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Abstract This study applies a hedonic model to assess the
economic benefits of air quality improvement following
the 1990 Clean Air Act Amendment at the county level in
the lower 48 United States. An instrumental variable
approach that combines geographically weighted regression
and spatial autoregression methods (GWR-SEM) is adopted
to simultaneously account for spatial heterogeneity and
spatial autocorrelation. SEM mitigates spatial dependency
while GWR addresses spatial heterogeneity by allowing
response coefficients to vary across observations. Positive
amenity values of improved air quality are found in four
major clusters: (1) in East Kentucky and most of Georgia
around the Southern Appalachian area; (2) in a few counties
in Illinois; (3) on the border of Oklahoma and Kansas, on
the border of Kansas and Nebraska, and in east Texas; and
(4) in a few counties in Montana. Clusters of significant
positive amenity values may exist because of a combination
of intense air pollution and consumer awareness of
diminishing air quality.
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Introduction

Since the inception of the Clean Air Act (CAA), aggregate
emissions of the six principal pollutants, ozone, particulate
matter, carbon monoxide, sulfur dioxide, nitrogen dioxide,
and lead, were reduced by 25% in the United States, even
as U.S. gross domestic product (GDP) increased by 161%,
energy consumption increased by 42%, and vehicle miles
traveled increased by 149% during the 1970–2002 period
(U.S. Environmental Protection Agency (EPA) 2008a).
Despite obvious improvements in air quality, the amount
of amenity value created by the reduction in pollutants is
still controversial (Chay and Greeonstone 2003; EPA 1997;
Goklany 1999; Greenstone 2004; Henderson 1996).

Two methods have been used to measure these kinds of
amenity values. One is to use a survey-based method such
as travel cost or contingent valuation (Alberini et al. 1997;
Carson and Mitchell 1993; Krupnick et al. 2002). Hedonic
pricing is another approach. Smith and Huang (1995) used
a meta-analysis of 37 cross-sectional hedonic studies and
found that a decrease in total suspended particulates (TSP)
of 1 μg/m3 results in a 0.05–0.07% increase in property
values. From this small increase, many researchers con-
clude that individuals either place a small value on air
quality or the hedonic approach cannot produce reliable
estimates of the marginal willingness to pay for air quality
improvement (Chay and Greeonstone 2005). For example,
Berry (1976) showed that marginal willingness to pay for
reduction in TSP was $1.38 (1982–84 dollars) in Chicago
in 1968. The estimations of Palmquist (1982, 1983) ranged
between −$89.5 and $108.9 in 1982 and between −$76.1
and $98.5 in 1983 (1982–84 dollars) in multiple cities, i.e.,
Minneapolis, Houston, Chicago, Los Angeles, Philadelphia,
and Detroit. These results may be associated with potential
bias and loss of efficiency that can result when spatial
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effects such as spatial autocorrelation and spatial heteroge-
neity are ignored in the hedonic estimation process (Anselin
and Lozano 2007). None of the 37 studies used by Smith
and Huang (1995) and the more recent work by Chay and
Greeonstone (2005) explicitly modeled spatial effects when
estimating marginal willingness to pay for reduced TSP.

In contrast, spatial econometric methods have become
commonplace in empirical studies of housing and real
estate, leading to spatial hedonic modeling. Reviews of the
basic specifications and estimation methods are provided in
Anselin (1998), Basu and Thibodeau (1998), Pace et al.
(1998), Dubin et al. (1999), Gillen et al. (2001), and Pace
and LeSage (2004), among others. The most recent hedonic
price studies assumed that housing price at a given location
is simultaneously determined by prices of neighboring
houses. These studies typically used a spatial process model
(Whittle 1954), in which an endogenous variable specifies
spatial interactions between prices observed at transaction
points plus exogenous variables relating housing attributes
and possibly other geographic or demographic variables to
sale prices and a disturbance term.

This study uses a spatial hedonic model to estimate the
effects of TSP reductions on changes in median housing
values at the county level in the lower 48 United States. An
instrumental variables approach that combines geographically
weighted regression and spatial autoregression methods
(GWR-SEM) is adopted to simultaneously account for spatial
heterogeneity and spatial autocorrelation. The spatial autore-
gression method (SEM) corrects for spatial dependency. At
the same time, spatial heterogeneity can be addressed by
allowing response coefficients to vary across observations
using geographically weighted regression.

Empirical model

Under the assumption that the housing market is in
equilibrium, a household chooses to reside in a location
that maximizes utility as follows:

Max u hi ai; gið Þ; y� pi ai; gið Þ½ �; ð1Þ
where u(∙) is a continuous twice-differentiable utility
function with u′>0 and u″<0; hi is the flow of housing
services from location i, which is a function of ai (air
quality) and gi (vector of other housing attributes), y is
household income; and pi is the price of house i, also a
function of ai and gi (Bruecker 1990; Capozza and Helsley
1989). The difference between household income and
housing price is total expenditures on commodities other
than housing (i.e., a composite numéraire commodity). The
utility gained from consuming housing services subject to a
budget constraint generates a quasilinear function with
respect to all other goods.

The solution to the consumer’s utility maximization
problem allows the testing of hypotheses about consumer
behavior using the hedonic price model. Although Equation 1
is typically applied to individual housing data, interest here is
in aggregate housing demand for a group of neighbors. The
county is used as the unit of observation in identifying
groups of neighbors because the CAA amendments are
federally imposed county-level regulations and attainment
status is monitored at the county level.

Previous research suggests that air quality measures are
potentially endogenous (e.g., Anselin and Lozano 2007;
Anselin and Le Gallo 2006; Chattopadhyay 1999; Chay
and Greeonstone 2005). Local air quality measures are
likely correlated with unobserved local economic factors
that also affect housing prices. Therefore, ordinary least
square (OLS) estimates may produce biased and inconsistent
parameter estimates. TSP attainment status is a reliable
instrument because it is correlated with the TSP change and
not correlated with the error term in the price equation (Bayer
et al. 2006; Chay and Greeonstone, 2005). Following Chay
and Greeonstone (2005), a first–difference model using TSP
attainment status as an instrument is specified:

$Pi ¼ $X
0
i b þ q$TSPi þ dRi þ aRi*$TSPi þ ei; ð2Þ

$TSPi ¼ $X
0
iΠX þ Z95iΠZ þ ui; ð3Þ

where ΔPi is the change in the logarithm of housing price,
ΔXi is the change in a vector of observed characteristics,
ΔTSPi is the TSP change (ton/km2) between 1990 and
2000, Ri is a vector of regional dummy variables to control
for region-specific heterogeneity, Ri*ΔTSPi is a vector of
their interactions with the TSP change, Z95i is the mid-
decade TSP attainment status in county i for 1995, and ei
and υi are the unobserved determinants of changes in
housing price and TSP, respectively.

Mid-decade TSP attainment status (Z95i) is used as an
instrument in Eq. 3 to account for potential endogeneity of
the TSP change in Eq. 2. The mid-decade attainment status
is a better candidate instrument than the attainment
designation at the beginning of the decade because a
smaller time window is available for general equilibrium
responses to affect the composition of households and
houses. Because mid-decade attainment status is correlated
with large reductions in air pollution and increases in
county-level housing prices, its use as an instrument
minimizes the bias from omitted variables on the housing
price–air pollution gradient. This instrument is also uncor-
related with most observable determinants of housing
prices, including economic shocks.

Anselin and Lozano (2007) raised another important
issue regarding the spatial structure of housing values in the
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hedonic model. They suggested that the hedonic model
should account for the effects of neighboring housing
values with a spatial lag model. Without accounting for
spatial lag effects, inference may be compromised because
spatial lag dependence yields inconsistent and biased
estimates (Anselin 1998). In an attempt to correct potential
problems caused by spatial lag dependence, the spatial lag
of housing prices is included in Eq. 2:

$Pi ¼ rW$Pj þ $X
0
i b þ q$TSPi þ dRi þ aRi*$TSPi þ xi

ð4Þ
where W is the minimum Arc distance weight matrix
ensuring that every observation has at least one neighbor;
and ρ is the spatial autoregressive parameter explaining the
spatial lag dependence between housing prices (WΔPi). An
instrumental variables approach (or two-stage least squares
regression) is used to estimate Eq. 4 (Anselin 1998). The
first stage entails regressing all exogenous variables and
their first and second spatial lags on the spatial lag of the
differenced housing prices (Anselin 1998; Kelejian and
Prucha 1999):

W$Pi ¼ d1$eXi þ d2W$eXi þ d3W
2$eXi þ mi; ð5Þ

where $eXi is a matrix containing ΔXi, ΔTSPi, Ri and
Ri*ΔTSPi. In the second stage, Eq. 4 is estimated using the
predicted values of WΔPi from Eq. 5.

GWR is applied to Eqs. 2 and 4 to control for potential
spatial heterogeneity at the local level. Equation 2 with
GWR is specified as:

$Pi ¼ $eX
0
i b ui; við Þ þ "i: ð6Þ

where εi is a random disturbance term; and (ui, vi) are
location coordinates. Given predicted values of WΔPi from
Eq. 5, Eq. 4 can be specified in the GWR framework:

$Pi ¼ r ui; við ÞW$bPi þ $eX
0
i b ui; við Þ þ "i: ð7Þ

The GWR assigns weights to other counties according to
their spatial proximity to county i. These weights allow
counties in closer proximity to county i to have more
influence in the estimation of the local parameters than
counties located farther away. An adaptive bi-weight
function is used to geographically weigh observations
(Fotheringham et al. 2002). The function is “adaptive” in
the sense that the trace of the weight matrix is allowed to
expand and contract, conditional upon a given location. The
bi-weight function for each wij is:

wij ¼ 1� dij=dmax

� �2
h i2

if dij � dmax; otherwise wij ¼ 0;

ð8Þ
where j represents a point in space at which data are
observed; i represents any point in space for which

parameters are estimated; dij is the Euclidean distance
between point i and j; and dmax is the maximum distance
between observation i and its q nearest neighbors (optimal
neighborhood bandwidth). The weight attributed to regression
point i is one. Weights attributed to the j observations in the
neighborhood of i are less than one and become zero when
the distance between i and j is greater than dmax. Therefore,
as dij increases, the influence of observation j on local
regression point i decreases. A cross-validation suggested in
Fotheringham et al. (2002; p. 59–62) is used to select the
optimal number of neighbors to determine dmax at each
location.

To allow for potential correlation between the disturbance
terms, the error terms of Eqs. 6 and 7 are assumed to have the
structure, "i ¼ l

Pn
j¼1;j 6¼i wij"j þ xi, where xi � iid 0; s2ð Þ;

wij is an element of an n by n row-standardized spatial
weight matrix; and l is a spatial error autoregressive
parameter. The GWR residuals are tested for spatial error
autocorrelation using a Lagrange multiplier (LM) test
(Anselin 1998). In this analysis, a spatial contiguity weight
matrix based on Thiessen polygons created by MATLAB
was applied to construct the test statistic (Anselin 1998). The
statistic is distributed as a χ2 variate with 1 degree of
freedom. The null hypothesis is l=0.

To test how spatial heterogeneity and spatial autocorre-
lation can be mitigated by adopting a spatial process model,
models with and without the specifics of the spatial process
are estimated and compared, i.e., OLS controlling for
regional fixed effects (OLS model), GWR to account for
spatial heterogeneity (GWR model), and GWR corrected
for spatial autocorrelation (GWR-SEM model). The GWR
3.0 (Fotheringham et al. 2002) software was used to
calibrate the GWR model. The SAS 9.1(SAS) system was
used to estimate the GWR model with spatial lag and error
effects because the GWR 3.0 package cannot accommodate
specialized error structures.

One of the local measures of spatial associations, Getis-
Ord Gi statistics (Gi statistics) is used to identify the
clusters of high- and low-marginal effects of the TSP
change (Ord and Getis 1995). The analysis is implemented
by looking at each county within the context of neighboring
counties. The distance for identifying neighboring counties
is calculated from Geoda 0.9.5-i as a default minimum
threshold distance (Anselin 2005). The local sum of the
marginal effects of the TSP change for a county and its
neighbors is compared proportionally to the sum of all
counties. When the local sum is different from the expected
local sum, and that difference is too large to be the result of
random chance, those counties sharing similar values are
identified as clusters with high (or low) marginal effects of
the TSP change (Environmental Systems Research Institute
2007). Once the clusters are mapped, marginal effects of
TSP changes are overlaid on the Gi map. By doing so, only
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negative marginal effects among clusters of negative Gi
statistics and only positive marginal effects among clusters
of positive Gi statistics are mapped. The clusters of negative
marginal effects represent the areas with significant increases
in housing prices from reductions in TSP emission density.
The clusters of positive marginal effects represent the areas
with significant increases in housing prices from increases in
TSP emission density. The major clusters focusing on positive
amenity values of TSP improvement are characterized by
local differences in economies, geographies, demographics,
and institutions.

Study area and data

The study area includes the entire continental United States,
which consists of 3,107 counties and county equivalents in
the 48 States and District of Columbia. After excluding
missing observations from five counties, 3,102 counties are
used in the empirical model. The empirical model uses four
county-level datasets in a geographical information system
(GIS): (a) TSP (PM-10, which includes only those particles
with aerodynamic diameter smaller than 10 μm) attainment
status of 1995 and TSP emission density in 1990 and 2000
from the U.S. EPA (2008b), (b) socioeconomic and housing
variables from the 1990 and 2000 County and City Data
Books (2003) and the GeoLytics Census CD, (c) 1999
Natural Amenities Scales and Rural–Urban Continuum
Code from U.S.D.A. Economic Research Service (U.S.
Department of Agriculture (USDA) 2003; McGranahan
1999), and (d) regional dummy variables and their interac-
tions with the TSP variable based on Census Bureau Regions
and Divisions with State Federal Information Processing
Standard (FIPS) codes (U.S. Census Bureau 2008). All of
these variables are joined together by means of county FIPS
codes.

Definitions and descriptive statistics for the variables
used in the model are presented in Table 1. The change in
TSP emission density is chosen to reflect air quality
improvement because (1) TSP is the most visible form of
air pollution, (2) TSP has the most harmful health effects of
all the pollutants regulated by the CAA amendments
(Graves et al. 1988; Palmquist and Isangkura 1999), and
(3) TSP is highly correlated with other major pollutants.1

Unlike monitoring data that come from EPA's Air Quality
System (EPA 2008c), TSP emission density (ton/km2)
measures all possible sources, for instance, fuel combus-
tion, industrial processes and highway vehicles, and is
provided for every U.S. County by EPA's National

Emission Inventory (NEI) database (EPA 2008d). They
are expressed in ton/km2 because each county has a
different land area. The change in median housing value
during the 1990s, instead of the median housing value for
1990 or 2000, is used as the dependent variable because
first-differencing the data absorbs the county permanent
effects under the framework of the hedonic model (Chay
and Greeonstone 2003). Accordingly, all explanatory
variables except the natural amenity scale, regional dummy
variables, and their interactions with the TSP change are
measured as changes between 1990 and 2000.

One concern with using aggregate housing value at the
county level instead of at the individual level is that the
aggregate values could mask considerable spatial heterogene-
ity within the county that may be critical to measuring the
attributes of housing value. This spatial heterogeneity could
introduce some bias. Nevertheless, Chay and Greeonstone
(2005) made a case that the aggregation to the county level
may not be an important source of bias for the following
reasons. First, their estimates generated by aggregation to the
county level were similar to the results based on more
disaggregated data summarized in Smith and Huang (1995).
Second, the aggregation does not lead to the loss of
substantial variation in TSP emission density; thus, the bias
generated by the spatial heterogeneity of TSP emission
density within the county should not be significant. Using
the availability of readings from multiple monitors in most
counties, they found that only 25% of the total variation in
1970–80 TSP changes was attributable to within-county
variation.

Changes in socioeconomic conditions that may affect the
change in housing value are represented by changes in
income, unemployment, employment in manufacturing,
population density, white ratio, senior ratio, population
with high school degree, population with college degree,
urban population ratio, poverty ratio, and per capita tax.
Changes in housing characteristics that may affect the
change in housing value include changes in the percentage
of houses built in the last 10 years, percentage of houses
built 10–20 years ago, percentage of houses built more than
40 years ago, percentage of houses without plumbing,
percentage of vacant houses, and percentage of owner-
occupied houses. The natural environment and regional
characteristics that may influence housing values consist of
the natural amenity scale and the rural–urban continuum
code. These variables are chosen on the basis of the general
hedonic specification.

According to the U.S. Census Bureau (2008), the
continental United States is delineated into four regions
that consist of nine divisions: New England, Middle
Atlantic, East North Central, West North Central, South
Atlantic, East South Central, West South Central, Mountain,
and Pacific. Eight regional dummy variables are used to

1 Other major pollutants such as carbon monoxide, nitrogen dioxide,
and volatile organic compound are highly correlated with TSP in the
2000 EPA data (correlation coefficients greater than 0.8).
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account for spatial heterogeneity by capturing the regional
variation in housing value. The West South Central division is
chosen as the reference region (Kennedy 1992).2

Changes in the level of TSP emission densities between
1990 and 2000 are mapped in Fig. 1. During this period,
TSP emission density declined by 0.07 (tons/km2) over the

continental United States. The TSP emission density de-
creased most in Kings County, New York by 87.30 (tons/km2)
whereas it increased most in Covington, Virginia by 87.72
(tons/km2). Figure 2 shows the change in median housing
price (2,000 dollars) during the 1990s. The median housing
price doubled in 188 of 3,102 counties (6%). It increased
between 50% and 100% in 1,842 counties (59%), establishing
two major clusters in the eastern and the western regions. It
increased by less than 50% in 1,019 counties (33%). It
dropped in 53 counties during the 1990s.

2 The choice of reference region of West South Central Division is
arbitrary; however, the marginal effect of TSP calculation is invariant
to the choice.

Table 1 Definitions and descriptive statistics

Variable Definition Mean (std. dev.)

Dependent variable

HVAL Change in log median housing value during 1990s ($) 0.45 (0.18)

Variable of interest

TSP Change in TSP emission density during 1990s (tons/km2) 2.17 (13.24)

Economic condition variables

INCOME Change in household income during 1990s ($) 8,683.37 (2,599.22)

UNEMP Change in unemployment rate during 1990s −2.45 (2.34)

MANF Change in percentage of employment in manufacturing during 1990s −0.03 (0.04)

Demographic and socioeconomic variables

POPDEN Change in population density during 1990s (population/km2) 14.38 (76.83)

WHITE Change in percentage of white during 1990s −0.03 (0.03)

SENIOR Change in percentage of age above 65 during 1990s −0.13 (1.44)

HIGHSCH Change in percentage of persons with high school graduate during 1990s 0.07 (0.03)

COLLEGE Change in percentage of persons with college graduate during 1990s 0.09 (0.03)

URBAN Change in percentage of urban population during 1990s 0.04 (0.11)

POVERTY Change in percentage of persons in poverty during 1990s 0.01 (0.03)

Housing variables:

BLTTEN Change in percentage of houses built in last 10 years during 1990s −0.02 (0.06)

BLTTWTY Change in percentage of houses built 10–20 years ago during 1990s −0.09 (0.05)

BLTOLD Change in percentage of houses built before 1939 during 1990s −0.03 (0.03)

PLUMB Change in percentage of houses without plumbing during 1990s 0.00 (0.02)

VACANT Change in percentage of vacant house during 1990s −0.01 (0.04)

OWNER Change in percentage of owner-occupied house during 1990s 0.01 (0.02)

Tax and neighborhood variables

TAX Change in per capita taxes ($) during 1990s 341.47 (1,423.48)

Natural environment

AMENITY Natural amenity scale 0.05 (2.28)

RURAL Rural urban continuum code 5.59 (2.72)

Regional dummy variables

New England New England = 1, otherwise = 0 0.22 (0.15)

Middle Atlantic Middle Atlantic = 1, otherwise = 0 0.05 (0.21)

East North Central East North Central = 1, otherwise = 0 0.14 (0.35)

West North Central West North Central = 1, otherwise = 0 0.20 (0.40)

South Atlantic South Atlantic = 1, otherwise = 0 0.19 (0.39)

East South Central East South Central = 1, otherwise = 0 0.12 (0.32)

Mountain Mountain = 1, otherwise = 0 0.09 (0.29)

Pacific Pacific = 1, otherwise = 0 0.04 (0.20)
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Empirical results

Overall findings

The overall performances of the three models are compared in
Table 2. The LM test for spatial error shows that residuals of
the OLS and GWR models are spatially autocorrelated. The
spatial error LM value (175.0) based on the residuals of the
GWR model is reduced by 80% compared to the LM value
(896.0) based on the residuals of the OLS model. However,
spatial autocorrelation still remains in the residuals of GWR
model. The null hypothesis of no spatial error autocorrelation
could not be rejected in the GWR-SEM model. The adjusted
R2 for the GWR-SEM model is 0.85, higher than for the
OLS model (0.53), and slightly lower than for the GWR
model (0.87). The error sum of squares for the GWR-SEM
model is 14.4, lower than for the OLS model (47.0) and
slightly greater than for the GWR model (13.5). The global F

test comparing the global and local models confirms that the
local models of GWR and GWR-SEM outperform the global
OLS model. The overall fit of the GWR model is slightly
better than the GWR-SEM model. However, the GWR-SEM
model effectively controls for spatial error autocorrelation,
which is still present in the residuals of GWR model.

Parameter estimates for the three models can be obtained
by request to the authors. The effect of the TSP change is
not trivial due to interactions with the regional fixed effects,
and more insight can be gained by calculating the marginal
effects of the TSP change by region. The marginal effects
of the TSP change on housing prices across all regions for
the three models are presented in Table 3.

The marginal effects for the TSP change in the OLS
model are insignificant. The median value for the marginal
effects from the GWR model is fairly close to zero for all
counties; however they vary between −0.837 and 0.811,
showing significant spatial variation. The median value for

Fig. 1 Changes in TSP
emission density between 1990
and 2000 (ton/km2)

Fig. 2 Changes in log housing
price between 1990 and 2000
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the marginal effects of the GWR-SEM model are also close
to zero but the variation is smaller than that of the GWR
model, between −0.705 and 0.569. The GWR and GWR-
SEM models consistently show that the median marginal
effect for the lower 48 states is close to zero, whereas local
marginal effects vary significantly with different signs in
different regions. These different relationships are obscured
in the global model. Without the results at the local level
from the GWR and GWR-SEM models, the variation in
effects associated with the TSP change on housing prices
would not be captured. The marginal effects of the TSP
change are higher than the average median value in the
Middle Atlantic, East North Central, South Atlantic, and
East South Central regions.

Cluster analysis

The estimates from the GWR-SEM model are used to
identify clusters of areas where the marginal effects of the

TSP change on housing price are significantly different from
others by overlaying the Gi statistics on the map of marginal
effects. The spatial clusters of significant marginal effects at
the 5% level are mapped in Fig. 3. The threshold distance of
1.46 decimal degrees (approximately 160 km2) is used. Four
major clusters of areas are found with positive amenity
values from TSP reductions. Brief descriptions of each
cluster with regards to median housing value, employment in
manufacturing, and income are summarized in Table 4.

The largest cluster is in East Kentucky and most of
Georgia in the Southern Appalachian area. In this cluster, a
decrease in TSP emission density by 1 ton/km2 increases
the average median housing price (hereafter, average
housing price) by 5.23%. This cluster can be characterized
by successful TSP reductions coupled with a fast-growing
economy. The cluster is one of the fastest-growing areas in
the United States, with a 61% increase in median housing
value, 35% increase in household income, and 21%
increase in population density over the period between
1990 and 2000. In spite of a vibrant and growing economy,
employment in the manufacturing sector decreased by
almost 5% over the same period. The significant reduction
in manufacturing likely contributed to the 0.39 ton/km2

reduction in TSP emission density between 1990 and 2000.
For example, no county in Georgia had TSP nonattainment
status in 1995. From 1992 through 2002, Georgia partici-
pated in the Southern Appalachian Mountains Initiative
(SAMI; 2002), a decade-long federal-state collaboration
aimed at improving air quality in the Appalachian premier
natural areas. Positive impacts on the housing market from
TSP reductions in the cluster of counties around the
Southern Appalachian area are in accordance with the
expected benefits (SAMI 2002) from developing and
evaluating potential incentive-based approaches to reducing
emissions in the SAMI region.

Another cluster of positive marginal effects on housing
prices is in a few counties in Illinois. In this cluster, a

Region OLS GWR GWR-SEM

Marginal Effect Min Median Max Min Median Max

Overall 0.027 −0.837 −0.001 0.811 −0.705 −0.001 0.569

New England 0.045 −0.062 0.000 0.045 −0.064 0.000 0.019

Middle Atlantic 0.051 −0.061 −0.001 0.135 −0.105 −0.001 0.138

East North Central 0.049 −0.161 −0.001 0.811 −0.141 −0.001 0.473

West North Central 0.045 −0.788 0.000 0.274 −0.279 0.000 0.298

South Atlantic 0.051 −0.142 −0.001 0.141 −0.215 −0.001 0.149

East South Central 0.038 −0.837 −0.001 0.102 −0.705 −0.001 0.076

West South Central −0.142 −0.377 0.000 0.364 −0.369 0.000 0.569

Mountain 0.051 −0.144 0.000 0.225 −0.185 0.000 0.235

Pacific 0.049 −0.079 0.000 0.216 −0.079 0.000 0.181

Table 3 Marginal effects
of 1990–2000 changes in TSP
pollution on changes in log
housing prices

OLS, GWR, GWR-SEM
represent the estimation results
using ordinary least square,
geographically weighted
regression, and geographically
weighted regression corrected
for spatial autocorrelation,
respectively

Table 2 Comparison of overall performance of three models

Statistic OLS GWR GWR-SEM

Adjusted R square 0.53 0.87 0.85

Error sum of squares 47.0 13.5 14.4

Effective parameters [tr(H)] 37 1,196 1,232

Improvement over OLS 33.5 32.6

Degrees of freedom
(improvement)

1,158.8 1,195.0

Global F test for global vs.
local models

4.1a 3.5a

Spatial error LM test 896.0a 175.0a 1.9

OLS, GWR, GWR-SEM represent the estimation results using
ordinary least square, geographically weighted regression, and
geographically weighted regression corrected for spatial autocorrelation,
respectively
a Indicates significance at the 0.01% level
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decrease in TSP by 1 ton/km2 increases the average
housing price by 5.62%. This cluster can be characterized
by an economy growing at a moderate pace with a 61%
increase in median housing value, 44% increase in
household income, and 1% increase in population density
over the 1990–2000 period. Again, a decline in manufac-
turing of almost 2% was a likely contributor to the 8.5 ton/
km2 reduction in TSP emission density. Illinois has been
regulating motor vehicle inspection and maintenance as a
method to control air quality. Regulation of motor vehicles
for air quality improvement may be an indication of higher
public preference for improved air quality.

Another cluster with positive marginal effects on
housing prices includes areas on the border of Oklahoma
and Kansas, on the border of Kansas and Nebraska, and in
east Texas. In this cluster, a decrease in TSP density by
1 ton/km2 increases the average housing price by 11.32%.

This cluster is characterized by moderate economic growth
with a 47% increase in average housing price, 40% increase
in household income, and 11% increase in population
density. A possible explanation for this cluster is the
preponderance of oil industry firms drawn by the natural
gas basin in and around the area. Because of intense air
pollution from oil processing, residents of the area may be
more sensitive to TSP reductions and thus the marginal
value of TSP reductions is significantly higher than most
other areas. The cluster of counties along the border of
Oklahoma and Kansas may be associated with beef-
processing firms. This industry’s emissions produced severe
air pollution, damaging enough to affect the area’s residents,
thus the marginal value of TSP reductions is significantly
higher than inmost other areas. Although the TSP reduction in
this cluster during the 1990s (−6.0 ton/km2) is similar to the
U.S. average (−5.7 ton/km2), the TSP emission density

Fig. 3 Clusters of significant
marginal effects from changes in
TSP emission density between
1990 and 2000

Table 4 Description of four clusters with positive air quality improvement

Clusters

East Kentucky and most of
Georgia around Southern
Appalachian area

State of Illinois Borders of Oklahoma and
Kansas, and of Kansas and
Nebraska, and east Texas

State of Montana

Marginal effect of 1ton/km2

decrease in TSP on median
housing value

+5.23% +5.62% +11.32% +10.23%

Year 1990 2000 1990 2000 1990 2000 1990 2000

Median housing value 51,974 84,154 37,458 60,467 38,036 56,049 45,620 73,250

% of employment in
manufacturing

25.14 20.29 16.40 14.42 15.60 15.30 5.88 4.40

Household income 23,361 31,597 21,162 30,387 21,351 29,858 22,145 28,828

Population density
(population/km2)

376.06 455.16 164.07 165.98 258.37 286.97 14.25 15.67

TSP emission density
(tons/ km2)

46.22 43.63 40.03 31.40 47.98 41.99 11.87 9.48

Number of counties 121 14 41 4
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(42.0 ton/km2) is higher than the 2000 average (31.3 ton/km2).
The higher level of air pollution in this cluster may cause
households to have higher willingness to pay for TSP
reduction.

Another cluster with a positive amenity value for TSP
reduction is found in a few counties in Montana. In this
cluster, a decrease in TSP density by 1 ton/km2 increases
the average housing price by 10.23%. This cluster is
characterized by relatively rural areas with population
densities of 13 to 16 persons per km2 and moderate
economic growth with a 61% increase in median housing
value, 30% increase in household income, and 25%
increase in population density. This cluster can be explained
by the 1.5% decline in manufacturing and because the
marginal benefit of TSP reductions is higher in communities
with relatively low pollution levels. Although the TSP
reduction during the 1990s in this cluster (−2.3 ton/km2) is
smaller than the U.S. average, its TSP emission density
(11.9 ton/km2) is only about one third of the 2000 average.
The better air quality in this cluster may cause households to
have higher willingness to pay to maintain air quality.

Three distinctive clusters with negative amenity values
of TSP reductions are found in east Virginia, west and
central Texas, and southeast Montana. These clusters are
more difficult to explain because they contradict the
expectation of a positive marginal value of TSP reductions.
Our general justification is that real estate markets are
improving in these clusters, while air quality is diminishing.
For example, the cluster in southeast Montana experienced
significant deterioration in air quality with a TSP emission
density increase of 2.8 ton/km2 during the 1990s, in concert
with a booming real estate market in Montana. This
unexpected result may be due to the hedonic model not
being able to capture all of the amenity values of economic
growth, and the air pollution accompanying that economic
growth.

Conclusions

Air quality has been evaluated with the hedonic housing
price model by numerous researchers. In the midst of mixed
results as to whether or not marginal willingness to pay for
air quality improvement is significant, this study uses the
hedonic model to estimate the amenity value of TSP
reduction on changes in median housing values at the
county level. An instrumental variables approach that
combines geographically weighted regression and spatial
autoregression methods is adopted to simultaneously
account for spatial heterogeneity and spatial autocorrelation.

The median value for the marginal effects of TSP
changes are close to zero in the GWR-SEM model but
significant spatial variation exists in the marginal effects.

Using a Gi Statistics of the marginal effects, the clusters of
significant positive and negative amenity values from TSP
reductions are identified. Positive amenity values from TSP
reductions are found in four major clusters: (1) East
Kentucky and most of Georgia around the Southern
Appalachian area; (2) a few counties in Illinois; (3) on the
border of Oklahoma and Kansas, on the border of Kansas
and Nebraska, and in east Texas; and (4) a few counties in
Montana.

The reasons for the clusters of significant positive
amenity values may be different for different clusters. The
first cluster is explained by successful TSP reductions
coupled with a fast-growing economy and a significant
decline in manufacturing; the second cluster is explained by
awareness of diminishing air quality; the third cluster is
explained by higher willingness to pay for TSP reductions
in an area with poor air quality; and the fourth cluster is
explained by higher willingness to pay for maintaining air
quality in an area with good air quality. Surprisingly,
negative amenity values of TSP reductions are found in the
three distinctive clusters of eastern Virginia, western and
central Texas, and southeastern Montana. This unexpected
result may be explained by worsening air quality with a
booming real estate market and the inability of the model to
capture all of the amenity values of economic growth and
the resulting air pollution.

The finding of spatial heterogeneity in the marginal
amenity values from TSP reductions in this study could be
used to amend the CAA at the local level, i.e., state or
regional level. Historically, the CAA amendments are
federally imposed mainly because of equity issue. Howev-
er, a need exists to update the CAA at the local level.
According to ‘Update on Clean Air Act Issues’, the
Midwest and Southern states claim that air quality problems
are local, and more stringent nitrogen oxide emission
standards announced by the EPA in September, 1998 are
an unfair cost burden (American Geological Institute 2000).
Local estimates of the marginal willingness to pay for TSP
reductions, such as those generated in this study, should
prove useful as input into future debates about amendment
of the CAA at the local level. For example, higher marginal
effects of TSP reductions mean higher marginal willingness
to pay for TSP reductions. This finding implies that house-
holds in areas of higher marginal willingness to pay may be
more amenable to supporting more stringent air quality
requirements.

Two caveats should be mentioned when applying the
hedonic model using the GWR-SEM framework with
aggregate housing value at the county level. First, the
clusters are found mostly in the eastern regions of the
United States. A contributing factor to this phenomenon
might be that the relatively small counties in the eastern
regions fit the spatial hedonic model better than the larger
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western counties. Because the locations of specific counties
are proxied by county centroids in establishing the weight
matrix in the GWR-SEM model, the centroids of larger
counties represent larger areas. The larger the area
represented by the centroid, the wider and the larger the
area represented by the optimal bandwidth, and the smaller
the spatial heterogeneity inherent in the variables. Uneven
county sizes may be a disadvantage of spatial analysis with
county-level data. Further analysis may compare differ-
ences between the states with similar county sizes; one for
the western and one for the eastern United States. Second,
the hedonic model is only able to capture those benefits
from air quality improvements that are jointly consumed
with housing. Air quality improvements captured at other
places, such as the workplace and when commuting to
work, may not be captured in the price of the house. Also,
commuters from other air basins will enjoy some of the
benefits if they work in the area without capitalizing those
benefits into housing prices. In other words, the hedonic
method only captures a portion of the air quality benefits.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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