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Abstract

We deduce continuity properties for pseudo-differential operators with symbols in
quasi-Banach Orlicz modulation spaces when rely on other quasi-Banach Orlicz mod-
ulation spaces. In particular we extend some earlier results.
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0 Introduction

In the paper we deduce continuity properties for pseudo-differential operators when
acting on quasi-Banach Orlicz modulation spaces. For example, for a pseudo-
differential operator Op(a) with the symbol @ we show that the following is true:

e Suppose that go € (0, 1], ®; are quasi-Young functions which satisfy ®; (1) < 1490
near origin, and that a belongs to the classical modulation space M40 (R??). Then
Op(a) is continuous on the quasi-Banach Orlicz modulation space M ®1.22(RY),

e Suppose that ® is a quasi-Young function which satisty ¢ < ®(¢) near origin, and
that a belongs to M @ (RM ). Then Op(a) is continuous from M > (Rd) toM® (Rd);

e Suppose that @ is a Young function and &g is the complementary Young function,
and that a belongs to M @0 (de ). Then Op(a) is continuous from M @5 (Rd ) to
M®(RY).

(We refer to [18] and Sect. 1 for notations).
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More generally, we deduce weighted versions of such continuity results. In par-
ticular we extend some continuity properties for pseudo-differential operators when
acting on (ordinary) modulation spaces, e.g. in [4, 5, 14, 15, 30, 31, 33].

Essential parts of our analysis are based on [28] by Schnackers and Fiihr concerning
Orlicz modulation spaces, and on [37] concerning quasi-Banach Orlicz modulation
spaces. In these approaches, general properties and aspects on quasi-Banach Orlicz
spaces given in [17] by Harjulehto and Hésto are fundamental. In this respect, we
show that for mixed quasi-Banach Orlicz modulation spaces like M(q;')’@z (R*?) we

have M ((i)’;b Ry =M ?c)o) (R%?) when @, & and @, are quasi-Young functions. This
leads to convenient improvement of the style of the continuity results for our pseudo-
differential operators when acting on quasi-Banach Orlicz modulation spaces.

In some situations it might be beneficial to replace Lebesgue norm estimates with
more refined Orlicz norm estimates. This may appear when dealing with certain non-
linear functionals. For example, in statistics or statistical physics, the entropy applied
on probability density functions f on R is given by

E(f):—/ f(x)log f(x)dx.
R4

When investigating E, it might be more efficient to replace the pair of Lebesgue spaces
(L', L>) by the pair of Orlicz spaces (Llog(L + 1), LM ~1) where the Young
functions are given by

D) =tlog(l +1) and &(r) =cosh(r) — 1,

respectively. We also observe that the Zygmund space Llog™ L is an Orlicz space
related to Hardy-Littlewood maximal functions (see [21, 22] and the references
therein).

Such questions are also relevant when investigating localized Fourier transforms
like short-time Fourier transforms Vj, f because of the entropy conditions

E(VsfI?) = C,

for some constant C, when

[l = llgl2 = ll$ll2 = 1.

(See [19].) We remark that such refined Fourier transforms are indispensable tools
within time-frequency, signal processing and certain parts of quantum mechanics.

In time-frequency analysis and signal processing, non-stationary filters can be
modelled by pseudo-differential operators f — Op(a) f, where the symbols a are
determined by time and frequency varying filters, the target functions f are the orig-
inal signals and Op(a) f are the reflected signals. In such situations it is suitable to
discuss continuity properties by means of certain types of time-frequency invariant
(quasi-)Banach spaces. This leads to modulation spaces.
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The classical modulation spaces is a family of function and distribution spaces,
introduced by Feichtinger in [6]. Here the modulation spaces are defined by imposing
a weighted mixed Lebesgue norm estimate on the short-time Fourier transforms of
the involved functions and distributions. The theory has thereafter been extended
and generalized, especially by Feichtinger and Grochenig in [8, 9], where the theory
of (Banach) modulation spaces was put into the context of coorbit space theory. A
less abstract extension of the classical modulation spaces is performed in [7], where
Feichtinger replaces the mixed Lebesgue norm estimates in [6] with more general
translation invariant norms of solid Banach function spaces.

Some extensions to the quasi-Banach case have thereafter been performed in e.g.
[10, 26, 27, 32, 35].

In [28], Fiihr and Schnacker study Orlicz modulation spaces of the form M 1,92
where @1 and @, are Young functions. That is, they consider modulation spaces in [7],
where the solid Banach function spaces are Orlicz spaces, a naturally generalization
of L? spaces which contain certain Sobolev spaces as subspaces. In particular their
investigations also include the classical modulation spaces in [6], since these spaces
are obtained by choosing

t <1,

0
Di(t) =1t? dit)y=1"
]() o J() {oo, t>1.

The analysis in [28] is extended in [37] to quasi-Banach weighted Orlicz modulation

spaces, M (q;‘)’cbz (Rd), where ©1, @, are quasi-Young functions of certain degrees and

w is a suitable weight function on R??. In particular, it is here allowed to let D;(t) =1tP
for every p > O (instead of p > 1 as in [28]), which implies that any modulation
space M. (’;;;’ (R?) for p, g € (0, oo] are included in the studies in [37].

In the paper, our deduced continuity for pseudo-differential operators, are based on
the various properties of quasi-Banach Orlicz modulation spaces, obtained in [37].

1 Preliminaries

In this section we recall some facts for Gelfand-Shilov spaces, Orlicz spaces, Orlicz
modulation spaces and pseudo-differential operators. First we discuss some useful
properties of Gelfand-Shilov spaces. Thereafter we recall some classes of weight
functions which are used later on in the definition of Orlicz modulation spaces. In
Sects. 1.3 and 1.4 we define and present some properties for Orlicz spaces and Orlicz
modulation spaces. We conclude the section by discussing Gabor analysis for Orlicz
modulation spaces and pseudo-differential operators.

1.1 Gelfand-Shilov spaces

We start by discussing Gelfand-Shilov spaces and their properties. Let 0 < s € R be
fixed. Then the (Fourier invariant) Gelfand-Shilov space S; (RY) (=, (R?)) of Roumieu
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type (Beurling type) with parameter s consists of all f € C>(R¢) such that

xPo% f(x)
e (i) o

is finite for some 2 > O (for every & > 0). Here the supremum should be taken over all
o, B € N and x € RY. We equip S (R?) (Z,(R?)) by the canonical inductive limit
topology (projective limit topology) with respect to 2 > 0, induced by the semi-norms
in (1.1).

For any s, so > 0 such that %550 < s we have

SiyRY) = ;R = 8RY) — SR, .

S RY) = S|(RY) — B/(RY) — S| (R)), (-2
with dense embeddings. Here A < B means that the topological spaces A and B
satisfy A € B with continuous embeddings. The space =;(R?) is a Fréchet space
with seminorms || - ||s, ,, # > 0. Moreover, 2 (R?) £ {0}, if and only if s > 1/2,
and S;(R?) # {0}, if and only if s > 1/2.

The Gelfand-Shilov distribution spaces S,(R?) and =/ (R?) are the (strong) dual
spaces of S (RY) and =, (RY), respectively. As for the Gelfand-Shilov spaces there is
a canonical projective limit topology (inductive limit topology) for S RY) (= ! (R%))
(cf. [11, 23, 24]).

From now on we let .% be the Fourier transform which takes the form

(ZFHE) = f(é;‘) = (2;-[)_% ‘[Rd Fx)e i) gy

when f € L'(RY). Here (-, -) denotes the usual scalar product on R?. The map
F extends uniquely to homeomorphisms on .#”(R?), on S/(R?) and on X/ (R?).
Furthermore, .% restricts to homeomorphisms on .% (RY), on S (R?) and on =, (RY),
and to a unitary operator on L*(R?).

Gelfand-Shilov spaces can in convenient ways be characterized in terms of estimates
of the functions and their Fourier transforms. More precisely, in [3] it is proved that if
feR%ands > 0, then f € Ss(R?Y) (f € Z4(RY)), if and only if

|f@ﬂ§eﬂ“ﬁ md|f@n5e”m%, (1.3)

for some r > 0 (for every r > 0). Here r1(6) < r2(6) means that r1(6) < c - ()
holds uniformly for all € in the intersection of the domains of r; and r, for some
constant ¢ > 0. We write r| < rp whenr; < rp < ry.

Letp € S;(R?) be fixed. Then the short-time Fourier transform Vg f of f € SL(RY)
with respect to the window function ¢ is the Gelfand-Shilov distribution on R?¢,
defined by

Vo f(x,§) =F(f (- —x)E). (1.4)
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If £, ¢ € Ss(R?), then it follows that

d R — .
V¢f('xa %‘) == (27'[)_7 ‘/l;d f(y)¢(y __x)e_l<yaé) dy

We recall that Gelfand-Shilov spaces and their distribution spaces can also be charac-
terized by estimates of short-time Fourier transforms, (see e.g. [16, 35]).

1.2 Weight functions

A weight or weight function on RY is a positive function € ijC(Rd) such that
l/w € L;’(f’C(Rd). The weight w is called moderate, if there is a positive weight v on

R9 such that
o +y) SwEvy), xyeR (1.5)

If w and v are weights on R? such that (1.5) holds, then w is also called v-moderate.
We note that (1.5) implies that o fulfills the estimates

(=)' Cwx) <v), xeR (1.6)

We let 2 (R9) be the set of all moderate weights on R¥.
It can be proved that if w € g (Rd), then w is v-moderate for some v(x) = e
provided the positive constant r is large enough (cf. [13]). That is, (1.5) implies

rlx|
>

o +y) <wx)eP (1.7)

for some r > 0. In particular, (1.6) shows that forany w € Y (Rd ), there is a constant
r > 0 such that

e <wx) <M x eRY
We say that v is submultiplicative if v is even and (1.5) holds with @ = v. In the
sequel, v and v; for j > 0, always stand for submultiplicative weights if nothing else
is stated.

We let @g (R?) be the set of all w € 2 (R?) such that (1.7) holds for every r > 0.
We also let Z(R9) be the set of all w € P (RY) such that

w@x+y) Se)d+ ]y
for some r > 0. Evidently,

2R € PURY) € PpRY).
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1.3 Orlicz spaces

In this subsection we provide an overview of some basic definitions and state some
technical results that will be needed.

First we recall some facts concerning Young functions and Orlicz spaces (see [17,
25)).

Definition 1.1 A function ® : R — R U {00} is called convex if
D(s111 + s212) < 51D(71) + 52D(72)

whens;, t; € Rsatisfys; >0ands; +s2 =1, j=1,2.

We observe that ® might not be continuous, because we permit oo as function value.
For example,

o) = {c, whent < a
o0, whent > a

is convex but discontinuous at t = a.

Definition 1.2 Let ro € (0, 1], ®¢ and ® be functions from [0, c0) to [0, co]. Then
d is called a Young function if

(1) @y is convex,

(2) ©0(0) =0,

3) tlim (1) = +o0.
—> 00

The function & is called ro-Young function or quasi-Young function of order ro, if
(1) = Dp(t'0), t > 0, for some Young function .

It is clear that ® in Definition 1.2 is non-decreasing, because if 0 < #; < #, and
s € [0, 1] is chosen such that | = st and @ is the same as in Definition 1.2, then

D (1) = Po(s"1y° + (1 = 5™)0) < 50Dy (1)) + (1 = ") Pp(0) < D(12),

since ®(0) = &(0) =0ands € [0, 1].

Definition 1.3 Let (€2, 3, 1) be a Borel measure space, with  C R4, &g bea Young
function and let wg € Zg(RY).

@)) L% )(,u) consists of all u-measurable functions f : & — C such that

(wo
T =inf{K>0;/®o<M>du(ﬁc)sl}
Q

L))

is finite. Here f and g in LZ?O)(“) are equivalent if f = g a.e.
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(2) Let ® be a quasi-Young function of order ry € (0, 1], given by ® (1) = Dy(¢'?),
t > 0, for some Young function ®¢. Then LEI:UO) (w) consists of all p-measurable
functions f : & — C such that

17128, g = (L - @01l o)™

is finite.

Remark 1.4 Let ®, ®( and wq be the same as in Definition 1.2. Then it follows by
straight-forward computation that

. |f(x) - wo(x)|"0
”f”Lfﬁ,O)(M) = 1nf{)\ >0; _/qu)o (T) du(x) <1 }

Definition 1.5 Let (22;, X;, 1) be Borel measure spaces, with Q; C RY, ro € (0, 1],
®; be rp-Young functions, j = 1,2 and let 0 € g (R24Y. Then the mixed quasi-
norm Orlicz space L((IZJ)’QZ = Lg)l)’cpz (11 ® wp) consists of all 1] ® pp-measurable

functions f : Q1 x Qy — C such that
171 o0 = [ flwll e,
L)

is finite, where

Sro@2) =1 f(, x2)o(-, x2) e .

D1, 09

If ro = 1 in Definition 1.5, then L+

a mixed norm Orlicz space.

(1 ® o) is a Banach space and is called

Remark 1.6 Suppose ®; are quasi-Young functions of order g; € (0,1], j = 1,2.
Then both ®; and ®; are quasi-Young functions of order ro = min(q1, ¢2).

Let A € RY be a lattice, i.e., A is given by
A={nje;+--+ngeqs; (n,...,ng) € 4}
for some basis e1, . .., eg of R%. Then %(A) is the set of all formal sequences
{am)}nen =f{am); ne A} S C.

Let £o(A) be the set of all sequences {a(n)},ea such that a(n) # O for at most finite
numbers of n. We observe that

AP =AXxA={(x8);xEcA}

is a lattice in R%? ~ R x R4,
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Remark 1.7 Let A € RY be a lattice, ®, @ and ®; be ro-Young functions, wq, vy €
ZrRY and w, v € Zr(R??) be such that wg and w are vo- respectively v-moderate
(in the sequel it is understood that all lattices contain 0). Then we set

b, P b1, P
LE RY =LY (u) and LEDPRM) = Lob™ (1@ ),

when u is the Lebesgue measure on RY. If instead u is the standard (Haar) measure
on A,ie. u(n) =1, n € A, then we set

€0, (M) =8 () and L0V (A x A) = €05 (n @ ).

Evidently, ef;j)’q’Z(A X A) C €y(A x A).

Lemma 1.8 Let ®, ®; be Young functions, j = 1,2, wp, vo € f@E(Rd) and w, v €
P (de) be such that wg is vo-moderate and w is v-moderate. Then LZI;)O)(R‘I ) and

LEI;')’CDZ (R24) are invariant under translations, and

IFC=0lge  SflLe w00, f €L, R, x €R,
and
1£C = o100 S If o env( §), f € LG R, (.6) € R,

Proof We only prove the assertion for LEIZ)‘)’ 2 (R2?). The other part follows by similar

arguments and is left for the reader.
We have @; (1) = ®o_;(t"), ¢t > 0, for some Young functions ®¢_;, j = 1, 2. This
gives

Ife — (x,f‘E))IlLfl)xbz =(If¢ = (x,E))werIIL%,l.@o,z)%

SUFC =@ ol — (-x»%-))U(x’§)|r0”L¢0.lv¢0,2)%
(|||f'w|r0||Ld>o.1ﬂ>o,2)% v(x, §) = ||f||in’1)vd>2 “v(x, &).

Here the inequality follows from the fact that w is v-moderate, and the last two relations
follow from the definitions. O

We refer to [17, 25, 28] for more facts about Orlicz spaces.
1.4 Orlicz modulation spaces

The definitions of classical modulation spaces and Orlicz modulation spaces are the
following (cf. [6, 7, 28, 37]).
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V2
Definition 1.9 Let ¢(x) = 7 e~ 7, x e RY, p, g € (0,00l and w € Pp(RX).

Then the modulation spaces M{,,] (R?) is set of all f € S} ,(R) such that Vs f €

qu

@) (R*%). We equip these spaces with the quasi-norm

I fllpgra = Ve fllpra
() (@)

Also let @, &, <I>2 be quasi-Young functions. Then the Orlicz modulation spaces
(Rd) and M <1>2 (R?) are given by

ME R ={f eS8 ,RY): Vof € Ly R¥)) (1.8)

and
Mgy PR = (f €8] ,RY); Vo f € Lgh P (R™)). (1.9)

The quasi-norms on M )(Rd ) and M CDZ (RY) are given by

1/ he, = Vo Flle, (1.10)

and
11102 = NV Fll o102 (1.11)

For conveniency we set

MP =MD MO =M and MPTP = MGI®? when w(x,§) =1,

and MP = MP-? and M(’;) = Mf;)p
We notice that (1.10) and (1.11) are norms when ®, ®; and ®; are Young functions.
If w € Z;(R?*?) as in Definition 1.9, then the conditions

VoSl o0 <00 and Vs fle < o0

are independent of the choices of ¢ in =1 (R%) \ 0 and that different ¢ give rise to
equivalent quasi-norms (see e.g. [37, Sect. 5]).
Later on we need the following proposition.

Proposition 1.10 Let @, ®; be Young functions, j = 1,2, wy € WE(Rd) and w €
Pr(R2). Then

y(Rd) C L(D(Rd) C y/(Rd)’ y(RZd) C L(Dl d)z(RZd) C y/(RZd)
SR Ly R S TR, TR¥) € LT RYM) € BIRY).
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Proof Let vy € P (R?) and v € P (R*) be chosen such that wy is vyp-moderate
and w is v-moderate. Since L?Z)O) (R%) and LEI;')’ ®2 (R2?) are invariant under translation
and modulation, we have

My R S LE (RY) € M, RD,

(o)

and
My R € LEy R © M), (R*)

(see [12, 36, 37]). The result now follows from well-known inclusions between mod-
ulation spaces, Schwartz spaces, Gelfand-Shilov spaces, and their duals. O

The next result gives some information about the roles that ®; and @, play for
M®1-®2 We omit the proof since it can be found in [37]. See also [28] for the Banach
case.

Proposition 1.11 Let ®; and V;, j = 1,2, be quasi-Young functions, A be a lattice
in RY and w € P (R*?). Then the following conditions are equivalent:

(1) M(q;l),(bz (Rd) C M(\fol)’\yz (Rd),'
@) o) S s ()
(3) Yi(r) < (1) foreveryt € [0, 1], for some ty > 0.

1.5 Gabor frames

Definition 1.12 Letw, v € P& (R%?) be such that w is v-moderate, ¢, ¥ € M(lv)(Rd),

e > 0andlet A € RY be a lattice.

(1) The analysis operator C;’A is the operator from M ?a?) (R%) to IZ?C‘;) (eA?), given
by

C;’Af ={Vof(J, [)}j,lEEA'

(2) The synthesis operator D;A is the operator from E(of)) (eA®)to M (Oa‘f) (RY), given

by

Dyte= 37 ey =),

jieeN’

(3) The Gabor frame operator S;;Q, is the operator on M(y) (RY), given by D;/’A oC;’A ,
ie.

Sguf = D VofG,ue Iy = ).

joeeN’
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The next result shows that it is possible to find suitable ¢ and v in the previous
definition.

Lemma 1.13 Let A C RY be a lattice, v € P (RZd) be submultiplicative and ¢ €
(Rd) \ 0. Then there isan e > 0 and ¥ € M(v) (R \ 0 such that

{x = N jieen and (Yr(x — e’ Y cen (1.12)
are dual frames to each others.

Remark 1.14 There are several ways to achieve dual frames (1.12). In fact, let
v,v0 € P5(R*) be submultiplicative such that @ is v-moderate and L%vo)(de ) C

L’(de) r € (0, 1]. Then Lemma 1.13 guarantees that for some choice of ¢, ¢ €
(vov) (R ) S M! )(Rd ) and lattice A , the setin (1.12) are dual frames to each others,

and that ¢ = (SA,¢)_1¢. (Cf. [33, Proposition 1.5 and Remark 1.6].)

Lemma 1.15 Let A € R? be a lattice, v € P (R4d) be submultiplicative, ¢1, ¢2 €
1 (R \ 0 and

P(x, &) = p1(X)Pa(E)e 5
Then there is an € > 0 such that

i((x,K) <k,€>)}

{px —j,§ —ve JitkkeeA

is a Gabor frame with canonical dual frame
W= j, & —0e Rt haD); veen

where Y = (ng,\ijA Y~ belongs to M(v)(RM)for everyr > Q.

The next result shows that Gabor theory is suitable when dealing with Orlicz mod-
ulation spaces. We omit the proof since the result follows from [37, Theorem 4.7]. See
also [28] for the Banach case.

Proposition 1.16 Let A C R? be alattice, v € P (R4d) be submultiplicative, @1, >
be quasi-Young functions oforder ro € (0, 1], , v € PR be such that w is v-
moderate and let ¢, € M.° ) (RY) and & > 0 be chosen such that

(Mg =Bl ween and {Y (- =)k ceen (1.13)

are dual frames to each others. If f € m? (w) 1. %2 (RY), then

f= > (VpHk e g —k

k,keeA
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with unconditionally convergence in M(w) <I>2(Rd) when (R*?) is dense in

L®®2(R24) and with convergence in M () (Rd ) with respect to the weak™ topol-
ogy otherwise. It holds

I{(Ve ) (K, 1)k ceen IIZEDl),@z < H{(Vy )k, )}k ceen ”ef’l)"bz

= £l Moo (1.14)

We also recall that the previous result was heavily based on the following conse-
quence of Theorems 4.5 and 4.6 in [37]. The proof is therefore omitted.

Proposition 1.17 Let A C RY be a lattice, ¢ > 0, ¢, € El(Rd), O, O, be quasi-
Young functions of order ro € (0, 1], and let w,v € QZE(RZ‘I) be such that w is
v-moderate. Then the the following is true:

(1) The analysis operator C;’ is continuous from M 2(R“i) into ﬂ(bl ®2(eA2),
and

||c§;Af||€g>1 0 SIS lypms f e MOV (RY);

(2) The synthesis operator Df/,’ is continuous from ¢® ( w) 102 (eA?) into M® ( w) 1 %2 (R,
and

A 1,®
IDg el o0 S llel oo, € € £ A,

L)
1.6 Pseudo-differential operators
Let M(d, €2) be the set of all d x d-matrices with entries in the set 2, and lets > 1/2,

a € S;(R*)and A € M(d, R) be fixed. Then the pseudo-differential operator Op 4 (@)
is the linear and continuous operator on S;(R?), given by

(OpA@) f)(x) = (27)~ / / aGx — Ax — ). 6) (08 dyde, (1.15)

when f € S;(R?). For general a € S (R*%), the pseudo-differential operator Op 4(a)
is defined as the linear and continuous operator from S; (R9) to S (R9) with distribu-
tion kernel given by

Koa(x,y) = Q) 2(Z \a)(x — Ax — y), x — y). (1.16)

Here %, F is the partial Fourier transform of F(x, y) € S, (R*) with respect to the
y variable. This definition makes sense, since the mappings

Fr and F(x,y)—> F(x —A(x —y),x — y) (1.17)
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are homeomorphisms on S (R??). In particular, the map a — K,  is a homeomor-
phism on S/ (R??).

An important special case appears when A = ¢ - [, with ¢ € R. Here and in what
follows, I € M(d, R) denotes the d x d identity matrix. In this case we set

Op,(a) = Op,.;(a).

The normal or Kohn-Nirenberg representation, a(x, D), is obtained when ¢ = 0, and
the Weyl quantization, Op" (a), is obtained when ¢ = % That is,

a(x, D) = Opy(a) and Op”(a) = Op,(a).

For any K € S (R91742) we let Tk be the linear and continuous mapping from
Sy (R%) to S/ (R®), defined by the formula

(Tx f, g)LZ(Rdz) =(K,g ®?)L2(Rd1+d2)- (1.18)

It is well-known that if A € M(d, R), then it follows from Schwartz kernel theorem
that K +— Tk and a — Op ,(a) are bijective mappings from .#”(R??) to the set of
linear and continuous mappings from .& (R?) to ./ (RY) (cf. e.g. [18]). Furthermore,
by e.g. [20, Theorem 2.2] it follows that the same holds true if each . and .’ are
replaced by S, and S}, respectively, or by X, and X}, respectively.

In particular, for every a; € S (R%) and A, Ay € M(d, R), there is a unique
ap € S (de) such that Opy, (a1) = Opy, (a2). The following result explains the
relations between a; and a;.

Proposition 1.18 Let aj, as € S /2(R2d) and Ay, Ay € M(d, R). Then

Opy, (a) = Opy,(a) & 12PePgy(x, &) = /M PeDrlg (x, £).(1.19)

In [32], a proof of the previous proposition is given, which is similar to the proof
of the case A =1 - [ in [18, 29, 38].

Leta € S, (R*%) be fixed. Then «a is called a rank-one element with respect to
A € M(d, R), if Op,4(a) is an operator of rank-one, i.e.

Ops@ f=(f. ) fi. [feSRY, (1.20)

for some f1, f» € S, (RY). By straight-forward computations it follows that (1.20) is

fulfilled if and only if a = Q)% W}“l f,» Where W;‘1 1, 1s the A-Wigner distribution,
defined by the formula

Wi 8 = F(AG+ ARG FA=D)E), (121)

which takes the form

Wj?l,fz(x, §) = (Zn)_% f f1(x + Ay) fo(x + (A — ])y)e—i(y,§> dy,
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when f1, f» € Ss (Rd ). By combining these facts with (1.19), it follows that

i(A2Dg D) yyA2  _ ,i(A1Dg,Dy) Ay
¢ Wfquz =¢ Wf1~fz’

(1.22)
forevery f1, f2 € S, (RY)and Aj, A, € M(d, R). Since the Weyl case is particularly
important, we set W?l,fz = Wy, 5, when A = %1, i.e. Wy, p, is the usual (cross-)
Wigner distribution of f; and f>.

For future references we note the link

Opa(@) f. ) r2way = )@, W )12 goa),.

(1.23)
aeS/(R*) and f,ge S;(R?)
between pseudo-differential operators and Wigner distributions, which follows by
straight-forward computations (see e.g. [34] and the references therein).
Forany A € M(d, R), the A-product, a#4b betweena € S/ (R*!)and b € S/ (R?>?)
is defined by the formula

Op 4 (a#ab) = Opy(a) o Opy (D), (1.24)

provided the right-hand side makes sense as a continuous operator from Sy(R?) to
S/(RY).

2 More general Orlicz modulation spaces

In this section we analyse more general Orlicz modulation spaces, parameterized with
more quasi-Young functions, compared to what is introduced in Sect. 1. We prove that
if two consecutive quasi-Young functions are the same, then the Orlicz modulation
space remains the same if one of these parameterizing quasi-Young functions are
removed. In particular it follows M ((Z’;b =M (Cfu) for the Orlicz modulation spaces
considered in Sect. 1.

Definition 2.1 Let 1 ; be (Borel) measures on RY, p=u1®---®puy, ®; be quasi-

Young functions, j = 1,..., N, @ be a weight function and f be measurable on
RAEH. Then £l o1.on ) = IfN-tollLox oy Whete fio k= 1..... N —1
are inductively defined by
oo, ... xn) = 1 x2, oo, xpoCxz, o X)) Lo )
Jitro(kt2s - XN) = ko X2, - XN porsr g,y k=100, N =2,

The space Lz’l) """ ®N () consists of all measurable functions f on R4+ +dN guch

®y,..., Oy (n) is induced by the

that ||f||L:1>l),...,q>N W is finite, and the topology of L(w)

quasi-norm || - ||, @....
0)
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Let
Iiy={,....dy)eZ;di+- - +dy=d).
Ford = (dy,...,dn) € Iy n, let

Py,..., o] Py,..., P
Ly iy " R = Ly ™Y (),

with o = dx; ® --- ® dxy with x; € R,

IfA; C R% are lattices and j 1s the standard discrete or Haar measure on A,
then we set

e PN (A) = 0P PN A) = LIV (), A= Ap x - X Ay,

(w) d,(w) d,(w)
as usual.
When discussing modulation spaces, it is suitable that d should belong to Igd N
which consists of all (dy, ..., dn) € Ix4,y such that

di+---+dy=d 2.1)
forsome k € {1,..., N — 1}, when N > 2. We observe that (2.1) implies
dis1+ - +dy =d.

We observe that o4, 1 = {2d}, and for convenience, we put Igd’ | = {2d}.
Now suppose that d € Igqu, Aj = ¢Z4, k is chosen such that (2.1) holds, and let

A=A x~--xAk=Ak+1x~-~xAN=de.
Then we write A2 = A x A and

®;,....® ®;,...® ... D
b (ah = b (o Y(e2*) = Ciy ™ M (AL X o X AN).

Let ®; be quasi-Young functions, j = 1,..., N, w € PER*),d € Ly y and
¢ € 1(R%) \ 0. Then the Orlicz modulation space

consists of all f € X (R?) such that

1A ooy = WVefIl o0
MJ,(lw) N ¢ ch,(lw) N
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is finite. By similar arguments as in [37] it follows that Mafb oo BN (R?) is a quasi-

. . L (@)
Banach space with quasi-norm || - || I which is a Banach space and norm,
d,

respectively, when @ ; is a Young function for every j € {l,..., N}.
A common situation is whend = (dy, . .., dp) for some integer dy > 1, and then
we put
bq,..., Oy bq,,..., Dy
M, = M; ()

Remark 2.2 For future references we observe that Proposition 1.16 carry over to Orlicz

modulation spaces of the form M dfb (‘ o) *y (R?) when ®; are quasi-Young functions,

j=1,....,N,we ,@E(de) andd = (dy, ...,dy) € Igd’N. In particular it follows
that (1.14) takes the form

”{(quf)(k, K)}k,xesA||E:(1~)~-¢N = ||{(V1//f)(k» K)}k,/ceaA ||Z;>(1~-)~~vd>1v

NI, oo (1.14)
Ma’.(lw) N

Proposition2.3 LetN, jo € {l,...,N—1},d = (d1,...,dn) € Iy n, Aj be lattices
ianJ',jz 1,..., N, and let

do=(dy,....dj,—1,djy +djyr1,djgs2, ..., dn) € Iy N_1.

Also let w be a weight on RY and S, W, j=1,...,N, k=1,...,N — 1, be
quasi-Young functions such that

Q= o
q)jo—H = CD]'O and \Ifj = . . (2~2)
Dir1, j=jo+ L

IfA=A1 xX--- X Ay, then

Ui,..., Wy Dq,..., [}
Ed‘o,(w) N = Ed‘,éw) N (A),
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and

/
lall wy..oy_; =< ||a||ed>1 AAAAA oy a € £y(A).
dp.(w) d,(w)

For the proof we recall that for the sequence a on Z41+% it holds

a e t®ZM) & Yy d(e-a(i j2) <o 2.3)
1.2

for some ¢ > 0. This implies that

a e t**ZNTE) & N d(er Y| Plea(jr)alii, j2)) < oo (2.4)
J2 J1

for some ¢; > 0 and a positive sequence ¢ on Z%.

Proof We only prove the result in the case N = 2 and for A ; = Z% . The general case
follows by these arguments and induction, and is left for the reader.

1
Let rg € (0, 1] be chosen such that ®q_; () = ®;(¢"0) are Young functions. Then

1/ro
lallgor.02 = (Hlla - @Il oo1.002) ™ -
Furthermore, |/|a||l,o;9, = |lallyo,®,. This reduce the result to the case when & is a
Young function, ® = 1 and a > 0.
The result is obviously true when ® = 0 near origin. In fact for such &,

€®(Zdl+d2) — EOO(Z{I|+d2) — Koo,w(zd|+d2) — £<D,<D(Zd1+d2)

in view of Proposition 1.11. In the same way, If lim;_, o4 (&) > 0, then
ZCD :Zl — el,l — eq),q)

and the result follows in this case as well (see, e.g. [28, 37]). It remains to consider

the case when ®(t) > 0, for r > 0, and when lim,_, o+ (%) = 0, Since £® and

£%® do not change when ®(¢) is replaced by an increasing convex function which is
equal to ¢ - () near t = 0, where ¢ > 0 is a constant, it follows from Proposition
1.11 that we may assume that ®(¢) < ¢ and that ® is increasing.

This gives

Y@ (e ) Pleali, p) | e Y Plealin, j2)

J2 J1 JisJ2

when c1, ¢ > 0 are constants.
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Hence if

Y ®(e-ai, o) < oo

Jij2

for some constant ¢ > 0, then

Yool ) Per-aln j) | < oo
22 j1

for some constants c1, ¢ > 0. By (2.3) and (2.4) we get

We need to deduce the reversed inclusion in (2.5).
First we assume that a has finite support,i.e. a(ji, j2) # 0 for at most finite numbers

of (j1, j2). Since ®(r) > 0 when r > 0 and lim,_ o+ (%) — 0, it follows that the

complementary Young function ®* to @ fulfills the same properties.
By Propositions 3 and 4 in Section 3.3 in [25], we have

lallge < sup |(a,b)ep|
1B, ox <1

and

lallpo.0 =< sup [(a, b),2|.
151l @x ox <1

By a combination of these relations and (2.5) we get

lallge < sup  [(a.b)p2| S sup  |(a,Db)p| < llaflge0.
b1l % <1 151l o+, 0% <1

and the searched estimate follows for sequences with finite support.
For general a > 0, leta;, j > 1 be sequences such that

aj <ajy1 and jli)n;oaj =aq. (2.6)

Then Beppo-Levi’s theorem gives

lallge = lim [lajllpe < lim |lajlle.e0 = |lallpoe.
j—00 Jj—>00

~
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For general a, we may split up a into positive and negative real and imaginary parts
and use (2.6) to get

lallge S llallgo.o.

This implies £®® (Z41+d2y s @ (ZA1+d2) and the result follows. O

By combining Propositions 1.16, 2.3 and Remark 2.2 we get the following. The
details are left for the reader.

Theorem 2.4 Let N and jo be positive integers such that 1 < jo < N — 1, ®; and
Ve, j=1,...,N, k=1,..., N — 1, be quasi-Young functions such that (2.2) holds
and let w € P (R*). Also let

d=(d,....dy) € Igd,N

and
do=(d\,....djy—1.djy +djos1.djy12. ..., dN) € I3y y_y.
Then
Mty RY) = byt R
and
I, 010N = If1 TR f ez RY.

Corollary 2.5 Let N be a positive integer,d € Igd’N, ® be a quasi-Young function and
w € P R*). Then

M7 (RY) = MG, (R

and

1Ly o =<1 f e f e Z{RY).

3 Continuity of pseudo-differential operators on Orlicz modulation
spaces

In this section we deduce continuity properties of pseudo-differential operators when
acting on Orlicz modulation spaces. The main results are Theorems 3.7 and 3.10 which
deal with such operators with symbols in M, o0 rO (R24) and M2 @ ® (R2), respectively,
where ro € (0, 1] and & is a quasi-Young functlons
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In the first part we deduce related continuity results for suitable matrix operators. In
the second part we combine these results and Gabor analysis results from the previous
section to establish the continuity results for the pseudo-differential operators.

In the following definition we recall some matrix classes, considered in [33]. Here
we observe that we may identify A x A matrices with sequences on A x A, when A
is a lattice in RY.

Definition 3.1 Let p, g € (0, oo], 1, ®; be quasi-Young functions, w € Lk (Rz‘i),
A be alattice in R? and let T’ be the map on £5(A x A), given by

(Ta)(j. k) =a(j,j—k), aecly(AxA), jkeA.
(1) The set U6(A x A) consists of all (formal) matrices

A= (a(j,k)jken 3.1

with entries a(j, k) in C, and Up(A x A) consists of all A in (3.1) such that at
most finite numbers of a(j, k) are nonzero.

(2) The set UZ:)I(A x A) consists of all matrices A = (a(jj, k)); xea such that

IATgpa = WT (@ - w)lera.

is finite.

(3) The set Ua‘)’@z (A x A) consists of all matrices A = (a(j, k))j xea such that

”A”U?’l)vq)2 = (T(a- o)l
(0]

is finite.

Remark 3.2 Let p € (0, co], ® be a quasi-Young function and w € g (R?*?). Then

it follows from Proposition 2.3 and straight-forward changes of variables that the

following is true. The details are left for the reader.

(1) If Ag = (a(j, k) geze is a matrix, then Ag € UPP(Z*), if and only if a €
ey (@) = ef (22%), and

A p.p = ||a||,p.r = ||a||,p .
lAollyz.r = lallrs = laller,

(2) If Ag = (a(j. k) yeza is a matrix, then A9 € UL, *(Z2?), if and only if a €

efjuf’ (22) = €2 (279, and

Apllree = |lall,e.0 = |lall,o .
4ollge.s = llall o0 = llalls,
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Next we discuss continuity for certain matrix operators when acting on discrete
Orlicz spaces. We recall that if A C RY is a lattice, w;, wy € Pg (R2d) and w €
P (R*) are such that

@2 (j) -
wi (k) —

w(j, k), j ke (3.2)

ro € (0, 1] and p, g € [rg, 0o], then [33, Theorem 2.3] shows that Ay from Zo(Az) to
£4,(A?) is uniquely extendable to a continuous map from Eé;?) (A?) to E&Z) (A?%). The
following result extends this result to discrete Orlicz spaces.

Theorem3.3 Let ¢ > 0, N > 1 be an integer, d € Igd’N, Dy, ..., Oy be quasi

Young functions of order ro € (0, 1], 1, wr € P (R*?), w € P (R*) be such that

(3:2) holds. If A € U (eZ*), then A from €35\ (sZ7?) 10 £33, | (eZ2?) restricts to

a continuous map from Ef Ec’u'l")’q)’v (eZ??) 1o Z;é;};')’q)’v (eZ??) and

®y,..., 0
IIAfIIE;(l ,,,,, on = [[Allgeero ”f”e;(l ..... on, by N (2. (3.3)

) 1)

We need the following lemma for the proof of Theorem 3.3. We omit the proof
since the result is a consequence of [37, Lemma 3.1].

Lemma3.4 Let A C R? be a lattice, B C £4(A) be a quasi-Banach space of order
ro € (0, 1], with quasi-norm || - || g. If

IfC=Dlz=Iflz  feB jeA,

then the discrete convolution map (f, g) — f *a g from £"0(A) x £(A) to £0(A)
extends uniquely to a continuous map from B x £"0(A) to %, and

If*gllz < flzlgllewn), feB, gelL).

Proof of Theorem 3.3 We only prove the result in the case N = 2. For general N, the

result follows by similar arguments, and is left for the reader. Let f € Ezl;ll’;p 2(eZ2%)

andset g = Af.
First we consider the case when A € Uy(¢Z*?) and let

aw(j, k) = la(j, o (j, k)|, fu (k) = |f&)wi k)]
and
8wr (J) = 18(Nw2(j)I-
We get

8wr (J) = [Af (Jw2(j)]
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< Y lal. b flwi®e, k)l

keeZ?d

= Y law(,j =K fu (G =B
keeZ2d

< D hok) fur (G =) = (ho * fu) (),
keeZ?d

where h, (k) = sup ayn(j, j —k).
jeeZX
By Lemma 3.4 we get

||Af||e?>1v)¢2 = ||ga)z||4z¢1v°>2 =< ”hw * fwl ”5‘1’1@2 = ||hw||6’0||fa)1 ||£¢1v®2
@

= ANyl fll o0
ANzl oon,

and the result follows in this case.
For general A € [U(OZ{O (Z*?) we decompose A and f into

A=A —A+i(A3—Ay) and f = fi— fo+i(fz— fa),

(3.4)

where A; and f; only have non-negative entries, chosen as small as possible. By
Beppo-Levi’s theorem and the estimates above it follows that A ; f is uniquely defined

as an element in 6?22?2 (sZZd ). It also follows from these estimates that (3.3) holds. O

Remark 3.5 Let
A =(a(j. k) reezze € Up(eZ*) and f = {f(j)}jceza € Lo(eZ??).
Then A, in (3.4) are given by
An = (an(J, 5))j keez2d n=1234,
where

ai(j, k) = max(Re(a(j, k), 0), az(j, k) =min(Re(a(j,k)),0),
a3(j, k) = max(Im(a(j, k), 0), a4(j, k) = min(Im(a(j, k)), 0),

and f,, = {fn(j)}jeszhl, are obtained in the same way after each a, (j, k) and a(j, k)

are replaced by f,,(j) and f(j), respectively.

Before we discuss continuity properties of pseudo-differential operators on Orlicz

modulation spaces, we have the following result concerning operator classes

{Opy(a); a e Mg, ®*(R¥)}
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of continuous operators from X I(Rd) to Ei(Rd ). Here recall [36, Proposition 1.9]
for analogous relations for pseudo-differential operators with symbols in (ordinary)
modulation spaces. Here and in what follow, A* denotes the transpose of the matrix
A.

Proposition3.6 Let N > 1 be an integer,d € Iz(t)d x A € M(d,R), @y,..., Dy be
quasi-Young functions, w € PgR*) and let

wA(x, €, n,y) =0 — Ay, & — A™n, n, y).

Then the following is true:
(1) The map &' ‘APs-Px) from M ?a?) Ry 10 M &‘)’A) (R%) restricts to a homeomorphism

Dy, ..., P Pq,..., 0
from Md‘,(lw) N(R2d) to Ma‘,(lwA) N(de),'

(2) The set

{Ops(@); a € M7 ™ (R*))

of operators from £1(R%) to Y (RY) is independent of A € M(d, R).

Proof We only prove the result in the case N = 2. For general N, the result follows
by similar arguments and is left for the reader.

It suffices to prove (1) in view of Proposition 1.18.

Leta € M) P (R™), ¢ € £ (RY), = €/ APs-Di)g and b = ¢!4P5-Dx) g, Then
it follows from Theorem 3.1 and (3.1) in [1] that ¥ € ¥ (R?) and

[Vyb(x, &, n, y)wa(x, &, 1, ¥)l
= |Vga(x — Ay, & — A", n, y)o(x — Ay, & — A%, n, y)l.

By applying the L®! quasi-norm with respect to the (x, £) variables we obtain

“Vwb( > 1, y)wA( > 1, y)”Ld)l
= [IVpa(- — (Ay, A*n), n, Mo (- — (Ay, A"n), 0, Wl Lo
= ”V(Pa( > 1, y)w( > 1, y)”Lq)I s

and applying the L ®2 quasi-norm with respect to the (y, 17) variable on the last equality
gives

||V1//b : wA"L‘I)l-q)Z = ||V¢a : 0)||L<1>11<1>2'
This gives
61,0190 = llall o105,
(wq) (@)

and the result follows. O
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We have now the following continuity result for pseudo-differential operators acting
on Orlicz modulation spaces. Here the involved weight functions should satisfy

w2 (x, §)

Sox+AQY—x),n+A"E—n).&E—ny—x). (3.5)
w1(y,n)

Theorem3.7 Let A € M(d,R), @1, Oy be quasi Young functions of order ry €
0,1, » € ZR*) and w1, wr € PeR*) be such that (3.5) holds, and let
ae M e rO (R*). Then Opy (a) from Z 1(RY) 10 %/ (Rd) is uniquely extendable to a

contmuous map from M (wll) ®2(R) 10 M ((S) ‘2)¢2 (RY), and

l OpA(a)|| d>1 ¢2(Rd)»M 1 2(Rd) ||a||M°°’0 (3.6)

The previous result can be generalized into the following.

Theorem 3.8 Let A € M(d,R), N be a positive integer,d € I N, ®j, j =1,..., N,
be quasi-Young functions of orderrg € (0, 11, w € PrR*) and w1, w2 € P (R*?)
be such that (3.5) holds, and let a € Moo "0 (R24). Then OpA(a) from E1(RY)
to X' (Rd) is uniquely extendable to a continuous map from Md (1 )¢N R?) 10

] [} d
M, (lwz) N(RY), and

Opa (@)l Mo lallyger0- (3.7

<
SN R My LN R |

We only prove Theorem 3.7. Theorem 3.8 follows by similar arguments and is left
for the reader.

We need some preparations for the proof of Theorem 3.7. First we have the following
extension of [33, Lemma 3.3] to the case of Orlicz modulation spaces.

Lemma 3.9 Let A, ¢1, 92, ¢, Y ande > Obeasin Lemma 1.15. Alsoletv € Pp(RM),

2d
ace M(OI%)(R ),

(. k) = (Vga)(j, ie, e — e,k — jre! E74),
where j = (j,1) € eA?, k= (k,k) € 8A2,
and let A, be the matrix A, = (co(J, k))j,keeA2~ Then the following is true:

(1) If ®1,  are quasi-Young functions and w, wy € Pg(R*) satisfy
wx, &, y,n) < wlx,n,§—1n,y—x), (3.8)
then a € Mq)’ 2 (R2d), if and only if A, € U <I)2(¢9(A2 x A?2)), and then

lall,,o1.00 < [|Adll vl

Ml 2(e(A2xA2)’
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(2) Op(a) as map from ¥ (R?) 10 Ei(Rd) is given by
Op(a) = Dy 0 Ay 0 C". (3.9)
Proof We have

|CO(J.’ j - k)l = |(V\I1a)(jvt_ K, K, _k)|

Hence, Proposition 1.16 gives

[Aallyoyos o nn,cnny = 1Vl 22 oz, = Dl 00

and (1) follows.
The assertion (2) is the same as assertion (2) in [33, Lemma 3.3]. The proof is
therefore omitted. O

Proof of Theorem 3.7 By Proposition 3.6 we may assume that A = 0.
Leta, A,, ¢1 and ¢; be the same as in Proposition 1.17 and Lemma 3.9. Then by
Proposition 1.17, Theorem 3.3 and Lemma 3.9 we get

I Op(a)ll <1>1 4)2 Sulr® f, Ji- o - I3,
(wp)

where
J1 = | Dg, ||e°’1‘°2—>M®1’¢2 < 00, (3.10)
(@3) (@2)
Jo = |Agll 010, 010y < OO (3.11)
Cwp) 7wy
and
3= [Cpyll o105 0.0, < 00. (3.12)
M)y ")

This gives the asserted continuity. The uniqueness follows from the facts that
<I> [ d d
o (R € M7 (R,

in view of Proposition 1.11 and that Op(a) is uniquely defined as a continuous operator

from M{3 )(Rd ) to M (R?), in view of [33, Theorem 3.1]. o

We have also the following.

(@2)

Theorem 3.10 Let A € M(d,R), ®¢ be a Young function, ®j the complementary
Young function of ®g, ® be a quasi-Young function such that

t

lim —— (3.13)
1—0+ (1)
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is finite and let € P R*) and w1, wr € P (R*) be such that (3.5) holds. Then
the following is true:
(1) ifa e M(w) (R2%), then Op A(a) from M(w )(Rd ) 10 MY, )(Rd ) is extendable to a
continuous map from M(w )(Rd) to M(w )(Rd) and
< .
1OPAG@ 1 s,y gy = 1Dty

2) ifa e M(w) (R24), then Opy (a) from M(w )(Rd) to M(w )(Rd) is uniquely extend-
able to a continuous map from M(w )(Rd) to M(w )(Rd), and

<
Il OpA(a)”ME’SI)(R‘I)%M&Z)(R’I) ~ ”a”M(‘Z)(RZd)-

Proof By Proposition 3.6 we may assume that A = 0.

Let A € R? bealattice, Ag = (a(j. k))jker € ULy ®(Ax A)and f € zf;"l)(A)

be such that a(j, k) > 0 and f(j) > O forevery j, k € A. We have
0 = (Ao N (Pn(j) = (a(j, ). N2 () S Nlal. D, Dllgeollf - will -
By applying the £®° norm and using Remark 3.2 we get

A0S, 20 < lal (200 W05 = Nl Aoll %% LW - (3.14)

b (@ <m1) (@ (@)

which implies that Ag f makes sense as an element in ZEIZSZ) (A).

For general Ag = (a(j, k) jkea € UZIZ;’)’(DO(A x A)and f € ZEIZ)I)(A), we define

Ap f in similar ways as in the proof of Theorem 3.3, by splitting up Ap and f into
positive and negative parts of their real and imaginary parts. By (3.14) we obtain

1 Aoll < [l Aoll, @00 (3.15)
DERISEALNIN Uiy

Now leta € Mf’o Ry and f € M( 0 (R?). Then we define Op(a) f by (3.9). The

asserted continuity in (1) now follows from Proposition 2.3, (3.10), (3.12) and (3.15).

Next let @ be as in (2) and let Ag = (a(j,k))jren € Ucp’)(b(A x A) and f €
(w )(A) be such that a(j, k) > 0 and f(j) > O for every j, k € A. Then

0 < (Ao )(Nw2(j) = (a(j, ), ez ())
SllaGs Doy el f-oilles Sllal, oG, el fleg -

where the last inequality follows from Proposition 1.11 and (3.13). B applying the
£% quasi-norm and splitting up general Ag = (a(J, k))jken € U @) (A x A) and
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fet>r ) M) into positive and negative real and imaginary parts, we obtain
||A0||@°0 (A)Hﬂb NUSES ||AO||U<1><I> (3.16)

The asserted continuity in (2) now follows by combining Proposition 2.3, (3.10), (3.12)
and (3.16).
The asserted uniqueness follows from the fact that if a € M ‘D)(RM ), then a €
)(R2d) in view of Proposition 1.11 and (3.13). Hence, if f € M( wl)(Rd), then
Op(a) f is uniquely defined as an element in M} (@) (Rd) (see e.g. [33, Theorem 3.1]).

This in turn implies that Op(a) f is uniquely defined as an element in M > (@ )(Rd), and
the result follows. O

4 Symbol product estimates on Orlicz modulation spaces

In this section we show that if @; are suitable weights, j =0,1,2, &y, Cbz are

quasi-Young functions of order rop € (0, 1], a; € M(d:) 11’) 2and ap € M2, then
D1,P2

(@0)

(@ 2) ’
Opy(aj) o Opy(az) equals Op 4 (b) for some a; € M
An essential condition on the weight functions is

wo(Ta(Z, X)) S o1(Ta(Y, X)Dan(Ta(Z,Y)), X,Y,Ze R*™), (41
where

TAX.Y)=(+Ax -y, E§+ A" —&),n—&,x—y),
=(x,& eR¥ Y =(y,n) e R, 4.2)

Theorem 4.1 Let A € M(d, R) and suppose that wy, € Pg (R4d), k=0,1,2, satisfy
(4.1) and (4.2). Let ®1, ®; be quasi Young functions of order ry € (0, 1]. Then the
map (a1, az) — ar#aaz from Xy (RM) X X1 (R2d) to X (R2d) is uniquely extendable
to a continuous map from M(q;ll’)% (R2) x M(CZ’;O (R 10 M(w) 102 (R2d) and

lai#aazrll, @0, S llarll, @0, llazlly,oon0. (4.3)
u&r®2 M |) 2 M<wz>

(@) (w1

We need some preparations for the proof. By [2, Proposition 3.2] it follows that

the map (A1, A2) — A o A is uniquely defined and continuous from IU(w ) (A x
A) x U(ﬁ;)"(A x A) to U((’:;)OO(A x A) when A C RY is a lattice, ro € (0, 1] and
w, w1, w € P R*?) satisfy

w(x,7) < o1(x, Vo (y,2), x,y,z€R (4.4)

The following lemma extends certain parts of this continuity to matrix classes satis-
fying Orlicz estimates.
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Lemma4.2 Let A € R? be a lattice, &1, ®> be quasi Young functions of order
ro € (0, 1], and let w, w1, wr € @E(de) satisfy (4.4). Then (A1, Ay) — A1 o0 Ay
from U?Zl‘;o(A x A) X [UOO 10 V(A X A)to [U(w) (A x A) restricts to a continuous map

(o} 1, P
from U(wﬂ) 2(A x A) x Ufj);)“(A x A) to U(w) 2(A x A) and
A1 0 Azl @0y S (AL 0.0 [[A2]lgoer. 4.5)

U(wl) g U(wll) : U(H’Z)O

Proof Let A; = (a1(j,k))jken, A2 = (a2(j, k));j rea be matrices, let the matrix
elements of B = A o A, be denoted by b(j, k), and set

am(j, k) = lan(j, j — Olon(j, j—k), m=12,

and
b(j,k)y=1b(j,j—Rlw(j,j—k).

Then

ALl o102 = llatllger.ess  [1A2]Igeero = llazlleen,

(wl) (@2)

||B||U:D1),d>2 = ”b”zq’l-@z

and
b(j. k) < Y ar(j,maz(j —m, k —m). (4.6)
meZd

By a similar application of Beppo-Levi’s theorem, and splitting up A; as in Remark
3.5, the result follows if we prove

[Dllgo1.02 < llatllger.e; llazlleen,

when ay, ay € Up(A x A) have non-negative entries.
Let ®¢_; be Young functions such that ®; (1) = ®¢_;(t"0),t > 0, j = 1,2, and let

ci(m) = llai(-,m)|lo; and ca(k) = supax(j, k).
JEA

By (4.6) and the fact that ®g ; is convex we get

b(j, k)|
Y o (' U )') Zcbm(mZal(j,m)maz(j—m,k—m)m)

JEA JEA meA
1 . , ,
=< Z Do,1 (E Z ay(j,m)cy(k —m) 0)
JEA meA
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= Zq)()l (Z al(li—om) (m)ro)

JjeA meA
- Z (Z g (al(] k— - m) 0>c2(m)r0)
JEA \meA
(j, k —m)"
=3 am® Y o, (mf) .
meA JEA ’

This gives

I6C-, O)e, < ZCz(m)r"llal( k=m)ls, = ()’ *cy)(K), 4.7

meA

in view of the definition of £%1-®2 norm.
By (4.7) we get

1
1Bllyoye: = llblleeror < (er ]| yw0.2)
w

< (Il 1 o2 1€’ IIel)’O = llatllgor.0; llazll¢oro

= A1l 1.0, [[A2]l gy
U(ml]) : U(wz)

Proof of Theorem 4.1 By Proposition 3.6 we may assume that A = 0.
Lete > 0, ¢1, ¢2 and A be the same as in the proofs of Theorem 3.7 and Lemma

39,a; € M(q;ll’)q)z (R*) and as € M:jz’;o (R??). By Theorem 2.17 we have

a @y X ||A @y, |la oo,y X || Ag || yoem

latllgoy 00 = IAillyaon. Tzl < 142l
A A A A

Op(ay) = D;l 0Ajo C(‘;Z and Op(a) = D;l o0Ajo C;z , (4.8

where

m = (am(j’k))j,kEé‘Az7
aw(j. k)= Woan(jox o=k k—j), j = (.0 €A’ k= (k.k) €A’

and
ﬂm(x7 67 Y, 77) = wm(xa T],E R/ E )C).
The condition (4.1) means for the weights ,,, m =0, 1, 2,

Do(X,Y) <01(X, 2)02(Z,Y), X,Y,ZeR¥. (4.9)
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Pick v € g (Rd ) such that w; is vy-moderate, where
v =1 Qv Qv Qv € PpRY).
Also let v = vf ® v% € P25 (R*) and
w(X,Y)=v(X —Y) e ZgRY), X,Y e R¥.
Then
D2(X,Y) Svo(X, 2)02(Z,Y), X,Y,ZeR¥. (4.10)
By (1.23) and (1.24) we get
Op(ar) o Oplaz) = Dy 0 Ao CH1
where
A=A 0CoA,

and C = Cj)’zA o D;’IA is a matrix of the form (¢(j, k)) j xer a2 With matrix elements

c(j, k), j. ke’
By [2, Lemma 3.3] we get

0
||C||U(°Ov;o = Z ( sup le(J,J —k)v(k)lr(’)
v

kesA? jeeA?
1

o
D Wadr®u@™ | < lgillyn < oo

keeA?

Thus

Ce ﬂ Uff(;)ro(sAz x £A?).

ro>0
Then we obtain from Lemmas 3.9 and 4.2

lai#oaz]l, @0, < ||A1 0 C o Az|. 0.0,
M U
) 0)

< ||A1 o C||,.01.0 || A2 |10 < ||A1]l, 01,95 ||C|[;70070 || A2 || ;0070
l IIU(ﬁ]l)zII IIUW ll ”U(ﬁll)2|| ”U(UO) l IIUW

S AL oo A2l < llarll, oo llazlleon.
~ Uiy - Uiy My M ay)
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