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Abstract
The purpose of this article is to study new non-Archimedean pseudo-differential oper-
ators whose symbols are determined from the behavior of two functions defined on the
p-adic numbers. Thanks to the characteristics of our symbols, we can find connections
between these operators and new types of non-homogeneous differential equations,
Feller semigroups, contraction semigroups and strong Markov processes.

Keywords Pseudo-differential operators · Heat kernel · Markov processes · Feller
semigroups · Transition functions · p-Adic analysis

1 Introduction

The study of archimedean pseudo-differential operators constitutes a classical area of
research due to their connections with Feller semigroups and Markov processes, see
e.g. [14, 20–22, 34, 35], and the references therein.

In the mid 80s, the use of p-adic numbers Qp was proposed in order to study
physical problems at very small distances such as the Planck’s length, see e.g. [32,
33, 43, 45, 46], and the references therein. Later Avetisov, Bikulov, Kozyrev, Osipov
in [5–8], introduce a family of parabolic-type p-adic pseudo-differential equations of
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the form

∂u (x, t)

∂t
=
∫
Qp

j
(|x − y|p

) {u (y, t) − u (x, t)} dy, t ≥ 0, (1.1)

with the aim of studying the relaxation of certain complex systems. Since then, the
study of non-archimedean pseudo-differential operators (in particular, p-adic pseudo-
differential operators) has strengthened due to its usefulness in numerous application in
mathematical physics, cellular neural networks, human memory retrieval, probability
theory, Sobolev spaces and the formation of oil reservoirs, see e.g., [3, 4, 7, 8, 11, 12,
15–19, 23, 25, 26, 28, 30, 31, 38–42, 47, 48], and references therein.

In this article, for ϕ ∈ D(Qn
p), we introduce new types of p-adic pseudo-differential

operators of the form

(Bα
h1,h2ϕ)(x) := −F−1

ξ→x

([
max{|h1(||ξ ||p)|, |h2(||ξ ||p)|}

]α
ϕ̂(ξ)

)
,

= −
∫

Qn
p

χp(−x · ξ)
[
max{|h1(||ξ ||p)|, |h2(||ξ ||p)|}

]α
ϕ̂(ξ)dnξ, x ∈ Qn

p,

where F−1
ξ→x corresponds to the inverse Fourier transform, ϕ̂ is the Fourier transform

of ϕ, α is a positive real number, and the function [max{|h1(·)|, |h2(·)|}]α : Qn
p → C

is the symbol of the operator.
With the implementation of these symbols it is intended to introduce new classes

of p-adic pseudo-differential equations connected in a natural way with our pseudo-
differential operators. Furthermore, a significant contribution to the theory of parabolic
p-adic pseudo-differential equations and their applications to p-adic theoretical
physics is sought. It is important to mention that due to the nature of our symbols, the
results obtained require a more demanding mathematical rigor than the other classes
of pseudo-differential operators previously studied.

From a mathematical perspective, the p-adic heat equation (or Cauchy problem)
corresponding to Bα

h1,h2
take the form

⎧⎨
⎩

∂u
∂t (x, t) = −Bα

h1,h2
(u(x, t)), t ∈ (0,∞) , x ∈ Qn

p,

u(x, 0) = u0(x) ∈ D(Qn
p),

(1.2)

with fundamental solution given by

Zt (x) = Z(x, t) :=
∫
Qn

p

χp (−x · ξ) e−t[max{|h1(||ξ ||p)|,|h2(||ξ ||p)|}]αdnξ.

Now, from the physics point of view, the heat kernel Zt (x) controls the evolution of
temperature in the position x and at time t . An important fact to highlight is that we
show that the fundamental solutions Zt (·) determine ”explicitly” Feller semigroups
{Tt }t≥0 on Qn

p and transition functions, pt (x, ·), of strong Markov process X(t, w)
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with space stateQn
p and whose paths are right continuous and have no discontinuities

other than jumps, see Theorems 2 and 3, respectively. We also introduce other Markov
processes X with sample paths in DQn

p
[0,∞) (DQn

p
[0,∞) is the space of right con-

tinuous functions f : [0,∞) → Qn
p with left limits). Moreover, X is a strong Markov

processes with respect to a certain filtration, see Theorem 4.
In this article, we also study new classes of contraction semigroups, (Pt )t≥0, in the

Hilbert space L2(Qn
p). Moreover, via the theory of m-dissipative operators we will

show that our pseudo-differential operators are the generators of these semigroups, see
Theorem6. The above enables us to guarantee unique solutions for the inhomogeneous
initial value problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(x, ·) ∈ C([0, T ],D(Qn
p)) ∩ C1([0, T ], L2(Qn

p)),

∂u
∂t (x, t) = Bα

h1,h2
u(x, t) + g(x, t), t ∈ [0, T ], x ∈ Qn

p,

u0(x) = h(x) ∈ L2(Qn
p).

where T > 0 and g : Qn
p × [0, T ] → L2(Qn

p) be a function such that

g ∈ L1((0, T ), L2(Qn
p)) ∩ C([0, T ], L2(Qn

p)),

see Theorem 7.
On the other hand, in the last three years and thanks to its topology, p-adic numbers

have become a natural structure to study newmathematicalmodels related to the spread
of infectious diseases (say COVID-19) over certain types of population groups, see
for example, [1, 24, 27].

Suppose that Bn
r , r ∈ Z, is the ultrametric ball thatmathematically represent a social

cluster in a situation of extreme social isolation and 100% free from an infectious
or contagious disease at time t = 0. Let h1, h2 : Qn

p → C be continuous negative
definite and radial functions.Moreover, suppose that |h1(||ξ ||p)| represents the degree
of contagion of a person in the ξ position and |h2(||ξ ||p)| represents the ability to
respond of the body’s immune system of a person in the ξ position. Since |h1| and |h2|
are radial functions and their values at each point depends only on the p-adic distance
between point and the origin, we have that |h1| and |h2| are increasing functions with
respect to || · ||p. Moreover, if the environment of the isolated population has a high
degree of contamination and taking into account the speed with which infectious or
contagious disease attacks and deteriorates the immune system of people, then (under
a serious risk of contagion) |h1(||ξ ||p)| ≤ |h2(||ξ ||p)| if and only if ξ ∈ Bn

r .Motivated
by the above, from the point of view of the applications of non-archimedean analysis
to physics, an interesting open problem consists in determine if our p-adic equations
can be applied to study the spread of an infectious or contagious disease.

The article is organized as follows: In Sect. 2, we will collect some basic results on
the p-adic analysis and fix the notation that we will use through the article. In Sect. 3,
we introduce a new class of non-archimedean pseudo-differential operators (which we
will denote by Bα

h1,h2
). Moreover, we also study some properties of the heat Kernel
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Z(x, t), x ∈ Qn
p, t > 0, associated with this type of operators. In Sect. 4, we will show

the existence of Feller semigroups, transition functions and Strong Markov processes
on Qn

p associated with the heat Kernel Z(x, t). In Sect. 5, new types of contraction
semigroups, (Pt )t≥0, are introduced. Also, we will prove that our operators are m-
dissipative, see Theorem 5. Next, we will show that our pseudo-differential operators
are the generators of these semigroups. Finally, we propose and solve new types of
inhomogeneous initial value problem.

2 p-adic analysis: essential ideas

Let p be a fixed prime number. By Qp we denote the field of p-adic numbers,

Qp =
{ ∞∑

i=k

ai p
i : k ∈ Z, ai ∈ {0, 1, 2, . . . , p − 1}, a0 �= 0

}
.

Qp is the completion of the field Q of rational numbers with respect to the p-adic
absolute value | · |p given by

|x |p =
⎧⎨
⎩
0, if x = 0

p−γ , if x = pγ a
b ,

where a and b are integers no divided by p. The integer γ is called the p-adic order
of x , denoted ordp(x), with ordp(0) := +∞. Note that the p-adic norm |·|p takes
the discrete set of values {pγ : γ ∈ Z}⋃ {0}.

ForQp 	 x = ∑∞
i=k ai p

i , we denote and define the fractional part of x as follows:

{x}p :=
⎧⎨
⎩
0, if x = 0 or ordp(x) ≥ 0

∑−ordp(x)−1
i=k ai pi , if ordp(x) < 0.

The spaceQn
p := Qp ×Qp × . . .×Qp consists of points x = (x1, x2, . . . , xn), where

xi ∈ Qp, i = 1, 2, . . . , n, n ≥ 2. The norm in Qn
p is denoted and defined as

||x ||p := max
1≤i≤n

|xi |p, for x = (x1, x2, . . . , xn) ∈ Qn
p.

Let fixed y = (y1, y2, . . . , yn) ∈ Qn
p andm ∈ Z. The ball (respectively, the sphere) of

radius pm and center in y is the set Bn
m(y) = {x ∈ Qn

p : ||x−y||p ≤ pm} (respectively,
Snm(y) = {x ∈ Qn

p : ||x − y||p = pm}). For simplicity we will write Bn
m(0) := Bn

m
and Snm(0) := Snm . The set B

n
0 = Zn

p is the ring of p-adic integers.
The balls and spheres are compact subsets inQn

p. Moreover, as a topological space(
Qn

p, || · ||p
)
is a totally disconnected and locally compact topological space. Qn

p

admits a Haar measure dnx normalized such that
∫
Zn
p
dnx = 1.
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By Lρ
(
Qn

p

)
, 1 ≤ ρ < ∞, we denote the space of all the functions g : Qn

p →
C satisfying

∫
Qn

p

|g (x)|ρ dnx < ∞; and by C0(Q
n
p) the space of all the continuous

functions f : Qn
p → C such that lim||x ||p→∞ f (x) = 0. C0(Q

n
p) is a Banach space

with the norm || f || = supx∈Qn
p
| f (x)|.

A function ϕ : Qn
p → C is called locally constant if for any x ∈ Qn

p there exist an
integer m := m(x) such that

ϕ(x ′) = ϕ(x) for all x ′ ∈ Bn
m(x).

Let ε(Qn
p) denote the space of all locally constant functions on Qn

p.
A function ϕ : Qn

p → C is called a Bruhat-Schwartz function or a test function
if it is locally constant with compact support. The space of Bruhat-Schwartz func-
tions is denoted by D(Qn

p). Let D′(Qn
p) denote the set of all continuous functional

(distributions) on D(Qn
p).

Every function f ∈ L1
loc(Q

n
p) (L

1
loc(Q

n
p) denotes the space of locally integrable

functions) defines a distribution f ∈ D′(Qn
p) (called regular distribution) by the

formula

< f , ϕ >:=
∫

Qn
p

f (x)ϕ(x)dnx, ϕ ∈ D(Qn
p).

If f ∈ L1(Qn
p), its Fourier transform is defined by

(F f )(ξ) = Fx→ξ ( f ) := f̂ (ξ) =
∫

Qn
p

χp(ξ · x) f (x)dnx, ξ ∈ Qn
p,

where x · ξ := ∑n
j=1 x jξ j for x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn) ∈ Qn

p, and

χp(ξ · x) = e2π i{ξ ·x}p is a additive character on Qn
p. The inverse Fourier transform of

a function f ∈ L1(Qn
p) is

(F−1 f )(x) = F−1
ξ→x ( f ) := f̌ (ξ) =

∫

Qn
p

χp(−x · ξ) f (ξ)dnξ, x ∈ Qn
p.

The set L2(Qn
p) is the Hilbert space with the scalar product

( f , g) =
∫

Qn
p

f (x)g(x)dnx, f , g ∈ L2(Qn
p),

so that || f ||L2 = √
( f , f ).
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If f ∈ L2(Qn
p), its Fourier transform is defined as

(F f )(ξ) = lim
k→∞

∫
||x ||≤pk

χp(ξ · x) f (x)dnx, ξ ∈ Qn
p,

where the limit is taken in L2(Qn
p). We recall that the Fourier transform is unitary

on L2(Qn
p), i.e. || f ||L2(Qn

p)
= ||F f ||L2 for f ∈ L2(Qn

p). The Fourier transform

f → f̂ maps L2(Qn
p) onto L2(Qn

p) one-to-one and mutually continuous. Moreover,
the Parseval-Steklov equality holds:

( f , g) = (F f ,Fg), || f ||L2(Qn
p)

= ||F f ||L2(Qn
p)

, f , g ∈ L2(Qn
p).

For a more detailed discussion of the p-adic analysis the reader may consult [2, 36,
44].

3 The non-archimedean pseudo-differential operatorsB˛
h1,h2

and its
Heat Kernel

Throughout this section we study new classes of p-adic pseudo-differential operators
denoted as Bα

h1,h2
and we will prove some properties of the heat Kernel associated

with this type of operators. Along this article, we write N = {1, 2, . . .} and R+ =
{x ∈ R : x ≥ 0}.
Definition 1 (Hypothesis B) We say that the continuous functions h1, h2 : Qn

p → C

satisfies the Hypothesis B if the following properties hold.

(i) hi is a radial function with hi (0) = 0, i = 1, 2. We use the notation hi (ξ) =
hi (||ξ ||p), i = 1, 2; ξ ∈ Qn

p, to indicate that hi , i = 1, 2 are radial functions on
Qn

p.
(ii) |h1| and |h2| are increasing functions with respect to || · ||p;
(iii) there is r := r(h1, h2) ∈ Z, such that

|h2(||ξ ||p)| ≥ |h1(||ξ ||p)| if and only if ξ ∈ Bn
r ;

(iv) there exist positive constants C1 := C1(h1), β1 := β1(h1) such that

|h1(||ξ ||p)| ≥ C1||ξ ||β1p , for all ξ ∈ Qn
p \ Bn

r .

Example 1 (i) Taking h1(||ξ ||p) := ||ξ ||1/2p and h2(||ξ ||p) := ||ξ ||1/3p , ξ ∈ Qn
p, we

have that h1 and h2 satisfies the Hypothesis B.
(2) Let α1 and α2 be positive constants such that α1 ≥ α2 > 0. Then the functions

h1(||ξ ||p) := e||ξ ||α1p − 1 and h2(||ξ ||p) := e||ξ ||α2p − 1, ξ ∈ Qn
p, satisfies the

Hypothesis B.
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Remark 1 We have that e−t[max{|h1|,|h2|}]α ∈ Lρ(Qn
p), 1 ≤ ρ < ∞, for all fixed t > 0

and α > 0. Indeed,
∫
Qn

p
e−tρ[max{|h1(||ξ ||p)|,|h2(||ξ ||p)|}]αdnξ is exactly

∫
Bn
r

e−tρ|h2(||ξ ||p)|αdnξ +
∫
Qn

p\Bn
r

e−tρ|h1(||ξ ||p)|αdnξ = I1 + I2.

Since Bn
r is a compact set and e−tρ|h2(·)|α is a continuous function on Bn

r , we have that
I1 < ∞. Moreover,

I2 =
∞∑

j=r+1

e−tρ|h1(p j )|α
∫

||ξ ||p=p j
dnξ

≤ (1 − p−n)

∞∑
j=r+1

e−tρCα
1 p jαβ1 pnj

< ∞.

From now on, we assume that h1 and h2 are functions satisfying the Hypothesis
B. Moreover, for fixed α > 0 we define the non-archimedean pseudo-differential
operator

(Bα
h1,h2ϕ)(x) := −F−1

ξ→x

([
max{|h1(||ξ ||p)|, |h2(||ξ ||p)|}

]α
ϕ̂(ξ)

)

= −
∫

Qn
p

χp(−x · ξ)
[
max{|h1(||ξ ||p)|, |h2(||ξ ||p)|}

]α
ϕ̂(ξ)dnξ, x ∈ Qn

p,

where ϕ ∈ D(Qn
p) and the function

[
max{|h1(||ξ ||p)|, |h2(||ξ ||p)|}

]α : Qn
p → R+,

is the symbol of the operator Bα
h1,h2

.

Remark 2 By [36, (1.3), p. 118] we have thatD(Qn
p) is dense in Lρ(Qn

p), 1 ≤ ρ < ∞
and in C0(Q

n
p).

Since [max{|h1(·)|, |h2(·)|}]α is a continuous function on Qn
p and ϕ̂ ∈ D(Qn

p) for
ϕ ∈ D(Qn

p), we have that [max{|h1(·)|, |h2(·)|}]α ϕ̂ ∈ L1(Qn
p).

Therefore, by Riemann–Lebesgue Theorem (see [36, Theorem 1.6, p. 24]) and
[36, (3.8), p. 38], we have that the operator Bα

h1,h2
: D(Qn

p) → C0(Q
n
p) ∩ Lρ(Qn

p),
1 ≤ ρ < ∞, is a well-defined pseudo-differential operator.

We define the heat Kernel or fundamental solution attached to operator Bα
h1,h2

as

Zt (x) = Z(x, t) :=
∫
Qn

p

χp (−x · ξ) e−t[max{|h1(||ξ ||p)|,|h2(||ξ ||p)|}]αdnξ, x ∈ Qn
p, t > 0.

(3.1)

The notation Zt (x) means that Z(x, t) is for fixed t > 0 a function of x with x ∈ Qn
p.
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Remark 3 (i) By [2, Example 4.9.1] we have for x ∈ Qn
p that

lim
t→0+ Zt (x) = δ(x),

where δ is the Dirac delta function.
(ii) Since e−t[max{|h1(·)|,|h2(·)|}]α ∈ ε(Qn

p), then by [2, (4.4.3), p. 60] we have that

e−t[max{|h1(·)|,|h2(·)|}]α determines a regular distribution.
Therefore, by [2, Proposition 4.9.1] and the fact that e−t[max{|h1(·)|,|h2(·)|}]α is a
radial function, we have that F(Zt (·)) = e−t[max{|h1(·)|,|h2(·)|}]α , for all t > 0.

Theorem 1 The function Zt (·) satisfies the following properties:

(i) Z(x, t) ≥ 0, for all x ∈ Qn
p and t > 0.

(ii) For any x ∈ Qn
p\{0} and t > 0 we have that Z(x, t) ≤ t ||x ||−n

p .
(iii) Zt+s(x) = (Zt ∗ Zs)(x), for all t, s > 0 and x ∈ Qn

p.
(iv)

∫
Qn

p
Z(x, t)dnx = 1, i.e., Z(·, t) is a probability measure on Qn

p, for all t > 0.

Proof (i) Since in the cases x = 0 the assertion is clear for all t > 0, we consider the
case x ∈ Qn

p\{0}.
We first note that

∫
Bn
r

χp(−x · ξ)e−t |h2(||ξ ||p)|αdnξ +
∫
Qn

p\Bn
r

χp(−x · ξ)e−t |h1(||ξ ||p)|αdnξ

=
r∑

j=−∞
e−t |h2(p j )|α

∫

||p j ξ ||p=1

χp(−x · ξ)dnξ

+
∞∑

j=r+1

e−t |h1(p j )|α
∫

||p j ξ ||p=1

χp(−x · ξ)dnξ

=
r∑

j=−∞
e−t |h2(p j )|α pnj

∫

||w||p=1

χp(−p− j x · w)dnw

+
∞∑

j=r+1

e−t |h1(p j )|α pnj
∫

||w||p=1

χp(−p− j x · w)dnw.

Therefore, for x ∈ Qn
p\{0} and t > 0, Z(x, t) is exactly

r∑
j=−∞

e−t |h2(p j )|α pnj
∫

||w||p=1

χp(−p− j x · w)dnw

+
∞∑

j=r+1

e−t |h1(p j )|α pnj
∫

||w||p=1

χp(−p− j x · w)dnw. (3.2)
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For x ∈ Qn
p\{0} with ||x ||p = p−γ , γ ∈ Z, and by using the formula

∫
||w||p=1

χp

(
−p− j x · w

)
dnw =

⎧⎨
⎩
1 − p−n, if j ≤ γ,

−p−n, if j = γ + 1,
0, if j ≥ γ + 2,

(3.3)

we consider the following cases for γ :
If γ ≤ r − 1, then by (3.2) and (3.3) we have that

Z(x, t) = (1 − p−n)

∞∑
j=−γ

e−t |h2(p− j )|α p−nj − e−t |h2(pγ+1)|α pnγ

≥ e−t |h2(pγ )|α
∞∑

j=−γ

(p−nj − p−n( j+1)) − e−t |h2(pγ+1)|α pnγ

= ||x ||−n
p

{
e−t |h2(||x ||−1

p )|α − e−t |h2(||x ||−1
p p)|α} ≥ 0.

On the other hand, if γ ≥ r , then considering (3.2), (3.3) and applying mathemat-
ical induction on γ − r , we have:
If γ − r = 0 (or equivalently γ = r ), then

Z(x, t) = (1 − p−n)

∞∑
j=−γ

e−t |h2(p− j )|α p−nj − e−t |h1(pγ+1)|α pnγ

≥ e−t |h2(pγ )|α
∞∑

j=−γ

(p−nj − p−n( j+1)) − e−t |h1(pγ+1)|α pnγ

= ||x ||−n
p

{
e−t |h2(||x ||−1

p )|α − e−t |h1(||x ||−1
p p)|α}

≥ ||x ||−n
p

{
e−t |h2(||x ||−1

p p)|α − e−t |h1(||x ||−1
p p)|α} ≥ 0.

Suppose that the assertion is true for γ − r = m (or equivalently γ = r +m), for
some m ≥ 1, i.e.,

Z(x, t) = (1 − p−n)

r∑
j=−∞

e−t |h2(p j )|α pnj + (1 − p−n)

r+m∑
j=r+1

e−t |h1(p j )|α pnj

− p−ne−t |h1(pr+m+1)|α pn(r+m+1) ≥ 0.
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Let’s see if the hypothesis is met for γ −r = m+1 (or equivalently γ = r+m+1).
Then

Z(x, t) = (1 − p−n)

r∑
j=−∞

e−t |h2(p j )|α pnj + (1 − p−n)

r+m+1∑
j=r+1

e−t |h1(p j )|α pnj

− p−ne−t |h1(pr+m+2)|α pn(r+m+2)

= (1 − p−n)

r∑
j=−∞

e−t |h2(p j )|α pnj + (1 − p−n)

r+m∑
j=r+1

e−t |h1(p j )|α pnj

+ (1 − p−n)e−t |h1(pr+m+1)|α pn(r+m+1) − p−ne−t |h1(pr+m+2)|α pn(r+m+2)

≥ (1 − p−n)

r∑
j=−∞

e−t |h2(p j )|α pnj + (1 − p−n)

r+m∑
j=r+1

e−t |h1(p j )|α pnj

+ (1 − p−n)e−t |h1(pr+m+1)|α pn(r+m+1) − e−t |h1(pr+m+1)|α pn(r+m+1)

= (1 − p−n)

r∑
j=−∞

e−t |h2(p j )|α pnj + (1 − p−n)

r+m∑
j=r+1

e−t |h1(p j )|α pnj

− p−ne−t |h1(pr+m+1)|α pn(r+m+1) ≥ 0.

(ii) For x = pγ x0 �= 0 such that γ ∈ Z and ||x0||p = 1, and making the change of
variable z = pγ ξ , we have that

Z(x, t) =
∫
Qn

p

χp
(−pγ x0 · ξ

)
e−t[max{|h1(||ξ ||p)|,|h2(||ξ ||p)|}]αdnξ

= ||x ||−n
p

∫
Qn

p

χp (−z · x0) e−t[max{|h1(pγ ||z||p)|,|h2(pγ ||z||p)|}]αdnz

= ||x ||−n
p

∫
Bn
r

χp (−z · x0) e−t |h2(pγ ||z||p)|αdnz

+||x ||−n
p

∫
Qn

p\Bn
r

χp (−z · x0) e−t |h1(pγ ||z||p)|αdnz

= ||x ||−n
p {I1 + I2} .

Making the change of variable w = p j z, we have that

I1 =
r∑

j=−∞
e−t |h2(pγ+ j )|α

∫
||p j z||p=1

χp (−z · x0) dnz

=
r∑

j=−∞
e−t |h2(pγ+ j )|α pnj

∫
||w||p=1

χp

(
−p− j x0 · w

)
dnw.
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So

I1 =
r∑

j=−∞
e−t |h2(pγ+ j )|α pnj

⎧⎨
⎩
1 − p−n, if j ≤ 0,
−p−n, if j = 1,
0, if j ≥ 2.

(3.4)

On the other hand, we have that

I2 =
∞∑

j=r+1

e−t |h1(pγ+ j )|α
∫

||p j z||p=1
χp (−z · x0) dnz

=
∞∑

j=r+1

e−t |h1(pγ+ j )|α pnj
∫

||w||p=1
χp

(
−p− j x0 · w

)
dnw.

So

I2 =
∞∑

j=r+1

e−t |h1(pγ+ j )|α pnj
⎧⎨
⎩
1 − p−n, if j ≤ 0,
−p−n, if j = 1,
0, if j ≥ 2.

(3.5)

Consider the following cases for r :
If r = 0, then by (3.4) and (3.5) we have that

Z(x, t) = ||x ||−n
p

⎧⎨
⎩(1 − p−n)

∞∑
j=0

e−t |h2(||x ||−1
p p− j )|α p−nj − e−t |h1(||x ||−1

p p)|α
⎫⎬
⎭

≤ ||x ||−n
p

⎧⎨
⎩

∞∑
j=0

(p−nj − p−n( j+1)) − e−t |h1(||x ||−1
p p)|α

⎫⎬
⎭

= ||x ||−n
p

{
1 − e−t |h1(||x ||−1

p p)|α} .

Now, by applying the mean value theorem to the real function e−u|h1(||x ||−1
p p)|α on

[0, t] with t > 0, we have

1 − e−t |h1(||x ||−1
p p)|α = te−τ |h1(||x ||−1

p p)|α

for some τ ∈ (0, t). So that,

Z(x, t) ≤ t ||x ||−n
p . (3.6)

If r > 0, then by (3.4) and (3.5) we have that

Z(x, t) = ||x ||−n
p

⎧⎨
⎩(1 − p−n)

∞∑
j=0

e−t |h2(||x ||−1
p p− j )|α p−nj − e−t |h2(||x ||−1

p p)|α
⎫⎬
⎭

≤ ||x ||−n
p

{
e−t |h2(||x ||−1

p )|α − e−t |h2(||x ||−1
p p)|α}
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≤ ||x ||−n
p

{
1 − e−t |h2(||x ||−1

p p)|α} .

Proceeding analogously to the previous case we obtain (3.6).
If r < 0, then by (3.4) and (3.5) we have that

Z(x, t) = ||x ||−n
p

⎧⎨
⎩(1 − p−n)

r∑
j=−∞

e−t |h2(||x ||−1
p p j )|α pnj

+ (1 − p−n)

0∑
j=r+1

e−t |h1(||x ||−1
p p j )|α pnj − e−t |h1(||x ||−1

p p)|α
⎫⎬
⎭ .

(3.7)

The last equality allows us consider the following cases for ||x ||−1
p .

Case 1. ||x ||−1
p ≤ pr . Then, by (3.7) we have that

Z(x, t) ≤ ||x ||−n
p

⎧⎨
⎩(1 − p−n)

r∑
j=−∞

e−t |h1(||x ||−1
p p j )|α pnj

+ (1 − p−n)

0∑
j=r+1

e−t |h1(||x ||−1
p p j )|α pnj − e−t |h1(||x ||−1

p p)|α
⎫⎬
⎭ ,

since ||x ||−1
p p j ≤ pr for all −∞ < j ≤ r . Consequently,

Z(x, t) ≤ ||x ||−n
p

⎧⎨
⎩(1 − p−n)

∞∑
j=0

e−t |h1(||x ||−1
p p− j )|α p−nj − e−t |h1(||x ||−1

p p)|α
⎫⎬
⎭

≤ ||x ||−n
p

⎧⎨
⎩e−t |h1(||x ||−1

p )|α
∞∑
j=0

(p−nj − p−n( j+1)) − e−t |h1(||x ||−1
p p)|α

⎫⎬
⎭

≤ ||x ||−n
p

{
1 − e−t |h1(||x ||−1

p p)|α} .

Now, proceeding analogously to the case when r = 0 we obtain (3.6).
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Case 2. ||x ||−1
p > pr . Then, by (3.7) we have that

Z(x, t) = ||x ||−n
p

⎧⎨
⎩(1 − p−n)

∞∑
j=−r

e−t |h2(||x ||−1
p p− j )|α p−nj

+ (1 − p−n)

−r−1∑
j=0

e−t |h1(||x ||−1
p p− j )|α p−nj − e−t |h1(||x ||−1

p p)|α
⎫⎬
⎭

≤ ||x ||−n
p

⎧⎨
⎩(1 − p−n)

∞∑
j=0

e−t |h2(||x ||−1
p p− j )|α p−nj

+ (1 − p−n)

∞∑
j=0

e−t |h1(||x ||−1
p p− j )|α p−nj − e−t |h1(||x ||−1

p p)|α
⎫⎬
⎭

= ||x ||−n
p

{
e−t |h2(||x ||−1

p )|α + e−t |h1(||x ||−1
p )|α − e−t |h1(||x ||−1

p p)|α} .

Since et |h2(||x ||
−1
p )|α > 1, et |h1(||x ||

−1
p )|α > 1 and m + p ≤ 2mp if m, p ≥ 1, we

have that
Z(x, t) ≤ ||x ||−n

p

{
1 − e−t |h1(||x ||−1

p p)|α} .

Now, proceeding analogously to the case when r = 0 we obtain (3.6).
(iii) For t, s > 0 and x ∈ Qn

p we have by Remark 3-(i i) that

Zt+s(x) =
∫
Qn

p

χp (−x · ξ) e−(t+s)[max{|h1(||ξ ||p)|,|h2(||ξ ||p)|}]αdnξ

=
∫
Qn

p

χp (−x · ξ) e−t[max{|h1(||ξ ||p)|,|h2(||ξ ||p)|}]α Ẑs(ξ)dnξ

= (Zt ∗ Zs)(x).

(iv) By Remark 3-(i i) we have that F(Zt (x)) = e−t[max{|h1(||x ||p)|,|h2(||x ||p)|}]α , for all
x ∈ Qn

p. Therefore, by Definition 1-(i) we have that F(Z(0, t)) = 1.
On the other hand, F(Z(x, t)) = ∫

Qn
p
χp(ξ · x)Z(x, t)dnx and F(Z(0, t)) =∫

Qn
p
Z(x, t)dnx . Therefore,

∫
Qn

p
Z(x, t)dnx = 1, for all t > 0.


�
Remark 4 The following affirmations are satisfied:

(i) By Remark 1, the previous theorem and [2, Theorem 5.3.1] we have that Zt (·) ∈
L1(Qn

p) ∩ L2(Qn
p), for all t > 0.

(ii) A function ϕ : Qn
p → C is called negative definite, if

∑m

i, j=1

(
ϕ(xi ) + ϕ(x j ) − ϕ(xi − x j )

)
λiλ j ≥ 0
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for all m ∈ N\{0}, x1, . . . , xm ∈ Qn
p, λ1, . . . , λm ∈ C. If ϕ : Qn

p → R is a
negative definite function, then by [9] we have that ϕ(x) ≥ ϕ(0) ≥ 0 for all
x ∈ Qn

p. By the previous theorem and [9, Theorem 8.3] we have that the function[
max{|h1(|| · ||p)|, |h2(|| · ||p)|}

]α is negative definite on Qn
p.

Remark 5 Consider the following Cauchy problem:

⎧⎨
⎩

∂u
∂t (x, t) = −Bα

h1,h2
(u(x, t)), t ∈ (0,∞) , x ∈ Qn

p

u(x, 0) = u0(x) ∈ D(Qn
p).

(3.8)

By proceeding as in [41], we have that

u(x, t) =
∫
Qn

p

χp (−x · ξ) e−t[max{|h1(||ξ ||p)|,|h2(||ξ ||p)|}]α û0(ξ)dnξ, x ∈ Qn
p, t ≥ 0,

= Zt (x) ∗ u0(x)

is a classical solutionof (3.8),where Zt (x) is the heatKernel defined in (3.1).Moreover,

(i) u(x, t) satisfies the principles of mass conservation and comparison i.e., u(x, t),
x ∈ Qn

p, t ≥ 0, satisfies, respectively,
∫
Qn

p
u(x, t)dnx = ∫

Qn
p
u0(x)dnx and if

u0(x) ≥ v0(x) for all x ∈ Qn
p, then u(x, t) ≥ v(x, t).

(ii) ByTheorem1wehave that there exists a constantC := C(u0) such that |u(x, t)| ≤
Ct ||x ||−n

p , for all x ∈ Qn
p\{0} and t > 0.

4 Feller semigroups, transition functions and StrongMarkov
processes

In this section, we will show the existence of Feller semigroups, transition functions
and Strong Markov processes on Qn

p associated with the heat Kernel Zt (x). In what
follows we denote byB(Qn

p) the σ -algebra of all Borel sets inQn
p. For the basic results

on Feller semigroups, transition functions and Strong Markov processes, the reader
may consult [37].

We define for u ∈ C0(Q
n
p), the heat Kernel given at (3.1) and x ∈ Qn

p, the operators

Ttu(x) :=
⎧⎨
⎩
u(x) if t = 0,

∫
Qn

p
Zt (x − y)u(y)dn y = (Zt ∗ u)(x) if t > 0,

(4.1)

Lemma 1 Tt : C0(Q
n
p) → C0(Q

n
p), t ≥ 0, are well-defined contraction operators.
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Proof If t = 0, the assertion is clear. Let t > 0, u ∈ C0(Q
n
p) and x ∈ Qn

p. Then, by
Theorem 1 we have

|Ttu(x)| =
∣∣∣∣∣
∫
Qn

p

Zt (x − y)u(y)dn y

∣∣∣∣∣ ≤ ||u||L∞(Qn
p)

∫
Qn

p

Zt (x−y)dn y = ||u||L∞(Qn
p)

.

(4.2)
By (3.1), [2, Subsection 4.9] and [2, Subsection 5.2] we have that Zt is continuous.We
now show that |Ttu(x)| → 0 when ||x ||p → ∞. Since u ∈ C0(Q

n
p), we can assume

without loss of generality taht Supp(u) ⊆ Bn
M , M ∈ Z.

By using the compactness of Bn
M and the ultrametricity of the norm || · ||p, by

Theorem 1 we have for ||x ||p � 0 that

0 ≤ |Ttu(x)| ≤ ||u||L∞(Qn
p)

∫
Bn
M

Zt (x − y)dn y ≤ t ||u||L∞(Qn
p)

∫
Bn
M

||x − y||−n
p dn y

= t ||u||L∞(Qn
p)

||x ||−n
p V ol(Bn

M ) = 0.

Therefore, Tt : C0(Q
n
p) → C0(Q

n
p) is a well-defined bounded linear operator. 
�

By a direct calculation one proves the following result.

Lemma 2 The operators Tt , t ≥ 0, satisfies the semigroup property i.e.,

Tt (Tsu)(x) = Tt+su(x), u ∈ C0(Q
n
p), x ∈ (Qn

p), t, s ≥ 0.

Lemma 3 For fixed u ∈ C0(Q
n
p), the operators Tt , t ≥ 0, satisfies the following

condition:
lim
t→0+ ||Ttu − u||L∞(Qn

p)
= 0.

Proof Let fixed x ∈ Qn
p. Note that

(Ttu − u)(x) =
∫
Qn

p

Zt (x − y) [u(y) − u(x)] dn y. (4.3)

Since that u ∈ C0(Q
n
p), given any number ε > 0, however small, there exists some

number s := s(x, ε) ∈ Z such that if ||x − y||p < ps then ||u(y)−u(x)||L∞(Qn
p)

< ε.
Then, by (4.3) and Theorem 1 we have that

|(Ttu − u)(x)| ≤
∫

||x−y||p<ps
Zt (x − y) |u(y) − u(x)| dn y

+
∫

||x−y||p≥ps
Zt (x − y) |u(y) − u(x)| dn y

≤ ε + 2||u||L∞(Qn
p)

∫
||w||p≥ps

Zt (w)dnw

≤ ε + 2t ||u||L∞(Qn
p)

∫
||w||p≥ps

||w||−n
p dnw
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Now, since
∫
||w||p≥ps ||w||−n

p dnw = C < ∞, we have that

|(Ttu − u)(x)| ≤ ε + 2Ct ||u||L∞(Qn
p)

.

Therefore, given any ε > 0 we have that

lim
t→0+ sup |(Ttu − u)(x)| ≤ ε,

for all x ∈ Qn
p. 
�

Remark 6 By Lemmas 1 and 3 we have that the semigroup {Tt }t≥0 is strongly contin-
uous in t for all t ≥ 0 :

lim
s→0+ ||Tt+s f − Tt f ||L∞(Qn

p)
= 0, f ∈ C0(Q

n
p).

Moreover, by Theorems 1 and (4.1) we have that the operators {Tt }t≥0 is non-negative
and contractive on C0(Q

n
p):

f ∈ C0(Q
n
p), 0 ≤ f (x) ≤ 1 on K �⇒ 0 ≤ Tt f (x) ≤ 1 on Qn

p.

Theorem 2 The operators Tt , t ≥ 0, correspond to a Feller semigroup on Qn
p.

Proof The result follows from Remark 6, Lemmas 1, 2 and [37], taking into account
that

(Ttu)(x) ≥ 0, for u ∈ C0(Q
n
p) with u ≥ 0 and t ≥ 0.


�
Definition 2 For E ∈ B(Qn

p), we define

pt (x, E) =
⎧⎨
⎩

Zt (x) ∗ 1E (x), for t > 0, x ∈ Qn
p

1E (x), for t = 0, x ∈ Qn
p.

(4.4)

As a direct consequence of [37, Subsections 2.2.4 and 2.2.5] and Theorem 2, we
obtain the following result.

Theorem 3 The function pt (x, E) satisfies the following conditions:

(i) pt (x, E) is a Markov transition function on Qn
p, i.e.,

(a) pt (x, ·) is a measure on B(Qn
p) and pt (x,Qn

p) ≤ 1 for all t ≥ 0 and x ∈ Qn
p.

(b) pt (·, E) is a Borel measurable function for all t ≥ 0 and E ∈ B(Qn
p).

(c) p0(x, {x}) = 1 for all x ∈ Qn
p.

(d) For all t, s ≥ 0, x ∈ Qn
p and E ∈ B(Qn

p), we have the equation

pt+s(x, E) =
∫
Qn

p

pt (x, d
n y)ps(y, E).
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(ii) For each s > 0 and each compact subset E ⊂ Qn
p,

lim
x→∞ sup

0≤t≤s
pt (x, E) = 0.

(iii) For each r ∈ Z and each compact E ⊂ Qn
p, we have that

lim
t→0+ sup

x∈E
[1 − pt (x, B

n
r (x))] = 0.

(iv) The space C0(Q
n
p) is invariant for the operators Tt , t ≥ 0, i.e.,

f ∈ C0(Q
n
p) �⇒ Tt f ∈ C0(Q

n
p).

(v) For f ∈ C0(Q
n
p) and t ≥ 0, the formula

Tt f (x) :=
∫
Qn

p

pt (x, d
n y) f (y),

holds.
(vi) pt (x, ·) is the transition function of some strong Markov processes X with state

spaceQn
p and whose paths are right continuous and have no discontinuities other

than jumps.

We have that Qn
p is locally compact and separable, see e.g. [2, 44]. We consider

P(Qn
p) as the family of Borel probability measures on Qn

p and use the terminology
and notation of [13]. A collection {Ft } ≡ {Ft , t ∈ I} of σ -algebras of sets in F is
a filtration if Ft ⊂ Ft+s , for t, s ∈ I. Intuitively Ft corresponds to the information
known to an observer at time t . A process X is adapted to a filtration Ft (or simply
{Ft }-adapted) if X(t) is Ft -measurable for each t ≥ 0.

Let {X(T )} be a stochastic process defined on a probability space (�,F , P) with
values in Qn

p, and let F X
t = σ(X(s) : s ≤ t). Then X is a Markov process if

P
{
X(t + s) ∈ � : F X

t

}
= P {X(t + s) ∈ � : X(t)} (4.5)

for all s, t ≥ 0 and � ∈ B(Qn
p). If Gt is a filtration with F X

t ⊂ Gt , t ≥ 0, then X is a
Markov process with respect to {Gt } if (4.5) holds with F X

t replaced by Gt .
For the following result we will consider the Feller semigroup {Tt }t≥0 obtained in

the Theorem 2.

Theorem 4 For each ν ∈ P(Qn
p), there exists a Markov process X corresponding to

{Tt }t≥0 with initial distribution ν and sample paths in DQn
p
[0,∞) (DQn

p
[0,∞) is the

space of right continuous functions f : [0,∞) → Qn
p with left limits). Moreover, X

is strong Markov with respect to the filtration Gt = F X
t+ = ⋂

ε>0 F X
t+ε .

Proof The result follow from [13, Theorem 2.7, p. 169]. 
�
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5 Contraction semigroups on L2(Qn
p) and inhomogeneous initial

value problem

In this section, new types of contraction semigroups and inhomogeneous initial value
problem are introduced.

Definition 3 For f ∈ L2(Qn
p), we define

Pt f (x) :=
⎧⎨
⎩

(Zt ∗ f )(x), for t > 0, x ∈ Qn
p

f , for t = 0 , x ∈ Qn
p,

where (Zt )t>0 is the function given by (3.1).

Lemma 4 The family of operators (Pt )t≥0 is a contraction semigroup in L2(Qn
p), i.e.,

(Pt )t≥0 satisfies the following conditions:

(i) ||Pt ||L2(Qn
p)

≤ 1 for all t ≥ 0;
(ii) P0 = I ;
(iii) Pt+s = Pt Ps for all s, t ≥ 0;
(iv) for all f ∈ L2(Qn

p), the function t �→ Pt f belongs to C0([0,∞), L2(Qn
p)).

Proof (i) If t = 0 the assertion is clear. Let fixed f ∈ L2(Qn
p) and t > 0. Then by

Theorem 1-(iv) we have that

||Pt f ||2L2(Qn
p)

= ||Zt ∗ f ||2L2(Qn
p)

=
∫
Qn

p

|Zt (x − y) f (y)|2 dn y
≤ || f ||L2(Qn

p)
.

Therefore, for all t ≥ 0, Pt : L2(Qn
p) → L2(Qn

p) is a well-defined bounded linear
operator with ||Pt ||L2(Qn

p)
≤ 1.

(ii) This is a direct consequence of the definition of Pt .
(iii) We consider the case t, s > 0, since in the other cases the assertion is clear. For

all s, t > 0, f ∈ L2(Qn
p) and by using Theorem 1-(i i i), we have that

Pt+s f (x) = (Zt+s ∗ f )(x)

= (Zt ∗ (Zs ∗ f )) (x)

= (Zt ∗ Ps f ) (x)

= Pt Ps f (x).

Then, Pt+s = Pt Ps for all s, t ≥ 0.
(iv) Is a direct consequence of (i), (i i) and Theorem 1.


�
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Remark 7 An operator A in a Banach space X , endowed with the norm || · ||, is called
dissipative if ||u − λAu|| ≥ ||u||, for all u ∈ D(A) and all λ > 0. Moreover, if A is
dissipative and for all λ > 0 and f ∈ X , there exists u ∈ D(A) such that u−λAu = f ,
then A is called m-dissipative.

Now, if X is a Hilbert space and (·, ·) its scalar product, then the operator A is
dissipative in X if and only if (Au, u) ≤ 0, for all u ∈ D(A). For more details, the
reader may consult [10, 29], and the references therein.

Lemma 5 The pseudo-differential operator Bα
h1,h2

is dissipative in L2(Qn
p).

Proof Let fixed ϕ ∈ D(Qn
p). Then by [2, Theorem 5.3.1] we have that

(
Bα
h1,h2ϕ, ϕ

)
= −

(
F−1

ξ→x

(
[max{|h1|, |h2|}]α ϕ̂

)
, ϕ
)

= − (
[max{|h1|, |h2|}]α ϕ̂, ϕ̂

)

= −
∫
Qn

p

[max{|h1|, |h2|}]α |ϕ̂(ξ)|2dnξ ≤ 0.

Therefore, the pseudo-differential operator Bα
h1,h2

is dissipative in L2(Qn
p). 
�

Remark 8 [10, Subsection 2.4] If A is a linear operator in the Hilbert space (X , 〈·, ·〉)
with dense domain, then

G(A∗) := {(v, ϕ) ∈ X × X : 〈ϕ, u〉 = 〈v, f 〉 for all (u, f ) ∈ G(A)} ,

defines a linear operator A∗ (the adjoint of A). The domain of A∗ is

D(A∗) := {v ∈ X : ∃C < ∞, |〈Au, v〉| ≤ C ||u||, ∀u ∈ D(A)} ,

and A∗ satisfies 〈
A∗v, u

〉 = 〈v, Au〉 ,∀u ∈ D(A).

We say that A is self-adjoin if A∗ = A.

By application of Parseval–Steklov equality, we obtain the following result.

Lemma 6 The pseudo-differential operator Bα
h1,h2

is self-adjoint, i.e. for f , g ∈
D(Qn

p) we have that 〈
Bα
h1,h2 f , g

〉
=
〈
f ,Bα

h1,h2g
〉
.

Proof For f , g ∈ D(Qn
p),

(
Bα
h1,h2 f , g

)
=
(
−F−1

ξ→x

(
[max{|h1|, |h2|}]α f̂

)
, g
)

= −
∫
Qn

p

f̂ (ξ)
[
max{|h1(||ξ ||p)|, |h2(||ξ ||p)|}

]α
ĝ(ξ)dnξ
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=
(
f ,−F−1

ξ→x

(
[max{|h1|, |h2|}]α ĝ

))

=
(
f ,Bα

h1,h2g
)

.


�
Theorem 5 The pseudo-differential operator Bα

h1,h2
is m−dissipative in L2(Qn

p).

Proof The result follows from Lemma 5, Lemma 6 and [10, Corollary 2.4.8]. 
�
Remark 9 The generator of (Pt )t≥0 is the linear operator L defined by

D(L) =
{
f ∈ L2(Qn

p) : Pt f − f

h
has a limit in L2(Qn

p) as h → 0+
}

,

and

L f = lim
h→0+

Pt f − f

h
,

for all f ∈ D(L).

Theorem 6 The pseudo-differential operatorBα
h1,h2

is the generator of the contraction
semigroup (Pt )t≥0 obtained in the Lemma 4.

Proof The result follows from Remark 2, Theorem 5 and [10, Theorem 3.4.4]. 
�
Considering the contraction semigroup (Pt )t≥0 obtained in the Lemma 4 we will

study the initial value problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(x, ·) ∈ C([0, T ],D(Qn
p)) ∩ C1([0, T ], L2(Qn

p)),

∂u
∂t (x, t) = Bα

h1,h2
u(x, t) + g(x, t), t ∈ [0, T ], x ∈ Qn

p,

u0(x) = h(x) ∈ L2(Qn
p).

(5.1)

where T > 0 and g : Qn
p × [0, T ] → L2(Qn

p) be a function such that

g ∈ L1((0, T ), L2(Qn
p)) ∩ C([0, T ], L2(Qn

p)).

Theorem 7 With the above hypotheses, u(x, t) given by

u(x, t) := Pth(x) +
∫ t

0
Pt−sg(x, s)ds,

belongs to the space C([0, T ], L2(Qn
p))∩C1([0, T ], L2(Qn

p)) and is the unique solu-
tion of the inhomogeneous problem (5.1).
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Proof The result follows from [10, Section 4.1], Theorems 5 and 6. 
�

We should mention that the inhomogeneous initial value problem introduced in this
article are a complement to the studied in [38].
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