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Abstract
We study first-order symmetrizable hyperbolic N ×N systems in a spacetime cylinder
whose lateral boundary is totally characteristic. In local coordinates near the boundary
at x = 0, these systems take the form

∂t u + A(t, x, y, xDx , Dy)u = f (t, x, y), (t, x, y) ∈ (0, T ) × R+ × R
d ,

where A(t, x, y, xDx , Dy) is a first-order differential operator with coefficients
smooth up to x = 0 and the derivative with respect to x appears in the combina-
tion xDx . No boundary conditions are required in such a situation and corresponding
initial-boundary value problems are effectively Cauchy problems. We introduce a cer-
tain scale of Sobolev spaces with asymptotics and show that the Cauchy problem for
the operator ∂t + A(t, x, y, xDx , Dy) is well-posed in that scale. More specifically,
solutions u exhibit formal asymptotic expansions of the form

u(t, x, y) ∼
∑

(p,k)

(−1)k

k! x−p logk x u pk(t, y) as x → +0

where (p, k) ∈ C × N0 and �p → −∞ as |p| → ∞, provided that the right-
hand side f and the initial data u|t=0 admit asymptotic expansions as x → +0 of
a similar form, with the singular exponents p and their multiplicities unchanged.
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In fact, the coefficients u pk are, in general, not regular enough to write the terms
appearing in the asymptotic expansions as tensor products. This circumstance requires
an additional analysis of the function spaces. In addition, we demonstrate that the
coefficients u pk solve certain explicitly known first-order symmetrizable hyperbolic
systems in the lateral boundary. Especially, it follows that the Cauchy problem for
the operator ∂t + A(t, x, y, xDx , Dy) is well-posed in the scale of standard Sobolev
spaces Hs((0, T ) × R

1+d+ ).

Keywords First-order hyperbolic systems · Totally characteristic boundary ·
Asymptotic expansions of conormal type · Discrete asymptotic types · Sobolev
spaces with asymptotics · Calculus of cone-degenerate pseudo-differential
operators · Holomorphic conormal symbols · Singular analysis

Mathematics Subject Classification Primary 35L04; Secondary 35L80 · 35S05

1 Introduction

Due to their importance in the physical and engineering sciences, the investigation
of hyperbolic initial-boundary problems has a long-standing history. Depending on
the hyperbolic differential operators under study, the main questions concern the cor-
rect number and kind of boundary conditions to be imposed and well-posedness of the
resulting initial-boundary problems in suitable scales of function spaces. See Benzoni-
Gavage and Serre [1] for a recent account. In case of a non-characteristic boundary, it is
known that the weak Lopatinskii condition is necessary for well-posedness, while the
uniform Lopatinskii condition has been shown by Lopatinskii [13], Kreiss [10], and
Sakamoto [20] to be necessary and sufficient in order to obtain the strongest possible
regularity results, comparable to those one has for the pure Cauchy problem. See also
Chazarain and Piriou [3]. The understanding of the characteristic case is considerably
less complete. There are many works contributing to the uniformly characteristic case,
especially for first-order systems when the differential operators under study are sym-
metric hyperbolic, see e.g. Majda and Osher [14], Ohkubo [17], Rauch [18], or Secchi
[24]. In these results, one often has more regularity in directions tangent to the bound-
ary than in directions transverse to it. By contrast, for a totally characteristic boundary,
one has the same regularity in all directions, as observed already by Sakamoto [21].

This observation was our point of departure. We investigate symmetrizable hyper-
bolic first-order differential systems in space-time cylinders (0, T )×�, where� ⊆ R

n

is aC∞ domain (or, more general,� is aC∞ manifold with non-empty boundary) and
where the lateral boundary (0, T ) × ∂� is totally characteristic. The main technical
innovation is to regard the differential operators under study as cone-degenerate with
respect to the spatial variables, which in turn is possible due to the totally characteristic
boundary. As a consequence, using a suitable calculus for cone-degenerate pseudodif-
ferential operators (detailed below), we construct symmetrizers for the systems under
consideration and, as a result of the symmetrization process, are able to establish
well-posedness in so-called Sobolev spaces Hs,δ

P,θ (�) with asymptotics (also detailed
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below). Here, the asymptotics alluded to are discrete conormal asymptotics, given
by an asymptotic type P . Special cases include the standard Sobolev spaces Hs(�)

and Hs
0 (�). Another relevant case is when the function spaces carry no asymptotic

information at all, i.e., when θ = 0. Then the asymptotic type P is redundant and
Hs,δ

P,0(�) = K s,δ(�) is a weighted Sobolev space.
It turns out that in the situation considered no boundary conditions are required. One

main contribution of this paper is the revelation that the boundary traces of the solutions
themselves satisfy hyperbolic differential equations in the lateral boundary (0, T ) ×
∂�. In particular, these boundary traces can be determined ahead of determining the
solutions.

There is a long-running program of investigating conormal asymptotic expansions
of solutions to elliptic partial differential equations as an integral part of the struc-
ture, initiated by different people, see e.g. Melrose [15] or Rempel and Schulze [19].
Recently, there have been attempts to extend this program to include hyperbolic partial
differential equations, see e.g. Hintz and Vasy [6]. This paper can also be seen as a
contribution in this direction.

1.1 Formulation of the problem andmain results

In this paper, we investigate well-posedness of the Cauchy problem for first-order
hyperbolic systemswith totally characteristic boundary.More specifically,we consider
the Cauchy problem for N × N systems

{
∂t u + A(t,�, D� )u = f (t,�), (t,�) ∈ (0, T ) × �,

u
∣∣
t=0 = u0(�),

(1.1)

whereA ∈ C∞([0, T ];Diff1(�;CN )),� is C∞ manifold with non-empty boundary
∂�, and � = �\∂�. Our standing assumptions are that the differential operator

L = ∂t + A(t,�, D� ) is symmetrizable hyperbolic (A1)

and that the lateral boundary

(0, T ) × ∂� is totally characteristic forL . (A2)

The latter condition means that σ 1
ψ(A)(t,�, ν(�)) = 0 for (t,�) ∈ [0, T ] × ∂�,

where σ 1
ψ(A) is the principal symbol of A and ν(�) ∈ T ∗

� � is conormal with

respect to the boundary ∂� (i.e., ν(�)
∣∣
T� (∂�)

= 0). A first observation is that the
characteristic curves of L stay inside the lateral boundary when they started out
there. In particular, they are tangent to the boundary. Consequently, no boundary
conditions are required in order to solve Eq. (1.1). Besides, there is no need for a
Lopatinskii condition or an replacement of it in one or the other form.
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1.1.1 The result for standard Sobolev spaces

Webeginwith describing the result for the standardSobolev spaces Hs(�), where� ⊆
R
n is a C∞ domain and s ≥ 0. This case deserves special attention for two reasons:

firstly, the proof here is considerably simpler than in the general case, secondly, it
helps to develop some additional intuition for the problems studied later.

Theorem 1.1 Suppose that the differential operator ∂t +A in Eq. (1.1) has coefficients
in C∞

b ([0, T ] × �;MatN×N (C)) and that it is symmetrizable hyperbolic uniformly
in (t,�) ∈ [0, T ] × �. Let u0 ∈ Hs+σ (�;CN ) and f ∈ ⋂σ

r=0 W
r ,1((0, T );

Hs−r+σ (�;CN )) for some s ≥ 0, σ ∈ N0. Then Eq. (1.1) possesses a unique solution

u ∈
σ⋂

r=0

C r ([0, T ]; Hs−r+σ (�;CN )).

In addition, the boundary traces

γ�u = 1

�!
∂�u

∂ν�

∣∣∣
(0,T )×∂�

∈
⋂

r≤σ,
�+r<s+σ−1/2

C r ([0, T ]; Hs−�−r+σ−1/2(∂�;CN ))

for � ∈ N0, � < s + σ − 1/2 (defined by extending ν to a C∞ vector field in
a neighborhood of ∂�) are uniquely determined as solutions to certain hyperbolic
Cauchy problems in (0, T ) × ∂�.

See (1.5), (2.1) for the explicit form of the hyperbolic Cauchy problems in (0, T )×
∂� governing the boundary traces γ�u. Especially, when γ�u0 = 0 and γ� f = 0 for
� ∈ N0, � < s + σ − 1/2, then it follows that γ�u = 0 for all those �. Consequently,
Theorem1.1 remains validwhen the Sobolev spaces Hs(�), where s ≥ 0, are replaced
with Hs

0 (�).

Remark The latter observation is actually one of the guiding principles inwhat follows.
Start with the standard Sobolev spaces Hs(�), remove the asymptotic terms arising
from a Taylor series expansion at the boundary ∂� to arrive at the spaces Hs

0 (�),
then adjust the reference conormal order from 0 to δ (see, e.g., Lemma 3.10) and
affix asymptotic terms once again, now possibly of a different asymptotic type P .
This yields the function spaces Hs,δ

P,θ (�) in which well-posedness for Eq. (1.1) will
be shown to hold as well.

Remark The regularity of the boundary traces γ�u results from the trace theorems for
the standard Sobolev spaces. It is a half an order less than what is obtained in case of
a non-characteristic boundary when the uniform Lopatinskii condition hold and the
usual compatibility conditions between initial and boundary data are satisfied.

1.1.2 The local problem

Most of the effort in this paper is put into the local situation, where � = R
n
+ is a

closed half-space. We state the result in this situation next.
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Weassume that the coefficients of the differential operatorA belong toC∞
b ([0, T ]×

R
n
+; MatN×N (C)). We further set n = 1 + d and write the spatial coordinates as

(x, y) ∈ R+ × R
d . Then the Cauchy problem to be investigated becomes

⎧
⎪⎪⎨

⎪⎪⎩

∂t u + x A(t, x, y)∂xu +
d∑

j=1

A j (t, x, y)∂ j u + B(t, x, y)u = f (t, x, y),

u
∣∣
t=0 = u0(x, y),

(1.2)

where (t, x, y) ∈ (0, T ) × R
1+d+ . Here, ∂ j = ∂/∂ y j , x A, A j , B ∈ C∞

b ([0, T ] ×
R
1+d
+ ;MatN×N (C)), and A is C∞ up to x = 0. Further, we assume that the linear

differential operatorL = ∂t + x A∂x +∑d
j=1 A j∂ j + B is symmetrizable hyperbolic

uniformly in (t, x, y) ∈ [0, T ] × R
1+d
+ .

Having concrete applications in mind, apart from asymptotics resulting from a
Taylor series expansion at x = 0 as in Theorem 1.1,

u(t, x, y) ∼
∑

�∈N0

x�

�! u�(t, y) as x → +0, (1.3)

we consider more general asymptotics of the form

u(t, x, y) ∼
∑

(p,k)

(−1)k

k! x−p logk x u pk(t, y) as x → +0, (1.4)

where (p, k) ∈ C × N0 with �p → −∞ as |p| → ∞. (The precise conditions
are stated in Definition 3.1.) Such asymptotics arise in many applications, both linear
and nonlinear. The choice of the exponent −p (in place of p) and the appearance
of the factor (−1)k/k! is related to the normalization of the Mellin transform (see
“Appendix A.1”) and simplifies certain formulas later on, especially (1.8), (1.10). We
shall denote the uniquely determined coefficients u pk in those asymptotic expansions
by γpku and regard these coefficients as boundary traces as before.

Incorporating the asymptotic information provided by (1.4) into function spaces

Hs,δ
P,θ (R

1+d
+ ) (neglecting the dependence on t at this point, see Sect. 3.2.3), the main

result of this paper is as follows:

Theorem 1.2 Let s ∈ R,σ ∈ N0, P ∈ Asδ , and θ0 ≥ . . . ≥ θσ ≥ 0.Under the assump-

tions stated above, given u0 ∈ Hs+σ,δ
P,θ0

(R
1+d
+ ;CN ) and f ∈ ⋂σ

r=0 W
r ,1((0, T );

Hs−r+σ,δ
P,θr

(R
1+d
+ ;CN )), Eq.(1.1) possesses a unique solution

u ∈
σ⋂

r=0

C r ([0, T ]; Hs−r+σ,δ
P,θr

(R
1+d
+ ;CN )).
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In addition, for all (p, k) ∈ P with �p > 1/2 − δ − θ0, γpku solves the Cauchy
problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t (γpku) +
d∑

j=1

A j (t, 0, y)∂ j (γpku) + (−pA(t, 0, y) + B(t, 0, y)) γpku

= (γpk f )(t, y) + Rpk[u](t, y),
(γpku)

∣∣
t=0 = (γpku0)(y),

(1.5)

where the expression Rpk[u] appearing in the right-hand side of (1.5) stands for a
term that depends linearly on γqlu for q − p ∈ N0 and l > k if q = p.

Notice that Eq. (1.5) is a hyperbolic Cauchy problem for γpku in (0, T ) × R
d . It

follows that the coefficients γpku in the asymptotic expansion (1.4) can be successively
computed and are uniquely determined by the corresponding coefficients of the initial
data u0 and the right-hand side f .

Remark Theorem 1.1 is a special case of Theorem 1.2 when � = R
1+d+ . Here, s ≥ 0,

δ = 0, P = P0, and θr = s−r+σ for 0 ≤ r ≤ σ (see the example afterDefinition 3.1).

Remark Strictly speaking, we only deal with constant discrete asymptotics. It is likely
that similar results also hold for continuous asymptotics as well as for variable discrete
asymptotics (see, e.g., [5, 9, 19] for elliptic problems).

1.1.3 Further results

The situation described in Sect. 1.1.2 is invariant under coordinate changes for man-
ifolds with boundary. A proof will appear in [11]. Hence, one also has the function
spaces Hs,δ

P,θ,loc(�)when� is aC∞ manifold with boundary. In local coordinates, ele-

ments of Hs,δ
P,θ,loc(�) belong (locally) either to Hs(Rn) for inner charts or to Hs,δ

P,θ (R
n
+)

for boundary charts.

Theorem 1.3 Let s ≥ 0, σ ∈ N0, P ∈ Asδ , and θ0 ≥ . . . ≥ θσ ≥ 0. Further-
more, let u0 ∈ Hs+σ,δ

P,θ0,loc
(�;Cn) and f ∈ ⋂σ

r=0 W
r ,1((0, T ); Hs−r+σ,δ

P,θr ,loc
(�;Cn)).

Then Eq. (1.1) possesses a unique solution

u ∈
σ⋂

r=0

C r ([0, T ]; Hs−r+σ,δ
P,θr ,loc

(�;Cn)).

Moreover, the boundary traces γpku for (p, k) ∈ P with �p > 1/2 − δ − θ0 can be
successively computed as before by solving hyperbolic Cauchy problems in the lateral
boundary (0, T ) × ∂�.
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1.2 Outline of the argument

In the sequel, we fix a δ ∈ R as reference conormal order. The weighted L2 space
K 0,δ(R1+d+ ) (see Definition 3.4) will be our basic Hilbert space, replacing the space
L2(R1+d+ ) = K 0,0(R1+d+ ). Denote by ‖ ‖ the norm and by 〈, 〉 the inner product in
K 0,δ(R1+d+ ).

One basic problem is to define the asymptotic terms appearing in asymptotic expan-
sions like

v(x, y) ∼
∑

(p,k)∈P

(−1)k

k! x−p logk x vpk(y) as x → +0 (1.6)

appropriately (see (1.4)). The asymptotic expansion (1.6) is with respect to an increas-
ing flatness as x → +0, where the term (−1)k/k! x−p logk x vpk(y) has conormal

order 1/2 − �p − 0. For v ∈ Hs,δ
P,θ (R

1+d
+ ), this asymptotic expansion breaks off

at conormal order δ + θ so that effectively only finitely many terms in the right-

hand side of (1.6) have to be taken into account. Nonetheless, as v ∈ Hs,δ
P,θ (R

1+d
+ )

implies that both �p < 1/2 − δ and vpk ∈ Hs+�p+δ−1/2,〈k〉(Rd), as a rule we have

that (−1)k/k! x−p logk x vpk(y) /∈ Hs,δ
P,θ (R

1+d
+ ) near x = 0. The correct form of the

asymptotic term is given by �pkvpk , where

(�pkw)(x, y) = (−1)k

k! F−1
η→y

{
ϕ(x〈η〉)ŵ(y)

}
x−p logk x (1.7)

and ϕ is a cut-off function. (See Sect. 1.4 for the notation used.) Especially, �pkw ∈
C∞(R1+d+ ) for w ∈ S ′(Rd), �pkw

∣∣
x=0 = w, and �pkw is supported for x � 1. The

decisive property which makes the approach work, however, is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�pkw ∈
⋂

ε>0

K s+ε,1/2−�p−ε(R1+d+ ),

�pkw − (−1)k

k! ϕ(x)x−p logk x w(y) ∈
⋂

ε>0

K s−ε,1/2−�p+ε(R1+d+ )

provided that w ∈ Hs,〈k〉(Rd) (see Lemma 3.6).

We construct a calculus �∞
c (R

1+d
+ ) = ⋃

μ∈R �
μ
c (R

1+d
+ ) of cone-degenerate pseu-

dodifferential operators on the half-space R1+d+ , where �
μ
c (R

1+d
+ ) ⊂ �

μ
cl(R

1+d+ ) and
the pseudodifferential operators contained exhibit a prearranged behavior as x → +0.
The basic idea is taken from Schulze [22, 23]. In particular, near x = 0, the operators

A ∈ �
μ
c (R

1+d
+ ) are to the leading order of the form

A = ϕ(x) opM (h)ϕ0(x),
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where h(z) = h(y, z, Dy) is an entire family of pseudodifferential operators in
�

μ
cl(R

d) subject to further conditions, opM (h) = M−1
z→xh(z)M with M being the

Mellin transform, and ϕ, ϕ0 are cut-off functions. Compared to the cone calculus of
Schulze, where the coefficients vpk would be in S (Rd) in the situation considered

here, we now had to show that operators A ∈ �
μ
c (R

1+d
+ ) act in an appropriate way on

the asymptotic terms given by (1.7). Indeed, it holds that

ϕ opM (h)�pkw −
k∑

r=0

1

r ! �p,k−r
[
∂rz h(p)

] ∈
⋂

ε>0

K s−ε,1/2−�p+ε(R1+d+ ) (1.8)

provided that w ∈ Hs,〈k〉(Rd).
The operator A(t, x, y, xDx , Dy) from Eq. (1.2) belongs to C∞([0, T ];�1

c

(R
1+d
+ ;CN )). Furthermore, a symbolic symmetrizer for the hyperbolic operator

L = ∂t + A(t, x, y, xDx , Dy) is indeed a symmetrizer b(t, x, y, ξ̃ , η) for the com-
pressed principal symbol σ̃ 1

ψ(A)(t, x, y, ξ̃ , η) of A. Using Gårding’s inequality in a

routine way yields an operator B ∈ C∞([0, T ];�0
c (R

1+d
+ ;CN )) with σ̃ 0

ψ(B) = b
such that

• B = B∗ ≥ cI for some c > 0,
• �(BA) ∈ C∞([0, T ];�0

c (R
1+d
+ ;CN )), i.e., �σ̃ 1

ψ(BA) = 0.

Together with the fact that integration by parts produces no boundary terms, i.e.,

• 〈BAu, v〉 = 〈u, (BA)∗v〉 holds for u, v ∈ C ([0, T ];K 1,δ(R1+d+ )),

one produces, for u ∈ C 0([0, T ];K 1,δ(R1+d+ ))∩C 1([0, T ];K 0,δ(R1+d+ )), the basic
energy inequality

max
0≤t≤T

‖u(t)‖ � ‖u(0)‖ +
∫ T

0
‖∂t u(t) + A(t)u(t)‖ dt (1.9)

in a standard manner. Once the calculus of cone-degenerate pseudodifferential oper-
ators mentioned above is established, this essentially means that one can treat
the Cauchy problem (1.2) in (0, T ) × R

1+d+ like a Cauchy problem in free space
(0, T ) × R

1+d .
From estimate (1.9), one obtains well-posedness of Eq. (1.2) in the basic Hilbert

space K 0,δ(R1+d+ ), i.e., the first part of Theorem 1.2 for s = 0, σ = 0, and θ0 = 0.
Well-posedness in the weighted Sobolev spaces K s,δ(R1+d+ ), i.e., the first part of
Theorem1.2 in all other caseswith θ0 = 0, then likewise followsusingorder reductions
that exist in the pseudodifferential calculus considered.

To establish the well-posedness results in the Sobolev spaces Hs,δ
P,θ (R

1+d
+ ) with

asymptotics is a considerably more involved task. The crucial observation is that the
boundary traces γpku solve hyperbolic Cauchy problems in the lateral boundary. To
see this, one needs to know that, besides the compressed principal symbol σ̃

μ
ψ (A),

operators A ∈ �
μ
c (R

1+d
+ ) possess also a sequence

(
σ

− j
c (A)

)

j∈N0
of so-called conor-

mal symbols. Like the function h(z) = h(y, z, Dy) above, these are entire functions of
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z ∈ C taking values in �
μ
cl(R

d), and they determine the manner in which asymptotics
are mapped by A. More precisely, it holds that

γpk(Au) =
∑

j≥0

∑

�−r=k

1

r ! ∂rz σ
− j
c (A)(p + j)γp+ j,�(u), (1.10)

where the finite sum in the right-hand side is over those ( j, �, r) such that �p + j <

1/2−δ. Thus, applying γpk to both sides of the equation in (1.1) results in an equation
for γpku,

{
∂t (γpku) + σ 0

c (A(t))(γpku) = (γpk f )(t, y) + Rpk[u](t, y), (t, y) ∈ (0, T ) × ∂�,

(γpku)
∣∣
t=0 = (γpku0)(y),

where the term Rpk[u] has a similar meaning as in (1.5). In fact, a compatibility
condition betweenσ 1

ψ(σ 0
c (A(t))) and σ̃ 1

ψ(A(t)) ensures that the operator ∂t+σ 0
c (A(t))

is symmetrizable hyperbolic.
Hence, one obtains existence, uniqueness, and higher regularity for the boundary

traces γpk in the correct regularity classes. Subtracting the boundary terms from the
prospective solution u, one ends up in weighted Sobolev spaces K s−θ0,δ+θ0(R1+d+ ),
in which well-posedness has been shown before. Note that at this place it is crucial

that the cone-degenerate pseudodifferential operators in�
μ
c (R

1+d
+ ) have holomorphic

conormal symbols (as opposed to finitely meromorphic ones, one usually sees in a

cone pseudodifferential calculus), which implies that the action of A ∈ �
μ
c (R

1+d
+ ) on

K s,γ (R1+d+ ) is the same for any conormal order γ ∈ R (in the sense that it agrees
onK s,γ (R1+d+ )∩K s+μ,γ ′

(R1+d+ ) independently of whether this intersection is seen
as a subspace of K s,γ (R1+d+ ) or K s,γ ′

(R1+d+ )). Hence, the argument provided for
well-posedness in function spaces with conormal order δ works for any other conormal
order just the same.

1.3 Comparison with other results and open problems

One of the big open problems in the field is to provide satisfactory answers concerning
well-posedness for hyperbolic boundary problems with a uniformly characteristic
boundary. There only exist several partial results in the literature, see e.g. [1, 2, 14,
18, 24].

Totally characteristic hyperbolic boundary problems (for higher-order scalar equa-
tions) were treated by Sakamoto [21]. She obtained results comparable to ours
by showing (in our own notation) well-posedness in the scales Hs,δ

P,θ (�), where

P = T δP0, with P0 being the type for Taylor asymptotics, and θ = s ≥ 0. Our
results are slightly more general in that respect that we now allow general asymptotic
types P , general weight intervals given by θ ≥ 0, and also negative Sobolev orders s.
In addition, we show that the boundary traces are given as solutions to hyperbolic
Cauchy problems in the lateral boundary. This later result appears to be new.
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Sakamoto [21] used pseudodifferential techniques to establish her results, albeit
in a different manner. Our approach might have the advantage that it yields a sym-
metrizer also in the uniformly characteristic case, upon further developing an adapted
pseudodifferential calculus. It seems to be evident that this calculus has to be some
sort of an edge calculus, as in Schulze [23]. On the level handled in this paper the
difference between an edge calculus and a cone calculus is rather marginal: In the
latter one first performs the Fourier transform Fy→η with respect to the y-variables
and then theMellin transformMx→z with respect to the x-variable, while in the former
these transforms are performed in the opposite order. As both operations commute,
Mx→zFy→η = Fy→ηMx→z , it is possible to recast the cone calculus utilized here in
the form of an edge calculus, up to some technical details. Note that the form of the
asymptotic terms as given in (1.7) is already typical of edge problems.

1.4 Notation

We shall use freely standard notation from microlocal analysis (see [7]). For singular
analysis, we closely follow the notation used in [23].

Throughout the paper, we shall especially employ the following notation:

• δ ∈ R denotes the reference conormal order, which is fixed once and for all.
• For the Mellin covariable z ∈ C, we write z = β + iτ with β, τ ∈ R.
• For β ∈ R, we introduce the weight line �β = {z ∈ C | �z = β}. The weight line
that corresponds to the reference conormal order δ is �1/2−δ .

• ϕ ∈ C∞(R+;R) is a cutoff function, i.e., 0 ≤ ϕ ≤ 1, ϕ(x) = 1 for |x | � 1,
and ϕ(x) = 0 for |x | � 1. Likewise, ϕ0, ϕ1 are also cutoff functions satisfying, in
addition, ϕϕ0 = ϕ and ϕϕ1 = ϕ1 (i.e., (1 − ϕ)(1 − ϕ1) = 1 − ϕ).

• ψ ∈ C∞(R+;R) denotes a non-decreasing function such that ψ(x) = x for
0 ≤ x ≤ 1/2 and ψ(x) = 1 for x ≥ 1. Furthermore, ψ� for � ∈ R is the �th
power of ψ .

• 〈η〉 = (4 + |η|2)1/2 for η ∈ R
d . Hence, 〈η〉 ≥ 2 and log〈η〉 > 0.

• The Mellin transform of u with respect to x ∈ R+ is ũ(z) = Mu(z) =∫∞
0 xz−1u(x) dx for z ∈ C. The inverse Mellin transform is M−1v(x) =
1
2π i

∫
�β

x−zv(z) dz for a suitable β ∈ R depending on the situation under con-
sideration.

• The Fourier transform of w with respect to y ∈ R
d is ŵ(η) = Fw(η) =∫

Rd e−iy·ηw(y) dy for η ∈ R
d . The inverse Fourier transform is F−1ω(y) =∫

Rd eiy·ηω(η) d̄η, where d̄η = (2π)−d dη.
• The space Hs,〈k〉(Rd) for (s, k) ∈ R × Z, consists of all w such that

〈η〉s logk〈η〉ŵ(η) ∈ L2(Rd). In particular, Hs(Rd) = Hs,〈0〉(Rd).

• In the closed half-space R
1+d
+ , we use coordinates (x, y) with x ≥ 0 and y ∈ R

d .
• The weighted Sobolev spaces K s,γ (R1+d+ ) are introduced in Definition 3.4 and

the Sobolev spaces Hs,δ
P,θ (R

1+d
+ ) with asymptotics in Definition 3.8.

• γpk for (p, k) ∈ P , where P is an asymptotic type, is a trace operator. Similarly,
�pk for (p, k) ∈ P is a potential operator.

• Mμ(Rd) denotes the space of holomorphic Mellin symbols h(z) = h(y, z, Dy).
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• The Mellin quantization of an amplitude function h ∈ C∞(R+;Mμ(Rd)) is

(opM (h)u)(x, y) = 1

2π i

∫

�1/2−δ

x−z h(x, y, z, Dy)ũ(z, y) dz.

opM (h) acts on suitable distributions u = u(x, y).
• The Fourier quantization of an amplitude function a ∈ Sμ

cl(R
d×R

d) is a(y, Dy) =
opψ(a) with

(opψ(a)v)(y) =
∫

Rd
eiy·η a(y, η) v̂(η) d̄η.

The principal symbol of A = A(y, Dy) is denoted by σ
μ
ψ (A).

• �
μ
c (R

1+d
+ ) is the class of cone-degenerate pseudodifferential operators, of order

μ ∈ R, utilized here. Elements of this space are symbolically written as
A(x, y, xDx , Dy).

• T̃ ∗
R
1+d
+ denotes the compressed cotangent bundle over R

1+d
+ .

2 Well-posedness in standard Sobolev spaces

We start with proving Theorem 1.1. Notice that it is enough to treat the case σ = 0.
Cases with σ ≥ 1 then follow by differentiating the equation σ times with respect to
t , as in the proof of Proposition 4.5 below.

Proposition 2.1 Let u0 ∈ Hs(�;CN ), f ∈ L1((0, T ); Hs(�;CN )) for some s ≥ 0.
Then Eq. (1.1) possesses a unique solution u ∈ C ([0, T ]; Hs(�;CN )). In addition,
for � < s − 1/2, one has that γ�u ∈ C ([0, T ]; Hs−�−1/2(∂�;CN )) is uniquely
determined as the solution to the hyperbolic Cauchy problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t (γ�u) +
d∑

j=1

A j (t, 0, y)∂ j (γ�u) + (� A(t, 0, y) + B(t, 0, y)) γ�u

= (γ� f )(t, y) + R�[u](t, y),
(γ�u)

∣∣
t=0 = (γ�u0)(y).

(2.1)

Here, the term R�[u] is zero for � = 0 and linear in γ0u, . . . , γ�−1u for � ≥ 1.

The precise form of the term R�[u] will be given in (4.7) below.

Proof Extend the matrix-valued coefficients A, A j , B in Eq. (1.1) to matrix-valued
functions A, A j , B ∈ C∞([0, T ] ×R

n; MN×N (C)) so as to obtain a uniformly sym-
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metrizable hyperbolic system ∂t + x A∂x +∑d
j=1 A j∂ j + B on (0, T ) ×R

n (keeping
the notation from above). Then consider the hyperbolic Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

∂tU + x A(t, x, y)∂xU +
d∑

j=1

A j (t, x, y)∂ jU + B(t, x, y)U = F(t, x, y), (t, x, y) ∈ (0, T ) × R
n,

U
∣∣
t=0 = U0(x, y),

(2.2)

where U0 ∈ Hs(Rn;CN ), U0
∣∣
�

= u0, F ∈ L1((0, T ); Hs(Rn;CN )), and
F
∣∣
(0,T )×�

= f . Because this system is on whole space, Eq. (2.2) possesses a unique

solution U ∈ C ([0, T ]; Hs(Rn;CN )). As characteristics of this system are tangent
to the hypersurface (0, T ) × ∂�, it follows that whatever starts out in the region
(0, T ) × (Rn\�) stays in that region for all times. Therefore, u = U

∣∣
(0,T )×�

only
depends on u0, f , in particular, u is independent of all the extensions chosen. We
conclude that u is the unique solution to the original problem (1.2).

Differentiating (2.2) a number of times with respect to x and setting x = 0 yields
(2.1). ��

3 Cone-degenerate pseudodifferential operators

The main technical tool to prove the result in Theorem 1.2 is a calculus for a certain
class of cone-degenerate pseudodifferential operators on R1+d+ . Here we briefly intro-
duce this pseudodifferential calculus. Calculi for cone-degenerate pseudodifferential
operators have been developed by Schulze [22, 23], see also [4]. We closely follow
his approach and refer to the said references for details. An equivalent calculus is
the b-calculus of Melrose and Mendoza [15, 16]. For our purposes, Schulze’s cone
calculus is preferable as it is more analytic in flavor and, therefore, easier to adapt to
our needs.

Compared to [22, 23], there are a few differences. First of all, the base of the cone is
R
d which is a non-compact manifold. This non-compactness introduces no additional

difficulties, as we are not interested in the Fredholm property of elliptic operators, but
solely in the construction of a symmetrizer. Secondly, the coefficientsu pk in the asymp-
totic expansions (1.4) do not belong to finite-dimensional subspaces of C∞(Rd;CN ),
but instead can be any functions from the space Hs+�p+δ−1/2,〈k〉(Rd ;CN ), see Def-
inition 3.8 and Proposition 3.9 for details. This then requires a special treatment of

the asymptotic terms, see Definition 3.7. In fact, the function spaces Hs,δ
p,θ (R

1+d
+ ;CN )

employed below are modeled after the edge Sobolev spaces of Schulze (see [11] for
a discussion of this point). Lastly, the cone-degenerate pseudodifferential operators
we utilize do not produce any further asymptotic information, but instead preserve
the given one. This is in the sense that the given asymptotic type, P , which collects
the (p, k) appearing in (1.4), is preserved, while certainly the coefficients u pk are, in
general, alteredwhen applying an operator A belonging to the calculus to u (see Propo-
sition 3.26 for the way in which this happens). Accordingly, the conormal symbols
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σ
− j
c (A) of operators A in the calculus (see Definition 3.20) are holomorphic functions

of the Mellin covariable z ∈ C, while for general cone pseudodifferential calculi these
conormal symbols are finitely meromorphic functions of z ∈ C. Again, our choice is
justified by the fact that we do not have to construct parametrices for elliptic cone-
degenerate pseudodifferential operators (with the exception of Proposition 3.28 where
we establish the existence of order reductions).

3.1 Asymptotic types

The functional-analytic approach of handling the asymptotic expansions (1.6) starts
with collecting the data (p, k) appearing in (1.6) into so-called asymptotic types.
Recall that we fix a δ ∈ R as a reference conormal order.

Definition 3.1 The set Asδ of asymptotic types associated with the conormal order
δ ∈ R consists of discrete subsets P ⊂ C × N0 with the following properties:

(i) �p < 1/2 − δ for (p, k) ∈ P ,
(ii) �p → −∞ as (p, k) ∈ P , |p| → ∞,
(iii) (p, k − 1) ∈ P if (p, k) ∈ P and k > 0,
(iv) (p − 1, k) ∈ P if (p, k) ∈ P .

Remark Property (iv) is needed to guarantee the coordinate invariance of the construc-
tions.

We set πCP = {
p ∈ C | (p, k) ∈ P for somek ∈ N0

}
and mp = max{k + 1 |

(p, k) ∈ P} with the convention that mp = 0 if p /∈ πCP . An asymptotic type P is
then completely determined by the mp. In this sense, P can be thought of as a non-
negative divisor (in the sense of complex analysis) having additional properties. Still,
regarding P as a discrete subset of C × N0 comes in handy in the notation employed
below.

Example (i) The asymptotic type governing (1.3) is P0 = {(−�, 0) | � ∈ N0}. We
refer to it as Taylor asymptotics.

(ii) As a subset of C × N0, the empty asymptotic type O is given by O = ∅.
Let P ∈ Asδ , � ∈ R. Then we define T �P ∈ Asδ+� to consists of all (p, k) ∈

C × N0 such that (p + �, k) ∈ P .

3.2 Function spaces

Next we introduce suitable weighted Sobolev spaces and Sobolev spaces with asymp-
totics. These are the function spaces in which we will establish the energy inequalities.

3.2.1 Weighted Sobolev spaces

Definition 3.2 Let γ ∈ R. For s ∈ N0, the weighted Sobolev space H s,γ (R1+d+ ) is
defined to consist of all functions u = u(x, y) such that

x−γ (x∂x )
j∂α

y u ∈ L2(R1+d+ ), j + |α| ≤ s.
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For general s ∈ R, the spaces H s,γ (R1+d+ ) are then introduced by complex interpo-
lation and duality.

We can characterize the spaceH s,γ (R1+d+ ) via theMellin transform (see Sect.A.1).

Lemma 3.3 Let s ≥ 0, γ ∈ R. Then u ∈ H s,γ (R1+d+ ) if and only if

1

2π i

∫

�1/2−γ

(
‖ũ(z, ·)‖2Hs (Rd )

+ 〈z〉2s‖ũ(z, ·)‖2L2(Rd )

)
dz < ∞,

where ũ(z, ·) is the Mellin transform of u(x, ·) with respect to x.

As said in the introduction, we are mostly interested in the behavior of solutions
to Eq. (1.2) near x = 0. Hence, we make a generic choice for their possible behavior
near x = ∞ (also compare with Eq. (4.8)). Note that u ∈ H s,γ (R1+d+ ) implies that
ϕu ∈ H s,γ (R1+d+ ).

Definition 3.4 For s, γ ∈ R, we set

K s,γ (R1+d+ ) = {
u
∣∣ ϕu ∈ H s,γ (R1+d+ ), (1 − ϕ) u ∈ Hs(R1+d+ )

}
.

In view of H s,γ (R1+d+ ) ⊂ Hs
loc(R

1+d+ ), the space Ks,γ (R1+d+ ) is independent of
the choice of the cut-off function ϕ. Moreover, Ks,γ (R1+d+ ) is a Hilbert space in a
natural way.

Now fix δ ∈ R. In the sequel,

K 0,δ(R1+d+ ) will serve as reference Hilbert space.

Write 〈, 〉 for the inner product and ‖ ‖ for the norm in K 0,δ(R1+d+ ).

3.2.2 The asymptotic terms

The next two lemmas prepare for introducing the terms occurring in the asymptotic
expansions (1.6). Recall that the asymptotic expansions (1.6) are formal in the sense
that, in general, we do not have enough regularity for the coefficients vpk to write the
asymptotic terms as tensor products.

Lemma 3.5 Let (p, k) ∈ C×N0 and w ∈ Hs(Rd) for some s ∈ R. Then the function
v defined by

v(x, y) = F−1
η→y

{
ϕ(x〈η〉)(x〈η〉)−p logk(x〈η〉)ŵ(η)

}

belongs to
⋂

ε>0 K
s+�p+ε,1/2−�p−ε(R1+d+ ). Moreover,

v(x, y) = ϕ(x)
[(
x〈Dy〉

)−p logk
(
x〈Dy〉

)
w
]
(y) + v′(x, y), (3.1)

where v′ ∈ ⋂
ε>0 K

s+�p−ε,1/2−�p+ε(R1+d+ ).
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Proof Let m(z) denote the Mellin transform of ϕ(x)x−p logk x . Then m(z) is mero-
morphic in C with a single pole of order k + 1 at z = p. In addition, m(z) =
(−1)kk! (z − p)−(k+1) + O(1) as z → p and (χm)(z) ∈ C∞(Rβ;S(Rτ )), where
χ ∈ C∞(C), χ(z) = 0 for |z − p| ≤ 1/2, and χ(z) = 1 for |z − p| ≥ 1 (see
Lemma A.1). Recall that we have written z = β + iτ with β, τ ∈ R.

Direct calculations show that

ṽ(z, y) = F−1
η→y

{〈η〉−zm(z)ŵ(η)
}
.

In particular, ṽ(z, ·) is meromorphic in z ∈ C taking values in H−∞(Rd)with a single
pole of order k + 1 at z = p and

ṽ(z, ·) =
k∑

r=0

(−1)k−r k!
r ! (z − p)−(k−r+1) 〈D〉−p logr 〈D〉w + O(1) as z → p

(3.2)

in view of 〈η〉−z = ∑k
r=0

(−1)r

r ! 〈η〉−p logr 〈η〉 (z − p)r + O((z − p)k+1) as z → p.
For all t ∈ R and ε > 0,

1

2π i

∫

��p+ε

〈z〉2t‖ṽ(z, ·)‖2Hs+�p+ε (Rd )
dz

= 1

2π i

∫

��p+ε

〈z〉2t |m(z)|2
(∫

Rd
〈η〉2(s+�p+ε)〈η〉−2�z |ŵ(η)|2 d̄η

)
dz < ∞.

This implies that v ∈ H s+�p+ε,1/2−�p−ε(R1+d+ ) for s + �p + ε ≥ 0 by Lemma 3.3
and then for s + �p + ε < 0 by duality.

Denote v′′(x, y) = (2π i)−1
∫
��p−ε′

x−z ṽ(z, y) dz, where ε′ > 0 is arbitrary.

Repeating the argument just given, one finds that v′′ ∈ ⋂
ε>0 H

s+�p−ε,1/2−�p+ε

(R1+d+ ). Furthermore, by (3.2) and Cauchy’s integral theorem,

v(x, ·) − v′′(x, ·) = [(
x〈Dy〉

)−p logk
(
x〈Dy〉

)
w
]
(y).

One obtains (3.1) by multiplying the last equation by ϕ(x) and taking into account
that ϕ(x)ϕ(x〈η〉) = ϕ(x〈η〉) for all η ∈ R

d . ��
Lemma 3.6 Let (p, k) ∈ C×N0. Suppose thatw ∈ Hs,〈k〉(Rd) for some s ∈ R. Then

F−1
η→y{ϕ(x〈η〉)ŵ(η)}x−p logk x ∈

⋂

ε>0

K s+ε,1/2−�p−ε(R1+d+ )

and

F−1
η→y{ϕ(x〈η〉)ŵ(η)}x−p logk x − ϕ(x)x−p logk x w(y)∈

⋂

ε>0

K s−ε,1/2−�p+ε(R1+d+ ).
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Proof We set w0 = F−1{〈η〉pŵ(η)} ∈ Hs−�p,〈k〉(Rd) and proceed by induction on
k.

For k = 0, one has

F−1
η→y{ϕ(x〈η〉)ŵ(η)}x−p = F−1

η→y
{
ϕ(x〈η〉)(x〈η〉)−pŵ0(η)

} ∈
⋂

ε>0

K s+ε,1/2−�p−ε(R1+d+ )

and

F−1
η→y{ϕ(x〈η〉)ŵ(η)}x−p − ϕ(x)x−pw(y) ∈

⋂

ε>0

K s−ε,1/2−�p+ε(R1+d+ )

by Lemma 3.5.
For k ≥ 1, we set wr = F−1

η→y{logr 〈η〉 ŵ(η)} ∈ Hs,〈k−r〉(Rd) for 1 ≤ r ≤ k.
Then, by Lemma 3.5 and the induction hypothesis,

F−1
η→y{ϕ(x〈η〉)ŵ(η)}x−p logk x = F−1

η→y

{
ϕ(x〈η〉)(x〈η〉)−p logk(x〈η〉)ŵ0(η)

}

−
k∑

r=1

(
k

r

)
F−1

η→y

{
ϕ(x〈η〉)ŵr (η)

}
x−p logk−r x ∈

⋂

ε>0

K s+ε,1/2−�p−ε(R1+d+ )

as well as

F−1
η→y{ϕ(x〈η〉)ŵ(η)}x−p logk x − ϕ(x)x−p logk x w(y)

=
(
F−1

η→y
{
ϕ(x〈η〉)(x〈η〉)−p logk(x〈η〉)ŵ0(η)

}− ϕ(x)
[(
x〈Dy〉

)−p logk
(
x〈Dy〉

)
w0
]
(y)

)

−
k∑

r=1

(
k

r

)(
F−1

η→y
{
ϕ(x〈η〉)ŵr (η)

}
x−p logk−r x − ϕ(x)x−p logk−r x wr (y)

)

∈
⋂

ε>0

K s−ε,1/2−�p+ε(R1+d+ ).

This finishes the proof. ��
We are now ready to introduce potential operators.

Definition 3.7 For (p, k) ∈ C × N0, the potential operator �pk acting on functions
w = w(y) is given by

(�pkw)(x, y) = (−1)k

k! F−1 {ϕ(x〈η〉)ŵ(η)
}
x−p logk x . (3.3)

The role played by the normalizing factor (−1)k/k! becomes apparent from
Lemma A.2 in conjunction with (3.7). Based on Lemma 3.6, we have that, for any
s ∈ R,

�pk : Hs,〈k〉(Rd) →
⋂

ε>0

K s+ε,1/2−�p−ε(R1+d+ ).
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3.2.3 Sobolev spaces with asymptotics

The definition of the Sobolev spaces with asymptotics postulates an improvement of
the conormal order up to δ + θ upon subtracting finitely many asymptotic terms. This
works as long as no singular exponent p from the asymptotic type P comes to lay
on the weight line �1/2−δ−θ . This leaves out a discrete set of values for θ > 0. The
general case is then handled by complex interpolation.

Definition 3.8 Let s ∈ R, P ∈ Asδ , and θ ≥ 0.

(i) ForπCP∩�1/2−δ−θ = ∅, the space Hs,δ
P,θ (R

1+d
+ ) consists of all v ∈ K s,δ(R1+d+ )

for which there are functions vpk ∈ Hs+�p+δ−1/2,〈k〉(Rd) for (p, k) ∈ P , �p >

1/2 − δ − θ such that

v −
∑

(p,k)∈P,
�p>1/2−δ−θ

�pkvpk ∈ K s−θ,δ+θ (R1+d+ ). (3.4)

(ii) For general θ ≥ 0, the space Hs,δ
P,θ (R

1+d
+ ) is then defined by complex interpo-

lation with respect to the parameter θ .

For s ≥ 0, we also write Hs,δ
P (R

1+d
+ ) = Hs,δ

P,s(R
1+d
+ ).

Example The spaces Hs,δ
P,θ (R

1+d
+ ) constitute a natural generalization of the standard

Sobolev spaces in view of the following two facts:

(i) For s ≥ 0, Hs(R1+d+ ) = Hs,0
P0

(R
1+d
+ ), where P0 is the type for Taylor asymp-

totics.
(ii) For s ≥ 0, Hs

0 (R
1+d
+ ) = Hs,0

O (R
1+d
+ ), where O is the empty asymptotic type.

It is not hard to see that the coefficients vpk in (3.4) are uniquely determined. We
then introduce, for (p, k) ∈ P with �p > 1/2 − δ − θ , the trace operators

γpk : Hs,δ
P,θ (R

1+d
+ ) → Hs+�p+δ−1/2,〈k〉(Rd), v �→ vpk . (3.5)

Essentially by definition, we have the following trace theorem.

Proposition 3.9 Let s ∈ R, P ∈ Asδ , θ ≥ 0, and πCP ∩ �1/2−δ−θ = ∅. Then the
short sequence

0 −→ Hs,δ
O,θ

(R
1+d
+ ) −→ Hs,δ

P,θ (R
1+d
+ )

(γpk )−−−→
⊕

(p,k)∈P,
�p>1/2−δ−θ

Hs+�p+δ−1/2,〈k〉(Rd) −→ 0

is split exact.

The next result tells us that, for theoretical purposes, one can adjust the reference
conormal order δ to be any given real number.
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Lemma 3.10 Let s ∈ R, P ∈ Asδ , θ ≥ 0, and � ∈ R. Then multiplication by ψ�(x)

realizes an isomorphism between Hs,δ
P,θ (R

1+d
+ ) and Hs,δ+�

T �P,θ (R
1+d
+ ).

Proof A straightforward verification. ��

3.2.4 The Schwartz class with asymptotics of type P

At last, we introduce a replacement for the space S (R
1+d
+ ) = {

v|
R
1+d+

∣∣ v ∈
S (R1+d)

}
. First we let S0(R

1+d
+ ) be the space of all u ∈ S (R

1+d
+ ) that vanish

to infinite order at x = 0.

Definition 3.11 For P ∈ Asδ , the space SP (R
1+d
+ ) consists of all v for which there

are sequences (vpk)(p,k)∈P ⊂ S (Rd) and (cp)p∈πCP ⊂ R+ with cp → ∞ as �p →
−∞ sufficiently fast such that

v(x, y) −
∑

(p,k)∈P

(−1)k

k! ϕ(cpx)x
−p logk x vpk(y) ∈ S0(R

1+d
+ ). (3.6)

The space SP (R
1+d
+ ) is a nuclear Fréchet space in a natural way. Furthermore,

upon an appropriate choice of (cp) depending on (vpk), the series in the left-hand side

of (3.6) converges absolutely in SP (R
1+d
+ ). Moreover, SP (R

1+d
+ ) ⊆ Hs,δ

P,θ (R
1+d
+ )

for any s, θ and, for v as in (3.6) and (p, k) ∈ P , we have γpkv = vpk . Indeed, the
short sequence

0 −→ S0(R
1+d
+ ) −→ SP (R

1+d
+ )

(γpk )(p,k)∈P−−−−−−−→
⊕

(p,k)∈P

S (Rd) −→ 0

is exact.

Example One has SP0(R
1+d
+ ) = S (R

1+d
+ ) and SO(R

1+d
+ ) = S0(R

1+d
+ ).

Lemma 3.12 The space SP (R
1+d
+ ) is dense in Hs,δ

P,θ (R
1+d
+ ).

Proof By complex interpolation, we can assume thatπCP∩�1/2−δ−θ = ∅. It is known
thatS0(R

1+d
+ ) is dense inK s−θ,δ+θ (R1+d+ ). In view of (3.4) and asS (Rd) is dense

in Hr ,〈l〉(Rd) for any (r , l) ∈ R × N0, it is enough to show that �pkw ∈ SP (R
1+d
+ )

for (p, k) ∈ P and w ∈ S (Rd). The latter, in turn, will follow from the relation

F−1
η→y

{
ϕ(x〈η〉)ŵ(η)

}
x−p logk x − ϕ(x)x−p logk x w(y) ∈ S0(R

1+d
+ ),

which, however, is apparently true. ��
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3.3 Calculus of cone-degenerate pseudodifferential operators

We now introduce the class �
μ
c (R

1+d
+ ) of cone-degenerate pseudodifferential oper-

ators on the half-space R
1+d+ mentioned in the introduction. To make connection to

the theory of cone-degenerate pseudodifferential operators, note that the closed half-

space R
1+d
+ is considered as a blowup of the cone (R+ ×R

d)/({0} ×R
d). We do not

provide proofs for results that can be found in the literature in the form as stated or
in a similar form (then with no essential changes in the proofs). Notable exceptions
are Propositions 3.25 through 3.29. For other results, we refer to the literature, e.g.,
Harutyunyan and Schulze [4] or Schulze [23].

3.3.1 Parameter-dependent pseudodifferential operators

We start with parameter-dependent pseudodifferential operators.

Definition 3.13 For μ ∈ R, the class �
μ
cl(R

d;R) of classical parameter-dependent
pseudodifferential operators on R

d , with parameter τ ∈ R, consists of all families
A = (A(τ ))τ∈R ⊂ �

μ
cl(R

d) such that

A(τ )u(y) =
∫

Rd
eiy·ηa(y, η, τ )û(η) d̄η, y ∈ R

d ,

where a ∈ Sμ
cl(R

d
y × R

d+1
(η,τ )).

Note that any A ∈ �
μ
cl(R

d;R) admits a parameter-dependent principal symbol
σ

μ
ψ (A) ∈ S(μ)(Rd × (Rd+1\0)). Then A is parameter-dependent elliptic if σ

μ
ψ (A)

is nowhere vanishing. In the elliptic case, A admits a parametrix, i.e., there exists a
B ∈ �

−μ
cl (Rd;R) such that AB − I, BA − I ∈ S(Rτ ;�−∞(Rd)). This parametrix

B is essentially unique, i.e., it is unique modulo S(R;�−∞(Rd)). Moreover, A(τ )

is invertible for |τ | large and B can be chosen to satisfy B(τ ) = A(τ )−1 for |τ |
large. Note also that �μ

cl(R
d;R) equipped with its canonical system of seminorms is

a nuclear Fréchet space.

Example A = −�y + τ 2 + τ ∈ �2
cl(R

d ;R) has principal symbol σ 2
ψ(A)(y, η, τ ) =

|η|2 + τ 2 and is parameter-dependent elliptic.

3.3.2 Holomorphic Mellin symbols

Recall that we write z ∈ C as z = β + iτ with β, τ ∈ R.

Definition 3.14 For μ ∈ R, we define

Mμ(Rd) = H(C;�
μ
cl(R

d)) ∩ C∞(Rβ;�
μ
cl(R

d ;Rτ )).

as the set of holomorphic Mellin symbols of order μ.
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These Mellin symbols are entire functions of z = β + iτ taking values in the
nuclear Fréchet space �

μ
cl(R

d) and are also smooth functions of β taking values in
�

μ
cl(R

d;Rτ ). Note that, as a consequence of the Cauchy–Riemann equations, the
principal symbol σμ

ψ (h)(y, η, τ ) of h
∣∣�z=β

∈ �
μ
cl(R

d;Rτ ) for h ∈ Mμ(Rd) is inde-
pendent of β ∈ R.

Proposition 3.15 Let a ∈ S(μ)(Rd × (Rd+1\0)) be elliptic. Then there exists a h ∈
Mμ(Rd) with σ

μ
ψ (h) = a such that h−1 ∈ M−μ(Rd)

Proof This is proven as in Witt [25]. ��
The following result provides a means to control the action of opM (h) for h ∈

Mμ(Rd) on asymptotic terms. Recall that h(r)(p) = ∂rz h(p) ∈ �
μ
cl(R

d) for p ∈ C.

Proposition 3.16 Let h ∈ Mμ(Rd), (p, k) ∈ C × N0, and w ∈ Hs+μ,〈k〉(Rd) for
some s ∈ R. Then

ϕ0 opM (h)�pkw −
k∑

r=0

1

r ! �p,k−r

[
h(r)(p)w

]
∈
⋂

ε>0

K s−ε,1/2−�p+ε(R1+d+ ).

(3.7)

Proof Let m(z) be the Mellin transform of ϕ(x)x−p . Then the Mellin transform of
ϕ(x)x−p logk−r x for 0 ≤ r ≤ k equals m(k−r)(z). Doing the computations modulo⋂

ε>0 K
s−ε,1/2−�p+ε(R1+d+ ), we find that (see Lemma 3.6)

ϕ0 opM (h)�pkw ≡ (−1)k

k! ϕ0 opM (h)
[
ϕ(x)x−p logk x w(y)

]

= (−1)k

k! ϕ0M
−1
{
h(y, z, Dy)m

(k)(z)w(y)
}

≡ (−1)k

k! ϕ0M
−1
{∑k

r=0

1

r ! h
(r)(y, p, Dy)(z − p)rm(k)(z)w(y)

}

≡ ϕ0

k∑

r=0

1

r !
(−1)k−r

(k − r)! M−1
{
h(r)(y, p, Dy)m

(k−r)(z)w(y)
}

≡
k∑

r=0

1

r ! �p,k−r

[
h(r)(p)w

]
,

where we have used that (z − p)k+1m(k)(z) ∈ H(C) ∩ C∞(Rβ;Rτ ) and also that

(−1)k

k! (z − p)rm(k)(z) − (−1)k−r

(k − r)! m
(k−r)(z) ∈ H(C) ∩ C∞(Rβ;Rτ )

for 0 ≤ r ≤ k. ��
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3.3.3 Cone-degenerate pseudodifferential operators

In order to introduce cone-degenerate pseudodifferential operators, we choose cut-
off functions ϕ, ϕ0, ϕ1 ∈ C∞

c (R+) that localize near x = 0 and satisfy ϕϕ0 = ϕ,
ϕϕ1 = ϕ1.

Definition 3.17 Forμ ∈ R, the class�
μ
c (R

1+d
+ ) of cone-degenerate pseudodifferential

operators on R
1+d+ consists of all pseudodifferential operators A on R

1+d+ which are
of the form

A = AM + Aψ + Ar , (3.8)

where

(i) AM = ϕ opM (h)ϕ0 for some h = h(x, z, y, Dy) ∈ C∞(R+;Mμ(Rd)),

(ii) Aψ = (1 − ϕ) opψ(a)(1 − ϕ1) for some a ∈ Sμ
cl(R

1+d
+ × R

1+d).

(iii) Ar has integral kernel in S0(R
1+d
+ )⊗̂S0(R

1+d
+ ) (with respect to the measure

ψ−2δ(x) dxdy attached to the right factor).

Notice that any operator A of the form in (3.8) is a pseudodifferential operator on
R
1+d+ . The point of this definition is to enforce control on the behavior as x → +0 in

a specific way (see, e.g., the mapping properties in Proposition 3.25 below).

Remark Although the weight factor ψ−2δ(x) appears explicitly in the definition of

the residual class �−∞
c (R

1+d
+ ) consisting of the operators Ar in (3.8), the classes

�
μ
c (R

1+d
+ ) and �−∞

c (R
1+d
+ ) are in fact independent of δ ∈ R.

3.3.4 Symbolic structure

For the rest of this section, we develop certain elements of the calculus of pseudod-

ifferential operators in �∞
c (R

1+d
+ ) = ⋃

μ∈R �
μ
c (R

1+d
+ ). We start with the symbolic

structure.
First note that the vector fields a(x, y)x∂x + ∑d

j=1 a j (x, y)∂ j tangent to ∂R
1+d
+ ,

where a, a j ∈ C∞(R
1+d
+ ), are the C∞ sections of a vector bundle over R

1+d
+ that

we denote by T̃ ∗
R
1+d
+ and call it the compressed cotangent bundle (see, e.g., Melrose

[15]). Indeed, the covariable to (x, y) ∈ R
1+d
+ in T̃ ∗

R
1+d
+ can be taken to be (ξ̃ , η)

with ξ̃ = ψ(x)ξ .

Definition 3.18 The compressed principle symbol σ̃
μ
ψ (A) ∈ S(μ)(T̃ ∗

R
1+d
+ \0) of an

operator A ∈ �
μ
c (R

1+d
+ ) is defined as

σ̃
μ
ψ (A)(x, y, ξ̃ , η) = ϕ(x) σ

μ
ψ (h)(x, y, τ, η)

∣∣
τ=−ξ̃

+ (1 − ϕ(x)) σ
μ
ψ (Aψ)(x, y, ξ, η).

Here, σμ
ψ (h) is the parameter-dependent principal symbol of h = h(x, y, z, Dy).
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Proposition 3.19 The short sequence

0 −→ �μ−1
c (R

1+d
+ ) −→ �μ

c (R
1+d
+ )

σ̃
μ
ψ−→ S(μ)(T̃ ∗

R
1+d
+ \0) −→ 0

is split exact.

Consequently, the compressed principal symbol σ̃ μ
ψ (A) provides control on opera-

tors in �
μ
c (R

1+d
+ ) up to lower-order perturbations.

Still, control of the asymptotic behavior as x → +0 is achieved with the help of

the full sequence
(
σ

− j
c (A)

)

j∈N0
of conormal symbols.

Definition 3.20 For A ∈ �
μ
c (R

1+d
+ ) written as in (3.8), the conormal symbol σ− j

c (A)

of conormal order − j for j ∈ N0 is defined as

σ− j
c (A)(z) = 1

j ! ∂
j
x h(0, y, z, Dy) ∈ Mμ(Rd).

Lemma 3.21 There is a compatibility condition between σ̃
μ
ψ (A) and σ 0

c (A), namely

σ̃
μ
ψ (A)(0, y, ξ̃ , η) = σ

μ
ψ (σ 0

c (A))(y, η, τ )
∣∣
τ=−ξ̃

. (3.9)

It is this compatibility condition which later will guarantee that the governing
equations for the coefficents γpku are symmetrizable hyperbolic.

Remark In order to provide a heuristic explanation of how control on the asymp-

totic behavior as x → +0 is achieved by the sequence
(
σ

− j
c (A)

)

j∈N0
notice that,

informally, we have that

A ∼
∑

j≥0

x j opM (σ− j
c (A)(z)) as x → +0 (3.10)

upon performing aTaylor series expansion of AM at x = 0. (See also Proposition 3.26.)

Example The first-order differential operator

A = a(x, y)ψ(x)Dx +
d∑

j=1

a j (x, y)Dj + b(x, y),

where a, a j , b ∈ C∞
b (R

1+d
+ ), belongs to �1

c (R
1+d
+ ). Then it is readily checked that

(i) σ̃ 1
ψ(A)(x, y, ξ̃ , η) = a(x, y)ξ̃ +∑d

j=1 a j (x, y)η j .

(ii) σ 0
c (A)(z) = ia(0, y)z +∑d

j=1 a j (0, y)Dj + b(0, y).

(iii) σ 1
ψ(σ 0

c (A))(y, η, τ ) = − a(0, y)τ +∑d
j=1 a j (0, y)η j .
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3.3.5 Compositions and adjoints

Now we get into the calculus of cone-degenerate pseudodifferential operators. First

consider their formal adjoints. Let A∗ be formal adjoint operator of A ∈ �
μ
c (R

1+d
+ ),

i.e.,

〈Au, v〉 = 〈u, A∗v〉, u, v ∈ C∞
c (R1+d+ ).

Proposition 3.22 The class �∞
c (R

1+d
+ ) of cone-degenerate pseudodifferential opera-

tors is closed under taking adjoints in the sense that whenever A ∈ �
μ
c (R

1+d
+ ), then

A∗ ∈ �
μ
c (R

1+d
+ ). Moreover,

(i) σ̃
μ
ψ (A∗) = σ̃

μ
ψ (A)∗

(ii) σ 0
c (A∗)(z) = σ 0

c (A)(1 − 2δ − z̄)∗.

Another result is that cone-degenerate pseudodifferential operators are closed under
compositions.

Proposition 3.23 The class �∞
c (R

1+d
+ ) of cone-degenerate pseudodifferential oper-

ators is closed under compositions in the sense that whenever A ∈ �
μ
c (R

1+d
+ ) and

B ∈ �ν
c (R

1+d
+ ), then their composition A ◦ B belongs to �

μ+ν
c (R

1+d
+ ). Moreover,

(i) σ̃
μ+ν
ψ (A ◦ B) = σ̃

μ
ψ (A) σ̃ ν

ψ(B),

(ii) σ−�
c (A ◦ B)(z) = ∑

j+k=� σ
− j
c (A)(z − k) σ−k

c (B)(z) for � ∈ N0.

3.3.6 Mapping properties

Cone-degenerate pseudodifferential operators act continuously in the scale of Sobolev
spaces with asymptotics. To see this, we start with the following result:

Lemma 3.24 For each μ ∈ R, �μ
c (R

1+d
+ ) ⊂ ⋂

P L(SP (R
1+d
+ )), where the intersec-

tion is over all asymptotic types P.

Proof This is a standard result in the theory of cone-degenerate pseudodifferential
operators. In particular, it relies on the fact that the conormal symbols are assumed to
be holomorphic. ��
Proposition 3.25 For μ ∈ R,

�μ
c (R

1+d
+ ) ⊂

⋂

s,P,θ

L(Hs+μ,δ
P,θ (R

1+d
+ ), Hs,δ

P,θ (R
1+d
+ )

)
.

where intersection is over all s ∈ R, P ∈ Asδ , and θ ≥ 0.
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Proof It is well-known that �
μ
c (R

1+d
+ ) ⊂ ⋂

s,γ L
(
K s+μ,γ (R1+d+ ),K s,γ (R1+d+ )

)
.

That this holds for all γ ∈ R is again a consequence of the holomorphy of the conormal
symbols.

By the closed graph theorem and complex interpolation, it is enough to show that

ϕ0 opM (h)�pkw ∈ Hs,δ
P,θ (R

1+d
+ ) (3.11)

whenever (p, k) ∈ P ,w ∈ Hs+μ+�p+δ−1/2,〈k〉(Rd), 1/2−δ−θ < �p,�p−(1/2−
δ − θ) /∈ N, and h ∈ C∞(R+;Mμ(Rd)), where �pkw is given in (3.3). Let κ be the
smallest integer such that�p−κ < 1/2−δ−θ .Writing h(x, z) = ∑

0≤ j<κ x
j h j (z)+

xκh′(x, z), where h j ∈ Mμ(Rd) for 0 ≤ j < κ and h′ ∈ C∞(R+;Mμ(Rd)), one
has

ϕ0(x)x
j opM (h j )�pkw =

k∑

r=0

1

r ! �p− j,k−r
[
h(r)
j (p)w

]+ v j ,

where v j ∈ K s−θ+ j,δ+θ (R1+d+ ), and

ϕ0(x)x
κ opM (h′)�pkw ∈ K s−θ+κ,δ+θ (R1+d+ ).

Altogether, (3.11) follows. This completes the proof. ��
As a consequence, γpk(Au) for u ∈ Hs+μ,δ

P,θ (R
1+d
+ ) is computable in terms of

{σ− j
c (A)} j≥0.

Proposition 3.26 Let A ∈ �
μ
c (R

1+d
+ ), u ∈ Hs+μ,δ

P,θ (R
1+d
+ ), and (p, k) ∈ P, where

�p > 1/2 − δ − θ . Then

γpk(Au) =
∑

j≥0

∑

�−r=k

1

r ! ∂rz σ
− j
c (A)(p + j)γp+ j,�(u). (3.12)

The sum in the right-hand side is over those ( j, �, r), where �p + j < 1/2 − δ and
0 ≤ � < mp+ j . In particular, this sum is finite.

Proof By Lemma 3.12 and continuity of the trace maps according to Proposition 3.9,

it is enough to verify (3.12) when u ∈ SP (R
1+d
+ ). In this case, (3.12) follows from

(3.6), (3.10), (A.1), (A.2). (See [12] for such explicit calculations.) ��

3.3.7 Further results

Here we collect several results about the calculus for cone-degenerate pseudodiffer-
ential operators that we will need later, e.g., when constructing a symmetrizer.

It is crucial that an integration by parts produces no boundary terms. It is precisely
this property which allows us to treat the initial-boundary value problem Eq. (1.1) as
a Cauchy problem.
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Lemma 3.27 For A ∈ �1
c (R

1+d
+ ;CN ) and u, v ∈ K 1,δ(R1+d+ ;CN ), it holds that

〈Au, v〉 = 〈
u, A∗v

〉
. (3.13)

Proof Property (3.13) holdswheneveru, v∈C∞
c (R1+d+ ;CN ). BecauseC∞

c (R1+d+ ;CN )

is dense inK 1,δ(R1+d+ ;CN ), the result follows. ��
The existence of so-called order reductions is assured next.

Proposition 3.28 Let μ ∈ R. Then there exists a selfadjoint, positive definite operator

�μ ∈ �
μ
c (R

1+d
+ ) such that �−μ = (�μ)−1 ∈ �

−μ
c (R

1+d
+ ). In particular,

�μ : Hs+μ,δ
P,θ (R

1+d
+ ) → Hs,δ

P,θ (R
1+d
+ ) (3.14)

is an isomorphism for all s ∈ R, P ∈ Asδ , and θ ≥ 0.

Proof One way to prove the result is to start with a parameter-dependent version

�
μ/2
c (R

1+d
+ ;R) of the class �

μ/2
c (R

1+d
+ ) consisting of families A = (A(λ))λ∈R ⊂

�
μ/2
c (R

1+d
+ ), as in Sect. 3.3.1. Choose a parameter-elliptic family A ∈ �

μ/2
c (R

1+d
+ ;R)

with compressed principal symbol σ̃
μ/2
ψ (A) = (ξ̃2 + |η|2 + λ2)μ/4 and leading

conormal symbol σ 0
c (A) = σ 0

c (A)(z, λ) ∈ Mμ/2(Rd ;R) such that σ 0
c (A)−1 ∈

M−μ/2(Rd ;R) (see Proposition 3.15). Then A(λ) ∈ �
μ/2
c (R

1+d
+ ) is invertible for

|λ| � 1, with A(λ)−1 ∈ �
−μ/2
c (R

1+d
+ ). Now pick a λ ∈ R with |λ| large and set

�μ = A(λ)∗A(λ). ��
We have the following form of Gårding’s inequality.

Proposition 3.29 Let μ ≥ 0. Suppose that A ∈ �
μ
c (R

1+d
+ ;CN ) has a positive definite

compressed principle symbol satisfying σ̃
μ
ψ (A)(x, y, ξ̃ , η) � (ξ̃ 2 + |η|2)μ/2 IN . Then

there exists a C = C∗ ∈ �
μ−1
c (R

1+d
+ ;CN ) and a constant c > 0 such that

� 〈Au, u〉 ≥ c ‖u‖2K μ/2,δ − 〈
Cu, u

〉

for all u ∈ K μ,δ(R1+d+ ;CN ).

Proof Writing u = �−μ/2v with v ∈ K μ/2,δ(R1+d+ ;CN ), we can assume thatμ = 0.

Then σ̃ 0
ψ(A)(x, y, ξ̃ , η) ≥ 2c IN for someconstant c > 0.Choose B ∈ �0

c (R
1+d
+ ;CN )

such that σ̃ 0
ψ(B) = (

σ̃ 0
ψ(A) − c IN

)1/2. By construction, C = B∗B − �A + c ∈
�−1

c (R
1+d
+ ;CN ). We obtain

� 〈Au, u〉 = 〈(�A) u, u〉 = c ‖u‖2 + ‖Bu‖2 − 〈
Cu, u

〉 ≥ c ‖u‖2 − 〈
Cu, u

〉

for u ∈ K 0,δ(R1+d+ ;CN ). ��
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4 Proof of themain results

In this section, we establish our main results. In fact, it suffices to prove Theorem 1.2.
Theorem 1.1 is a special case of Theorem 1.2, where s ≥ 0, δ = 0, P = P0, and
θr = s − r + σ for 0 ≤ r ≤ σ . Besides, Theorem 1.1 has been proven independently
in Sect. 2. Theorem 1.3 follows from Theorem 1.2 in the usual way using coordinate
invariance (see [11]) and finite propagation speed. An alternative argument retraces
the steps of the proof of Theorem 1.2 displayed below and uses cone-degenerate
pseudodifferential operators from a class �

μ
c (�;CN ), where now operators in this

class are additionally assumed to be properly supported.
We consider the Cauchy problem

{
∂t u + A(t, x, y, xDx , Dy)u = f (t, x, y), (t, x, y) ∈ (0, T ) × R

1+d+ ,

u
∣∣
t=0 = u0(x, y),

(4.1)

where

A ∈ C∞([0, T ];�1
c (R

1+d
+ ;CN )

)
.

We assume that the operator ∂t + A(t, x, y, xDx , Dy) is hyperbolic in the sense
that A admits a symbolic symmetrizer. This means that there exists a b ∈
C∞([0, T ]; S(0)(T̃ ∗

R
1+d
+ \0; MN×N (C))

)
such that

(i) b(t, x, y, ξ̃ , η) = b(t, x, y, ξ̃ , η)∗ ≥ c IN for some constant c > 0,
(ii) b(t, x, y, ξ̃ , η)σ̃ 1

ψ(A)(t, x, y, ξ̃ , η) is skew-Hermitian for all (t, x, y, ξ̃ , η).

Example The operatorA(t, x, y, xDx , Dy) = x A(t, x, y)∂x +∑d
j=1 A j (t, x, y)∂ j +

B(t, x, y) from Eq. (1.2) was assumed to satisfy these assumptions.

4.1 Well-posedness in weighted Sobolev spaces

Employing the symbolic symmetrizer, b, we first construct a genuine symmetrizer, B.
Lemma 4.1 Let b ∈ C∞([0, T ]; S(0)(T̃ ∗

R
1+d
+ \0; MN×N (C))

)
be a symbolic sym-

metrizer for A. Then there exists a B ∈ C∞([0, T ];�0
c (R

1+d
+ ;CN )

)
such that

σ̃ 0
ψ(B(t)) = b(t) and B(t) = B(t)∗ ≥ c IN

for some c > 0 and all t ∈ [0, T ].
Proof We pick a B1 ∈ C∞([0, T ];�0

c (R
1+d
+ ;CN )

)
with σ̃ 0

ψ(B1(t)) = b(t) for

t ∈ [0, T ] and set B0 = (B1 + B∗
1

)
/2. Then σ̃ 0

ψ(B0(t)) = b(t) for t ∈ [0, T ]. By
Proposition 3.29, there exists a C ∈ C∞([0, T ]; �−1

c (R
1+d
+ ;CN )

)
with C(t) = C(t)∗

for t ∈ [0, T ] such that, for any u ∈ C∞
c (R1+d+ ;CN ) and t ∈ [0, T ],

〈B0(t)u, u
〉 ≥ c ‖u‖2 − 〈C(t)u, u

〉
.
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It follows that the operator B = B0 + C has the desired properties. ��
Next we derive energy estimates for Eq. (4.1) in the weighted Sobolev spaces

K s,δ(R1+d+ ;CN ).
We start with the case s = 0. As usual, the proof of the next proposition relies on

the following facts (as was already mentioned in the introduction):

• 〈B(t)u, u〉 is equivalent to ‖u‖2 uniformly in t ∈ [0, T ],
• Integration by parts produces no boundary terms (see Lemma 3.27),

• BA + (BA)∗ ∈ C∞([0, T ];�0
c (R

1+d
+ ;CN )).

Proposition 4.2 Let u ∈ C ([0, T ];K 1,δ(R1+d+ ;CN ))∩C 1([0, T ];K 0,δ(R1+d+ ;CN )).
Then

sup
0≤t≤T

‖u(t)‖ � ‖u(0)‖ +
∫ T

0
‖∂t u(t) − A(t)u(t)‖ dt . (4.2)

Proof Let u(0) = u0, ∂t u − Au = f . By construction, there exists a constant C > 0
such that

2�(BA) + ∂tB ≤ 2CB.

Then

∂t
(〈Bu, u〉e−2Ct) ≤ ∂t

(〈Bu, u〉e−2Ct)− (
2�〈BAu, u〉 − 2C〈Bu, u〉

+ 〈(∂tB)u, u〉)e−2Ct

= 2�〈B f , u〉e−2Ct .

Setting K = supt∈[0,T ]〈B(t)u(t), u(t)〉1/2e−Ct , the Cauchy–Schwarz inequality
implies that

〈B(t)u(t), u(t)〉e−2Ct ≤ 〈B(0)u0, u0〉 + 2K
∫ t

0
〈B(s) f (s), f (s)〉1/2e−Cs ds,

i.e.,

(
K −

∫ T

0
〈B(t) f (t), f (t)〉1/2e−Ct dt

)2

≤
(
〈B(0)u0, u0〉1/2 +

∫ T

0
〈B(t) f (t), f (t)〉1/2e−Ct dt

)2

It follows that

K ≤ 〈B(0)u0, u0〉1/2 + 2
∫ T

0
〈B(t) f (t), f (t)〉1/2e−Ct dt .
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Because the norm v �→ 〈B(t)v, v〉1/2e−Ct is equivalent to ‖v‖ uniformly in t ∈ [0, T ],
this finishes the proof. ��

As an immediate consequence we have the next result.

Proposition 4.3 Let u∈C ([0, T ];K s+1,δ(R1+d+ ;CN ))∩C 1(([0, T ];K s,δ(R1+d+ ;CN ))

for some s ∈ R. Then

sup
0≤t≤T

‖u(t)‖K s,δ � ‖u(0)‖K s,δ +
∫ T

0
‖∂t u(t) − A(t)u(t)‖Ks,δ dt . (4.3)

Proof Let again u(0) = u0, ∂t u(t) − Au = f . Let �s ∈ �s
c (R

1+d
+ ) be a scalar

invertible operator such that (�s)−1 ∈ �−s
c (R

1+d
+ ), as constructed in Lemma 3.28.

Then, �su solves the system

{
∂t (�

su) + �sA(t)�−s(�su) = �s f (t),

(�su)
∣∣
t=0 = �su0.

(4.4)

Notice that �sA�−s ∈ C∞([0, T ];�1
c (R

1+d
+ ;CN )) and σ̃ 1

ψ(�sA�−s) = σ̃ 1
ψ(A).

Hence, system (4.4) is symmetrizable hyperbolic. Applying Proposition 4.2 yields

sup
0≤t≤T

‖�su(t)‖ � ‖�su0‖ +
∫ T

0
‖�s f (t)‖ dt .

As ‖�s · ‖ is an equivalent norm on K s,δ , we obtain estimate (4.3). ��
Proposition 4.4 Let u0 ∈ K s,δ(R1+d+ ;CN ) and f ∈ L1((0, T );K s,δ(R1+d+ ;CN ))

for some s ∈ R. ThenEq. (4.1)possesses aunique solutionu∈C ([0, T ];K s,δ(R1+d+ ;CN )).
Moreover, the energy inequality

sup
0≤t≤T

‖u(t)‖K s,δ � ‖u0‖K s,δ +
∫ T

0
‖ f (t)‖Ks,δ dt

holds.

Proof Uniqueness. Let u0 = 0, f = 0. ThenA(t)u ∈ C ([0, T ];K s−1,δ(R1+d+ ;CN ))

and, consequently,we obtain ∂t u ∈ C ([0, T ];K s−1,δ(R1+d+ ;CN )) from the equation.
Hence, estimate (4.3) (with s replaced with s − 1) yields u = 0.

Existence.We argue by duality. SetY = {v ∈ C ([0, T ];S (Rd;CN )) | v(T ) = 0}.
The operator ∂t+A(T−t)∗ is symmetrizable hyperbolic.Hence, estimate (4.3) implies
(after the change of variables t �→ T − t)

sup
0≤t≤T

‖v(t)‖K −s,δ �
∫ T

0
‖ − ∂tv(t) + A(t)∗v(t)‖K −s,δ dt, v ∈ Y .
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We now consider the functional

g �→
∫ T

0
〈 f (t), v(t)〉 dt + 〈u0, v(0)〉 (4.5)

on the space (−∂t + A(t)∗)Y , where g = −∂tv + A(t)∗v, v ∈ Y . We have the
estimate

∣∣∣∣
∫ T

0
〈 f (t), v(t)〉 dt + 〈u0, v(0)〉

∣∣∣∣ ≤ ‖ f ‖L1
t K

s,δ‖v‖L∞
t K −s,δ +‖u0‖K s,δ‖v(0)‖K −s,δ

�
∫ T

0
‖g(t)‖K −s,δ dt .

By the Hahn–Banach theorem, the functional in (4.5) extends to a bounded
functional on the space L1((0, T );K −s,δ(R1+d+ ;CN )). By duality, such an exten-

sion is given as g �→ ∫ T
0 〈u(t), g(t)〉 dt for some uniquely determined u ∈

L∞((0, T );K s,δ(R1+d+ ;CN )). We obtain that

∫ T

0
〈u(t),−∂tv(t) + A(t)∗v(t)〉 dt =

∫ T

0
〈 f (t), v(t)〉 dt + 〈u0, v(0)〉 , v ∈ Y .

(4.6)

Taking v ∈ C∞
c ((0, T ) ×R

1+d+ ;CN ) demonstrates that u is a weak solution to ∂t u +
A(t)u = f (t) on (0, T ) × R

1+d+ .
If f ∈ L1((0, T );K s+1,δ(R1+d+ ;CN )), thenu ∈ L∞((0, T );K s+1,δ(R1+d+ ;CN ))

and, moreover, u ∈ C ([0, T ];K s,δ(R1+d+ ;CN )) from the equation. Indeed, u
is absolutely continuous with values in K s,δ(R1+d+ ;CN ). In addition, it follows
from (4.6) that u(0) = u0. In the general case, we choose sequences (u0m) ⊂
K s+1,δ(R1+d+ ;CN ) and ( fm) ⊂ C ([0, T ];K s+2,δ(R1+d+ ;CN )) such that

u0m → u0 inK s,δ(R1+d+ ;CN ), fm → f in L1((0, T );K s+1,δ(R1+d+ ;CN )).

Let (um) ⊂ C ([0, T ];K s+1,δ(R1+d+ ;CN )) ∩ C 1([0, T ];K s,δ(R1+d+ ;CN )) be the
sequence of solutions to Eq. (4.1), with the data (u0, f ) replaced with (u0m, fm).
By Proposition 4.3, (um) is a Cauchy sequence in C ([0, T ];K s,δ(R1+d+ ;CN )). It is
readily seen that its limit u is the desired solution. ��

Eventually, we discuss higher regularity with respect to t .

Proposition 4.5 Let u0 ∈ K s+σ,δ(R1+d+ ;CN ), f ∈ ⋂σ
r=0 W

r ,1((0, T );K s−r+σ

(R1+d+ ;CN )) for some s ∈ R, σ ∈ N0. Then the unique solution u to Eq. (4.1)
belongs to the space

⋂σ
r=0 C

r ([0, T ]; K s−r+σ (R1+d+ ;CN )). Moreover, the energy
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inequality

σ∑

r=0

sup
0≤t≤T

‖∂rt u(t)‖K s−r+σ,δ � ‖u0‖Ks+σ,δ +
σ∑

r=0

∫ T

0
‖∂rt f (t)‖K s−r+σ,δ dt

holds.ccccqwaaw

Proof We proceed by induction on σ .
The base case σ = 0 was treated in Proposition 4.4.
For the induction step σ → σ + 1, suppose that u0 ∈ K s+σ+1,δ(R1+d+ ;CN ),

f ∈ ⋂σ
r=0 W

r ,1((0, T ); K s−r+σ+1(R1+d+ ;CN )). By induction hypothesis, u ∈⋂σ
r=0 C

r ([0, T ]; K s−r+σ+1(R1+d+ ;CN )) (upon replacing s with s + 1). Moreover,
ut = ∂t u solves the equation

{
∂t (ut ) + A(t)ut = ∂t f (t) − (∂tA)(t)u(t),

ut (0) = f (0) − A(0)u0,

where f (0) − A(0)u0 ∈ K s+σ,δ(R1+d+ ;CN ), ∂t f − (∂tA)u ∈ ⋂σ
r=0 W

r ,1((0, T );
K s−r+σ (R1+d+ ;CN )). Again by induction hypothesis, we conclude that ∂t u ∈⋂σ

r=0 C
r ([0, T ];K s−r+σ (R1+d+ ;CN )). Altogether, we obtain that u ∈ ⋂σ

r=0

C r ([0, T ];K s−r+σ+1(R1+d+ ;CN )) as required. ��

4.2 Well-posedness in Sobolev spaces with asymptotics

Here we establish Theorem 1.2 in full generality. In fact, we only derive the funda-
mental energy inequality. Then the rest of the proof is completely analogous to the
proof in the previous section, and it is omitted.

Proposition 4.6 Let u∈C ([0, T ]; Hs+1,δ
P,θ (R

1+d
+ ;CN ))∩C 1([0, T ]; Hs,δ

P,θ (R
1+d
+ ;CN ))

for some P ∈ Asδ , s ∈ R, and θ ≥ 0. Then

sup
0≤t≤T

‖u(t)‖Hs,δ
P,θ

� ‖u(0)‖Hs,δ
P,θ

+
∫ T

0
‖∂t u(t) + A(t)u(t)‖Hs,δ

P,θ
dt

Proof As before, we set u0 = u(0), f = ∂t u + A(t)u. By interpolation, we may
assume that πCP ∩ �1/2−δ−θ = ∅. We then proceed in three steps.
Step 1 By Proposition 3.26, taking traces one has

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t (γpku) + σ 0
c (A(t))(p)γpku = γpk f

−
∑

j≥0, �−r=k,
( j,�,r) �=(0,k,0)

1

r ! ∂rz σ
− j
c (A(t))(p + j) γp+ j,�(u),

γpku
∣∣
t=0 = γpku0.

(4.7)
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This is a Cauchy problem for an N × N first-order hyperbolic system in (0, T ) ×R
d .

Hyperbolicity follows from

σ 1
ψ(σ 0

c (A(t))(p))(y, η) = σ̃ 1
ψ(A(t))(0, y, 0, η).

Solving these systems successively using Proposition A.2, one finds

sup
0≤t≤T

‖γpku(t)‖Hs+�p+δ−1/2,〈k〉

�
∑

j≥0, �≥k

(
‖γp+ j,�u0‖Hs+�p+ j+δ−1/2,〈�〉 +

∫ T

0
‖γp+ j,� f (τ )‖Hs+�p+ j+δ−1/2,〈�〉 dτ

)
.

for (p, k) ∈ P , �p > 1/2 − δ + θ .
Step 2 Set v0 = u0 −∑

(p,k)∈P,
�p>1/2−δ−θ

�pk(γpku0) ∈ Ks−θ+1,δ+θ (R1+d+ ;CN ),

g = f − (∂t + A(t))

(
∑

(p,k)∈P,
�p>1/2−δ−θ

�pk(γpku)

)
∈ C ([0, T ];Ks−θ,δ+θ (R1+d+ ;CN )).

Now we solve the hyperbolic system

{
∂tv + A(t)v = g(t),

v
∣∣
t=0 = v0.

Then, by Proposition 4.4,

sup
0≤t≤T

‖v(t)‖Ks−θ,δ+θ � ‖v0‖Ks−θ,δ+θ +
∫ T

0
‖g(t)‖Ks−θ,δ+θ dt .

Step 3 Because of u = v +∑
(p,k)∈P,

�p>1/2−δ−θ

�pk(γpku), it follows that

sup
0≤t≤T

‖u(t)‖Hs,δ
P,θ

� ‖u0‖Hs,δ
P,θ

+
∫ T

0
‖ f (t)‖Hs,δ

P,θ
dt .

This completes the proof. ��
Remark By the arguments above, one can show that the Cauchy problem (4.1) is

well-posed in the Sobolev spaces Hs,(δ,ρ)
P,θ (R

1+d
+ ;CN ), where

Hs,(δ,ρ)
P,θ (R

1+d
+ ) = {u | ϕu ∈ Hs,δ

P,θ (R
1+d
+ ), (1 − ϕ)u ∈ 〈x〉−ρHs(R1+d+ )} (4.8)

for s, ρ ∈ R, P ∈ Asδ , and θ ≥ 0. In view of

SP (R
1+d
+ ) =

⋂

s,ρ,θ

Hs,(δ,ρ)
P,θ (R

1+d
+ ),
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this immediately leads to the well-posedness of the Cauchy problem (4.1) in

SP (R
1+d
+ ;CN ). More precisely, Eq. (4.1) has a unique solution u ∈ C∞([0, T ];

SP (R
1+d
+ ;CN ))provided thatu0 ∈SP (R

1+d
+ ;CN ), f ∈C∞([0, T ];SP (R

1+d
+ ;CN )).

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A. Some basic material

For the reader’s convenience, we collect here a few basic facts that are used in the
main body of the paper without further reference. (See Sect. 1.4 for the notation used.)

A.1 TheMellin transform

The Mellin transform M is defined by

Mu(z) = ũ(z) =
∫ ∞

0
xz−1u(x) dx, z ∈ C,

for u ∈ C∞
c (R+). It is then suitably extended to other spaces of (generalized) func-

tions. The inverse transform is given by M−1v(x) = 1
2π i

∫
�β

x−zv(z) dz for a suitable
β ∈ R depending on the situation under consideration.

Among others, the Mellin transform has the following properties:

(a) {− x∂xu}˜(z) = z ũ(z),
(b) {x−γ u}˜(z) = ũ(z − γ ) for γ ∈ R,
(c) {log x u}˜(z) = ∂z ũ(z),
(d) M : L2(R+, x−2γ dx) → L2

(
�1/2−γ , (2π i)−1dz

)
is unitary for γ ∈ R.

In particular, for h ∈ Mμ(Rd), u ∈ H s,γ (R1+d+ ), one has that

{opM (h)u}˜(z) = h(z)ũ(z), z ∈ �1/2−γ , (A.1)

and then that opM (h) : H s+μ,γ (R1+d+ ) → H s,γ (R1+d+ ) is continuous.

Lemma A.1 Let v ∈ SP (R
1+d
+ ) for some asymptotic type P. Then ṽ(z, ·) is a mero-

morphic function of z ∈ C with values inS (Rd) having poles at most at points z = p

http://creativecommons.org/licenses/by/4.0/
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for p ∈ πCP. Moreover, for v as given in (3.6),

ṽ(z, ·) = vp,mp−1

(z − p)mp
+ vp,mp−2

(z − p)mp−1 + . . . + vp0

z − p
+ O(1) as z → p, (A.2)

where vp0, . . . , vp,mp−1 ∈ S (Rd). In addition, if χ ∈ C∞(C) satisfies χ(z) =
0 for dist(z, πCP) ≤ 1/2 and χ(z) = 1 for dist(z, πCP) ≥ 1, then χṽ ∈
C∞(

Rβ;S (Rd+1
(y,τ ))

)
.

Similar statements hold for (ϕv)˜(z, ·)when v ∈ Hs,δ
P,θ (R

1+d
+ ), where now, however,

(ϕv)˜(z, ·) is holomorphic in the half-space {z ∈ C | �z ≥ 1/2−δ} and meromorphic
in the open half-space {z ∈ C | �z > 1/2 − δ − θ}. As these statements are more
involved in their formulation and we do not make use of them, we refrain frommaking
these statements explicit. (See, e.g., [19, 22].)

A.2 The hyperbolic Cauchy problem

For the sake of completeness, we state a result about the well-posedness of the hyper-
bolic Cauchy problem in the spaces Hs,〈k〉(Rd;CN ) for (s, k) ∈ R × Z. For k = 0,
this is a standard result, but for k �= 0 we were not able to locate it in the literature.

Let B ∈ C∞([0, T ];�1(Rd;CN )) and assume that the operator ∂t + B(t, y, Dy)

is symmetrizable hyperbolic uniformly in (t, y) ∈ [0, T ] ×R
d in the sense that there

is a b ∈ S(0)([0, T ] × R
d × (Rd\0);MatN×N (C)) such that

(i) b(t, y, η) = b(t, y, η)∗ ≥ c IN for some constant c > 0,
(ii) b(t, y, η) σ 1

ψ(B)(t, y, η) is skew-Hermitian for all (t, y, η) ∈ [0, T ] × R
d ×

(Rd\0).
We consider the Cauchy problem

{
∂t u + B(t, y, Dy)u = f (t, y), (t, y) ∈ (0, T ) × R

d ,

u
∣∣
t=0 = u0(y).

(A.3)

Proposition A.2 Let u0 ∈ Hs+σ,〈k〉(Rd ;CN ), f ∈ ⋂σ
r=0 W

r ,1((0, T ); Hs−r+σ,〈k〉
(Rd;CN )) for some (s, k) ∈ R × Z, σ ∈ N0. Then Eq. (A.3) possesses a unique
solution

u ∈
σ⋂

r=0

C r ([0, T ]; Hs−r+σ,〈k〉(Rd;CN )).

Proof We introduce the operator M = logk〈Dy〉 and set v = Mu, v0 = Mu0, and g =
M f . Then v0 ∈ Hs+σ (Rd;CN ), g ∈ ⋂σ

r=0 W
r ,1((0, T ); Hs−r+σ (Rd ;CN )), and u ∈⋂σ

r=0 C
r ([0, T ]; Hs−r+σ,〈k〉(Rd ;CN )) is equivalent tov ∈ ⋂σ

r=0 C
r ([0, T ]; Hs−r+σ
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(Rd;CN )). Furthermore, v solves the Cauchy problem

⎧
⎨

⎩
∂tv +

(
B(t) + [M,B(t)]M−1

)
v = g(t, y), (t, y) ∈ (0, T ) × R

d ,

v
∣∣
t=0 = v0(y).

(A.4)

Now, B + [M,B]M−1 ∈ C∞([0, T ];�1(Rd ;CN ) + ⋂
ε>0 �ε

1,0(R
d;CN )), while

σ 1
ψ(B+[M,B]M−1) = σ 1

ψ(B). Then standard hyperbolic theory yields that Eq. (A.4)

possesses a unique solution v ∈ ⋂σ
r=0 C

r ([0, T ]; Hs−r+σ (Rd;CN )). ��
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