MT 0.7 1.42 0.38 27.78 1.87 10.10 5.82 33.49 4.71 1.30 0.67 11.91 3.04

MT+ 0.0 NA NA NA NA NA NA

Halifax
390,328

DM 21.1 3.03 0.95 22.95 2.40 14.63 8.22 20.79 8.38 6.83 4.19 7.39 3.92

DT 0.6 3.19 0.81 29.50 2.22 16.78 6.03 24.19 8.17 7.95 4.25 10.17 5.49

MM 23.7 2.91 0.94 19.84 2.52 14.42 9.62 20.72 9.97 6.53 4.35 7.69 3.98

MT 7.7 2.99 0.97 25.21 2.23 15.04 10.53 23.25 10.12 6.51 4.37 11.98 7.96

MT+ 1.2 2.77 0.89 27.21 2.14 14.46 10.40 18.87 8.94 6.42 6.28 16.50 10.82

Montreal
3,824,221

DM 32.2 1.96 0.36 25.46 2.23 21.39 7.19 19.68 7.79 4.27 2.64 8.32 4.42

DT 1.3 2.27 0.53 30.59 1.62 24.52 7.71 47.17 17.49 6.75 5.18 11.20 3.44

MM 24.0 1.95 0.36 21.70 2.33 19.73 6.49 17.25 7.44 3.18 2.22 9.54 5.23

MT 22.0 2.13 0.42 27.80 2.37 22.89 8.19 28.30 10.59 3.65 2.40 16.52 9.18

MT+ 4.4 2.38 0.59 30.35 1.90 24.61 10.84 34.12 11.11 3.68 2.38 20.20 11.99

Ottawa
1,236,324

DM 29.7 1.41 0.44 25.55 2.37 15.23 8.49 20.31 8.11 2.52 2.32 6.99 6.15

DT 3.7 1.45 0.50 31.61 1.86 19.69 10.71 33.37 12.35 3.39 2.53 13.72 6.06

MM 24.3 1.40 0.44 22.11 2.68 15.59 8.74 20.37 8.18 2.01 2.07 8.53 5.98

MT 16.2 1.43 0.46 28.37 2.32 18.54 10.13 28.53 11.02 2.64 2.28 15.47 8.65

MT+ 2.4 1.56 0.48 30.86 2.14 17.12 11.03 35.13 12.05 2.99 2.73 18.96 10.13

Quebec City
3,824,221

DM 30.8 1.64 0.58 24.33 2.69 14.38 8.44 18.33 7.09 3.44 7.42 8.52 5.04

DT 0.6 1.69 0.65 29.30 2.49 19.09 11.33 22.58 15.33 7.10 8.95 NA NA

MM 22.8 1.63 0.57 20.31 2.65 13.70 9.11 16.63 7.41 5.55 13.57 7.20 3.65

MT 16.1 1.76 0.67 26.68 2.59 14.78 8.89 24.53 11.16 2.70 5.45 19.50 8.98

MT+ 2.9 2.00 0.81 29.21 2.38 13.17 7.55 28.58 14.51 1.75 2.40 21.75 11.73

Regina
210,556

DM 30.2 1.40 0.81 26.11 2.94 14.27 11.48 25.34 6.57 0.68 0.86 8.74 4.38

DT 4.0 1.34 0.79 32.57 2.60 19.10 15.48 31.80 7.93 1.07 1.29 10.29 5.34

MM 11.2 1.38 0.80 21.68 2.59 11.49 8.13 23.31 6.37 0.42 0.70 6.91 3.53

MT 1.1 1.41 0.81 28.19 3.08 12.51 9.56 27.93 7.51 0.50 0.66 10.31 3.60

MT+ 1.4 1.43 0.61 31.84 2.41 11.64 8.14 30.91 8.71 0.56 0.72 13.60 3.64

St. John
210,556

DM 19.4 1.84 0.87 20.43 2.64 6.15 4.01 21.08 8.70 3.31 2.84 5.23 2.68

DT 0.0 NA NA NA NA NA NA

MM 23.0 1.80 0.87 17.78 2.62 6.84 5.42 21.11 10.17 3.20 2.93 5.15 3.84

MT 6.9 1.85 0.89 22.77 1.78 4.79 4.78 20.88 10.25 2.49 2.54 5.87 4.62

MT+ 1.3 2.04 0.89 23.83 1.53 3.15 2.79 17.08 10.93 1.69 1.84 6.09 8.01

Toronto
5,583,064

DM 34.2 1.56 0.27 24.93 2.40 22.77 8.10 24.68 7.67 3.17 2.60 8.48 5.50

DT 6.2 1.62 0.31 31.67 2.15 27.29 9.11 42.08 11.07 4.84 3.11 20.69 11.03

MM 18.8 1.58 0.29 21.35 2.52 23.30 7.99 23.05 8.46 2.69 2.09 11.87 7.33

MT 21.5 1.62 0.28 27.50 2.55 24.49 7.96 33.09 8.90 3.83 2.73 19.00 9.17

MT+ 3.5 1.68 0.31 30.18 2.36 23.45 7.47 28.48 8.48 3.94 3.13 25.19 9.36

Vancouver
2,313,328

DM 48.9 1.54 0.33 21.27 2.23 17.77 6.68 17.67 4.72 4.13 2.34 6.31 2.83

DT 0.0 NA NA NA NA NA NA
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Data analysis

Extreme pollution episodes

A detailed evaluation of the synoptic conditions associated
with extreme air pollution levels for each city is completed
using a method by Greene et al. (1999), whereby the top 5 %
of pollution days (classified as “extreme”) for each pollutant is
examined by air mass (or weather type). To do so, we deter-
mine the relative ratio representing the relationship between
the percent of days in the top 5 % of pollution levels, to the
percent frequency of the select weather type. Therefore, a ratio
of 1.0 indicates that an extreme pollution episode is more
likely to occur in the given weather type. A ratio ≥2.0 indi-
cates statistical significance (p<0.05) of this likelihood
(Greene et al. 1999; Kalkstein 1991). A value of “0.0” for a
particular pollutant signifies virtually no chance of the level of
the given pollutant reaching the highest 5 % level based on the
data records.

Distributed lag nonlinear modeling

For each city and weather type, the RR due to exposure to
each air pollutant is modeled using a DLNM. In addition, the
interactive effects of exposure to two pollutants are modeled
to determine the modifying effect on risk of mortality. The
DLNM is a relatively new standardized approach that uses a
time series modeling framework to describe the simultaneous

nonlinear and delayed effects between predictors and an out-
come (Gasparrini 2011). The overarching purpose is to pro-
vide a statistical regression model that defines the relationship
between a set of predictors and an outcome and then to
estimate the risk effect (Gasparrini 2011). The DLNM also
has the advantage of using more than one variable showing
delayed effects (e.g., two-pollutant interactive effects) to be
transformed through a cross-basis function. The framework
can describe flexible relationships based on air pollution as a
predictor, and the dimension of the lag, hence, specifying two
independent predictors (Gasparrini and Armstrong 2010). We
apply lags of 0–6 days for each pollutant examined to estimate
the RR due to exposure in a single day (lag 0) and multiple lag
days, where the total estimate by the DLNM summarizes the
effects of cumulative exposure over the previous days
(Dominici et al. 2006). This addresses the further complexity
that arises when there are delayed effects of a predictor (air
pollution) on an outcome (mortality). Specific details and
examples are provided in Gasparrini and Armstrong (2010,
2012) and Gasparrini (2011).

In order to remove any temporal variability (cycles) in
mortality, we adjust for various time confounders using a
categorical variable for day of week (DOW) and apply a
natural cubic spline of time with one knot at each of 30,
120, 180, and 365 days of observation for monthly, 3-month
(seasonal), 6-month (biannual), and yearly time effects, re-
spectively. Separate model runs are completed for exposure to
single air pollutants as well as adjustments for the single

Table 1 (continued)

City
population

Synoptic
category

Frequency
(%)

Relative
mortality

SD Air temp (Ta)
(°C)

SD NO2

(ppb)
SD O3

(ppb)
SD SO2

(ppb)
SD PM2.5

(μg m−3)
SD

MM 24.3 1.50 0.31 19.00 1.64 15.43 4.81 13.56 4.30 3.55 1.91 5.53 2.64

MT 0.7 1.77 0.26 26.91 1.56 24.53 7.60 29.75 5.09 5.70 2.37 10.45 2.09

MT+ 0.0 NA NA NA NA NA NA NA

Windsor
319,246

DM 28.0 1.43 0.76 26.77 2.23 22.12 9.40 32.83 10.46 6.60 4.48 11.33 6.74

DT 4.7 1.46 0.72 32.54 2.06 23.81 11.09 46.93 12.07 9.95 5.12 22.16 11.11

MM 19.4 1.45 0.73 22.96 2.33 20.88 9.51 26.39 8.86 5.13 3.89 12.24 6.60

MT 29.1 1.45 0.77 28.69 2.63 20.90 9.50 37.43 10.47 6.47 3.92 19.72 9.03

MT+ 7.3 1.55 0.83 31.27 2.22 20.47 9.00 39.92 9.98 6.55 3.90 23.74 11.01

Winnipeg
730,018

DM 28.9 1.91 0.57 26.01 2.76 11.48 5.24 22.20 6.72 0.73 1.40 7.42 5.18

DT 1.9 1.99 0.59 32.64 2.89 12.69 5.24 34.26 9.71 0.95 1.02 10.60 2.43

MM 17.4 1.96 0.60 21.99 2.66 9.86 4.17 19.58 6.74 0.48 0.94 5.88 3.17

MT 15.1 1.97 0.62 28.08 2.66 10.12 4.12 27.33 7.20 0.41 0.70 8.49 3.79

MT+ 2.9 1.96 0.59 30.79 2.32 9.18 3.59 30.92 7.96 0.57 1.26 9.26 4.15

Average DM 29.8 1.68 0.49 24.38 1.95 16.33 4.80 23.04 4.45 3.32 1.96 8.28 1.78

DT 2.5 1.75 0.60 30.89 1.49 20.04 4.42 34.47 8.75 4.63 3.18 14.27 6.27

MM 19.1 1.67 0.46 20.60 1.60 15.16 4.76 20.73 3.58 3.02 1.94 8.05 2.26

MT 11.5 1.75 0.47 27.12 1.65 16.32 6.27 28.49 4.69 3.22 2.10 13.51 4.54

MT+ 2.3 1.92 0.41 29.51 2.38 16.32 7.38 30.99 7.70 3.47 2.39 17.25 8.21

Mortality rate per 100,000 people, calculated based on yearly population; Statistics Canada 2011 Census, population for census metropolitan area
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pollutant due to simultaneous exposure to the remaining three
pollutants; hence, all two-way interactions were assessed. The
optimal number of knots is determined based on the Akaike
information criterion (AIC) goodness-of-fit test, the Bartlett
test for autocorrelation, as well as visual examination to max-
imize the evidence that the residuals do not display any type of
structure. Within the DLNM, we control for mean air temper-
ature, rather than minimum or maximum, as preliminary
analysis demonstrated enhanced model strength based on
model prediction values (or AIC). This was also found to be
true based on AIC testing by Curriero et al. (2002) in 11 US
cities, with further studies (Bell et al. 2004; Guo et al. 2011;
Samet et al. 2000a; b) also using mean temperature based on
extensive work and thereby accounting more fully tempera-
tures experienced throughout the full day, rather than at one
time. As an example, the pollutant-adjusted models can be
summarized generally as follows:

LogE Y t =X tð Þ∼ βX t−1 þ δX ;
t−1 þ DOWt

þ ns T avg;df
� � þ ns time; dfð Þ

ð1Þ

where Yt is the daily count of nonaccidental mortality, Xt−l is
the main pollution level on day t with 0 to 6 days of lag, X’ is
the adjusting pollutant level at same lag, and β and δ are the
regression coefficients linking the main pollutant and the
adjusting pollutant to daily mortality, respectively, DOWt

indicates the day of the week on day t, ns(Tavg, 4) is the natural
spline of temperature with four degrees of freedom (df),
ns(time, df) is the natural spline of calendar time with df
corresponding to a knot 30, 120, 180, and 365 days of obser-
vation. The effect estimates for each season and weather type
were obtained by pollutant×season/weather type interaction
terms (Vanos et al. 2014a; Vanos et al. 2014b). For example,
season-specific DM effect estimates can be found by replacing
β by β(w,dm)IwIdm+β(sp,dm)IspIdm+β(au,dm)IauIdm+β(su,dm)IsuIdm,
where Iw, Isp, Iau, and Isu are indicators of winter, spring,
autumn, and summer, respectively, and Idm is indicator of
DMweather type. The selected models for each city are pooled
into one estimate using a random effects model. From this, we
present the increase in relative risk of mortality (RR) for an
interquartile increase of exposure to each individual pollutant
and each two-way interaction, with 95 % confidence intervals
(CI).

Based on standard deviations and the upper and lower 95%
CI, we are able to describe any uncertainty and variability in
the estimates of RR. Single and pooled RR estimates are tested
for statistical significance using t tests, and a level of statistical
significance of 0.05 (where a t value >2.0 indicates a statisti-
cally significant positive relationship). Pearson correlation
coefficients (r) are calculated to determine the long-term cor-
relations among each pair of air pollutants, as well as air and
dew point temperatures, within each weather type. Statistical

modeling and analyses were completed in R version 2.14.1
(The R Foundation for Statistical Computing, 2012), using the
DLNM package by Gasparrini and Armstrong (2012).

Results

Across Canada, the prevalence of the mild and benign DM
weather type in the summer season is the most prevalent
(Table 1), with DT being the least common weather type
(highest prevalence in Toronto (6.7%); very rare in the coastal
cities of Halifax, St. John’s, and Vancouver). The DTweather
type has the highest mean air temperature coinciding with the
highest air pollution concentrations of NO2, O3, and SO2.
Moist tropical plus (MT+) presents the second highest air
temperatures and the highest concentrations of PM2.5. MT
overnight temperatures (0300 h) are generally the highest of
all the summer air masses.

The extreme air pollution and temperature conditions in the
MT and MT+ weather types align closely with a consistently
elevated relative mortality, with MT+ displaying the highest
overall mean standardized mortality for all cities (1.92). The
DT and MT weather types have an average mortality rate of
1.75 deaths per 100,000 people. The most benign weather
types are shown to be DM andMM, demonstrating the lowest
standardized mortality and air temperatures, as well as the
lowest and most comparable concentrations of all pollutants.
However, air pollution levels and rates of mortality vary by
city. For example, O3 and NO2 concentrations in the DT
weather type reach 46.93 and 23.81 ppb, respectively, in
Windsor, 47.17 and 24.52 ppb in Montreal, yet only 31.80
and 19.1 ppb in Regina. In the listed cities, the respec-
tive rates of mortality (±SD) are 1.46±0.72, 2.27±0.53,
and 1.34±0.79.

The long-term air pollution correlations within each exam-
ined weather type are displayed in Table 2. Nitrogen dioxide is
significantly correlated with SO2 and PM2.5 in all weather
types, with the strongest relationships found in the hottest
weather types. Ozone is found to correlate only with PM2.5,
where moderate and significant correlation coefficients exist
between the two in all weather types. One exception is a
moderate O3-SO2 correlation in DT weather, which can be
explained by increased sunlight, heat, and stability in the hot
and dry air (He and Lu 2012). Sulfur dioxide is significantly
correlated to both NO2 and PM2.5, with the strongest relation-
ships again found within the two most oppressive weather
types (DT, MT+) and the weakest in MM air. Significant
correlations of PM2.5 with the remaining pollutants are gener-
ally present in all weather types, being the weakest in DM and
MM. Overall, the strongest relationship among air pollutants
is found in the hot, dry DT weather type. Further, air temper-
ature has significant and moderate correlations with O3 and
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PM2.5 in many of the weather types and is strongest in the hot
weather types of DT and MT+.

Extreme air pollution likelihoods

We have identified the synoptic conditions (weather types)
that when present, have a statistically significantly higher
likelihood of being associatedwith extreme pollution episodes
that have been shown to harm human health (Greene et al.
1999) (Table 3). Results for all cities combined demonstrate
that on average, extreme air pollution episodes (defined as

Table 2 Matrix of Pearson correlation coefficients between air pollut-
ants, air temperature (Ta), and dew point temperature (Td) in select
weather types during the summer season, 1981–2008 for 12 Canadian
cities

DM NO2 O3 SO2 PM2.5 Ta Td
NO2 1

O3 0.10 1

SO2 0.36† 0.05 1

PM2.5 0.37† 0.38† 0.25† 1

Ta 0.20† 0.29† 0.11 0.33† 1

Td 0.07 0.02 0.16 0.18 0.47† 1

DT NO2 O3 SO2 PM2.5 Ta Td
NO2 1

O3 0.13 1

SO2 0.50† 0.32† 1

PM2.5 0.43† 0.50† 0.36† 1

Ta 0.08 0.51† 0.21† 0.23† 1

Td 0.06 0.43† 0.25† 0.28† 0.66† 1

MM NO2 O3 SO2 PM2.5 Ta Td
NO2 1

O3 0.05 1

SO2 0.19† 0.04 1

PM2.5 0.44† 0.44† 0.20† 1

Ta 0.18 0.20† 0.00 0.40† 1

Td 0.13 0.10 0.07 0.38† 0.58† 1

MT NO2 O3 SO2 PM2.5 Ta Td
NO2 1

O3 0.06 1

SO2 0.39† 0.17 1

PM2.5 0.50† 0.60† 0.37† 1

Ta 0.23† 0.32† 0.12 0.42† 1

Td 0.17 0.08 0.12 0.38† 0.32† 1

MT+ NO2 O3 SO2 PM2.5 Ta Td
NO2 1

O3 0.11 1

SO2 0.41† 0.02 1

PM2.5 0.54† 0.34† 0.39† 1

Ta 0.05 0.49† 0.09 0.26† 1

Td 0.06 0.34† 0.07 0.26† 0.79† 1

† p<0.05 level of significance

Table 3 Summertime (JJA) synoptic weather types per city reported
based on frequency (%) and likelihood ratio to result in extreme pollution
episodes. Select weather types chosen based on high ratios and weather
type presence

City Category Freq Pollutant Ratioa

(%) NO2 O3 SO2 PM2.5

Calgaryb DT 3.2 1.93 2.17 2.21 5.56

MT 0.5 1.54 1.54 3.13 3.95

DM 33.4 1.35 1.63 1.09 1.79

Edmontonb DT 1.1 1.43 8.57 1.47 5.48

MT 0.7 0.00 2.35 0.00 6.01

DM 19.5 1.67 2.86 0.86 2.03

Halifax DT 0.6 1.82 1.66 1.74 5.73

MT 7.7 1.17 1.65 0.37 2.04

MT+ 1.2 1.29 0.74 1.54 2.55

Montreal DT 1.3 1.82 10.91 2.43 8.49

MT 22 0.89 1.7 0.89 1.88

MT+ 4.4 0.89 2.83 0.53 3.97

Ottawa DT 3.7 2.37 5.47 2.32 1.13

MT 16.2 1.54 1.65 0.97 3.00

MT+ 2.4 0.68 1.67 0.33 1.79

Quebec City DT 0.7 2.88 5.23 2.82 NA

MT 16.1 1.07 2.30 0.58 2.95

MT+ 2.9 0.30 3.04 0.00 3.19

Regina DT 4.0 3.04 4.84 1.11 2.07

MT 10.9 1.01 2.21 0.08 0.75

MT+ 1.4 1.47 4.27 0.00 2.00

St. Johnc MT 6.9 0.5 2.01 0.56 2.86

MT+ 1.3 0.00 0.98 0.00 3.09

MM 23.0 0.53 1.92 1.01 1.55

Toronto DT 6.2 1.63 7.52 2.76 5.43

MT 21.5 1.20 1.41 1.12 1.66

MT+ 3.5 0.66 1.32 0.66 3.93

Vancouverb,c MT 0.7 3.15 13.64 2.1 5.88

DM 21.5 1.60 1.48 1.29 1.29

MM 3.5 1.40 0.75 1.83 2.11

Windsor DT 4.7 2.40 6.18 3.12 3.73

MT 26.3 0.71 0.99 0.59 1.26

MT+ 7.3 0.22 0.65 0.11 1.82

Winnipeg DT 1.9 1.63 7.86 1.88 0.00

MT 15.1 0.58 1.62 0.00 1.81

MT+ 2.9 0.00 2.35 0.00 2.50

a Ratio=(% of days within the top 5 % level of pollution):(overall/% of
occurrence of the weather type in JJA). A ratio >2.0 (italics) identifies
those synoptic categories where the occurrence of an extreme pollution
episode is statistically significantly more likely to occur, being greater
than expected (Greene et al. 1999)
bMT+ weather type not present
c DT weather type not present
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significantly elevated levels of NO2, O3, SO2, and PM2.5) are
most likely to occur in the DT weather type, with relative
likelihood ratios of 2.1, 6.0, 2.2, and 4.2, respectively. Signif-
icant combined city results are also prevalent in hot, humid
weather. For MT weather, extreme pollution episodes due to
O3 or PM2.5 are almost three times more likely than normal.
For MT+, the resulting ratios are 3.8 for O3 and 2.8 for PM2.5.
Overall, 75 and 67 % of the cities studied experience a
statistically significant likelihood of extreme episodes of O3

and PM2.5 pollution, respectively, under the DTweather type.
Those cities that do not include coastal maritime cities (Van-
couver, Halifax, and St. Johns) experience little to no dry, hot
(DT) weather, and hence, no analysis can be completed under
this weather type in such climates; rather, in these coastal
cities, it is the more humid MTweather type that significantly
raises the likelihood ofO3 and PM2.5 extreme pollution events.
It is worth mentioning here that the DTweather type is present
an average of 2.3% (0–6.2%) of summer days, and theMTand
MT+ weather types only 11.5 % (0.5–29.5 %) and 2.3 %
(0–7.3 %), respectively, of summer days in the studied cities.

Vancouver is quite exceptional among the 12 cities, with a
significantly greater frequency of extreme pollution episodes
for all pollutants studied (ratio=4.17 on average) when the
MT weather type is present. The MT+ weather type yields
similar results wherever it is present, but occurs very infre-
quently in many areas of Canada. In Toronto, Winnipeg,
Ottawa, Montreal, and Quebec City, the greatest extreme
episode frequencies are associated with DT (ratio=4.20 on
average). A similar result occurs farther west (e.g., Regina,
Edmonton, Calgary), where the average likelihood ratio is
3.20. Moderate weather types (DM and MM) show very
minimal chance of extreme pollution episodes.

DLNM results

Five graphs of the pooled single and adjusted pollutant models
for all cities and weather types are presented in Fig. 1,
representing RR due to air pollution exposure within 95 %
CIs. The high proportions of significant risk estimates suggest
a substantial health burden due to both single pollutant expo-
sure (also in Table 4) and all two-way combinations of pol-
lutants, in all five weather types. In all weather types, the
single-pollutant effects of NO2, PM2.5, and SO2 on mortality
decreased subsequent to adjustment for O3. This adjustment
results in lower RR estimates in all cases, with 67 % being
significantly less, and 40 % causing the significant pollution
effect on mortality to disappear (Fig. 1). Additionally,
adjusting for O3 caused the variability of the estimate to
decrease in all but one of the cases, indicating better accuracy.
Alternatively, results generally exhibit an increased variability
in RR when the risk estimate increased after adjustment.
Significant adjustments highlight the fact that the mortality
effects of individual pollutants are not independent.

The risk estimates, however, are modified by weather type.
For example, in the dry moderate (DM) weather type, the only
case of dependence is found when adjusting the PM2.5 esti-
mate for NO2; the RR estimate is 30 % lower (i.e., 1.020
(95 % CI 1.003–1.037)), which is a significant decrease. The
remaining single pollutant RR estimates remain significant
after adjustment for the remaining three air pollutants; hence,
exposure to each pollutant alone has individual effects on
mortality due to no significant change occurring after adjust-
ment for another pollutant.

For the second moderate weather type—moist moderate
(MM)—all single-pollutant exposure effects are statistically
significant, each with magnitudes similar to those in the DM
weather type. The significant effect of O3 individually, i.e.,
1.036 (95 % CI 1.026–1.045), is not independent, as it de-
creases to an insignificant value after adjusting for PM2.5

(1.015 (95 % CI 0.990–1.032)). As these two pollutants
demonstrate a significant and moderately positive correlation
(r=0.44) during MM weather (Table 2), we are evaluating a
similar signal in the model. This also signifies that the single-
model ozone RR value is an overestimate. A significant
increase in the RR is found when PM2.5 is adjusted for SO2,
where the estimate more than doubled (1.050 (95%CI 1.034–
1.065) versus 1.134 (95%CI 1.059–1.215), respectively), and
thus, the health effect of PM2.5 is dependent on SO2 concen-
trations. The NO2 mortality risk is found to be independent of
the remaining pollutant levels, as all estimates remain signif-
icant after adjustments.

Within the MT weather type, all individual effects of air
pollutant exposure on mortality are statistically significant,
with RR magnitudes similar to those of MM and DM. The
NO2 and O3 individual effects disappear after adjustment for
SO2 and PM2.5, with a significant reduction of 3.5 % in RR
present after adjusting NO2 for O3. The significant mortality
effect due to PM2.5, i.e., 1.051 (95 % CI 1.008–1.097), be-
comes less variable and insignificant after adjusting for O3

(1.018 (95 % CI 0.996–1.041)). As these two pollutants
display a significant and moderately positive correlation (r=
0.66), we are once again evaluating a similar signal, and the
PM2.5 independent estimate may be significantly
overestimating the health effect attributed to PM2.5.

In the DT and MT+ weather types, exposure to all air
pollutants is found to have a stronger effect on mortality than
in DM, MM, and MTweather, yet due to the lower number of
cities experiencing DT and MT+ days (n=5 and n=4, respec-
tively) and a lowDT frequency, we see increased variability in
the model output, as displayed by wide CIs. The single-
pollutant exposure effects of all pollutants in the extreme DT
weather type are statistically significant. The O3 and PM2.5

effects on mortality are independent in DT weather, as they
remain statistically significant after adjustment for the remain-
ing pollutants. This holds true evenwith significant declines in
RR when PM2.5 is adjusted for by NO2 and O3. However, the
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NO2 effect is not independent, as it is significantly increased
by adjustment for SO2.

For MT+, all single models are significant predictors of
mortality. The only pollutant to display an independent effect
on mortality is SO2, as the RR is not significantly altered by
pollutant interactions. The NO2 effect significantly decreases
and disappears when adjusted for both O3 and SO2. Sulfur
dioxide displays the largest association with mortality, yet
high variability (RR=1.176 (95 % CI 1.030–1.342)) with O3

adjustment also resulting in a significant effect-size reduction,
decreased variability, and an overall final insignificant effect.
The absence ofMT+ days in Canada and fewer years of PM2.5

data results in the model being unable to properly complete
adjustments for PM2.5.

The summertime city-specific effects demonstrate differing
associations between pollution and mortality risk. This vari-
ability among the 12 cities is illustrated using the three weath-
er types of DM, DT, andMT in Fig. 2. The estimate variability
is greater in the MT and DT weather types and less in DM
weather. In Toronto, the risk estimates are significant for all
four pollutants in all weather types, with very low variability.
Similarly, in Ottawa, all RR estimates are significant for the
three weather types due to all pollutants, with low variability
(excluding the SO2 effect within DT air). Conversely, results
for DM air in Regina andMTair inWindsor andWinnipeg are
consistently insignificant. The greatest variation among cities
occurs with PM2.5 and SO2, with very high variability in DT

Fig. 1 Relative risks of mortality with 95 % confidence intervals (CI)
within five weather types and n number of cities valid per weather type:
dry moderate (DM) (n=12), moist moderate (MM) (n=12), dry tropical
(DT) (n=5), moist tropical (MT) (n=8), and moist tropical plus (MT+)
(n=4). Each plot exhibits single-pollutant RR (NO2, O3, PM2.5, and SO2),

plus an adjusted RR for the remaining air pollutants. Note y-axis scale
differences between plots. A lack of PM2.5 and SO2 data resulted in
insufficient data to run the model accurately in select cases for the hot
weather types. Asterisk and circumflex accent represent a significantly
increased or decreased adjusted effect estimate, respectively

Table 4 Relative risk of mortality (RR) and 95 % CI associated with
single pollutant models, calculated at pooled population weighted means
(PWM), with standard error, for all cities combined

Weather type Pollutant PWM SE RR 95 % CI

DM NO2 13.25 0.000 1.041† (1.032–1.051)

O3 12.58 0.000 1.032† (1.023–1.041)

PM2.5 12.99 0.001 1.050† (1.035–1.065)

SO2 12.05 0.001 1.059† (1.042–1.076)

DT NO2 12.01 0.001 1.067† (1.035–1.100)

O3 12.14 0.001 1.064† (1.033–1.096)

PM2.5 13.00 0.004 1.191† (1.076–1.319)

SO2 12.42 0.008 1.272† (1.057–1.531)

MM NO2 12.59 0.000 1.036† (1.024–1.049)

O3 11.99 0.000 1.036† (1.026–1.045)

PM2.5 12.80 0.001 1.050† (1.034–1.065)

SO2 13.11 0.001 1.041† (1.027–1.055)

MT NO2 14.22 0.001 1.038† (1.019–1.057)

O3 12.89 0.001 1.038† (1.024–1.053)

PM2.5 14.46 0.001 1.051† (1.008–1.097)

SO2 13.33 0.001 1.077† (1.041–1.114)

MT+ NO2 13.44 0.002 1.117† (1.053–1.186)

O3 12.52 0.002 1.065† (1.024–1.108)

PM2.5 13.04 0.004 1.117† (1.018–1.225)

SO2 12.75 0.005 1.176† (1.030–1.342)

† p<0.05, indicates statistical significance of the estimate
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weather in Montreal and Windsor and in MT weather in
Quebec and St. Johns. Lack of pollution data, mortality
values, or select weather types contributes to such wide con-
fidence intervals. On average, for all cities, the DM, MM, and
MT weather types result in moderate increases in RR for
exposure to all pollutants combined (RR=1.045, 1.041,
1.051, respectively). However, within the DTorMT+weather
types, the all-pollutant average RR estimates are 14.9 and
11.9 % above expected risk, respectively, with SO2 found to
be the most harmful pollutant in the hot summertime weather
types.

Discussion

Our findings complement the substantial evidence for nega-
tive health outcomes attributable to exposure to air pollution.
The effect of atmospheric conditions on human health is
expected to change with increasing magnitudes and frequen-
cies of extreme weather as our climate changes (Gosling et al.

2007; O’Neill and Ebi 2009). Thus, increasing frequencies
and intensity of specific weather types that negatively affect
human health (i.e., “oppressive” weather types) will also
occur (e.g., Greene et al. 2011; Knight et al. 2008; Vanos
and Cakmak 2013; Vanos et al. 2014a; Vanos et al. 2014b);
within which, the ambient effects to human health are vital to
understand. There is a large variation in weather-type frequen-
cies among large Canadian cities, which leads to a spatial
variation in air pollution levels and health response. Further
factors may include, but are not limited to, sources of pollution
(industrial, vehicle, nearby areas), climate, topography, de-
mography, time spent indoors, and socioeconomic factors.
Therefore, one large-scale model with general criteria will
not accurately estimate health outcomes in all cities, and the
use of city-specific models is strongly suggested.

Within the current study, it is first established that extreme
pollution episodes are significantly more likely in the hot
weather types, being the strongest during dry tropical weather.
Given these higher concentrations, we next sought out to
determine if we can attribute these levels to a similarly greater
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(DM) weather types. Each plot exhibits single-pollutant RR for NO2, O3, PM2.5, and SO2. Note y-axis scale differences between plots
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risk in all-cause mortality within these weather types, making
use of a DLNM approach. The modeled single-pollutant risk
estimates are consistent with extreme episode findings in the
hot, oppressive weather types. However, strong and statisti-
cally significant estimates are also present in the DM weather
type. Such significant weather typemodifications demonstrate
the importance of categorizing the analysis into the weather
types accounting for six meteorological variables, rather than
one. For example, when comparing the moderate (DM and
MM) weather types to the hot weather types (DT and MT+),
we see that the average single-model RR due to PM2.5 triples
(1.050 versus 1.154), and risk due to O3 almost doubles from
1.034 to 1.064. However, although NO2 and SO2 display little
correlation with air temperature, the same changes also occur,
whereby the RR estimates due to the NO2 and SO2 doubled
and tripled, respectively, when comparing moderate and hot
weather types.

Significant alterations (most commonly a decrease) of sin-
gle pollutant risk estimates are found when a two-way pollut-
ant adjustment is employed. The strong correlations between
select pollutants and temperature result in difficulty isolating
the causal signals (to the model) of one pollutant from signals
of another or from weather elements. For example, Anderson
and Bell (2009) found hot-weather effect estimates to be
reduced when ozone was controlled for, demonstrating that
ozone partly controls the mortality signal from the model. In
the current study, significant modifications were not segregat-
ed to merely correlated pollutants or air temperature, as ad-
justment for ozone (displaying moderate correlation with
PM2.5 only) had the highest frequency of significant estimate
reductions.

This was a very evident trend in the results, displaying an
overestimation of mortality risk by the pollutants NO2, SO2,
and PM2.5 prior to adjustment for O3. This resulted in the
significant single effect of the former pollutants disappearing.
This demonstrates that ozone significantly controls a portion
of the mortality signal from the model, agreeing with the
temperature-effect finding stated above from Anderson and
Bell (2009). The lone exception to this pattern occurred in the
MM weather type for PM2.5 adjustment for O3, where a
similar signal in the model may be coming from each of these
pollutants due to their significant correlation in MM air;
hence, ozone may be acting as a proxy for PM2.5. This also
helps to explain the only instance of a significant reduction of
the RR due to O3 when adjusted for PM2.5, within the MM
weather type as well.

The improved accuracy in the O3-adjusted estimates is due
to a strong independent signal from ozone. Adjusting effects
for ozone concentrations may be the optimal method in this
case to produce more accurate risk estimates and reduce
potential overestimation of the remaining pollutants. The cor-
relation of O3 with the remaining individual pollutants is very
weak to zero (excluding PM2.5 adjustment in DT and MT

weather, where r=0.60 and 0.50, respectively). This was also
found by Burnett et al. (2001) for O3 with SO2 and NO2 in
Canadian cities. Previous studies have also demonstrated a
relationship between ozone or respirable particles (PM)
and mortality after adjusting for temperature (Hoek
et al. 2000; Katsouyanni et al. 2001). Interactions be-
tween PM, O3, and high temperatures increase the rel-
ative mortality due to air pollution, more so under DT
conditions. This attenuation of the RR was also demonstrated
when adjusting particulate matter model contributions with
gaseous pollutants (Burnett et al. 1995). Therefore, in the hot
weather types, PM2.5 is not independent. Used alone, it is a
less accurate indicator of RR and should be adjusted for O3 or
other gaseous pollutants for more accurate mortality risk
estimates.

The correlations and effect modification of NO2 by SO2 in
hot dry air are corroborated by Burnett et al. (2004) in a study
of 12 Canadian cities, as is ozone’s insensitivity to adjustment
for PM2.5 (Burnett et al. 2001). These results agree with the
insensitivity found in the moderate weather types in the cur-
rent study, as well as SO2 estimates encompassing the full
signal from PM2.5 in the DM weather type. Further, Brook
et al. (2007) also found NO2 and PM2.5 to be significantly
correlated in Canada, with NO2 being a better indicator of
particles emitted from vehicles than PM2.5, as well as many
other toxic indicator pollutants.

Assessing the results of extreme air pollution episode anal-
ysis together with the RR estimates (Table 3), we see that a
high likelihood of extreme pollution does not always coincide
with a high relative risk of mortality, particularly in the mod-
erate weather types. This suggests that intervention strategies
to lower the average levels of air pollutants on all days may be
a more appropriate focus, rather than focusing on lowering
peak levels (Schwartz 2000a; b). Health effects of weather due
to hot weather types—DT, MT, and MT+—have frequently
been associated with higher human mortality and morbidity
due to heat exposure (Sheridan and Kalkstein 2004; Sheridan
et al. 2009); however, the combined effects of heat and air
pollution exposure are synergistic. In the DT, MT, and MT+
weather types, individuals experience extremely high temper-
atures (and humidity in the latter two) that may have health
implications with respect to thermoregulation of blood flow,
thereby resulting in heat-related mortality or morbidity
(McGeehin andMirabelli 2001). Therefore, there is a negative
effect modification from both heat exposure and air pollution.
Hence, it becomes more difficult to tease apart the indepen-
dent effects when air temperature is correlated to air pollution,
such as ozone, which demonstrates exposure risk estimates
that are much greater in the two extreme weather types (DT
and MT+).

Ozone is one of the most harmful air pollutants and has
been shown to aggravate respiratory health problems (Hajat
and Haines 2002). Based on future changes in atmospheric
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emissions, plus rising urban air temperatures consistent with
climate change, Bell et al. (2007) found large average
increases in levels of this pollutant across the USA, which
corresponded to increased daily mortality. Further, Séguin and
Berry (2008) state that ozone levels will increase the most in
Windsor, Montreal, Toronto, Vancouver, Calgary, Edmonton,
and Winnipeg. If we can accurately forecast approaching
weather types associated with the probabilities of extreme
heat and air pollution several days in advance (i.e., through
the use of synoptic-based warning systems as in Sheridan and
Kalkstein (2004)), then warnings can be issued to the general
public, emergency personnel, hospitals, care givers, and
others to save lives (Ebi et al. 2004). In this way, the detri-
mental effects of not only heat but also air pollution can be
better managed. Such a synoptic-based warning system (de-
rived from SSC) is currently used in Toronto and has shown
promise as a pilot system for Canada to issue extreme heat
alerts (Environment Canada 2012). Improved knowledge of
the combined effects of temperature and air pollution on
human mortality is vital for the medical community, policy
makers, and community leaders to implement proper inter-
vention strategies (Anderson and Bell 2009).

Limitations

The assumption of equal exposure of all individuals to the
same air pollution concentrations collected from a central site
monitor is a limitation. This issue can only be resolved
through the use of personal exposure monitors, which is a
large endeavor for large populations. Questions regarding the
amount of personal exposure to air pollutants, such as PM2.5,
and the associations reported in daily time series analyses
have been addressed in the literature (Schwartz 2000a; b).
We also did not estimate the mortality displacement (or “har-
vesting effect”), where life is reduced by only a few days or
weeks because of these environmental insults (Hajat et al.
2005); accordingly, our estimates of the true effect of air
pollution on mortality may be slightly high. In addition,
many subjective decisions must be made when estimat-
ing mortality due to air pollution, such as which con-
founding variables to adjust for, the shape of the
exposure-response curve, lag structure, and temperature
metric. This leads to difficultly in making study com-
parisons. A limitation of using longer lag structures is
the introduction of more measurement error due to the
increased time from exposure to event (Anderson and
Bell 2009). Last, we defined extreme pollution events
based on exposure to one pollutant only; however, in the
future, a similar method can be employed that assesses the
mixture of gas- and particulate-phase pollutants, which togeth-
er can modify the effect on human health outcomes such as
mortality.

Conclusions

Our findings suggest that the health effects due to air pollution
exposure differ under specific synoptic weather patterns and
that pollutant interactions can significantly affect the relation-
ships. As both individual and adjusted-pollutant models dis-
play statistically significant increases in RR due to all air
pollutant exposures and under all weather types, attention
must be given to all situations. Individual risk estimates are
found to be significantly greater in the DT weather type for
SO2 and PM2.5 and in the MT+ weather type for SO2, NO2,
and PM2.5. However, when adjusted for interactions, the pol-
lutants of NO2, SO2, and PM2.5 are found to not act indepen-
dently to affect human health, as adjustment for O3 caused the
overall RR estimates to decrease in magnitude (hence lessen-
ing the likelihood of over prediction) yet improve the accura-
cy, with insignificant estimates resulting at times. This dem-
onstrates that ozone significantly controls a portion of the
mortality signal from the DLNM model. Further, ex-
treme air pollution episodes are more likely within the
oppressive and hot synoptic categories of MT, MT+, and DT.
As synoptic categories can be forecast several days in ad-
vance, then city-specific air pollution estimates can then be
made for extreme pollution episodes and for issuing
heat/health warnings.

Our findings highlight the synergistic effects of multiple air
pollutants and weather impacting human health. Results com-
plement the already substantial evidence of associations be-
tween air pollution and human health and should alert envi-
ronmental policy makers to devote increased attention to
weather-air pollution synergies and their effects on human
health. Further research in Canada involving the specific
cause of mortality and age effects using DLNM modeling
can provide more targeted results on which to base stronger
adaptation and implementation strategies. This is vital as all
four pollutants were found to be associated with a significant
increased risk of mortality in the general population for all five
weather types studied, with even greater anomalies in the
oppressive weather types. This study builds upon and com-
plements existing SSC health studies by Health Canada and
others across North America and will further aid in developing
improved and advanced public health warnings and advisories
to air pollution, during both extremely hot as well as dry
moderate weather types.
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