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Abstract
We deduce continuity properties for pseudo-differential operators with symbols in
quasi-Banach Orlicz modulation spaces when rely on other quasi-Banach Orlicz mod-
ulation spaces. In particular we extend some earlier results.
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0 Introduction

In the paper we deduce continuity properties for pseudo-differential operators when
acting on quasi-Banach Orlicz modulation spaces. For example, for a pseudo-
differential operator Op(a) with the symbol a we show that the following is true:

• Suppose that q0 ∈ (0, 1], �j are quasi-Young functions which satisfy �j (t) � tq0

near origin, and thata belongs to the classicalmodulation spaceM∞,q0(R2d). Then
Op(a) is continuous on the quasi-Banach Orlicz modulation space M�1,�2(Rd);

• Suppose that � is a quasi-Young function which satisfy t � �(t) near origin, and
that a belongs toM�(R2d). Then Op(a) is continuous fromM∞(Rd) toM�(Rd);

• Suppose that�0 is aYoung function and�∗
0 is the complementaryYoung function,

and that a belongs to M�0(R2d). Then Op(a) is continuous from M�∗
0 (Rd) to

M�(Rd).

(We refer to [18] and Sect. 1 for notations).

B Joachim Toft
joachim.toft@lnu.se

Rüya Üster
ruya.uster@istanbul.edu.tr

1 Department of Mathematics, Linnæus University, Växjö, Sweden

2 Department of Mathematics, Faculty of Science, İstanbul University, İstanbul, Turkey
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More generally, we deduce weighted versions of such continuity results. In par-
ticular we extend some continuity properties for pseudo-differential operators when
acting on (ordinary) modulation spaces, e.g. in [4, 5, 14, 15, 30, 31, 33].

Essential parts of our analysis are based on [28] by Schnackers and Führ concerning
Orlicz modulation spaces, and on [37] concerning quasi-Banach Orlicz modulation
spaces. In these approaches, general properties and aspects on quasi-Banach Orlicz
spaces given in [17] by Harjulehto and Hästö are fundamental. In this respect, we
show that for mixed quasi-Banach Orlicz modulation spaces like M�1,�2

(ω) (R2d) we

have M�,�
(ω) (R2d) = M�

(ω)(R
2d) when �, �1 and �2 are quasi-Young functions. This

leads to convenient improvement of the style of the continuity results for our pseudo-
differential operators when acting on quasi-Banach Orlicz modulation spaces.

In some situations it might be beneficial to replace Lebesgue norm estimates with
more refined Orlicz norm estimates. This may appear when dealing with certain non-
linear functionals. For example, in statistics or statistical physics, the entropy applied
on probability density functions f on Rd is given by

E( f ) = −
∫
Rd

f (x) log f (x) dx .

When investigating E, it might be more efficient to replace the pair of Lebesgue spaces
(L1, L∞) by the pair of Orlicz spaces (L log(L + 1), Lcosh−1), where the Young
functions are given by

�(t) = t log(1 + t) and �(t) = cosh(t) − 1,

respectively. We also observe that the Zygmund space L log+ L is an Orlicz space
related to Hardy-Littlewood maximal functions (see [21, 22] and the references
therein).

Such questions are also relevant when investigating localized Fourier transforms
like short-time Fourier transforms Vφ f because of the entropy conditions

E(|Vφ f |2) ≥ C,

for some constant C , when

‖ f ‖L2 = ‖g‖L2 = ‖φ‖L2 = 1.

(See [19].) We remark that such refined Fourier transforms are indispensable tools
within time-frequency, signal processing and certain parts of quantum mechanics.

In time-frequency analysis and signal processing, non-stationary filters can be
modelled by pseudo-differential operators f �→ Op(a) f , where the symbols a are
determined by time and frequency varying filters, the target functions f are the orig-
inal signals and Op(a) f are the reflected signals. In such situations it is suitable to
discuss continuity properties by means of certain types of time-frequency invariant
(quasi-)Banach spaces. This leads to modulation spaces.
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The classical modulation spaces is a family of function and distribution spaces,
introduced by Feichtinger in [6]. Here the modulation spaces are defined by imposing
a weighted mixed Lebesgue norm estimate on the short-time Fourier transforms of
the involved functions and distributions. The theory has thereafter been extended
and generalized, especially by Feichtinger and Gröchenig in [8, 9], where the theory
of (Banach) modulation spaces was put into the context of coorbit space theory. A
less abstract extension of the classical modulation spaces is performed in [7], where
Feichtinger replaces the mixed Lebesgue norm estimates in [6] with more general
translation invariant norms of solid Banach function spaces.

Some extensions to the quasi-Banach case have thereafter been performed in e.g.
[10, 26, 27, 32, 35].

In [28], Führ and Schnacker study Orlicz modulation spaces of the form M�1,�2 ,
where�1 and�2 are Young functions. That is, they consider modulation spaces in [7],
where the solid Banach function spaces are Orlicz spaces, a naturally generalization
of L p spaces which contain certain Sobolev spaces as subspaces. In particular their
investigations also include the classical modulation spaces in [6], since these spaces
are obtained by choosing

�j (t) = t p or �j (t) =
{
0, t ≤ 1,

∞, t > 1.

The analysis in [28] is extended in [37] to quasi-BanachweightedOrliczmodulation
spaces, M�1,�2

(ω) (Rd), where �1, �2 are quasi-Young functions of certain degrees and

ω is a suitable weight function onR2d . In particular, it is here allowed to let�j (t) = t p

for every p > 0 (instead of p ≥ 1 as in [28]), which implies that any modulation
space Mp,q

(ω) (Rd) for p, q ∈ (0,∞] are included in the studies in [37].
In the paper, our deduced continuity for pseudo-differential operators, are based on

the various properties of quasi-Banach Orlicz modulation spaces, obtained in [37].

1 Preliminaries

In this section we recall some facts for Gelfand-Shilov spaces, Orlicz spaces, Orlicz
modulation spaces and pseudo-differential operators. First we discuss some useful
properties of Gelfand-Shilov spaces. Thereafter we recall some classes of weight
functions which are used later on in the definition of Orlicz modulation spaces. In
Sects. 1.3 and 1.4 we define and present some properties for Orlicz spaces and Orlicz
modulation spaces. We conclude the section by discussing Gabor analysis for Orlicz
modulation spaces and pseudo-differential operators.

1.1 Gelfand–Shilov spaces

We start by discussing Gelfand-Shilov spaces and their properties. Let 0 < s ∈ R be
fixed. Then the (Fourier invariant) Gelfand-Shilov spaceSs(Rd) (�s(Rd)) of Roumieu
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type (Beurling type) with parameter s consists of all f ∈ C∞(Rd) such that

sup

(
xβ∂α f (x)

h|α+β|(α!β!)s
)

(1.1)

is finite for some h > 0 (for every h > 0). Here the supremum should be taken over all
α, β ∈ Nd and x ∈ Rd . We equip Ss(Rd) (�s(Rd)) by the canonical inductive limit
topology (projective limit topology) with respect to h > 0, induced by the semi-norms
in (1.1).

For any s, s0 > 0 such that 1
2≤s0 < s we have

Ss0(R
d) ↪→ �s(Rd) ↪→ Ss(Rd) ↪→ S (Rd),

S ′(Rd) ↪→ S ′
s(R

d) ↪→ �′
s(R

d) ↪→ S ′
s0(R

d),
(1.2)

with dense embeddings. Here A ↪→ B means that the topological spaces A and B
satisfy A ⊆ B with continuous embeddings. The space �s(Rd) is a Fréchet space
with seminorms ‖ · ‖Ss,h , h > 0. Moreover, �s(Rd) �= {0}, if and only if s > 1/2,
and Ss(Rd) �= {0}, if and only if s ≥ 1/2.

The Gelfand-Shilov distribution spaces S ′
s(R

d) and �′
s(R

d) are the (strong) dual
spaces of Ss(Rd) and �s(Rd), respectively. As for the Gelfand-Shilov spaces there is
a canonical projective limit topology (inductive limit topology) for S ′

s(R
d) (�′

s(R
d))

(cf. [11, 23, 24]).
From now on we let F be the Fourier transform which takes the form

(F f )(ξ) = f̂ (ξ) ≡ (2π)−
d
2

∫
Rd

f (x)e−i〈x,ξ〉 dx

when f ∈ L1(Rd). Here 〈 · , · 〉 denotes the usual scalar product on Rd . The map
F extends uniquely to homeomorphisms on S ′(Rd), on S ′

s(R
d) and on �′

s(R
d).

Furthermore,F restricts to homeomorphisms onS (Rd), on Ss(Rd) and on �s(Rd),
and to a unitary operator on L2(Rd).

Gelfand-Shilov spaces can in convenientways be characterized in termsof estimates
of the functions and their Fourier transforms. More precisely, in [3] it is proved that if
f ∈ S ′(Rd) and s > 0, then f ∈ Ss(Rd) ( f ∈ �s(Rd)), if and only if

| f (x)| � e−r |x | 1s and | f̂ (ξ)| � e−r |ξ | 1s , (1.3)

for some r > 0 (for every r > 0). Here r1(θ) � r2(θ) means that r1(θ) ≤ c · r2(θ)

holds uniformly for all θ in the intersection of the domains of r1 and r2 for some
constant c > 0. We write r1 � r2 when r1 � r2 � r1.

Letφ ∈ Ss(Rd)befixed.Then the short-timeFourier transform Vφ f of f ∈ S ′
s(R

d)

with respect to the window function φ is the Gelfand-Shilov distribution on R2d ,
defined by

Vφ f (x, ξ) = F ( f φ( · − x))(ξ). (1.4)
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If f , φ ∈ Ss(Rd), then it follows that

Vφ f (x, ξ) = (2π)−
d
2

∫
Rd

f (y)φ(y − x)e−i〈y,ξ〉 dy.

We recall that Gelfand-Shilov spaces and their distribution spaces can also be charac-
terized by estimates of short-time Fourier transforms, (see e.g. [16, 35]).

1.2 Weight functions

A weight or weight function on Rd is a positive function ω ∈ L∞
loc(R

d) such that
1/ω ∈ L∞

loc(R
d). The weight ω is called moderate, if there is a positive weight v on

Rd such that

ω(x + y) � ω(x)v(y), x, y ∈ Rd . (1.5)

If ω and v are weights on Rd such that (1.5) holds, then ω is also called v-moderate.
We note that (1.5) implies that ω fulfills the estimates

v(−x)−1 � ω(x) � v(x), x ∈ Rd . (1.6)

We let PE (Rd) be the set of all moderate weights on Rd .
It can be proved that if ω ∈ PE (Rd), then ω is v-moderate for some v(x) = er |x |,

provided the positive constant r is large enough (cf. [13]). That is, (1.5) implies

ω(x + y) � ω(x)er |y| (1.7)

for some r > 0. In particular, (1.6) shows that for anyω ∈ PE (Rd), there is a constant
r > 0 such that

e−r |x | � ω(x) � er |x |, x ∈ Rd .

We say that v is submultiplicative if v is even and (1.5) holds with ω = v. In the
sequel, v and v j for j ≥ 0, always stand for submultiplicative weights if nothing else
is stated.

We letP0
E (Rd) be the set of allω ∈ PE (Rd) such that (1.7) holds for every r > 0.

We also let P(Rd) be the set of all ω ∈ PE (Rd) such that

ω(x + y) � ω(x)(1 + |y|)r

for some r > 0. Evidently,

P(Rd) ⊆ P0
E (Rd) ⊆ PE (Rd).
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1.3 Orlicz spaces

In this subsection we provide an overview of some basic definitions and state some
technical results that will be needed.

First we recall some facts concerning Young functions and Orlicz spaces (see [17,
25]).

Definition 1.1 A function � : R → R ∪ {∞} is called convex if

�(s1t1 + s2t2) ≤ s1�(t1) + s2�(t2)

when s j , t j ∈ R satisfy s j ≥ 0 and s1 + s2 = 1, j = 1, 2.

We observe that � might not be continuous, because we permit ∞ as function value.
For example,

�(t) =
{
c, when t ≤ a

∞, when t > a

is convex but discontinuous at t = a.

Definition 1.2 Let r0 ∈ (0, 1], �0 and � be functions from [0,∞) to [0,∞]. Then
�0 is called a Young function if

(1) �0 is convex,
(2) �0(0) = 0,
(3) lim

t→∞ �0(t) = +∞.

The function � is called r0-Young function or quasi-Young function of order r0, if
�(t) = �0(tr0), t ≥ 0, for some Young function �0.

It is clear that � in Definition 1.2 is non-decreasing, because if 0 ≤ t1 ≤ t2 and
s ∈ [0, 1] is chosen such that t1 = st2 and �0 is the same as in Definition 1.2, then

�(t1) = �0(s
r0 tr02 + (1 − sr0)0) ≤ sr0�0(t

r0
2 ) + (1 − sr0)�0(0) ≤ �(t2),

since �(0) = �0(0) = 0 and s ∈ [0, 1].
Definition 1.3 Let (,�,μ) be a Borel measure space, with  ⊆ Rd , �0 be a Young
function and let ω0 ∈ PE (Rd).

(1) L�0
(ω0)

(μ) consists of all μ-measurable functions f :  → C such that

‖ f ‖
L

�0
(ω0)

(μ)
= inf

{
λ > 0 ;

∫


�0

( | f (x) · ω0(x)|
λ

)
dμ(x) ≤ 1

}

is finite. Here f and g in L�0
(ω0)

(μ) are equivalent if f = g a.e.
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(2) Let � be a quasi-Young function of order r0 ∈ (0, 1], given by �(t) = �0(tr0),
t ≥ 0, for some Young function �0. Then L�

(ω0)
(μ) consists of all μ-measurable

functions f :  → C such that

‖ f ‖L�
(ω0)

(μ) = (‖| f · ω0|r0‖L�0 (μ))
1/r0

is finite.

Remark 1.4 Let �, �0 and ω0 be the same as in Definition 1.2. Then it follows by
straight-forward computation that

‖ f ‖L�
(ω0)

(μ) = inf

{
λ > 0 ;

∫


�0

( | f (x) · ω0(x)|r0
λr0

)
dμ(x) ≤ 1

}
.

Definition 1.5 Let ( j , � j , μ j ) be Borel measure spaces, with j ⊆ Rd , r0 ∈ (0, 1],
� j be r0-Young functions, j = 1, 2 and let ω ∈ PE (R2d). Then the mixed quasi-
norm Orlicz space L�1,�2

(ω) = L�1,�2
(ω) (μ1 ⊗ μ2) consists of all μ1 ⊗ μ2-measurable

functions f : 1 × 2 → C such that

‖ f ‖
L

�1,�2
(ω)

≡ ‖ f1,ω‖L�2 ,

is finite, where

f1,ω(x2) = ‖ f ( · , x2)ω( · , x2)‖L�1 .

If r0 = 1 in Definition 1.5, then L�1,�2
(ω) (μ1 ⊗ μ2) is a Banach space and is called

a mixed norm Orlicz space.

Remark 1.6 Suppose �j are quasi-Young functions of order q j ∈ (0, 1], j = 1, 2.
Then both �1 and �2 are quasi-Young functions of order r0 = min(q1, q2).

Let � ⊆ Rd be a lattice, i.e., � is given by

� = { n1e1 + · · · + nded ; (n1, . . . , nd) ∈ Zd }

for some basis e1, . . . , ed of Rd . Then �′
0(�) is the set of all formal sequences

{a(n)}n∈� = { a(n) ; n ∈ � } ⊆ C.

Let �0(�) be the set of all sequences {a(n)}n∈� such that a(n) �= 0 for at most finite
numbers of n. We observe that

�2 = � × � = { (x, ξ) ; x, ξ ∈ � }

is a lattice in R2d � Rd × Rd .
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Remark 1.7 Let � ⊆ Rd be a lattice, �,�1 and �2 be r0-Young functions, ω0, v0 ∈
PE (Rd) and ω, v ∈ PE (R2d) be such that ω0 and ω are v0- respectively v-moderate
(in the sequel it is understood that all lattices contain 0). Then we set

L�
(ω0)

(Rd) = L�
(ω0)

(μ) and L�1,�2
(ω0)

(R2d) = L�1,�2
(ω0)

(μ ⊗ μ),

when μ is the Lebesgue measure on Rd . If instead μ is the standard (Haar) measure
on �, i.e. μ(n) = 1, n ∈ �, then we set

��
(ω)(�) = ��

(ω)(μ) and �
�1,�2
(ω) (� × �) = �

�1,�2
(ω) (μ ⊗ μ).

Evidently, ��1,�2
(ω) (� × �) ⊆ �′

0(� × �).

Lemma 1.8 Let �,�j be Young functions, j = 1, 2, ω0, v0 ∈ PE (Rd) and ω, v ∈
PE (R2d) be such that ω0 is v0-moderate and ω is v-moderate. Then L�

(ω0)
(Rd) and

L�1,�2
(ω) (R2d) are invariant under translations, and

‖ f ( · − x)‖L�
(ω0)

� ‖ f ‖L�
(ω0)

v0(x), f ∈ L�
(ω0)

(Rd), x ∈ Rd ,

and

‖ f ( · − (x, ξ))‖
L

�1,�2
(ω)

� ‖ f ‖
L

�1,�2
(ω)

v(x, ξ), f ∈ L�1,�2
(ω) (R2d), (x, ξ) ∈ R2d .

Proof We only prove the assertion for L�1,�2
(ω) (R2d). The other part follows by similar

arguments and is left for the reader.
We have �j (t) = �0, j (tr0), t ≥ 0, for some Young functions �0, j , j = 1, 2. This

gives

‖ f ( · − (x, ξ))‖
L

�1,�2
(ω)

= (‖| f ( · − (x, ξ))ω|r0‖L�0,1,�0,2

) 1
r0

�
(‖| f ( · − (x, ξ))ω( · − (x, ξ))v(x, ξ)|r0‖L�0,1,�0,2

) 1
r0

= (‖| f · ω|r0‖L�0,1,�0,2

) 1
r0 · v(x, ξ) = ‖ f ‖

L
�1,�2
(ω)

· v(x, ξ).

Here the inequality follows from the fact thatω is v-moderate, and the last two relations
follow from the definitions. ��

We refer to [17, 25, 28] for more facts about Orlicz spaces.

1.4 Orlicz modulation spaces

The definitions of classical modulation spaces and Orlicz modulation spaces are the
following (cf. [6, 7, 28, 37]).
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Definition 1.9 Let φ(x) = π− d
4 e− |x |2

2 , x ∈ Rd , p, q ∈ (0,∞] and ω ∈ PE (R2d).
Then the modulation spaces M p,q

(ω) (Rd) is set of all f ∈ S ′
1/2(R

d) such that Vφ f ∈
L p,q

(ω) (R
2d). We equip these spaces with the quasi-norm

‖ f ‖Mp,q
(ω)

≡ ‖Vφ f ‖L p,q
(ω)

.

Also let �,�1,�2 be quasi-Young functions. Then the Orlicz modulation spaces
M�

(ω)(R
d) and M�1,�2

(ω) (Rd) are given by

M�
(ω)(R

d) = { f ∈ S ′
1/2(R

d) ; Vφ f ∈ L�
(ω)(R

2d) } (1.8)

and

M�1,�2
(ω) (Rd) = { f ∈ S ′

1/2(R
d) ; Vφ f ∈ L�1,�2

(ω) (R2d) }. (1.9)

The quasi-norms on M�
(ω)(R

d) and M�1,�2
(ω) (Rd) are given by

‖ f ‖M�
(ω)

= ‖Vφ f ‖L�
(ω)

(1.10)

and

‖ f ‖
M

�1,�2
(ω)

= ‖Vφ f ‖
L

�1,�2
(ω)

. (1.11)

For conveniency we set

Mp,q = Mp,q
(ω) , M� = M�

(ω) and M�1,�2 = M�1,�2
(ω) when ω(x, ξ) = 1,

and Mp = Mp,p and Mp
(ω) = Mp,p

(ω) .
We notice that (1.10) and (1.11) are normswhen�,�1 and�2 areYoung functions.

If ω ∈ PE (R2d) as in Definition 1.9, then the conditions

‖Vφ f ‖
L

�1,�2
(ω)

< ∞ and ‖Vφ f ‖L�
(ω)

< ∞

are independent of the choices of φ in �1(Rd) \ 0 and that different φ give rise to
equivalent quasi-norms (see e.g. [37, Sect. 5]).

Later on we need the following proposition.

Proposition 1.10 Let �,�j be Young functions, j = 1, 2, ω0 ∈ PE (Rd) and ω ∈
PE (R2d). Then

S (Rd) ⊆ L�(Rd) ⊆ S ′(Rd), S (R2d) ⊆ L�1,�2(R2d) ⊆ S ′(R2d),

�1(Rd) ⊆ L�
(ω0)

(Rd) ⊆ �′
1(R

d), �1(R2d) ⊆ L�1,�2
(ω) (R2d) ⊆ �′

1(R
2d).
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Proof Let v0 ∈ PE (Rd) and v ∈ PE (R2d) be chosen such that ω0 is v0-moderate
andω is v-moderate. Since L�

(ω0)
(Rd) and L�1,�2

(ω) (R2d) are invariant under translation
and modulation, we have

M1
(v0)

(Rd) ⊆ L�
(ω0)

(Rd) ⊆ M∞
(1/v0)(R

d),

and

M1
(v)(R

2d) ⊆ L�1,�2
(ω) (R2d) ⊆ M∞

(1/v)(R
2d)

(see [12, 36, 37]). The result now follows from well-known inclusions between mod-
ulation spaces, Schwartz spaces, Gelfand-Shilov spaces, and their duals. ��

The next result gives some information about the roles that �1 and �2 play for
M�1,�2 . We omit the proof since it can be found in [37]. See also [28] for the Banach
case.

Proposition 1.11 Let �j and �j , j = 1, 2, be quasi-Young functions, � be a lattice
in Rd and ω ∈ PE (R2d). Then the following conditions are equivalent:

(1) M�1,�2
(ω) (Rd) ⊆ M�1,�2

(ω) (Rd);

(2) �
�1,�2
(ω) (�) ⊆ �

�1,�2
(ω) (�);

(3) �j (t) � �j (t) for every t ∈ [0, t0], for some t0 > 0.

1.5 Gabor frames

Definition 1.12 Letω, v ∈ PE (R2d) be such thatω is v-moderate, φ,ψ ∈ M1
(v)(R

d),

ε > 0 and let � ⊆ Rd be a lattice.

(1) The analysis operator Cε,�
φ is the operator from M∞

(ω)(R
d) to �∞

(ω)(ε�
2), given

by

Cε,�
φ f ≡ {Vφ f ( j, ι)} j,ι∈ε�.

(2) The synthesis operator Dε,�
ψ is the operator from �∞

(ω)(ε�
2) to M∞

(ω)(R
d), given

by

Dε,�
ψ c ≡

∑
j,ι∈ε�′

c( j, ι)ei〈 · ,ι〉ψ( · − j).

(3) TheGabor frameoperator Sε,�
φ,ψ is the operator onM∞

(ω)(R
d), given by Dε,�

ψ ◦Cε,�
φ ,

i.e.

Sε,�
φ,ψ f ≡

∑
j,ι∈ε�′

Vφ f ( j, ι)ei〈 · ,ι〉ψ( · − j).
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The next result shows that it is possible to find suitable φ and ψ in the previous
definition.

Lemma 1.13 Let � ⊆ Rd be a lattice, v ∈ PE (R2d) be submultiplicative and φ ∈
M1

(v)(R
d) \ 0. Then there is an ε > 0 and ψ ∈ M1

(v)(R
d) \ 0 such that

{φ(x − j)ei〈x,ι〉} j,ι∈ε� and {ψ(x − j)ei〈x,ι〉} j,ι∈ε� (1.12)

are dual frames to each others.

Remark 1.14 There are several ways to achieve dual frames (1.12). In fact, let
v, v0 ∈ PE (R2d) be submultiplicative such that ω is v-moderate and L1

(v0)
(R2d) ⊆

Lr (R2d), r ∈ (0, 1]. Then Lemma 1.13 guarantees that for some choice of φ,ψ ∈
M1

(v0v)(R
d) ⊆ Mr

(v)(R
d) and lattice� , the set in (1.12) are dual frames to each others,

and that ψ = (S�
φ,φ)−1φ. (Cf. [33, Proposition 1.5 and Remark 1.6].)

Lemma 1.15 Let � ⊆ Rd be a lattice, v ∈ PE (R4d) be submultiplicative, φ1, φ2 ∈
�1(Rd) \ 0 and

ϕ(x, ξ) = φ1(x)φ̂2(ξ)e−i〈x,ξ〉.

Then there is an ε > 0 such that

{ϕ(x − j, ξ − ι)ei(〈x,κ〉+〈k,ξ〉)} j,ι,k,κ∈ε�

is a Gabor frame with canonical dual frame

{ψ(x − j, ξ − ι)ei(〈x,κ〉+〈k,ξ〉)} j,ι,k,κ∈ε�

where ψ = (S�2×�2

ϕ,ϕ )−1ϕ belongs to Mr
(v)(R

2d) for every r > 0.

The next result shows that Gabor theory is suitable when dealing with Orlicz mod-
ulation spaces. We omit the proof since the result follows from [37, Theorem 4.7]. See
also [28] for the Banach case.

Proposition 1.16 Let� ⊆ Rd be a lattice, v ∈ PE (R4d) be submultiplicative,�1,�2
be quasi-Young functions of order r0 ∈ (0, 1], ω, v ∈ PE (R2d) be such that ω is v-
moderate and let φ,ψ ∈ Mr0

(v)(R
d) and ε > 0 be chosen such that

{ei〈 · ,κ〉φ( · − k)}k,κ∈ε� and {ei〈 · ,κ〉ψ( · − k)}k,κ∈ε� (1.13)

are dual frames to each others. If f ∈ M�1,�2
(ω) (Rd), then

f =
∑

k,κ∈ε�

(Vψ f )(k, κ)ei〈 · ,κ〉φ( · − k)
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with unconditionally convergence in M�1,�2
(ω) (Rd) when S (R2d) is dense in

L�1,�2(R2d), and with convergence in M∞
(ω)(R

d) with respect to the weak∗ topol-
ogy otherwise. It holds

‖{(Vφ f )(k, κ)}k,κ∈ε�‖
�
�1,�2
(ω)

� ‖{(Vψ f )(k, κ)}k,κ∈ε�‖
�
�1,�2
(ω)

� ‖ f ‖
M

�1,�2
(ω)

. (1.14)

We also recall that the previous result was heavily based on the following conse-
quence of Theorems 4.5 and 4.6 in [37]. The proof is therefore omitted.

Proposition 1.17 Let � ⊆ Rd be a lattice, ε > 0, φ,ψ ∈ �1(Rd), �1,�2 be quasi-
Young functions of order r0 ∈ (0, 1], and let ω, v ∈ PE (R2d) be such that ω is
v-moderate. Then the the following is true:

(1) The analysis operator Cε,�
φ is continuous from M�1,�2

(v) (Rd) into �
�1,�2
(ω) (ε�2),

and

‖Cε,�
φ f ‖

�
�1,�2
(ω)

� ‖ f ‖
M

�1,�2
(ω)

, f ∈ M�1,�2
(ω) (Rd);

(2) The synthesis operator Dε,�
ψ is continuous from �

�1,�2
(ω) (ε�2) into M�1,�2

(ω) (Rd),
and

‖Dε,�
ψ c‖

M
�1,�2
(ω)

� ‖c‖
�
�1,�2
(ω)

, c ∈ �
�1,�2
(ω) (ε�2).

1.6 Pseudo-differential operators

LetM(d,) be the set of all d ×d-matrices with entries in the set , and let s ≥ 1/2,
a ∈ Ss(R2d) and A ∈ M(d,R) be fixed. Then the pseudo-differential operatorOpA(a)

is the linear and continuous operator on Ss(Rd), given by

(OpA(a) f )(x) = (2π)−d
∫∫

a(x − A(x − y), ξ) f (y)ei〈x−y,ξ〉 dydξ, (1.15)

when f ∈ Ss(Rd). For general a ∈ S ′
s(R

2d), the pseudo-differential operator OpA(a)

is defined as the linear and continuous operator from Ss(Rd) to S ′
s(R

d) with distribu-
tion kernel given by

Ka,A(x, y) = (2π)−d/2(F−1
2 a)(x − A(x − y), x − y). (1.16)

Here F2F is the partial Fourier transform of F(x, y) ∈ S ′
s(R

2d) with respect to the
y variable. This definition makes sense, since the mappings

F2 and F(x, y) �→ F(x − A(x − y), x − y) (1.17)
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are homeomorphisms on S ′
s(R

2d). In particular, the map a �→ Ka,A is a homeomor-
phism on S ′

s(R
2d).

An important special case appears when A = t · I , with t ∈ R. Here and in what
follows, I ∈ M(d,R) denotes the d × d identity matrix. In this case we set

Opt (a) = Opt ·I (a).

The normal or Kohn-Nirenberg representation, a(x, D), is obtained when t = 0, and
the Weyl quantization, Opw(a), is obtained when t = 1

2 . That is,

a(x, D) = Op0(a) and Opw(a) = Op1/2(a).

For any K ∈ S ′
s(R

d1+d2), we let TK be the linear and continuous mapping from
Ss(Rd1) to S ′

s(R
d2), defined by the formula

(TK f , g)L2(Rd2 ) = (K , g ⊗ f )L2(Rd1+d2 ). (1.18)

It is well-known that if A ∈ M(d,R), then it follows from Schwartz kernel theorem
that K �→ TK and a �→ OpA(a) are bijective mappings from S ′(R2d) to the set of
linear and continuous mappings fromS (Rd) toS ′(Rd) (cf. e.g. [18]). Furthermore,
by e.g. [20, Theorem 2.2] it follows that the same holds true if each S and S ′ are
replaced by Ss and S ′

s , respectively, or by �s and �′
s , respectively.

In particular, for every a1 ∈ S ′
s(R

2d) and A1, A2 ∈ M(d,R), there is a unique
a2 ∈ S ′

s(R
2d) such that OpA1

(a1) = OpA2
(a2). The following result explains the

relations between a1 and a2.

Proposition 1.18 Let a1, a2 ∈ S ′
1/2(R

2d) and A1, A2 ∈ M(d,R). Then

OpA1
(a1) = OpA2

(a2) ⇔ ei〈A2Dξ ,Dx 〉a2(x, ξ) = ei〈A1Dξ ,Dx 〉a1(x, ξ). (1.19)

In [32], a proof of the previous proposition is given, which is similar to the proof
of the case A = t · I in [18, 29, 38].

Let a ∈ S ′
s(R

2d) be fixed. Then a is called a rank-one element with respect to
A ∈ M(d,R), if OpA(a) is an operator of rank-one, i.e.

OpA(a) f = ( f , f2) f1, f ∈ Ss(Rd), (1.20)

for some f1, f2 ∈ S ′
s(R

d). By straight-forward computations it follows that (1.20) is

fulfilled if and only if a = (2π)
d
2 W A

f1, f2
, where W A

f1, f2
is the A-Wigner distribution,

defined by the formula

W A
f1, f2(x, ξ) ≡ F

(
f1(x + A · ) f2(x + (A − I ) · ))(ξ), (1.21)

which takes the form

W A
f1, f2(x, ξ) = (2π)−

d
2

∫
f1(x + Ay) f2(x + (A − I )y)e−i〈y,ξ〉 dy,
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when f1, f2 ∈ Ss(Rd). By combining these facts with (1.19), it follows that

ei〈A2Dξ ,Dx 〉W A2
f1, f2

= ei〈A1Dξ ,Dx 〉W A1
f1, f2

, (1.22)

for every f1, f2 ∈ S ′
s(R

d) and A1, A2 ∈ M(d,R). Since the Weyl case is particularly
important, we set W A

f1, f2
= W f1, f2 when A = 1

2 I , i.e. W f1, f2 is the usual (cross-)
Wigner distribution of f1 and f2.

For future references we note the link

(OpA(a) f , g)L2(Rd ) = (2π)−d/2(a,W A
g, f )L2(R2d ),

a ∈ S ′
s(R

2d) and f , g ∈ Ss(Rd)
(1.23)

between pseudo-differential operators and Wigner distributions, which follows by
straight-forward computations (see e.g. [34] and the references therein).

For any A ∈ M(d,R), the A-product, a#Ab between a ∈ S ′
s(R

2d) and b ∈ S ′
s(R

2d)

is defined by the formula

OpA(a#Ab) = OpA(a) ◦ OpA(b), (1.24)

provided the right-hand side makes sense as a continuous operator from Ss(Rd) to
S ′
s(R

d).

2 More general Orlicz modulation spaces

In this section we analyse more general Orlicz modulation spaces, parameterized with
more quasi-Young functions, compared to what is introduced in Sect. 1. We prove that
if two consecutive quasi-Young functions are the same, then the Orlicz modulation
space remains the same if one of these parameterizing quasi-Young functions are
removed. In particular it follows M�,�

(ω) = M�
(ω) for the Orlicz modulation spaces

considered in Sect. 1.

Definition 2.1 Let μ j be (Borel) measures on Rd j , μ = μ1 ⊗ · · · ⊗ μN , �j be quasi-
Young functions, j = 1, . . . , N , ω be a weight function and f be measurable on
Rd1+···+dN . Then ‖ f ‖

L
�1,...,�N
(ω)

(μ)
= ‖ fN−1,ω‖L�N (μ) where fk,ω, k = 1, . . . , N − 1

are inductively defined by

f1,ω(x2, . . . , xN ) = ‖ f (·, x2, . . . , xN )ω(·, x2, . . . , xN )‖L�1 (μ1)

fk+1,ω(xk+2, . . . , xN ) = ‖ fk,ω(·, xk+2, . . . , xN )‖L�k+1 (μk+1)
, k = 1, . . . , N − 2.

The space L�1,...,�N
(ω) (μ) consists of all measurable functions f on Rd1+···+dN such

that ‖ f ‖
L

�1,...,�N
(ω)

(μ)
is finite, and the topology of L�1,...,�N

(ω) (μ) is induced by the

quasi-norm ‖ · ‖
L

�1,...,�N
(ω)

(μ)
.
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Let

Id,N = { (d1, . . . , dN ) ∈ ZN+ ; d1 + · · · + dN = d }.

For d̄ = (d1, . . . , dN ) ∈ Id,N , let

L�1,...,�N
d̄,(ω) (Rd) = L�1,...,�N

(ω) (μ),

with μ = dx1 ⊗ · · · ⊗ dxN with x j ∈ Rd j .
If � j ⊆ Rd j are lattices and μ j is the standard discrete or Haar measure on � j ,

then we set

�
�1,...,�N
(ω) (�) = �

�1,...,�N
d̄,(ω) (�) ≡ L�1,...,�N

d̄,(ω) (μ), � = �1 × · · · × �N ,

as usual.
When discussing modulation spaces, it is suitable that d̄ should belong to I 02d,N ,

which consists of all (d1, . . . , dN ) ∈ I2d,N such that

d1 + · · · + dk = d (2.1)

for some k ∈ {1, . . . , N − 1}, when N ≥ 2. We observe that (2.1) implies

dk+1 + · · · + dN = d.

We observe that I2d,1 = {2d}, and for convenience, we put I 02d,1 = {2d}.
Now suppose that d̄ ∈ I 02d,N ,� j = εZd j , k is chosen such that (2.1) holds, and let

� = �1 × · · · × �k = �k+1 × · · · × �N = εZd .

Then we write �2 = � × � and

�
�1,...,�N
d̄,(ω) (�2) = �

�1,...,�N
d̄,(ω) (εZ2d) = �

�1,...,�N
(ω) (�1 × · · · × �N ).

Let �j be quasi-Young functions, j = 1, . . . , N , ω ∈ PE (R2d), d̄ ∈ I2d,N and
φ ∈ �1(Rd) \ 0. Then the Orlicz modulation space

M�1,...,�N
d̄,(ω) (Rd)

consists of all f ∈ �′
1(R

d) such that

‖ f ‖
M

�1,...,�N
d̄,(ω)

≡ ‖Vφ f ‖
L

�1,...,�N
d̄,(ω)
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is finite. By similar arguments as in [37] it follows that M�1,...,�N
d̄,(ω) (Rd) is a quasi-

Banach space with quasi-norm ‖ · ‖
M

�1,...,�N
d̄,(ω)

, which is a Banach space and norm,

respectively, when � j is a Young function for every j ∈ {1, . . . , N }.
A common situation is when d̄ = (d0, . . . , d0) for some integer d0 ≥ 1, and then

we put

M�1,...,�N
(ω) = M�1,,...,�N

d̄,(ω) .

Remark 2.2 For future references we observe that Proposition 1.16 carry over to Orlicz
modulation spaces of the form M�1,...,�N

d̄,(ω) (Rd) when �j are quasi-Young functions,

j = 1, . . . , N , ω ∈ PE (R2d) and d̄ = (d1, . . . , dN ) ∈ I 02d,N . In particular it follows
that (1.14) takes the form

‖{(Vφ f )(k, κ)}k,κ∈ε�‖
�
�1,...,�N
d̄,(ω)

� ‖{(Vψ f )(k, κ)}k,κ∈ε�‖
�
�1,...,�N
d̄,(ω)

� ‖ f ‖
M

�1,...,�N
d̄,(ω)

. (1.14)′

Proposition 2.3 Let N , j0 ∈ {1, . . . , N−1}, d̄ = (d1, . . . , dN ) ∈ Id,N ,� j be lattices
in Rd j , j = 1, . . . , N , and let

d̄0 = (d1, . . . , d j0−1, d j0 + d j0+1, d j0+2, . . . , dN ) ∈ Id,N−1.

Also let ω be a weight on Rd and �j , �k, j = 1, . . . , N , k = 1, . . . , N − 1, be
quasi-Young functions such that

� j0+1 = � j0 and � j =
{

� j , j ≤ j0,

� j+1, j ≥ j0 + 1.
(2.2)

If � = �1 × · · · × �N , then

�
�1,...,�N−1
d̄0,(ω) (�) = �

�1,...,�N
d̄,(ω) (�),
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and

‖a‖
�
�1,...,�N−1
d̄0,(ω)

� ‖a‖
�
�1,...,�N
d̄,(ω)

, a ∈ �′
0(�).

For the proof we recall that for the sequence a on Zd1+d2 it holds

a ∈ ��(Zd1+d2) ⇔
∑
j1, j2

�(c · a( j1, j2)) < ∞ (2.3)

for some c > 0. This implies that

a ∈ ��,�(Zd1+d2) ⇔
∑
j2

�(c1
∑
j1

�(c2( j2)a( j1, j2))) < ∞ (2.4)

for some c1 > 0 and a positive sequence c2 on Zd2 .

Proof We only prove the result in the case N = 2 and for � j = Zd j . The general case
follows by these arguments and induction, and is left for the reader.

Let r0 ∈ (0, 1] be chosen such that �0, j (t) = �j (t
1
r0 ) are Young functions. Then

‖a‖
�
�1,�2
(ω)

� (‖|a · ω|r0‖
�
�0,1,�0,2

)1/r0 .

Furthermore, ‖|a|‖��1�2 = ‖a‖��1�2 . This reduce the result to the case when � is a
Young function, ω = 1 and a ≥ 0.

The result is obviously true when � = 0 near origin. In fact for such �,

��(Zd1+d2) = �∞(Zd1+d2) = �∞,∞(Zd1+d2) = ��,�(Zd1+d2)

in view of Proposition 1.11. In the same way, If limt→0+
(

�(t)
t

)
> 0, then

�� = �1 = �1,1 = ��,�,

and the result follows in this case as well (see, e.g. [28, 37]). It remains to consider

the case when �(t) > 0, for t > 0, and when limt→0+
(

�(t)
t

)
= 0, Since �� and

��,� do not change when �(t) is replaced by an increasing convex function which is
equal to c · �(t) near t = 0, where c > 0 is a constant, it follows from Proposition
1.11 that we may assume that �(t) ≤ t and that � is increasing.

This gives

∑
j2

�

⎛
⎝c1

∑
j1

�(c2a( j1, j2))

⎞
⎠ ≤ c1

∑
j1, j2

�(c2a( j1, j2))

when c1, c2 > 0 are constants.
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Hence if

∑
j1, j2

�(c · a( j1, j2)) < ∞

for some constant c > 0, then

∑
j2

�

⎛
⎝c1

∑
j1

�(c2 · a( j1, j2))

⎞
⎠ < ∞

for some constants c1, c2 > 0. By (2.3) and (2.4) we get

��(Zd1+d2) ↪→ ��,�(Zd1+d2). (2.5)

We need to deduce the reversed inclusion in (2.5).
Firstwe assume that a has finite support, i.e. a( j1, j2) �= 0 for atmost finite numbers

of ( j1, j2). Since �(t) > 0 when t > 0 and limt→0+
(

�(t)
t

)
= 0, it follows that the

complementary Young function �∗ to � fulfills the same properties.
By Propositions 3 and 4 in Section 3.3 in [25], we have

‖a‖�� � sup
‖b‖

��
∗ ≤1

|(a, b)�2 |

and

‖a‖��,� � sup
‖b‖

��
∗,�∗ ≤1

|(a, b)�2 |.

By a combination of these relations and (2.5) we get

‖a‖�� � sup
‖b‖

��
∗ ≤1

|(a, b)�2 | � sup
‖b‖

��
∗,�∗ ≤1

|(a, b)�2 | � ‖a‖��,�,

and the searched estimate follows for sequences with finite support.
For general a ≥ 0, let a j , j ≥ 1 be sequences such that

a j ≤ a j+1 and lim
j→∞ a j = a. (2.6)

Then Beppo-Levi’s theorem gives

‖a‖�� = lim
j→∞ ‖a j‖�� � lim

j→∞ ‖a j‖��,� = ‖a‖��,� .
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For general a, we may split up a into positive and negative real and imaginary parts
and use (2.6) to get

‖a‖�� � ‖a‖��,� .

This implies ��,�(Zd1+d2) ↪→ ��(Zd1+d2) and the result follows. ��
By combining Propositions 1.16, 2.3 and Remark 2.2 we get the following. The

details are left for the reader.

Theorem 2.4 Let N and j0 be positive integers such that 1 ≤ j0 ≤ N − 1, �j and
�k , j = 1, . . . , N, k = 1, . . . , N − 1, be quasi-Young functions such that (2.2) holds
and let ω ∈ PE (R2d). Also let

d̄ = (d1, . . . , dN ) ∈ I 02d,N

and

d̄0 = (d1, . . . , d j0−1, d j0 + d j0+1, d j0+2, . . . , dN ) ∈ I 02d,N−1.

Then

M�1,...,�N
d̄,(ω) (Rd) = M�1,...,�N−1

d̄0,(ω) (Rd)

and

‖ f ‖
M

�1,...,�N
d̄,(ω)

� ‖ f ‖
M

�,...,�N−1
(ω)

, f ∈ �′
1(R

d).

Corollary 2.5 Let N be a positive integer,d̄ ∈ I 02d,N , � be a quasi-Young function and

ω ∈ PE (R2d). Then

M�,...,�
d̄,(ω) (Rd) = M�

(ω)(R
d)

and

‖ f ‖M�,...,�
d̄,(ω)

� ‖ f ‖M�
(ω)

, f ∈ �′
1(R

d).

3 Continuity of pseudo-differential operators on Orlicz modulation
spaces

In this section we deduce continuity properties of pseudo-differential operators when
acting onOrliczmodulation spaces. Themain results are Theorems 3.7 and 3.10which
deal with such operators with symbols in M∞,r0

(ω) (R2d) and M�,�
(ω) (R2d), respectively,

where r0 ∈ (0, 1] and � is a quasi-Young functions.
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In the first part we deduce related continuity results for suitable matrix operators. In
the second part we combine these results and Gabor analysis results from the previous
section to establish the continuity results for the pseudo-differential operators.

In the following definition we recall some matrix classes, considered in [33]. Here
we observe that we may identify � × � matrices with sequences on � × �, when �

is a lattice in Rd .

Definition 3.1 Let p, q ∈ (0,∞], �1,�2 be quasi-Young functions, ω ∈ PE (R2d),
� be a lattice in Rd and let T be the map on �′

0(� × �), given by

(Ta)( j, k) = a( j, j − k), a ∈ �′
0(� × �), j, k ∈ �.

(1) The set U′
0(� × �) consists of all (formal) matrices

A = (a( j, k)) j,k∈� (3.1)

with entries a( j, k) in C, and U0(� × �) consists of all A in (3.1) such that at
most finite numbers of a( j, k) are nonzero.

(2) The set Up,q
(ω) (� × �) consists of all matrices A = (a( j, k)) j,k∈� such that

‖A‖
U

p,q
(ω)

≡ ‖T (a · ω)‖�p,q ,

is finite.
(3) The set U�1,�2

(ω) (� × �) consists of all matrices A = (a( j, k)) j,k∈� such that

‖A‖
U

�1,�2
(ω)

≡ ‖T (a · ω)‖��1,�2 ,

is finite.

Remark 3.2 Let p ∈ (0,∞], � be a quasi-Young function and ω ∈ PE (R2d). Then
it follows from Proposition 2.3 and straight-forward changes of variables that the
following is true. The details are left for the reader.

(1) If A0 = (a( j, k)) j,k∈Zd is a matrix, then A0 ∈ U
p,p
(ω) (Z2d), if and only if a ∈

�
p,p
(ω) (Z2d) = �

p
(ω)(Z

2d), and

‖A0‖Up,p
(ω)

= ‖a‖�
p,p
(ω)

= ‖a‖�
p
(ω)

.

(2) If A0 = (a( j, k)) j,k∈Zd is a matrix, then A0 ∈ U
�,�
(ω) (Z2d), if and only if a ∈

�
�,�
(ω) (Z2d) = ��

(ω)(Z
2d), and

‖A0‖U�,�
(ω)

= ‖a‖
�
�,�
(ω)

= ‖a‖��
(ω)

.
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Next we discuss continuity for certain matrix operators when acting on discrete
Orlicz spaces. We recall that if � ⊆ Rd is a lattice, ω1, ω2 ∈ PE (R2d) and ω ∈
PE (R4d) are such that

ω2( j)

ω1(k)
≤ ω( j, k), j, k ∈ �2, (3.2)

r0 ∈ (0, 1] and p, q ∈ [r0,∞], then [33, Theorem 2.3] shows that A0 from �0(�
2) to

�′
0(�

2) is uniquely extendable to a continuous map from �
p,q
(ω1)

(�2) to �
p,q
(ω2)

(�2). The
following result extends this result to discrete Orlicz spaces.

Theorem 3.3 Let ε > 0, N ≥ 1 be an integer, d̄ ∈ I 02d,N , �1, . . . , �N be quasi

Young functions of order r0 ∈ (0, 1], ω1, ω2 ∈ PE (R2d), ω ∈ PE (R4d) be such that
(3.2) holds. If A ∈ U

∞,r0
(ω) (εZ4d), then A from �∞

(ω1)
(εZ2d) to �∞

(ω2)
(εZ2d) restricts to

a continuous map from �
�1,...,�N
d̄,(ω1)

(εZ2d) to �
�1,...,�N
d̄,(ω2)

(εZ2d) and

‖A f ‖
�
�1,...,�N
d̄,(ω2)

≤ ‖A‖
U

∞,r0
(ω)

‖ f ‖
�
�1,...,�N
d̄,(ω1)

, f ∈ �
�1,...,�N
d̄,(ω1)

(εZ2d). (3.3)

We need the following lemma for the proof of Theorem 3.3. We omit the proof
since the result is a consequence of [37, Lemma 3.1].

Lemma 3.4 Let � ⊆ Rd be a lattice, B ⊆ �′
0(�) be a quasi-Banach space of order

r0 ∈ (0, 1], with quasi-norm ‖ · ‖B . If

‖ f ( · − j)‖B = ‖ f ‖B, f ∈ B, j ∈ �,

then the discrete convolution map ( f , g) �→ f ∗� g from �r0(�) × �r0(�) to �r0(�)

extends uniquely to a continuous map from B × �r0(�) toB, and

‖ f ∗ g‖B ≤ ‖ f ‖B‖g‖�r0 (�), f ∈ B, g ∈ �r0(�).

Proof of Theorem 3.3 We only prove the result in the case N = 2. For general N , the
result follows by similar arguments, and is left for the reader. Let f ∈ �

�1,�2
(ω1)

(εZ2d)

and set g = A f .
First we consider the case when A ∈ U0(εZ4d) and let

aω( j, k) = |a( j, k)ω( j, k)|, fω1(k) = | f (k)ω1(k)|

and

gω2( j) = |g( j)ω2( j)|.

We get

gω2( j) = |A f ( j)ω2( j)|
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≤
∑

k∈εZ2d

|a( j, k) f (k)ω1(k)ω( j, k)|

=
∑

k∈εZ2d

|aω( j, j − k) fω1( j − k)|

≤
∑

k∈εZ2d

hω(k) fω1( j − k) = (hω ∗ fω1)( j),

where hω(k) = sup
j∈εZ2d

aω( j, j − k).

By Lemma 3.4 we get

‖A f ‖
�
�1,�2
(ω2)

= ‖gω2‖��1,�2 ≤ ‖hω ∗ fω1‖��1,�2 ≤ ‖hω‖�r0 ‖ fω1‖��1,�2

= ‖A‖
U

∞,r0
(ω)

‖ f ‖
�
�1,�2
(ω1)

,

and the result follows in this case.
For general A ∈ U

∞,r0
(ω) (εZ4d) we decompose A and f into

A = A1 − A2 + i(A3 − A4) and f = f1 − f2 + i( f3 − f4), (3.4)

where A j and fk only have non-negative entries, chosen as small as possible. By
Beppo-Levi’s theorem and the estimates above it follows that A j fk is uniquely defined
as an element in �

�1�2
(ω2)

(εZ2d). It also follows from these estimates that (3.3) holds. ��
Remark 3.5 Let

A = (a( j, k)) j,k∈εZ2d ∈ U
′
0(εZ

4d) and f = { f ( j)} j∈εZ2d ∈ �′
0(εZ

2d).

Then An in (3.4) are given by

An = (an( j, k)) j,k∈εZ2d , n = 1, 2, 3, 4,

where

a1( j, k) = max(Re(a( j, k)), 0), a2( j, k) = min(Re(a( j, k)), 0),

a3( j, k) = max(Im(a( j, k)), 0), a4( j, k) = min(Im(a( j, k)), 0),

and fn = { fn( j)} j∈εZ2d , are obtained in the same way after each an( j, k) and a( j, k)
are replaced by fn( j) and f ( j), respectively.

Before we discuss continuity properties of pseudo-differential operators on Orlicz
modulation spaces, we have the following result concerning operator classes

{OpA(a) ; a ∈ M�1,�2
(ω) (R2d) }
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of continuous operators from �1(Rd) to �′
1(R

d). Here recall [36, Proposition 1.9]
for analogous relations for pseudo-differential operators with symbols in (ordinary)
modulation spaces. Here and in what follow, A∗ denotes the transpose of the matrix
A.

Proposition 3.6 Let N ≥ 1 be an integer, d̄ ∈ I 04d,N , A ∈ M(d,R), �1, . . . , �N be

quasi-Young functions, ω ∈ PE (R4d) and let

ωA(x, ξ, η, y) = ω(x − Ay, ξ − A∗η, η, y).

Then the following is true:

(1) The map ei〈ADξ ,Dx 〉 from M∞
(ω)(R

2d) to M∞
(ωA)(R

2d) restricts to a homeomorphism

from M�1,...,�N
d̄,(ω) (R2d) to M�1,...,�N

d̄,(ωA) (R2d);
(2) The set

{OpA(a) ; a ∈ M�1,...,�N
d̄,(ωA) (R2d) }

of operators from �1(Rd) to �′
1(R

d) is independent of A ∈ M(d,R).

Proof We only prove the result in the case N = 2. For general N , the result follows
by similar arguments and is left for the reader.

It suffices to prove (1) in view of Proposition 1.18.
Let a ∈ M�1,�2

(ω) (R2d), φ ∈ �1(Rd), ψ = ei〈ADξ ,Dx 〉φ and b = ei〈ADξ ,Dx 〉a. Then
it follows from Theorem 3.1 and (3.1) in [1] that ψ ∈ �1(Rd) and

|Vψb(x, ξ, η, y)ωA(x, ξ, η, y)|
= |Vφa(x − Ay, ξ − A∗η, η, y)ω(x − Ay, ξ − A∗η, η, y)|.

By applying the L�1 quasi-norm with respect to the (x, ξ) variables we obtain

‖Vψb( · , η, y)ωA( · , η, y)‖L�1

= ‖Vφa( · − (Ay, A∗η), η, y)ω( · − (Ay, A∗η), η, y)‖L�1

= ‖Vφa( · , η, y)ω( · , η, y)‖L�1 ,

and applying the L�2 quasi-normwith respect to the (y, η) variable on the last equality
gives

‖Vψb · ωA‖L�1,�2 = ‖Vφa · ω‖L�1,�2 .

This gives

‖b‖
M

�1,�2
(ωA)

= ‖a‖
M

�1,�2
(ω)

,

and the result follows. ��
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Wehave now the following continuity result for pseudo-differential operators acting
on Orlicz modulation spaces. Here the involved weight functions should satisfy

ω2(x, ξ)

ω1(y, η)
� ω(x + A(y − x), η + A∗(ξ − η), ξ − η, y − x). (3.5)

Theorem 3.7 Let A ∈ M(d,R), �1,�2 be quasi Young functions of order r0 ∈
(0, 1], ω ∈ PE (R4d) and ω1, ω2 ∈ PE (R2d) be such that (3.5) holds, and let
a ∈ M∞,r0

(ω) (R2d). Then OpA(a) from �1(Rd) to �′
1(R

d) is uniquely extendable to a

continuous map from M�1,�2
(ω1)

(Rd) to M�1,�2
(ω2)

(Rd), and

‖OpA(a)‖
M

�1,�2
(ω1)

(Rd )→M
�1,�2
(ω2)

(Rd )
� ‖a‖M∞,r0

(ω)
. (3.6)

The previous result can be generalized into the following.

Theorem 3.8 Let A ∈ M(d,R), N be a positive integer, d̄ ∈ Id,N , �j , j = 1, . . . , N,
be quasi-Young functions of order r0 ∈ (0, 1], ω ∈ PE (R4d) and ω1, ω2 ∈ PE (R2d)

be such that (3.5) holds, and let a ∈ M∞,r0
(ω) (R2d). Then OpA(a) from �1(Rd)

to �′
1(R

d) is uniquely extendable to a continuous map from M�1,...,�N
d̄,(ω1)

(Rd) to

M�1,...,�N
d̄,(ω2)

(Rd), and

‖OpA(a)‖
M

�1,...,�N
d̄,(ω1)

(Rd )→M
�1,...,�N
d̄,(ω2)

(Rd )
� ‖a‖M∞,r0

(ω)
. (3.7)

We only prove Theorem 3.7. Theorem 3.8 follows by similar arguments and is left
for the reader.

Weneed somepreparations for the proof ofTheorem3.7. Firstwehave the following
extension of [33, Lemma 3.3] to the case of Orlicz modulation spaces.

Lemma 3.9 Let�,φ1,φ2,ϕ,ψ and ε > 0 be as in Lemma1.15. Also let v ∈ PE (R4d),
a ∈ M∞

(1/v)(R
2d),

c0( j , k) ≡ (Vψa)( j, κ, ι − κ, k − j)ei〈k− j,κ〉,
where j = ( j, ι) ∈ ε�2, k = (k, κ) ∈ ε�2,

and let Aa be the matrix Aa = (c0( j , k)) j ,k∈ε�2 . Then the following is true:

(1) If �1, �2 are quasi-Young functions and ω,ω0 ∈ PE (R4d) satisfy

ω(x, ξ, y, η) � ω0(x, η, ξ − η, y − x), (3.8)

then a ∈ M�1,�2
(ω0)

(R2d), if and only if Aa ∈ U
�1,�2
(ω) (ε(�2 × �2)), and then

‖a‖
M

�1,�2
(ω0)

� ‖Aa‖
U

�1,�2
(ω)

(ε(�2×�2))
;
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(2) Op(a) as map from �1(Rd) to �′
1(R

d) is given by

Op(a) = Dε,�
φ1

◦ Aa ◦ Cε,�
φ2

. (3.9)

Proof We have

|c0( j , j − k)| = |(V�a)( j, ι − κ, κ,−k)|.

Hence, Proposition 1.16 gives

‖Aa‖
U

�1,�2
(ω)

(ε(�2×�2))
= ‖V�a‖

�
�1,�2
(ω0)

(ε(�2×�2))
� ‖a‖

M
�1,�2
(ω0)

,

and (1) follows.
The assertion (2) is the same as assertion (2) in [33, Lemma 3.3]. The proof is

therefore omitted. ��
Proof of Theorem 3.7 By Proposition 3.6 we may assume that A = 0.

Let a, Aa , φ1 and φ2 be the same as in Proposition 1.17 and Lemma 3.9. Then by
Proposition 1.17, Theorem 3.3 and Lemma 3.9 we get

‖Op(a)‖
M

�1,�2
(ω1)

→M
�1,�2
(ω2)

� J1 · J2 · J3,

where

J1 = ‖Dφ1‖�
�1,�2
(ω2)

→M
�1,�2
(ω2)

< ∞, (3.10)

J2 = ‖Aa‖�
�1,�2
(ω2)

→�
�1,�2
(ω2)

< ∞ (3.11)

and

J3 = ‖Cφ2‖M�1,�2
(ω1)

→�
�1,�2
(ω1)

< ∞. (3.12)

This gives the asserted continuity. The uniqueness follows from the facts that

M�1,�2
(ω j )

(Rd) ⊆ M∞
(ω j )

(Rd),

in view of Proposition 1.11 and that Op(a) is uniquely defined as a continuous operator
from M∞

(ω1)
(Rd) to M∞

(ω2)
(Rd), in view of [33, Theorem 3.1]. ��

We have also the following.

Theorem 3.10 Let A ∈ M(d,R), �0 be a Young function, �∗
0 the complementary

Young function of �0, � be a quasi-Young function such that

lim
t→0+

t

�(t)
(3.13)
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is finite and let ω ∈ PE (R4d) and ω1, ω2 ∈ PE (R2d) be such that (3.5) holds. Then
the following is true:

(1) if a ∈ M�0
(ω)(R

2d), then OpA(a) from M1
(ω1)

(Rd) to M∞
(ω2)

(Rd) is extendable to a

continuous map from M
�∗

0
(ω1)

(Rd) to M�0
(ω2)

(Rd) and

‖OpA(a)‖
M

�∗
0

(ω1)
(Rd )→M

�0
(ω2)

(Rd )
� ‖a‖

M
�0
(ω)

(R2d )
;

(2) if a ∈ M�
(ω)(R

2d), then OpA(a) from M1
(ω1)

(Rd) to M∞
(ω2)

(Rd) is uniquely extend-

able to a continuous map from M∞
(ω1)

(Rd) to M�
(ω2)

(Rd), and

‖OpA(a)‖M∞
(ω1)

(Rd )→M�
(ω2)

(Rd ) � ‖a‖M�
(ω)

(R2d ).

Proof By Proposition 3.6 we may assume that A = 0.

Let� ⊆ Rd be a lattice, A0 = (a( j, k)) j,k∈� ∈ U
�0,�0
(ω) (�×�) and f ∈ �

�∗
0

(ω1)
(�)

be such that a( j, k) ≥ 0 and f ( j) ≥ 0 for every j, k ∈ �. We have

0 ≤ (A0 f )( j)ω2( j) = (a( j, · ), f )ω2( j) � ‖a( j, · )ω( j, · )‖��0 ‖ f · ω1‖
�
�∗
0
.

By applying the ��0 norm and using Remark 3.2 we get

‖A0 f ‖�
�0
(ω2)

� ‖a‖
�
�0,�0
(ω)

‖ f ‖
�
�∗
0

(ω1)

� ‖A0‖
U

�0,�0
(ω)

‖ f ‖
�
�∗
0

(ω1)

, (3.14)

which implies that A0 f makes sense as an element in �
�0
(ω2)

(�).

For general A0 = (a( j, k)) j,k∈� ∈ U
�0,�0
(ω) (� × �) and f ∈ �

�∗
0

(ω1)
(�), we define

A0 f in similar ways as in the proof of Theorem 3.3, by splitting up A0 and f into
positive and negative parts of their real and imaginary parts. By (3.14) we obtain

‖A0‖
�
�∗
0

(ω1)
(�)→�

�0
(ω2)

(�)
� ‖A0‖

U
�0,�0
(ω)

. (3.15)

Now let a ∈ M�0
(ω)(R

2d) and f ∈ M
�∗

0
(ω1)

(Rd). Then we define Op(a) f by (3.9). The
asserted continuity in (1) now follows from Proposition 2.3, (3.10), (3.12) and (3.15).

Next let � be as in (2) and let A0 = (a( j, k)) j,k∈� ∈ U
�,�
(ω) (� × �) and f ∈

�∞
(ω1)

(�) be such that a( j, k) ≥ 0 and f ( j) ≥ 0 for every j, k ∈ �. Then

0 ≤ (A0 f )( j)ω2( j) = (a( j, · ), f )ω2( j)

� ‖a( j, · )ω( j, · )‖�1‖ f · ω1‖�∞ � ‖a( j, · )ω( j, · )‖��‖ f ‖�∞
(ω1)

,

where the last inequality follows from Proposition 1.11 and (3.13). By applying the
�� quasi-norm and splitting up general A0 = (a( j, k)) j,k∈� ∈ U

�,�
(ω) (� × �) and
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f ∈ �∞
(ω1)

(�) into positive and negative real and imaginary parts, we obtain

‖A0‖�∞
(ω1)

(�)→��
(ω2)

(�) � ‖A0‖U�,�
(ω)

. (3.16)

The asserted continuity in (2) now follows by combining Proposition 2.3, (3.10), (3.12)
and (3.16).

The asserted uniqueness follows from the fact that if a ∈ M�
(ω)(R

2d), then a ∈
M1

(ω)(R
2d) in view of Proposition 1.11 and (3.13). Hence, if f ∈ M∞

(ω1)
(Rd), then

Op(a) f is uniquely defined as an element in M1
(ω2)

(Rd) (see e.g. [33, Theorem 3.1]).

This in turn implies that Op(a) f is uniquely defined as an element in M�
(ω2)

(Rd), and
the result follows. ��

4 Symbol product estimates on Orlicz modulation spaces

In this section we show that if ω j are suitable weights, j = 0, 1, 2, �1,�2 are
quasi-Young functions of order r0 ∈ (0, 1], a1 ∈ M�1,�2

(ω1)
and a2 ∈ M∞,r0

(ω2)
, then

OpA(a1) ◦ OpA(a2) equals OpA(b) for some a1 ∈ M�1,�2
(ω0)

.
An essential condition on the weight functions is

ω0(TA(Z , X)) � ω1(TA(Y , X))ω2(TA(Z ,Y )), X ,Y , Z ∈ (R2d), (4.1)

where

TA(X ,Y ) = (y + A(x − y), ξ + A∗(η − ξ), η − ξ, x − y),

X = (x, ξ) ∈ R2d ,Y = (y, η) ∈ R2d . (4.2)

Theorem 4.1 Let A ∈ M(d,R) and suppose that ωk ∈ PE (R4d), k = 0, 1, 2, satisfy
(4.1) and (4.2). Let �1,�2 be quasi Young functions of order r0 ∈ (0, 1]. Then the
map (a1, a2) �→ a1#Aa2 from�1(R2d)×�1(R2d) to�1(R2d) is uniquely extendable
to a continuous map from M�1,�2

(ω1)
(R2d) × M∞,r0

(ω2)
(R2d) to M�1,�2

(ω) (R2d), and

‖a1#Aa2‖M�1,�2
(ω)

� ‖a1‖M�1,�2
(ω1)

‖a2‖M∞,r0
(ω2)

. (4.3)

We need some preparations for the proof. By [2, Proposition 3.2] it follows that
the map (A1, A2) �→ A1 ◦ A2 is uniquely defined and continuous from U

∞,∞
(ω1)

(� ×
�) × U

∞,r0
(ω2)

(� × �) to U
∞,∞
(ω) (� × �) when � ⊆ Rd is a lattice, r0 ∈ (0, 1] and

ω,ω1, ω2 ∈ PE (R2d) satisfy

ω(x, z) ≤ ω1(x, y)ω2(y, z), x, y, z ∈ Rd . (4.4)

The following lemma extends certain parts of this continuity to matrix classes satis-
fying Orlicz estimates.
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Lemma 4.2 Let � ⊆ Rd be a lattice, �1,�2 be quasi Young functions of order
r0 ∈ (0, 1], and let ω,ω1, ω2 ∈ PE (R2d) satisfy (4.4). Then (A1, A2) �→ A1 ◦ A2
fromU

∞,∞
(ω1)

(�×�)×U
∞,r0
(ω2)

(�×�) toU∞,∞
(ω) (�×�) restricts to a continuous map

from U
�1,�2
(ω1)

(� × �) × U
∞,r0
(ω2)

(� × �) to U�1,�2
(ω) (� × �) and

‖A1 ◦ A2‖
U

�1,�2
(ω)

� ‖A1‖
U

�1,�2
(ω1)

‖A2‖U∞,r0
(ω2)

. (4.5)

Proof Let A1 = (a1( j, k)) j,k∈�, A2 = (a2( j, k)) j,k∈� be matrices, let the matrix
elements of B = A1 ◦ A2 be denoted by b( j, k), and set

am( j, k) ≡ |am( j, j − k)|ωm( j, j − k), m = 1, 2,

and

b( j, k) ≡ |b( j, j − k)|ω( j, j − k).

Then

‖A1‖
U

�1,�2
(ω1)

= ‖a1‖��1,�2 , ‖A2‖U∞,r0
(ω2)

= ‖a2‖�∞,r0 ,

‖B‖
U

�1,�2
(ω)

= ‖b‖��1,�2

and

b( j, k) ≤
∑
m∈Zd

a1( j,m)a2( j − m, k − m). (4.6)

By a similar application of Beppo-Levi’s theorem, and splitting up Aj as in Remark
3.5, the result follows if we prove

‖b‖��1,�2 ≤ ‖a1‖��1,�2 ‖a2‖�∞,r0 ,

when a1, a2 ∈ U0(� × �) have non-negative entries.
Let �0, j be Young functions such that � j (t) = �0, j (tr0), t ≥ 0, j = 1, 2, and let

c1(m) = ‖a1( · ,m)‖��1 and c2(k) = sup
j∈�

a2( j, k)
r0 .

By (4.6) and the fact that �0,1 is convex we get

∑
j∈�

�0,1

( |b( j, k)|r0
λr0

)
≤

∑
j∈�

�0,1

(
1

λr0

∑
m∈�

a1( j,m)r0a2( j − m, k − m)r0

)

≤
∑
j∈�

�0,1

(
1

λr0

∑
m∈�

a1( j,m)r0c2(k − m)r0

)
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=
∑
j∈�

�0,1

(∑
m∈�

a1( j, k − m)r0

λr0
c2(m)r0

)

≤
∑
j∈�

(∑
m∈�

�0,1

(
a1( j, k − m)r0

λr0

)
c2(m)r0

)

=
∑
m∈�

c2(m)r0
∑
j∈�

�0,1

(
a1( j, k − m)r0

λr0

)
.

This gives

‖b( · , k)‖r0
��1

≤
∑
m∈�

c2(m)r0‖a1( · , k − m)‖r0
��1

= (cr01 ∗ cr02 )(k), (4.7)

in view of the definition of ��1,�2 norm.
By (4.7) we get

‖B‖
U

�1,�2
(ω)

= ‖b‖��1,�2 ≤ (∥∥cr01 ∗ cr02
∥∥

�
�0,2

) 1
r0

≤ (‖cr01 ‖
�
�0,2 ‖cr02 ‖�1

) 1
r0 = ‖a1‖��1,�2 ‖a2‖�∞,r0

= ‖A1‖
U

�1,�2
(ω1)

‖A2‖U∞,r0
(ω2)

.

��
Proof of Theorem 4.1 By Proposition 3.6 we may assume that A = 0.

Let ε > 0, φ1, φ2 and � be the same as in the proofs of Theorem 3.7 and Lemma
3.9, a1 ∈ M�1,�2

(ω1)
(R2d) and a2 ∈ M∞,r0

(ω2)
(R2d). By Theorem 2.17 we have

‖a1‖M�1,�2
(ω1)

� ‖A1‖
U

�1,�2
(ϑ1)

, ‖a2‖M∞,r0
(ω2)

� ‖A2‖U∞,r0
(ϑ2)

Op(a1) = Dε,�
φ1

◦ A1 ◦ Cε,�
φ2

and Op(a2) = Dε,�
φ1

◦ A2 ◦ Cε,�
φ2

, (4.8)

where

Am = (am( j , k)) j,kj,kj,k∈ε�2 ,

am( j , k) ≡ ei〈k− j,κ〉Vϕam( j, κ, ι − κ, k − j), j = ( j, ι) ∈ ε�2, k = (k, κ) ∈ ε�2

and

ϑm(x, ξ, y, η) = ωm(x, η, ξ − η, y − x).

The condition (4.1) means for the weights ϑm , m = 0, 1, 2,

ϑ0(X ,Y ) � ϑ1(X , Z)ϑ2(Z ,Y ), X ,Y , Z ∈ R2d . (4.9)



6 Page 30 of 32 J. Toft, R. Üster

Pick v1 ∈ PE (Rd) such that ω2 is v2-moderate, where

v2 = v1 ⊗ v1 ⊗ v1 ⊗ v1 ∈ PE (R4d).

Also let v = v21 ⊗ v21 ∈ PE (R2d) and

v0(X ,Y ) = v(X − Y ) ∈ PE (R4d), X ,Y ∈ R2d .

Then

ϑ2(X ,Y ) � v0(X , Z)ϑ2(Z ,Y ), X ,Y , Z ∈ R2d . (4.10)

By (1.23) and (1.24) we get

Op(a1) ◦ Op(a2) = Dε,�
φ1

◦ A ◦ Cε,�
φ2

,

where

A = A1 ◦ C ◦ A2

and C = Cε,�
φ2

◦ Dε,�
φ1

is a matrix of the form (ccc( j , k)) j ,k∈ε�2 with matrix elements

ccc( j , k), j , k ∈ ε�2.
By [2, Lemma 3.3] we get

‖C‖
U

∞,r0
(v0)

=
⎛
⎝ ∑

k∈ε�2

(
sup
j∈ε�2

|ccc( j , j − k)v(k)|r0
)⎞

⎠
1
r0

=
⎛
⎝ ∑

k∈ε�2

|Vφ2φ1(k)v(k)|r0
⎞
⎠

1
r0

� ‖φ1‖Mr0
(v)

< ∞.

Thus

C ∈
⋂
r0>0

U
∞,r0
(v0)

(ε�2 × ε�2).

Then we obtain from Lemmas 3.9 and 4.2

‖a1#0a2‖M�1,�2
(ω0)

� ‖A1 ◦ C ◦ A2‖
U

�1,�2
(ϑ0)

≤ ‖A1 ◦ C‖
U

�1,�2
(ϑ1)

‖A2‖U∞,r0
(ϑ2)

≤ ‖A1‖
U

�1,�2
(ϑ1)

‖C‖
U

∞,r0
(v0)

‖A2‖U∞,r0
(ϑ2)

� ‖A1‖
U

�1,�2
(ϑ1)

‖A2‖U∞,r0
(ϑ2)

� ‖a1‖M�1,�2
(ω1)

‖a2‖M∞,r0
(ω2)

.

��



Pseudo-differential operators on Orlicz modulation spaces Page 31 of 32 6

Funding Open access funding provided by Linnaeus University.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abdeljawad, A., Cappiello, M., Toft, J.: Pseudo-differential calculus in anisotropic Gelfand–Shilov
setting. Integr. Equ. Oper. Theory 91, 91:26 (2019)

2. Chen, Y., Toft, J., Wahlberg, P.: The Weyl product on quasi-Banach modulation spaces. Bull. Math.
Sci. 9, 1950018–1 (2019)

3. Chung, J., Chung, S.-Y., Kim, D.: Characterizations of the Gelfand–Shilov spaces via Fourier trans-
forms. Proc. Am. Math. Soc. 124, 2101–2108 (1996)

4. Cordero, E., Nicola, F.: Pseudodifferential operators on L p , Wiener amalgam and modulation spaces.
Int. Math. Res. Not. IMRN 8, 1860–1893 (2010)

5. Cordero, E., Nicola, F.: Sharp integral bounds for Wigner distributions. Int. Math. Res. Not. IMRN 6,
1779–1807 (2018)

6. Feichtinger, H. G.: Modulation spaces on locally compact abelian groups. Technical report, University
of Vienna, Vienna, 1983; also in: M. Krishna, R., Radha, S. T. (Eds.) Wavelets and their applications,
pp. 99–140. Allied Publishers Private Limited, NewDehli (2003)

7. Feichtinger, H.G.: Modulation spaces: looking back and ahead. Sampl. Theory Signal Image Process.
5, 109–140 (2006)

8. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their
atomic decompositions. I. J. Funct. Anal. 86, 307–340 (1989)

9. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their
atomic decompositions. II. Monatsh. Math. 108, 129–148 (1989)

10. Galperin, Y.V., Samarah, S.: Time-frequency analysis on modulation spaces Mp,q
m , 0<p, q ≤ ∞.

Appl. Comput. Harmon. Anal. 16, 1–18 (2004)
11. Gelfand, I.M., Shilov, G.E.: Generalized Functions, II–III. Academic Press, New York (1968)
12. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)
13. Gröchenig, K.: Weight functions in time-frequency analysis. In: Rodino, L., Wong, M. W. (eds) Pseu-

dodifferential Operators: Partial Differential Equations and Time-Frequency Analysis, Vol. 52, pp.
343–366. Fields Institute Comm. (2007)

14. Gröchenig, K., Heil, C.: Modulation spaces and pseudo-differential operators. Integral Equ. Oper.
Theory 4(34), 439–457 (1999)

15. Gröchenig, K., Heil, C.: Modulation spaces as symbol classes for pseudodifferential operators. In:
Krishna, M., Radha, R., Thangavelu, S. (Eds.) Wavelets and Their Applications, pp. 151–170. Allied
Publishers Private Limited, New Dehli (2003)

16. Gröchenig, K., Zimmermann, G.: Spaces of test functions via the STFT. J. Funct. Spaces Appl. 2,
25–53 (2004)

17. Harjulehto, P., Hästö, P.: Orlicz Spaces and Generalized Orlicz Spaces Springer (2019)
18. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol I–III. Springer, Berlin (1985)
19. Lieb, E.H., Solovej, J.P.: Quantum coherent operators: a generalization of coherent states Lett. Math.

Phys. 22, 145–154 (1991)
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