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Abstract
We consider time-frequency localization operators Aϕ1,ϕ2

a with symbols a in the wide
weighted modulation space M∞

w (R2d), and windows ϕ1, ϕ2 in the Gelfand–Shilov
space S(1)(Rd). If the weights under consideration are of ultra-rapid growth, we prove
that the eigenfunctions of Aϕ1,ϕ2

a have appropriate subexponential decay in phase
space, i.e. that they belong to the Gelfand–Shilov space S(γ )(R), where the parameter
γ ≥ 1 is related to the growth of the considered weight. An important role is played by
τ -pseudodifferential operators Opτ (σ ). In that direction we show convenient conti-
nuity properties of Opτ (σ )when acting on weighted modulation spaces. Furthermore,
we prove subexponential decay and regularity properties of the eigenfunctions of
Opτ (σ ) when the symbol σ belongs to a modulation space with appropriately chosen
weight functions. As an auxiliary result we also prove new convolution relations for
(quasi-)Banach weighted modulation spaces.

Keywords Time-frequency analysis · Pseudodifferential operators · Schatten
classes · Modulation spaces · Gelfand–Shilov spaces
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1 Introduction

Localization operators can be considered as appropriate mathematical instrument for
studying the signals with prescribed characteristics in a given region of the time-
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frequency plane [36]. They are defined as integral transforms determined by a suitable
choice of a symbol a and window functions ϕ1, ϕ2. In this paper we examine the
conditions which the symbol and windows of an operator should satisfy to ensure an
ultra-rapid decay and regularity of its eigenfunctions. It is known that the eigenfunc-
tions of time-frequency localization operators, also known as Daubechies operators
and denoted by Aϕ1,ϕ2

a , with Gaussian windows

ϕ1(t) = ϕ2(t) = π−d/4exp(−t2/2) and with a radial symbol a ∈ L1(R2d),

are Hermite functions, i.e. they have superexponential decay in phase space [16]. In a
different terminology, those eigenfunctions belong to the smallest projective Gelfand–
Shilov space S{1/2}(R) (cf. Definition 2.7).

The investigations in [16,36] are motivated by some questions in signal analysis.
However, localization operators appear in different mathematical contexts. For exam-
ple, they were used (under the name anti-Wick operators) in the study of quantization
problem in quantum mechanics, cf. [3,37]. In abstract harmonic analysis, localization
operators on a locally compact group G and Lebesgue spaces L p(G), 1 ≤ p ≤ ∞,
were studied in [50]. We also mention their presence in the form of Toeplitz operators
in complex analysis [4]. Here we do not intend to discuss different manifestations of
localization operators and refer to e.g. [17] for a survey.

Our results fits in the framework of time-frequency analysis. An important step
forward in that direction was made by the seminal paper [9]. Thereafter the subject has
been considered bymany authors including [1,5,10,13,26,41,44], where among others
one can find different continuity, Schatten class and lifting properties of localization
operators. The time-frequency analysis approach is based on the use of modulation
spaces as appropriate functional analytic framework. Another issue established in [5,9]
is the identification of localization operators as Weyl pseudodifferential operators.

The focus of this paper is to consider the properties of eigenfunctions of compact
localization operators. Our investigations are inspired by the recent work [2]. Indeed,
there it is shown that if the symbol a belongs to the modulation space M∞

vs⊗1(R
2d),

s > 0 (see Definition 2.17) and ϕ1, ϕ2 ∈ S(Rd), then the eigenfunctions of Aϕ1,ϕ2
a

are actually Schwartz functions. Moreover, similar result is proved for the Weyl pseu-
dodifferential operators whose symbol belongs to M∞,1

vs⊗vt
(R2d), for some s > 0 and

every t > 0, cf. [2, Proposition 3.6]. Here vs(z) = (1 + |z|2)s/2, s ∈ R, z ∈ R
d .

We extend the framework of the Schwartz space of test functions and its dual space
of tempered distributions given in [2] by replacing it with a more subtle family of
Gelfand–Shilov spaces and their duals, spaces of ultra-distributions. This is motivated
by the fact that Gelfand–Shilov spaces describe smoothness and decay properties
which go beyond the scope of the Schwartz space, cf. [7,22,23,34,35,40,44]. To that
end, as an important technical tool, we consider a class of weights which contains the
weights of subexponential growth, apart from polynomial type weights. As explained
in [27], replacing polynomial weights with weights of faster growth at infinity is not a
mere routine. Indeed, weights of ultra-rapid growth and decay give rise to ultradistri-
butional framework formodulation spaces. To underline this difference, we sometimes
refer to ultra-modulation spaces when modulation spaces are allowed to contain such
ultra-distributions.
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One of the main tools in our analysis is the (cross-)τ -Wigner distribution Wτ ( f , g),
f , g ∈ L2(Rd), seeDefinition 2.11. The relation between Wτ ( f , g) and the short-time
Fourier transform Vg( f ) (another relevant time-frequency representation) serves as a
bridge between properties of modulation spaces and τ -pseudodifferential operators.
More precisely, we extend the recent result [2, Theorem 3.3] to a more general class of
operators and weights (Theorem 3.3). Although this result follows from [47, Theorem
3.1] and [45, TheoremA.2], our proof is independent and based on different arguments.

Our first main result concerns decay properties of the eigenfunctions of τ -
pseudodifferential operators. In fact, by using iterated actions of the operator we
conclude that its eigenfunctions belong to the Gelfand–Shilov space S(γ )(Rd) (Theo-
rem 3.7). As already mentioned, this gives an information about regularity and decay
properties of eigenfunctions which can not be captured within the Schwartz class.

Finally, we useTheorem3.7 and convolution relation formodulation spaces (Propo-
sition 2.24) to show that the eigenfunctions of localization operators Aϕ1,ϕ2

a have
appropriate subexponential decay in phase space if a ∈ M∞

w (R2d), ϕ1, ϕ2 ∈ S(1)(Rd),
and if w is of a certain ultra-rapid growth. We use the representation of localization
operators as pseudodifferential operators. Evidently, the Weyl form of localization
operators suggests to introduce and consider τ -localization operators by using τ -
pseudodifferential operators and the (cross-)τ -Wigner distribution. However, it turns
out the such approach does not extend the class of localization operators given by
Definition 2.15 (cf. Proposition 2.16).

We end this introduction with a brief report of the content of the paper. In Pre-
liminaries we collect relevant background material. Apart from the review of known
results, it contains some new results and proofs. In Sect. 3 we prove our main results:
continuity properties of τ -pseudodifferential operators on modulation spaces, esti-
mates for eigenfunctions of τ -pseudodifferential operators and decay and smoothness
properties of eigenfunctions of localization operators. Appendix contains the proofs
of two auxiliary technical results.

1.1 Notation

We denote the Euclidean scalar product on R
d by xy := x · y and the Euclidean norm

by |x | := √
x · x . We put N0 := N ∪ {0}. A � B means that for given constants A and

B there exists a constant c > 0 independent of A and B such that A ≤ cB, and we
write A 	 B if both A � B and B � A.

We define the involution g∗ of a function g by g∗(t) := g(−t). Given a function f
on R

d its Fourier transform is normalized to be

F f (ω) = f̂ (ω) :=
∫
Rd

e−2π i xω f (x) dx, ω ∈ R
d .

Given two spaces A and B, we denote by A ↪→ B the continuous embedding of
A into B. S(Rd) denotes the Schwartz class, and its topological dual, the space of
tempered distributions, is indicated by S ′(Rd). By the brackets 〈 f , g〉 we mean the
extension of the L2-inner product 〈 f , g〉 := ∫

f (t)g(t) dt to any dual pair.
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Consider 0 < p < ∞ and a positive and measurable function m on R
d , then

L p
m(Rd) denotes the (quasi-)Banach space of measurable functions f : R

d → C such
that

‖ f ‖L p
m

:=
(∫

Rd
| f (x)|pm(x)p dx

)1/p

< +∞,

modulus the equivalence relation f ∼ g ⇔ f (x) = g(x) for a.e. x . When p = ∞,
f ∈ L∞

m (Rd) if ‖ f ‖L∞
m

:= ess sup x∈Rd | f (x)|m(x) < +∞, up to the equivalence
relation defined above. If m ≡ 1, we use abbreviated notation L p(Rd) = L p

1 (Rd). If
the restriction of f to any compact set belongs to L p(Rd), thenwewrite f ∈ L p

loc(R
d).

For given Hilbert space H and compact operator T on H its singular values
{sk(T )}∞k=1 are the eigenvalues of (T

∗T )1/2, which is a positive and self-adjoint opera-
tor. The Schatten class Sp(H), with 0 < p < ∞, is the set of all compact operators on
H such that their singular values are in 	p . For consistency,wedefine S∞(H) := B(H),
the set of all linear and bounded operators on H . We shall deal with H = L2(Rd).

By σP (T ) we denote the point spectrum of the operator T . If T is a com-
pact mapping on L2(Rd), then the spectral theory for compact operators yields
σ(T )�{0} = σP (T )�{0}, where σ(T ) is the spectrum of the operator. For com-
pact operators on L2(Rd), we have 0 ∈ σ(T ) and the point spectrum σP (T )�{0}
(possibly empty) is at most a countable set.

A function f ∈ L2(Rd)�{0} is an eigenfunction of the operator T if there exists
λ ∈ C such that T f = λ f . We are interested in the properties of eigenfunctions of
Aϕ1,ϕ2

a related to eigenvalues λ ∈ σP (Aϕ1,ϕ2
a )�{0}, whenever σP (Aϕ1,ϕ2

a )�{0} �= ∅.

2 Preliminaries

In this section we collect background material and prove some auxiliary results.
More precisely, we provide definitions and basic facts on weights, sequence spaces,
Gelfand–Shilov spaces, time-frequency representations, pseudodifferential and local-
ization operators, modulation spaces andGabor frames.We also give some new results
and proofs (Lemma 2.4, Proposition 2.16, Proposition 2.24) which will be used in
Sect. 3.

2.1 Weight functions

By weight m on R
d (or on Z

d ) we mean a positive function m > 0 such that m ∈
L∞

loc(R
d) and 1/m ∈ L∞

loc(R
d). A weight m is said to be submultiplicative if it is even

and
m(x + y) ≤ m(x)m(y), ∀ x ∈ R

d .

Given a weight m on R
d and a positive function v ∈ L∞

loc(R
d), we say that m is

v-moderate if
m(x + y) � v(x)m(y), ∀ x, y ∈ R

d .
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Therefore submultiplicative weights are moderate and the previous inequality implies
the following estimates:

v(−x)−1 � m(x) � v(x), ∀ x ∈ R
d .

For a submultiplicative weight v there are convenient ways to find a smooth weight
v0 which is equivalent to v in the sense that there is a constant C > 0 such that

C−1v0 ≤ v ≤ Cv0,

see e.g. [15,25,44].
Next we introduce some weights which will be used in the sequel. Given k, γ > 0

we define
w

γ

k (x) := ek|x |1/γ , x ∈ R
d .

Sometimes we shall use the above expression for k = 0 also, with obvious meaning.
If γ > 1 the above functions are called subexponential weights, and when γ = 1 we
write wk instead of w1

k . Note that (sub-)exponential weights w
γ

k are submultiplicative
[this follows from (29)]. When 0 < γ < 1 we obtain weights of super-exponential
growth at infinity. We shall work with the following weight classes defined for γ > 0:

PE (Rd) := {m weight onR
d | m is v − moderate for some submultiplicative v},

PE,γ (Rd) := {m weight onR
d | m isw

γ

k − moderate for some k > 0},
P0

E,γ (Rd) := {m weight onR
d | m isw

γ

k − moderate for every k > 0}.

For 0 < γ2 < γ1 we have

P0
E,γ1

⊆ PE,γ1 ⊆ P0
E,γ2

⊆ PE .

Moreover, for 0 < γ < 1 we have PE = PE,γ = P0
E,γ ; see [6, Remark 2.6] and

[49]. The next lemma states that if m ∈ PE , then it is wk-moderate fore some k > 0
large enough. This impliesPE = PE,1.

Lemma 2.1 Let m ∈ PE . Then m is wk-moderate fore some k > 0.

Proof The lemma is folklore, and we refer e.g. to Gröchenig [25], Cappiello and Toft
[6], and Toft [47,48] for its proof. ��

We remark thatPE contains the weights of polynomial type, i.e. weights moderate
with respect to some polynomial.

In the sequel P∗
E,γ means PE,γ or P0

E,γ . The following lemma follows by easy
calculations and we leave the proof for the reader (see also [44]). Observe that due to
the equality PE,1 = PE,γ = P0

E,γ , 0 < γ < 1, it is sufficient to consider γ ≥ 1.

Lemma 2.2 Consider γ > 0. Then P∗
E,γ (Rd) is a group under the pointwise multi-

plication and with the identity m ≡ 1.
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Given a function f defined onR
2d wedenote its restrictions toR

d ×{0} and {0}×R
d

as follows:

f |1(x) := f (x, 0), f |2(ω) := f (0, ω), x, ω ∈ R
d . (1)

Given two functions g, h defined on R
d their tensor product is the function on R

2d

defined in the following manner:

g ⊗ h(x, ω) := g(x)h(ω), (x, ω) ∈ R
2d .

The familiesP∗
E,γ turn out to be closed under restrictions and tensor products in the

sense of the following lemma. The proof is omitted, since it follows from definitions
and properties of the Euclidean norm.

Lemma 2.3 Consider γ > 0:

(i) if m ∈ P∗
E,γ (R2d), then m|1, m|2 ∈ P∗

E,γ (Rd);

(ii) if m, w ∈ P∗
E,γ (Rd), then m ⊗ w ∈ P∗

E,γ (R2d).

Nextwe exhibit a lemmawhichwill play a key role in the sequel, see Proposition 3.7.
The proof is given in the appendix.

Lemma 2.4 Consider γ ≥ 1, r , s ≥ 0, τ ∈ [0, 1] and

t ≥
{

r + sτ 1/γ if 1/2 ≤ τ ≤ 1,

r + s(1 + τ 2)1/2γ if 0 ≤ τ < 1/2.
(2)

Then for every x, ω, y, η ∈ R
d the following estimate holds true:

w
γ
r+s(x, ω)

w
γ
r (y, η)

≤ w
γ
s ⊗ w

γ
t

((
(1 − τ)x + τ y, τω + (1 − τ)η

)
,
(
ω − η, y − x

))
. (3)

We finish this subsection by introducing some polynomial weights which will be
used in Theorem 3.4 and Lemma 3.5. Let τ ∈ [0, 1] and u ≥ 0, then we define the
weights of polynomial type

vu(x, ω) := 〈(x, ω)〉u = (1 + |(x, ω)|2)u/2, (x, ω) ∈ R
2d , (4)

mτ
u((x, ω), (y, η)) := (1 + |x − τη| + |ω + (1 − τ)y|)u, (x, ω), (y, η) ∈ R

2d .

(5)

Remark 2.5 If vu and mτ
u are given by (4) and (5) respectively, then we notice that

mτ
u((x, ω), (y, η)) � vu ⊗ vu((x, ω), (y, η)), ∀ (x, ω), (y, η) ∈ R

2d .

which will be used in Lemma 3.5. Indeed:

mτ
u((x, ω), (y, η)) = (1 + |x − τη| + |ω + (1 − τ)y|)u
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� (1 + (|x | + |τη|)2 + (|ω| + |(1 − τ)y|)2)u/2

� (1 + |x |2 + τ 2|η|2 + |ω|2 + (1 − τ)2|y|2)u/2

� (1 + |(x, ω)|2 + |(y, η)|2)u/2

≤ (1 + |(x, ω)|2 + |(y, η)|2 + |(x, ω)|2|(y, η)|2)u/2

= (1 + |(x, ω)|2)u/2(1 + |(y, η)|2)u/2 = vu ⊗ vu((x, ω), (y, η)).

2.2 Spaces of sequences

Given 0 < p, q ≤ ∞ and m ∈ PE (Z2d), 	
p,q
m (Z2d) is the set of all sequences

a = (ak,n)k,n∈Zd such that the (quasi-)norm

‖a‖	
p,q
m

:=
⎛
⎜⎝ ∑

n∈Zd

⎛
⎝ ∑

k∈Zd

|ak,n|pm(k, n)p

⎞
⎠

q
p
⎞
⎟⎠

1
q

(with obvious changes for p = ∞ or q = ∞) is finite.
When p = q we recover the standard spaces of sequences 	

p,p
m (Z2d) = 	

p
m(Z2d).

In the following proposition we collect some properties that we shall use later on,
see [20,21].

Proposition 2.6 (i) Inclusion relations: consider 0 < p1 ≤ p2 ≤ ∞ and let m be
any positive weight function on Z

d . Then

	
p1
m (Zd) ↪→ 	

p2
m (Zd).

(ii) Young’s convolution inequality: consider m, v ∈ PE (Zd) such that v is sub-
multiplicative and m is v-moderate, 0 < p, q, r ≤ ∞ with

1

p
+ 1

q
= 1 + 1

r
, for 1 ≤ r ≤ ∞

and
p = q = r , for 0 < r < 1.

Then for all a ∈ 	
p
m(Zd), b ∈ 	

q
v (Zd), we have a ∗ b ∈ 	r

m(Zd), with

‖a ∗ b‖	r
m

≤ C‖a‖	
p
m
‖b‖	

q
v
,

where the constant C > 0 is independent of p, q, r , a and b. If m ≡ v ≡ 1, then
C = 1.

(iii) Hölder’s inequality: let m be any positive weight function on Z
d and 0 <

p, q, r ≤ ∞ such that 1/p + 1/q = 1/r . Then

	
p
m(Zd) · 	

q
1/m(Zd) ↪→ 	r (Zd).
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2.3 Gelfand–Shilov spaces

Let h, γ, τ > 0 be fixed. Then Sγ

τ ;h(Rd) is the Banach space of all f ∈ C∞(Rd) such
that

‖ f ‖Sγ

τ ;h
:= sup

p,q∈Nd
0

sup
x∈Rd

|x p∂q f (x)|
h|p|+|q||p|!τ |q|!γ < +∞, (6)

endowed with the norm (6).

Definition 2.7 Let γ, τ > 0. The Gelfand–Shilov spaces Sγ
τ (Rd) and 

γ
τ (Rd) are

defined as unions and intersections of Sγ

τ ;h(Rd)with respective inductive andprojective
limit topologies, respectively:

Sγ
τ (Rd) :=

⋃
h>0

Sγ

τ ;h(Rd) and γ
τ (Rd) :=

⋂
h>0

Sγ

τ ;h(Rd).

Note that 
γ
τ (Rd) �= {0} if and only if τ + γ ≥ 1 and (τ, γ ) �= (1/2, 1/2), and

Sγ
τ (Rd) �= {0} if and only if τ + γ ≥ 1, see [22,35]. For every τ, γ, ε > 0 we have

γ
τ (Rd) ↪→ Sγ

τ (Rd) ↪→ 
γ+ε
τ+ε (Rd) ↪→ S(Rd). (7)

If τ + γ ≥ 1, then the last two inclusions in (7) are dense, and if in addition (τ, γ ) �=
(1/2, 1/2) then the first inclusion in (7) is dense. Moreover, for γ < 1 the elements
of Sγ

τ (Rd) can be extended to entire functions on C
d satisfying suitable exponential

bounds [22].
In the sequel we will also use the following notation:

S(γ )(Rd) := γ
γ (Rd), S{γ }(Rd) :=Sγ

γ (Rd) and S∗(Rd),

where ∗ stands for (γ ) or {γ }.
Definition 2.8 The Gelfand–Shilov distribution spaces (Sγ

τ )′(Rd) and (
γ
τ )′(Rd) are

the projective and inductive limit respectively of (Sγ

τ ;h)′(Rd), the topological dual of

Sγ

τ ;h(Rd):

(Sγ
τ )′(Rd) :=

⋂
h>0

(Sγ

τ ;h)′(Rd) and (γ
τ )′(Rd) :=

⋃
h>0

(Sγ

τ ;h)′(Rd).

It follows that S ′(Rd) ↪→ (Sγ
τ )′(Rd) when τ + γ ≥ 1, and if in addition (τ, γ ) �=

(1/2, 1/2), then (Sγ
τ )′(Rd) ↪→ (

γ
τ )′(Rd).

The Gelfand–Shilov spaces enjoy beautiful symmetric characterizations which also
involve the Fourier transform of their elements. The following result has been rein-
vented several times, in similar or analogous terms, see [7,28,30,34].

Theorem 2.9 Let γ, τ ≥ 1/2. The following conditions are equivalent:

(i) f ∈ Sγ
τ (Rd) (resp. f ∈ 

γ
τ (Rd));
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(ii) There exist (resp. for every) constants A, B > 0 such that

‖x p f (x)‖L∞ � A|p||p|!τ and ‖ωq f̂ (ω)‖L∞ � B|q||q|!γ , ∀ p, q ∈ N
d
0 ;

(iii) There exist (resp. for every) constants A, B > 0 such that

‖x p f (x)‖L∞ � A|p||p|!τ and ‖∂q f (x)‖L∞ � B|q||q|!γ , ∀ p, q ∈ N
d
0 ;

(iv) There exist (resp. for every) constants h, k > 0 such that

‖ f (x)eh|x |1/τ ‖L∞ < +∞ and ‖ f̂ (ω)ek|ω|1/γ ‖L∞ < +∞;

(v) There exist (resp. for every) constants h, B > 0 such that

‖(∂q f )(x)eh|x |1/τ ‖L∞ � B|q||q|!γ , ∀ q ∈ N
d
0 . (8)

Moreover, we could consider any L p-norm, 1 ≤ p < ∞ instead of L∞-norm in
Theorem 2.9, cf. [30].

By using Theorem 2.9 it can be shown that the Fourier transform is a topological
isomorphism between Sγ

τ (Rd) and Sτ
γ (Rd), γ, τ ≥ 1/2 (F(Sγ

τ )(Rd) = Sτ
γ (Rd)),

which extends to a continuous linear transform from (Sγ
τ )′(Rd) onto (Sτ

γ )′(Rd). Sim-
ilar considerations hold for partial Fourier transforms with respect to some choice of
variables. In particular, if γ = τ and γ ≥ 1/2 then F(Sγ

γ )(Rd) = Sγ
γ (Rd), and if

moreover γ > 1/2, then F(
γ
γ )(Rd) = 

γ
γ (Rd), and similarly for their distribu-

tion spaces. Due to this fact, corresponding dual spaces are referred to as tempered
ultra-distributions (of Roumieu and Beurling type respectively), see [35].

The combination of global regularity with suitable decay properties at infinity [cf.
(8)] which is built in the very definition of Sγ

τ (Rd) and 
γ
τ (Rd), makes them suitable

for the study of different problems in mathematical physics [22,23,34]. We refer to
[13,14,40,41] for the study of localization operators in the context of Gelfand–Shilov
spaces. See also [44,47,48] for related studies.

2.4 Time-frequency representations

In this subsectionwe recall the definitions and basic properties of the short-timeFourier
transform and the (cross-)τ -Wigner distribution.

Given a function f on R
d and x, ω ∈ R

d , the translation operator Tx and the
modulation operator Mω are defined as

Tx f (t) := f (t − x) and Mω f (t) := e2π iωt f (t) t ∈ R

and their composition π(x, ω) := MωTx is called time-frequency shift. We can now
introduce two most commonly used time-frequency representations of a signal f , the
so-called short-time Fourier transform (STFT) and the (cross-)Wigner distribution.
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Definition 2.10 Consider a window g ∈ S(1)(Rd)�{0}. The short-time Fourier trans-
form of f ∈ S(1)(Rd) with respect to g is the function defined on the phase-space as
follows:

Vg f (x, ω) := 〈 f , π(x, ω)g〉 =
∫
Rd

g(t − x)e−2π i tω f (t) dt, (x, ω) ∈ R
2d .

We refer to Gröchenig [24, Chapter 3] for the properties and different equivalent
forms of the STFT.

Definition 2.11 Let τ ∈ [0, 1]. The (cross-)τ -Wigner distribution of f , g ∈ S(1)(Rd)

is defined by

Wτ ( f , g)(x, ω) :=
∫
Rd

e−2π i tω f (x + τ t)g(x − (1 − τ)t) dt, (x, ω) ∈ R
2d . (9)

When τ = 1/2, W1/2( f , g) is simply called the cross-Wigner distribution of f
and g and is denoted by W ( f , g) for short. Both STFT and Wτ are well defined for
f , g ∈ L2(Rd) and if the operator Aτ , τ ∈ (0, 1), is defined on L2(Rd) as

Aτ f (t) := f

(
τ − 1

τ
t

)
, t ∈ R

d ,

then the connection between the STFT and τ -Wigner distribution is described as
follows.

Lemma 2.12 Let g ∈ S(1)(Rd)�{0} and f ∈ S(1)(Rd).

(i) If τ ∈ (0, 1), then

Wτ ( f , g)(x, ω) = 1

τ d
e2π i 1

τ
ωx VAτ g f

(
1

1 − τ
x,

1

τ
ω

)
, ∀ (x, ω) ∈ R

2d ; (10)

(ii) if τ = 0, then

W0( f , g)(x, ω) = e−2π i xω f (x)ĝ(ω) = R( f , g)(x, ω), ∀ (x, ω) ∈ R
2d;

(iii) if τ = 1, then

W1( f , g)(x, ω) = e2π i xωg(x) f̂ (ω) = R(g, f )(x, ω), ∀ (x, ω) ∈ R
2d;

where R( f , g) denotes the Rihaczek distribution of f and g.

Proof The proof is straightforward, and we show only (i) for the sake of completeness
(see also [15, Proposition 1.3.30]). After the change of variables s = x + τ t in (9) we
obtain

Wτ ( f , g)(x, ω) = 1

τ d

∫
Rd

e−2π i 1
τ
(s−x)ω f (s)g(

1

τ
(x − (1 − τ)s)) ds
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= 1

τ d
e2π i 1

τ
xω

∫
Rd

e−2π is ω
τ f (s)Aτ g(s − x

1 − τ
) ds

= 1

τ d
e2π i 1

τ
ωx VAτ g f

(
1

1 − τ
x,

1

τ
ω

)
, ∀ (x, ω) ∈ R

2d ,

since Aτ g(s − x
1−τ

) = g( x
τ

+ τ−1
τ

s).
Notice that when τ = 1/2, we have A1/2g(t) = g(−t), and (10) becomes

W ( f , g)(x, ω) = 2de4π i x ·ωVA1/2g f (2x, 2ω), ∀ (x, ω) ∈ R
2d .

��
Definitions 2.10 and 2.11 are uniquely extended to f ∈ (S(1))′(Rd) by duality.
We will also use the following fact related to time-frequency representations of the

Gelfand–Shilov spaces.

Theorem 2.13 Let S∗(Rd) denote S{γ }(Rd), γ ≥ 1/2, or S(γ )(Rd), γ > 1/2. More-
over, let g ∈ S∗(Rd)�{0} and τ ∈ [0, 1]. Then the following are true:

(i) if f ∈ S∗(Rd), then Wτ ( f , g), Vg f ∈ S∗(R2d);
(ii) if f ∈ (S∗)′(Rd) and Wτ ( f , g) ∈ S∗(R2d) or Vg f ∈ S∗(R2d), then f ∈ S∗(Rd).

Proof The proof for the STFT and W1/2 can be found in several sources, see e.g.
[28,38,44]. The case τ ∈ [0, 1], τ �= 1/2, can be proved in a similar fashion and is
left for the reader as an exercise. ��

2.5 Pseudodifferential and localization operators

Next we introduce τ -quantizations as pseudodifferential operators acting on S(1)(Rd).
We address the reader to the textbooks [15,24] in which the framework is mostly the
one of S(Rd) and S ′(Rd), and we suggest [34,38,40,44,47,48] for the framework of
Gelfand–Shilov spaces and their spaces of ultra-distributions.

Definition 2.14 Let τ ∈ [0, 1]. Given a symbol σ ∈ (
S(1)

)′
(R2d), the τ -quantization

of σ is the pseudodifferential operator

Opτ (σ ) : S(1)(Rd) → (
S(1))′

(Rd)

defined by the formal integral

Opτ (σ ) f (x) :=
∫∫

R2d
e2π i(x−y)ωσ ((1 − τ)x + τ y, ω) f (y) dydω, (11)

or, in a weak sense,

〈Opτ (σ ) f , g〉 =
∫
Rd

∫∫
R2d

e2π i(x−y)ωσ ((1 − τ)x + τ y, ω) f (y)g(x) dydωdx,

f , g ∈ S(1)(Rd).
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The correspondence between the symbol σ and the operator Opτ (σ ) given by
(11) is known as the Shubin τ -representation [37]. By a change of variables and an
interchange of the order of integration, it can be shown that Opτ (σ ), σ ∈ (

S(1)
)′
(R2d),

and the (cross-)τ -Wigner distribution are related by the following formula:

〈Opτ (σ ) f , g〉 = 〈σ, Wτ (g, f )〉, f , g ∈ S(1)(Rd). (12)

Thus, for τ = 1/2 (the Weyl quantization) we recover the Weyl pseudodifferential
operators, and when τ = 0 we obtain the Kohn–Nirenberg operators. Commonly used
equivalent notation for theWeyl operators in the literature are OpW(σ ), Opw(σ ), Lσ or
σw. The Weyl calculus reveals to be extremely important since every continuous and
linear operator from S(1)(Rd) into

(
S(1)

)′
(Rd) can be written as the Weyl transform

of some (Weyl) symbol σ ∈ (
S(1)

)′
(R2d). This is due to the Schwartz kernel theorem

when extended to the duality between S(1)(Rd) and
(
S(1)

)′
(Rd), see [32,40].

Next we introduce localization operators in the form of the STFT multipliers, and
discuss their relation to τ -quantizations given above.

Definition 2.15 Let there be given window functions ϕ1, ϕ2 ∈ S(1)(Rd)�{0} and a
symbol a ∈ (

S(1)
)′
(R2d). Then the localization operator

Aϕ1,ϕ2
a : S(1)(Rd) → (

S(1))′
(Rd)

is the continuous and linear mapping formally defined by

Aϕ1,ϕ2
a f (t) :=

∫∫
R2d

a(x, ω)Vϕ1 f (x, ω)MωTxϕ2(t) dxdω,

or, in a weak sense,

〈Aϕ1,ϕ2
a f , g〉 := 〈a, Vϕ1 f Vϕ2g〉, f , g ∈ S(1)(Rd). (13)

It can be proved that every localization operator Aϕ1,ϕ2
a can be written in the Weyl

form, i.e. identified with the Weyl pseudodifferential operator due to the following
formula

Aϕ1,ϕ2
a = Op1/2(a ∗ W (ϕ2, ϕ1)), (14)

and σ = a ∗ W (ϕ2, ϕ1) is called Weyl symbol of Aϕ1,ϕ2
a . We refer to [5, Lemma 2.4]

or [19] for the proof, see also [41].
By combining (12) and (14) we define τ -localization operators as follows.
Let there be given τ ∈ [0, 1], windows ϕ1, ϕ2 ∈ S(1)(Rd)�{0} and a symbol

a ∈ (
S(1)

)′
(R2d). Then τ -localization operator is defined to be

Aϕ1,ϕ2
a,τ :=Opτ (a ∗ Wτ (ϕ2, ϕ1)). (15)

In other words, every τ -localization operator is identified with τ -pseudodifferential
operator associated to the symbol στ = a ∗ Wτ (ϕ2, ϕ1).
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It turns out that the class of localization operators given by (15) coincides to the
one given by Definition 2.15, see [45]. We give an independent proof based on the
kernel argument, and point out that the result is essentially a restatement of (1.23) in
[45].

Proposition 2.16 Let ϕ1, ϕ2 ∈ S(1)(Rd)�{0}, a ∈ (
S(1)

)′
(R2d) and τ ∈ [0, 1]. Then

Aϕ1,ϕ2
a = Aϕ1,ϕ2

a,τ .

Proof By the Schwartz kernel theorem for S(1)(Rd) and
(
S(1)

)′
(Rd), it suffices to

show that the kernels of Aϕ1,ϕ2
a and Aϕ1,ϕ2

a,τ coincide. From (13) it follows that

〈Aϕ1,ϕ2
a f , g〉 = 〈k, g ⊗ f 〉,

where the kernel k of the operator Aϕ1,ϕ2
a is given by

k(t, y) =
∫∫

R2d
a(x, ω)MωTxϕ1(y)MωTxϕ2(t)dxdω. (16)

It remains to calculate the kernel of Aϕ1,ϕ2
a,τ . By the commutation relation Tx Mω =

e−2π i xω MωTx , and the covariance property of τ -Wigner transform:

Wτ (Tx Mω f , Tx Mωg)(p, q) = Wτ ( f , g)(p − x, q − ω),

we calculate a ∗ Wτ (ϕ2, ϕ1) and obtain

a ∗ Wτ (ϕ2, ϕ1)(p, q) =
∫∫

R2d
a(x, ω)Wτ (Tx Mωϕ2, Tx Mωϕ1)(p, q)dxdω

=
∫∫

R2d
a(x, ω)

(∫
Rd

MωTxϕ2(p + τ s)MωTxϕ1

(p − (1 − τ)s)e−2π iqsds
)

dxdω.

Now by using a suitable interpretation of the oscillatory integrals in the distributional
sense, and appropriate change of variables (cf. [41]) we get

〈Opτ (a ∗ Wτ (ϕ2, ϕ1)) f , g〉 = 〈a ∗ Wτ (ϕ2, ϕ1), Wτ (g, f )〉
=

∫∫
R2d

a(x, ω)

∫∫
R2d

( ∫∫
R2d

MωTxϕ2(p + τ s)MωTxϕ1(p − (1 − τ)s)e−2π iq(s−r)

×g(p + τr) f (p − (1 − τ)r)dsdr
)
dpdqdxdω

=
∫∫

R2d

∫∫
R2d

a(x, ω)MωTxϕ2(t)MωTxϕ1(y)dxdωg(t) f (y)dtdy

= 〈kτ , g ⊗ f 〉 = 〈k, g ⊗ f 〉,
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where k is given by (16). By the uniqueness of the kernel we conclude that

Aϕ1,ϕ2
a = Aϕ1,ϕ2

a,τ

and the proof is finished. ��

2.6 Ultra-modulation spaces

Weuse the terminology ultra-modulation spaces in order to emphasize that such spaces
may contain ultra-distributions, contrary to the most usual situation when members
of modulation spaces are tempered distributions. However, ultra-modulation spaces
belong to the family of modulation spaces introduced in [18]. We refer to e.g. [46,48]
for a general approach to the broad class of modulation spaces.

Definition 2.17 Fix a non-zero window g ∈ S(1)(Rd), a weight m ∈ PE (R2d) and
0 < p, q ≤ ∞. The ultra-modulation space M p,q

m (Rd) consists of all tempered ultra-
distributions f ∈ (

S(1)
)′
(Rd) such that the (quasi-)norm

‖ f ‖M p,q
m

:= ‖Vg f ‖L p,q
m

=
(∫

Rd

(∫
Rd

|Vg f (x, ω)|pm(x, ω)pdx

) q
p

dω

) 1
q

(17)

(obvious modifications with p = ∞ or q = ∞) is finite.

We write M p
m(Rd) for M p,p

m (Rd), and M p,q(Rd) if m ≡ 1.
We recall that the spaces M p,q

m (Rd) ⊂ S ′(Rd), with 1 ≤ p, q ≤ ∞, g ∈ S(Rd)

and m of at most polynomial growth at infinity, were invented by Feichtinger [18]
and called modulation spaces. There it was proved that they are Banach spaces and
that different window functions in S(Rd)�{0} yield equivalent norms. Moreover,
the window class can be enlarged to the Feichtinger algebra M1,1

v (Rd), where v is
a submultiplicative weight of at most polynomial growth at infinity such that m is
v-moderate.

It turned out that properties analogous to the Banach case hold in the quasi-Banach
one as well, see [21]. Moreover, such properties remain valid also in the more general
setting ofDefinition 2.17.We collect them in the following theorem in the samemanner
as it is done in e.g. [46,47], see also the references given there.

Theorem 2.18 Consider 0 < p, p1, p2, q, q1, q2 ≤ ∞ and weights m, m1, m2 ∈
PE (R2d). Let ‖·‖M p,q

m
be given by (17) for a fixed g ∈ S(1)(Rd)�{0}. Then:

(i)
(

M p,q
m (Rd), ‖·‖M p,q

m

)
is a quasi-Banach space whenever at least one between

p and q is strictly smaller than 1, otherwise it is a Banach space;
(ii) if g̃ ∈ S(1)(Rd)�{0}, g̃ �= g, then it induces a (quasi-)norm equivalent to

‖·‖M p,q
m

;
(iii) if p1 ≤ p2, q1 ≤ q2 and m2 � m1, then;

S(1)(Rd) ↪→ M p1,q1
m1 (Rd) ↪→ M p2,q2

m2 (Rd) ↪→ (
S(1))′

(Rd);
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(iv) if p, q < ∞, then : (
M p,q

m
)′

(Rd) ∼= M p′,q ′
1/m (Rd),

where

p′:=
{

∞ if 0 < p ≤ 1
p

p−1 if 1 < p < ∞
and similarly for q ′.

Remark 2.19 Point (ii) of the previous theorem tell us that the definition of M p,q
m (Rd)

is independent of the choice of the window.Moreover, it can be shown that the class for
window functions can be extended from S(1)(Rd) to Mr

v (Rd), where r ≤ p, p′, q, q ′
and v ∈ PE (R2d) is submultiplicative and such that m is v-moderate [47].

We refer to Cordero [8] for the density of S(1)(Rd) in M p,q
m (Rd).

The following proposition is proved in e.g. [39, Theorem 4.1], [44, Theorem 3.9].

Proposition 2.20 Consider γ ≥ 1 and 1 ≤ p, q ≤ ∞. Then

S(γ )(Rd) =
⋂
k≥0

M p,q
w

γ
k

(Rd),
(
S(γ )

)′
(Rd) =

⋃
k≥0

M p,q
1/wγ

k
(Rd).

In some situations it is convenient to consider ultra-modulation spaces as subspaces
of

(
S{1/2})′

(Rd) (taking thewindow g inS{1/2}(Rd)), see for example [8,47].However,
for our purposes it is sufficient to consider theweights inPE (R2d), and then M p,q

m (Rd)

is a subspace of
(
S(1)

)′
(Rd). We address the reader to Toft [47, Proposition 1.1] and

references quoted there for more details.
We restate [13, Proposition 2.6] in a simplified case suitable to our purposes.

Proposition 2.21 Assume 1 ≤ p, q ≤ ∞, m ∈ PE (R2d) and g ∈ S(1)(Rd) such that
‖g‖L2 = 1. Then for every f ∈ M p,q

m (Rd) the following inversion formula holds true:

f =
∫∫

R2d
Vg f (x, ω)MωTx g dxdω, (18)

where the equality holds in M p,q
m (Rd).

The embeddings betweenmodulation spaces are studied bymany authors.We recall
the recent contribution [29, Theorem 4.11], which is convenient for our purposes and
which will be used in Lemma 3.5.

Theorem 2.22 Let 0 < p j , q j ≤ ∞, s j , t j ∈ R for j = 1, 2 and consider the
polynomial weights vt j , vs j defined as in (4). Then

M p1,q1
vt1⊗vs1

(Rd) ↪→ M p2,q2
vt2⊗vs2

(Rd)

if the following two conditions hold true:
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(i) (p1, p2, t1, t2) satisfies one of the following conditions:

(C1)
1

p2
≤ 1

p1
, t2 ≤ t1,

(C2)
1

p2
>

1

p1
,

1

p2
+ t2

d
<

1

p1
+ t1

d
;

(ii) (q1, q2, s1, s2) satisfies one of the conditions (C1) or (C2) with p j and t j replaced
by q j and s j respectively.

2.7 Gabor frames

Consider a lattice� := αZ
d ×βZ

d ⊂ R
2d for someα, β > 0.Given g ∈ L2(Rd)�{0},

the set of time-frequency shifts G(g,�) := {π(λ)g : λ ∈ �} is called a Gabor system.
The set G(g,�) is a Gabor frame if there exist constants A, B > 0 such that

A‖ f ‖2L2 ≤
∑
λ∈�

|〈 f , π(λ)g〉|2 ≤ B‖ f ‖2L2 , ∀ f ∈ L2(Rd). (19)

If G(g,�) is a Gabor frame, then the frame operator

S f :=
∑
λ∈�

〈 f , π(λ)g〉π(λ)g, f ∈ L2(Rd),

is a topological isomorphism on L2(Rd). Moreover, if we define h := S−1g ∈ L2(Rd),
then the system G(h,�) is a Gabor frame and we have the reproducing formulae

f =
∑
λ∈�

〈 f , π(λ)g〉π(λ)h =
∑
λ∈�

〈 f , π(λ)h〉π(λ)g, ∀ f ∈ L2(Rd), (20)

with unconditional convergence in L2(Rd). The window h is called the canonical dual
window of g. In particular, if h = g and ‖g‖L2 = 1, then A = B = 1, the frame
operator is the identity on L2(Rd) and theGabor frame is calledParseval Gabor frame.
In particular, from (19) we can recover exactly the L2-norm of every vector:

‖ f ‖2L2 =
∑
λ∈�

|〈 f , π(λ)g〉|2, ∀ f ∈ L2(Rd).

Any window h ∈ L2(Rd) such that (20) is satisfied is called alternative dual window
for g. Given two functions g, h ∈ L2(Rd) we are able to extend the notion of Gabor
frame operator to the operator Sg,h = S�

g,h in the following way:

Sg,h f :=
∑
λ∈�

〈 f , π(λ)g〉π(λ)h, f ∈ L2(Rd),
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whenever this is well defined. With this notation the reproducing formulae (20) can
be rephrased as Sg,h = I = Sh,g , where I is the identity on L2(Rd).

Discrete equivalent norms produced by means of Gabor frames make of ultra-
modulation spaces a natural framework for time-frequency analysis. We address the
reader to Galperin and Samarah [21], Gröchenig [24], and Toft [46,47].

Theorem 2.23 Consider m, v ∈ PE (R2d) such that v is submultiplicative and m is
v-moderate. Take � := αZ

d ×βZ
d , for some α, β > 0, and g, h ∈ S(1)(Rd) such that

Sg,h = I on L2(Rd). Then

f =
∑
λ∈�

〈 f , π(λ)g〉π(λ)h =
∑
λ∈�

〈 f , π(λ)h〉π(λ)g, ∀ f ∈ M p,q
m (Rd),

with unconditional convergence in M p,q
m (Rd) if 0 < p, q < ∞ and with weak-*

convergence in M∞
1/v(R

d) otherwise. Moreover, there exist 0 < A ≤ B such that, for

every f ∈ M p,q
m (Rd),

A‖ f ‖M p,q
m

≤
⎛
⎜⎝ ∑

n∈Zd

⎛
⎝ ∑

k∈Zd

|〈 f , π(αk, βn)g〉|pm(αk, βn)p

⎞
⎠

q
p
⎞
⎟⎠

1
q

≤ B‖ f ‖M p,q
m

,

independently of p, q, and m. Equivalently:

‖ f ‖M p,q
m (Rd ) 	 ‖(〈 f , π(λ)g〉)λ‖	

p,q
m (�) = ‖(Vg f (λ))λ‖	

p,q
m (�). (21)

Similar inequalities hold with g replaced by h.

Now we are able to prove the convolution relations for ultra-modulations spaces
which will be used to prove our main results in Sect. 3. For the Banach cases with
weight of at most polynomial growth at infinity, convolution relations were studied in
e.g [9,42,43]. We modify the technique used in [2] to the Gelfand–Shilov framework
presented so far. The essential tool is the equivalence between continuous and discrete
norm (21).

Proposition 2.24 Let there be given 0 < p, q, r , t, u, γ ≤ ∞ such that

1

u
+ 1

t
= 1

γ
,

and
1

p
+ 1

q
= 1 + 1

r
, for 1 ≤ r ≤ ∞

whereas
p = q = r , for 0 < r < 1.
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Consider m, v, μ ∈ PE (R2d) such that m is v-moderate. Then

M p,u
m|1⊗μ(Rd) ∗ Mq,t

v|1⊗v|2μ−1(R
d) ↪→ Mr ,γ

m (Rd),

where m|1, v|1, v|2 are defined as in (1).

Proof First observe that due to Lemmas 2.2 and 2.3 it follows that the ultra-modulation
spaces which came into play are well defined.

The main tool is the idea contained in [9, Proposition 2.4]. We take the ultra-
modulation norm with respect to the Gaussian windows g0(x) := e−πx2 ∈ S{1/2}(Rd)

and g(x) := 2−d/2e−πx2/2 = (g0 ∗ g0)(x) ∈ S{1/2}(Rd).
Since the involution operator g∗(x) = g(−x) and the modulation operator Mω

commute, by a direct computation we have

Mω(g∗
0 ∗ g∗

0) = Mωg∗
0 ∗ Mωg∗

0

and
Vg f (x, ω) = e−2π i xω( f ∗ Mωg∗)(x).

Thus, by using the associativity and commutativity of the convolution product, we
obtain

Vg( f ∗ h)(x, ω) = e−2π i xω
(
( f ∗ h) ∗ Mωg∗)(x)

= e−2π i xω
(
( f ∗ Mωg∗

0) ∗ (h ∗ Mωg∗
0)

)
(x) .

We use the norm equivalence (21) for a suitable � = αZ
d × βZ

d , and then the
v-moderateness in order to majorize m:

m(αk, βn) � m(αk, 0)v(0, βn) = m|1(αk)v|2(βn).

Eventually Young’s convolution inequality for sequences is used in the k-variable
and Hölder’s one in the n-variable. Indeed both inequalities can be used since p, q, r ,
γ, t, u fulfill the assumptions of the proposition. We write in details the case when
r , γ, t, u < ∞ and leave to the reader the remaining cases, when one among the
indices r , γ, t, u is equal to ∞, which can be done analogously.

‖ f ∗ h‖Mr ,γ
m

	 ‖((Vg( f ∗ h))(αk, βn)m(αk, βn))k,n‖	r ,γ (Z2d )

�

⎛
⎜⎝ ∑

n∈Zd

⎛
⎝ ∑

k∈Zd

|( f ∗ Mβng∗
0) ∗ (h ∗ Mβng∗

0)(αk)|r m|1(αk)r

⎞
⎠

γ /r

v|2(βn)γ

⎞
⎟⎠

1/γ

=
⎛
⎝ ∑

n∈Zd

‖( f ∗ Mβng∗
0) ∗ (h ∗ Mβng∗

0)‖γ

	r
m|1 (αZd )

v|2(βn)γ

⎞
⎠

1/γ
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�

⎛
⎝ ∑

n∈Zd

‖ f ∗ Mβng∗
0‖γ

	
p
m|1 (αZd )

‖h ∗ Mβng∗
0‖γ

	
q
v|1 (αZd )

v|2(βn)γ

⎞
⎠

1/γ

�

⎛
⎝ ∑

n∈Zd

‖ f ∗ Mβng∗
0‖u

	
p
m|1 (αZd )

μ(βn)u

⎞
⎠

1
u
⎛
⎝ ∑

n∈Zd

‖h ∗ Mβng∗
0‖t

	
q
v|1 (αZd )

v|2(βn)t

μ(βn)t

⎞
⎠

1
t

= ‖((Vg0 f )(λ))λ‖	
p,u
m|1⊗μ(�) ‖((Vg0h)(λ))λ‖	

q,t

v|1⊗v|2μ−1 (�)

	 ‖ f ‖M p,u
m|1⊗μ

‖h‖Mq,t

v|1⊗v|2μ−1
.

This concludes the proof. ��

3 Main results

From the previous observations it follows that localization operators are in fact a
particular class of pseudodifferential operators, cf. (14) and (15). Therefore, in the
study of eigenfunctions of localization operators we first observe operators Opτ (σ )

when σ belongs to weighted modulation space M∞,1
w (R2d), where w is of a certain

subexponential growth at infinity.
We first prove some continuity properties of Opτ (σ ) on ultra-modulation spaces

(Theorem3.3), and then use this result to prove subexponential decay of eigenfunctions
of certain τ -pseudodifferential operators (Theorem3.7). Finally,we conclude the paper
with subexponential decay and regularity properties of eigenfunctions of localization
operators in terms of Gelfand–Shilov spaces (Theorem 3.8).

An important relation between the action of an operator Opτ (σ ) on time-frequency
shifts and the STFT of its symbol σ is explained in [12]. The setting given there is the
one of S(Rd) and S ′(Rd), but it is easy to see that the claim is still valid when dealing
with S(1)(Rd) and

(
S(1)

)′
(Rd). Moreover, S(1)(Rd) and its dual can be replaced by

S{γ }(Rd) and S{γ }′(Rd) as it is done in [11] when τ = 1/2. Thus, the proof of the
following lemma is omitted, since it follows by a slight modification of the proof of
[12, Lemma 4.1].

Lemma 3.1 Consider τ ∈ [0, 1], g ∈ S(1)(Rd), �τ := Wτ (g, g) ∈ S(1)(R2d). If
σ ∈ (

S(1)
)′
(R2d), then

|〈Opτ (σ )π(z)g, π(w)g〉| = ∣∣V�τ σ (Tτ (w, z), J (w − z))
∣∣ , ∀ z, w ∈ R

2d , (22)

where z = (z1, z2), w = (w1, w2) ∈ R
2d and Tτ and J are defined as follows:

Tτ (w, z) := ((1 − τ)w1 + τ z1, τw2 + (1 − τ)z2) , J (z) := (z2,−z1). (23)

The following lemma can be viewed as a form of the inversion formula (18). The
independent proof is given in the Appendix.
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Lemma 3.2 Let τ ∈ [0, 1] and σ ∈ (
S(1)

)′
(R2d). If g ∈ S(1)(Rd) with ‖g‖L2 = 1

and f ∈ S(1)(Rd), then

Opτ (σ ) f =
∫
R2d

Vg f (z)Opτ (σ )(π(z)g) dz, (24)

in the sense that

〈Opτ (σ ) f , ϕ〉 =
∫
R2d

Vg f (z) 〈Opτ (σ )(π(z)g), ϕ〉 dz, ∀ϕ ∈ S(1)(Rd).

Next we show how the τ -quantization Opτ (σ ), τ ∈ [0, 1], can be extended between
ultra-modulation spaces under suitable assumptions on theweights.We remark that the
following theorem is contained inmore general [47, Theorem 3.1]. Amore elementary
proof of the same claim when Lebesgue parameters are greater than or equal to 1 is
given in [45, TheoremA.2]. In contrast to [45,47] we use different arguments. Namely,
our proof is based on the Schur test in combination with Lemmas 3.1 and 3.2. We note
that [2, Theorem 3.3] is a particular case of Theorem 3.3 when restricted to polynomial
weights and the duality between S(Rd) and S ′(Rd).

Theorem 3.3 Consider τ ∈ [0, 1], m0 ∈ PE (R4d) and m1, m2 ∈ PE (R2d) such that

m2(x, ω)

m1(y, η)
� m0((1 − τ)x + τ y, τω + (1 − τ)η, ω − η, y − x), ∀ x, ω, y, η ∈ R

d .

(25)
Fix a symbol σ ∈ M∞,1

m0 (R2d). Then the pseudodifferential operator Opτ (σ ), from
S(1)(Rd) to

(
S(1)

)′
(Rd), extends uniquely to a bounded and linear operator from

M p
m1(R

d) into M p
m2(R

d) for every 1 ≤ p < ∞.

Proof Let g ∈ S(1)(Rd) with ‖g‖L2 = 1 and consider f ∈ S(1)(Rd) ⊂ M p
m1(R

d).
Due to the normalization chosen ‖g‖L2 = ‖ĝ‖L2 and we recall the inversion formula
(18) which can be seen as a pointwise equality between smooth functions in this case
(see [24, Proposition 11.2.4]): f = ∫

R2d Vg f (z)π(z)g dz.
By Lemma 3.2 we have

Vg(Opτ (σ ) f )(w) = 〈Opτ (σ ) f , π(w)g〉
=

∫
R2d

Vg f (z) 〈Opτ (σ )π(z)g, π(w)g〉 dz. (26)

In the next step we prove that the map Mτ (σ ) : G �→ Mτ (σ )G, defined by

Mτ (σ )G(w) :=
∫
R2d

G(z) 〈Opτ (σ )π(z)g, π(w)g〉 dz

is continuous from L p
m1(R

2d) to L p
m2(R

2d).
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Using (22), we see that it is equivalent to prove that the integral operator with kernel

Kτ (z, w) := ∣∣V�τ σ (Tτ (w, z), J (w − z))
∣∣ 1

m1(z)
m2(w),

where Tτ ans J are defined in (23), is bounded on L p(R2d). We do this using the Schur
test (see, e.g., [24, Lemma6.2.1 (b)]). Firstwemajorize Kτ with another integral kernel
Qτ using the condition (25) with w = (x, ω) ∈ R

2d and z = (y, η) ∈ R
2d :

Kτ (z, w) = m2(w)m0(Tτ (w, z), J (w − z))

m1(z)m0(Tτ (w, z), J (w − z))

∣∣V�τ σ (Tτ (w, z), J (w − z))
∣∣

�
∣∣V�τ σ (Tτ (w, z), J (w − z))

∣∣ m0(Tτ (w, z), J (w − z))

=:Qτ (z, w).

We now show that Qτ satisfies the Schur conditions. By appropriate change of
variables (w′ ≡ w′

z(w) := J (w − z), where z is fixed) we obtain

sup
z∈R2d

∫
R2d

|Qτ (z, w)| dw =
∫
R2d

sup
z∈R2d

∣∣V�σ
(
z, w′)∣∣ m0

(
z, w′) dw′

= ‖σ‖M∞,1
m0

< +∞.

Furthermore, by the change of variables w′ ≡ w′
w(z) := J (w − z) for every w fixed,

we obtain

sup
w∈R2d

∫
R2d

|Qτ (z, w)| dz =
∫
R2d

sup
w∈R2d

∣∣V�τ σ
(
w,w′)∣∣ m0

(
w,w′) dw′

= ‖σ‖M∞,1
m0

< +∞.

Since Kτ � Qτ , it follows that

sup
z∈R2d

∫
R2d

|Kτ (z, w)| dw < +∞ and sup
w∈R2d

∫
R2d

|Kτ (z, w)| dz < +∞.

Hence from the Schur test it follows that Mτ (σ ) is continuous, and due to (26) we
notice that

Vg ◦ Opτ (σ ) f = Mτ (σ ) ◦ Vg f ,

where the right hand-side is continuous and takes elements of S(1)(Rd) ⊂ M p
m1(R

d)

into L p
m2(R

2d). Therefore Opτ (σ ) is linear, continuous and densely defined. This
concludes the proof. ��

Schatten class properties for various classes of pseudodifferential operators in the
framework of time-frequency analysis are studied bymany authors, let us mention just
[10,24,33,47]. However, for our purposes it is convenient to recall [31, Theorem 1.2]
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about Schatten class property for pseudodifferential operators Opτ (σ ) with symbols
in modulation spaces.

Theorem 3.4 Let τ ∈ [0, 1], 0 < p < 2, d ∈ N and

u >
2d

p
− d. (27)

Consider σ ∈ M2
mτ

u
(R2d), where mτ

u is defined as in (5). Then

Opτ (σ ) ∈ Sp(L2(Rd)).

Lemma 3.5 Let τ ∈ [0, 1], γ ≥ 1 and d ∈ N. Fix

u, s, t > 0, l > u + d, j ≥ u.

Then
M∞,1

w
γ
s ⊗w

γ
t
(R2d) ↪→ M∞,1

vl⊗v j
(R2d) ↪→ M2

vu⊗vu
(R2d) ↪→ M2

mτ
u
(R2d).

Proof The first inclusion is due to the inclusion relations between ultra-modulation
spaces since vl ⊗ v j � w

γ
s ⊗ w

γ
t . The last inclusion follows similarly since mτ

u �
vu ⊗ vu , as it is shown in Remark 2.5.

For the second inclusion we use Theorem 2.22: (∞, 2, l, u) fulfils the condition
(C2) and (1, 2, j, u) fulfils the condition (C1). This concludes the proof. ��

On account of the following corollary all the operators considered in Theorem 3.7
are compact on L2(Rd).

Corollary 3.6 Let τ ∈ [0, 1], γ ≥ 1 and s, t > 0. Consider σ ∈ M∞,1
w

γ
s ⊗w

γ
t
(R2d). Then

Opτ (σ ) is compact on L2(Rd).

Proof The claim follows by Lemma 3.5 with u satisfying (27), after choosing any
0 < p < 2, in addition with Theorem 3.4. ��

Nowweprove the decay property of the eigenfunctions of Opτ (σ )when the symbol
belongs to certain weighted modulation spaces. This result improves [2, Proposition
3.6], in the sense that we show how faster decay of the symbol implies stronger
regularity and decay properties for the eigenfunctions of the corresponding operator.
More precisely, [2, Proposition 3.6] deals with polynomial decay, whereas Theorem
3.7 allows to consider sub-exponential decay as well.

Theorem 3.7 Fix τ ∈ [0, 1], γ ≥ 1 and s > 0. Consider a symbol σ ∈ M∞,1
w

γ
s ⊗w

γ
t
(R2d)

for every t ≥ 0.
If λ ∈ σP (Opτ (σ )), then any f ∈ L2(Rd) eigenfunction associated to the eigen-

value λ belongs to S(γ )(Rd).
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Proof Wefirst observe that σ ∈ M∞,1
w

γ
s ⊗w

γ
t
(R2d) for every t ≥ 0 is equivalent to require

that t fulfills (2) due to the inclusion relations. By (3) from Lemma 2.4 it follows that

w
γ

r ′+s′(x, ω)

w
γ

r ′(y, η)
≤ w

γ

s′ ⊗ w
γ

t ′
((

(1 − τ)x + τ y, τω + (1 − τ)η
)
,
(
ω − η, y − x

))
,

for every x, ω, y, η ∈ R
d , where s′, r ′ ≥ 0 and t ′ which fulfils (2). We consider first

the case 1/2 ≤ τ ≤ 1 and fix s′ = s > 0.
Take r ′ = 0, t ≥ sτ 1/γ , and apply Theorem 3.3 with p = 2, m0 = w

γ
s ⊗ w

γ
t ,

m1 = w
γ
0 and m2 = w

γ
s which satisfy (25). Thus Opτ (σ ) extends to a continuous

operator from M2
w

γ
0
(Rd) = L2(Rd) to M2

w
γ
s
(Rd). Starting with f ∈ L2(Rd) we get

f = λ
−1

Opτ (σ ) f ∈ M2
w

γ
s
(Rd).

Now, take r ′ = s, t ≥ s + sτ 1/γ , and apply Theorem 3.3 with p = 2, m0 =
w

γ
s ⊗ w

γ
t , m1 = w

γ
s and m2 = w

γ
2s which satisfy (25). Thus Opτ (σ ) restricts to a

continuous operator from M2
w

γ
s
(Rd) to M2

w
γ
2s

(Rd), so starting with f ∈ M2
w

γ
s
(Rd) we

get f = λ
−1

Opτ (σ ) f ∈ M2
w

γ
2s

(Rd).

Repeating the same argument, and using the inclusion relations between ultra-
modulation spaces we obtain:

f ∈
⋂

n∈N0

M2
w

γ
ns

(Rd) =
⋂
k≥0

M2
w

γ
k
(Rd) = S(γ )(Rd).

The case 0 ≤ τ < 1/2 is done similarly. This concludes the proof. ��
We finish the paper with an observation related to localization operators.
Note that by Corollary 3.6 it follows that the localization operators Aϕ1,ϕ2

a in the
following statement are compact on L2(Rd).

Theorem 3.8 Consider γ ≥ 1, s > 0, a ∈ M∞
w

γ
s ⊗1

(R2d) and ϕ1, ϕ2 ∈ S(1)(Rd). If

λ ∈ σP (Aϕ1,ϕ2
a ), then any f ∈ L2(Rd) eigenfunction associated to the eigenvalue λ

belongs to S(γ )(Rd).

Proof Since ϕ1, ϕ2 ∈ S(1)(Rd) it follows that W (ϕ2, ϕ1) ∈ S(1)(R2d) ⊂
M1

w
γ
r ⊗w

γ
t
(R2d), for every r , t ≥ 0. It is easy to check that w

γ
s ⊗ w

γ
t is w

γ
r ⊗ w

γ
t -

moderate for every t ≥ 0 and every r ≥ s, i.e.

w
γ
s ⊗ w

γ
t ((x, ω) + (y, η)) ≤ w

γ
r ⊗ w

γ
t (x, ω)w

γ
s ⊗ w

γ
t (y, η), x, ω, y, η ∈ R

d .

We write Aϕ1,ϕ2
a = Opw(σ ) with σ = a ∗ W (ϕ2, ϕ1), and then apply Proposition 2.24

in order to infer σ ∈ M∞,1
w

γ
s ⊗w

γ
t
(R2d) for every t ≥ s/21/γ :

M∞
w

γ
s ⊗1

(R2d) ∗ M1
w

γ
r ⊗w

γ
t
(R2d) ↪→ M∞,1

w
γ
s ⊗w

γ
t
(R2d).

The claim now follows by Theorem 3.7. ��



19 Page 24 of 28 F. Bastianoni, N. Teofanov

Acknowledgements The authors would like to thank Elena Cordero and Fabio Nicola for fruitful con-
versations and comments. F. Bastianoni is member of the Gruppo Nazionale per l’Analisi Matematica, la
Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). N.
Teofanov was partially supported by project ANACRES, MPNTR Grant No. 451-03-68/2020-14/200125,
and Project 19.032/961-103/19 MNRVOID of the Republic of Srpska.

Funding Open access funding provided by Politecnico di Torino.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

4 Appendix

In this section we prove Lemmas 2.4 and 3.2.

Proof of Lemma 2.4 We first recall that given 0 < p ≤ q < ∞ the following holds
true

‖z‖q =
(

d∑
i=1

|zi |q
) 1

q

≤
(

d∑
i=1

|zi |p

) 1
p

= ‖z‖p, z = (z1, . . . , zd) ∈ R
d . (28)

In fact, consider z such that ‖z‖p = 1. Hence |zi |p ≤ 1 ⇒ |zi | ≤ 1 for i =
1, . . . , d. Thus |zi |q ≤ |zi |p and

∑d
i=1 |zi |q ≤ ∑d

i=1 |zi |p = 1. Eventually consider
u ∈ R

d
�{0}, then ‖u/‖u‖p‖q ≤ 1 and (28) is proved.

By using the triangular inequality and (28) with q = 1 and p = β, we infer that

|
d∑

i=1

zi |β ≤
d∑

i=1

|zi |β, z = (z1, . . . , zd) ∈ R
d , (29)

for 0 < β ≤ 1. Now, by the triangular inequality and (29) with d = 2 we obtain

|x |β − |y|β ≤ |x − y|β, 0 < β ≤ 1, x, y ∈ R
d . (30)

Next, we observe that for z, w ∈ R
d

|(τ z, (1 − τ)w)|2 = τ 2|(z, w)|2 + (1 − 2τ)|w|2

≤
{

τ 2|(z, w)|2 if 1/2 ≤ τ ≤ 1,

τ 2|(z, w)|2 + 1|w|2 + |z|2 = (1 + τ 2)|(z, w)|2 if 0 ≤ τ < 1/2,

http://creativecommons.org/licenses/by/4.0/
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which gives

|(τ z, (1 − τ)w)|1/γ ≤
{

τ 1/γ |(z, w)|1/γ if 1/2 ≤ τ ≤ 1,

(1 + τ 2)1/2γ |(z, w)|1/γ if 0 ≤ τ < 1/2.
(31)

We can now prove (3):

w
γ
r+s(x, ω)

w
γ
r (y, η)

(30)≤ exp
(
r |(x, ω) − (y, η)|1/γ + s|(x, ω)|1/γ )

(30)≤ exp(r |(ω − η, y − x)|1/γ + s|(x, ω) − (τ (x − y), (1 − τ)(ω − η))|1/γ
+ s|(τ (x − y), (1 − τ)(ω − η))|1/γ )

(31)≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp((r + sτ 1/γ )|(ω − η, y − x)|1/γ
+ s|((1 − τ)x + τ y, τω + (1 − τ)η)|1/γ ) if 1/2 ≤ τ ≤ 1,

exp((r + s(1 + τ 2)1/2γ )|(ω − η, y − x)|1/γ
+ s|((1 − τ)x + τ y, τω + (1 − τ)η)|1/γ ) if 0 ≤ τ < 1/2,

and Lemma 2.4 follows from the assumption (2). ��
Proof of Lemma 3.2 Consider τ ∈ (0, 1) and recast the τ -Winger distribution
Wτ (ϕ, f ) using the operator Aτ f (t) := f

(
τ−1
τ

t
)
:

Wτ (ϕ, f )(x, ω) = 1

τ d
e2π i 1

τ
ωx VAτ f ϕ

(
1

1 − τ
x,

1

τ
ω

)

= 1

τ d
e2π i 1

τ
ωx 〈ϕ, M 1

τ
ωT 1

1−τ
xAτ f 〉

= 1

τ d
e2π i 1

τ
ωx 〈

(
τ

1 − τ

)d

A1−τ T− 1
1−τ

x M− 1
τ
ωϕ, f 〉

= 1

τ d
e2π i 1

τ
ωx

∫
R2d

Vg f (z) 〈
(

τ

1 − τ

)d

A1−τ T− 1
1−τ

x M− 1
τ
ωϕ, π(z)g〉 dz

=
∫
R2d

Vg f (z)
1

τ d
e2π i 1

τ
ωx 〈ϕ, M 1

τ
ωT 1

1−τ
xAτ π(z)g〉 dz

=
∫
R2d

Vg f (z)
1

τ d
e2π i 1

τ
ωx VAτ π(z)gϕ

(
1

1 − τ
x,

1

τ
ω

)
dz

=
∫
R2d

Vg f (z) Wτ (ϕ, π(z)g)(x, ω) dz.

Therefore

〈Opτ (σ ) f , ϕ〉 = 〈σ, Wτ (ϕ, f )〉
= 〈σ,

∫
R2d

Vg f (z) Wτ (ϕ, π(z)g)(x, ω) dz〉

=
∫
R2d

Vg f (z) 〈σ, Wτ (ϕ, π(z)g)(x, ω)〉 dz
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=
∫
R2d

Vg f (z) 〈Opτ (σ )(π(z)g), ϕ〉 dz

and (24) holds true when τ ∈ (0, 1).
For the cases τ = 0, 1 we need the operator J defined in (23) and the following

equalities which come from easy computations (cf. [24]):

Vg f (x, ω) = e−2π i xωVĝ f̂ (ω,−x), FTx = M−xF ,

FMω = TωF , Tx Mω = e−2π i xω MωTx .

Therefore (24) is proved for τ = 0, 1 in the following manner. We put z = (x, ω)

and let σ acts on functions of variables (y, η):

〈Op0(σ ) f , ϕ〉 = 〈σ, e−2π iyηϕ(y) f̂ (η)〉
= 〈σ, e−2π iyηϕ(y)

∫
R2d

Vĝ f̂ (z′)π(z′)ĝ(η) dz′〉

= 〈σ,

∫
R2d

Vg f (z)e−2π iyηϕ(y)e2π i xωπ(J z)ĝ(η) dz〉

=
∫
R2d

Vg f (z)〈σ, e−2π iyηϕ(y)π̂(z)g(η)〉 dz

=
∫
R2d

Vg f (z)〈σ, W0(ϕ, π(z)g)〉 dz

=
∫
R2d

Vg f (z)〈Op0(σ )π(z)g, ϕ〉 dz.

The case τ = 1, i.e.

〈Op1(σ ) f , ϕ〉 =
∫
R2d

Vg f (z)〈Op1(σ )π(z)g, ϕ〉 dz,

can be proved in the same manner. The details are left to the reader. ��
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