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Abstract
Let s ≥ 1, ω,ω0 ∈ P0

E,s , a ∈ �
(ω0)
s , and let B be a suitable invariant quasi-

Banach function space. Then we prove that the pseudo-differential operator Op(a) is
continuous from M(ω0ω,B) to M(ω,B).

Keywords Pseudo-differential operators · Modulation spaces · BF-spaces ·
Gelfand–Shilov spaces
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1 Introduction

Several problems in physics, engineering, partial differential equations, time–
frequency analysis and signal processing are ill-posed in the framework of the classical
function and distribution spaces

C∞
0 , S , C∞, D ′, S ′, and E ′ (1.1)

(see [21] or Sect. 2 for notations). For example, the Euler–Tricomi equation D2
t f +

t D2
x f = 0, useful in the study of transonic flow, is ill-posed in such classical setting.

On the other hand, the Euler–Tricomi equation is well-posed in the framework of
suitable Gelfand–Shilov or Gevrey spaces and their spaces of ultra-distributions in
place of (1.1). (See [4,26].)

An other classical example concerns the heat problem

∂t f = �x f , f (0, x) = f0(x), t ∈ R, x ∈ �,
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where � is a cuboid. It is well-posed when moving forward in time (t > 0), but
ill-posed when moving backwards in time (t < 0) within the framework of classical
function and distribution spaces. On the other hand, by [37, Example 2.16] it follows
that the heat problem is well-posed for suitable Gelfand–Shilov distribution spaces
and Gevrey classes when t < 0. Furthermore, if t > 0, then more precise continuity
descriptions is deduced in the framework of such spaces compared to classical function
and distribution spaces.

Pseudo-differential operators appear in natural and several ways when dealing with
problems in partial differential equations, e.g. at above. As long as the analyses for
such equations stays within the usual functions and distribution spaces, the symbols to
related pseudo-differential operators often belong to the classical symbol classes, given
in [21]. On the other hand, when discussing problems within Gelfand–Shilov spaces
of functions and distributions, the conditions on the symbols need to be modified, to
meet the stronger regularity in corresponding test function spaces.

In the paper we consider continuity properties for a class of pseudo-differential
operators introduced in [5] when acting on a broad class of modulation spaces, given
in [11,12,15]. The symbols of the pseudo-differential operators are smooth, should
obey strong ultra-regularity of Gevrey or Gelfand–Shilov types, and are allowed to
grow exponentially or subexponentially.

More precisely, we consider pseudo-differential operators with symbols in the
spaces �

(ω0)
s or in �

(ω0)
0,s of Gevrey types which consist of all smooth a defined on

the phase space such that

|∂αa| ≤ Ch|α|α!sω0 (1.2)

holds for some constant h > 0 or every constant h > 0, respectively. Here ω0 is a
suitable weight on the phase space and the constant C > 0 is only depending on h. In

[5] it is proved that if ω0 � er | · | 1s for some r > 0 and a ∈ �
(ω0)
0,s , then corresponding

pseudo-differential operators Op(a) is continuous on the Gelfand–Shilov space �s of

Beurling type, and its distribution space �′
s . If instead ω0 � er | · | 1s holds for every

r > 0 and a ∈ �
(ω0)
s , then Op(a) is continuous on the Gelfand–Shilov space Ss of

Roumieu type, and its distribution space S ′
s (Cf. Theorems 4.10 and 4.11 in [5]).

In Sect. 3we enlarge this family of continuity results by deducing continuity proper-
ties for such pseudo-differential operatorswhen acting on a broad family ofmodulation
spaces. More precisely, let ω0 be as above, and suppose that the weight ω satisfies

0 < ω(X + Y ) � ω(X)er |Y | 1s , X , Y ∈ R2d (1.3)

for every r > 0 when a ∈ �
(ω)
s and satisfies (1.3) for some r > 0 when a ∈ �

(ω)
0,s .

Also let B be a suitable invariant quasi-Banach-function space (QBF-space) and let
M(ω,B) be the modulation space with respect to ω and B. Then we prove that
Op(a) is continuous from M(ω0ω,B) to M(ω,B) (cf. Theorems 3.5, 3.8, 3.10 and
Corollary 3.11). In the case when B is a Banach space, then the restrictions on B
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are given in Definition 2.2, while ifB fails to be a Banach space, then suitable mixed
Lebesgue quasi-norm estimates are imposed on the elements in B.

Certain Gelfand–Shilov spaces and their distribution spaces are equal to suitable
intersections and unions of modulation spaces (see e.g. [33,35]). This implies that the
continuity properties for pseudo-differential operators when acting onGelfand–Shilov
spaces in [5] are straight-forward consequences of the results in Sect. 3. It is expected
that the these results will also be useful in other situations. For example, these results
are already applied in [2], where lifting properties between the modulation spaces
above are established. We refer to [19,24,25,30,31,33,36] and the references therein
for more facts about pseudo-differential operators in framework of Gelfand–Shilov
and modulation spaces.

Related questions were considered in the framework of the usual distribution theory
in [32], where the pseudo-differential operators should have symbols in Hörmander
classes of the form S(ω0), the set of all smooth a which satisfies

|∂αa| ≤ Cαω0. (1.4)

More precisely, letB be a translation invariant BF-space, and that the condition (1.3)
for ω and ω0 are replaced by the stronger estimate

0 < ω(X + Y ) � ω(X)(1 + |Y |)N , X , Y ∈ R2d (1.5)

for some N ≥ 0, and let a ∈ S(ω0). Then it is proved in [32, Theorem 3.2] that Op(a) is
continuous from the modulation space M(ω0ω,B) to M(ω,B). The obtained result
in [32] can also be considered as extensions of certain results in the pioneering paper
[29] by Tachizawa. For example, for suitable restrictions on ω, ω0 and B, it follows
that [32, Theorem 3.2] covers [29, Theorem 2.1].

We observe the different conditions between on one hand the symbol classes S(ω0)

in [32], and the other hand the classes �
(ω0)
s and �

(ω0)
0,s in Sect. 3. The symbols in �

(ω0)
s

and �
(ω0)
0,s must obey Gevrey conditions of order s, while for the symbols in S(ω0), it

is only required that they should be smooth. On the other hand, the weight ω0 in (1.4)
in the definition of S(ω0) should satisfies (1.5) for some N , while for the definition of
�

(ω0)
s and�

(ω0)
0,s this condition is relaxed into conditions of the form (1.5). This implies

that the symbols in �
(ω0)
s and �

(ω0)
0,s are allowed to grow subexponentially, while the

symbols in S(ω0) are not allowed to grow faster than polynomials. Consequently, more
restrictions on growth are imposed on S(ω0) compared to �

(ω0)
s and �

(ω0)
0,s .

In Sect. 4we present some examples on continuity properties for pseudo-differential
operators under considerations. These continuity properties are straight-forward con-
sequences of the main results Theorems 3.5 and 3.8 in Sect. 3. Especially we explain
continuity in the framework of Sobolev type spaces and weighted L2 spaces, with
exponential weights, as well as continuity of such operators on �

(ω)
0,s spaces.
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2 Preliminaries

In this section we discuss basic properties for modulation spaces and other related
spaces. The proofs are in many cases omitted since they can be found in [7–9,12–
15,17,34].

2.1 Weight functions

A weight or weight function on Rd is a positive function in L∞
loc(R

d). Let ω and v be
weights on Rd . Then ω is called v-moderate or moderate, if

ω(x1 + x2) � ω(x1)v(x2), x1, x2 ∈ Rd . (2.1)

Here f (θ) � g(θ) means that f (θ) ≤ cg(θ) for some constant c > 0 which is
independent of θ in the domain of f and g. If v can be chosen as polynomial, then ω is
called a weight of polynomial type. The weight function v is called submultiplicative
if it is even and (2.1) holds for ω = v.

We letPE (Rd) be the set of all moderate weights onRd , andP(Rd) be the subset
ofPE (Rd) which consists of all polynomially moderate functions onRd . We also let
PE,s(Rd) (P0

E,s(R
d)) be the set of all weights ω in Rd such that

ω(x1 + x2) � ω(x1)e
r |x2| 1s , x1, x2 ∈ Rd . (2.2)

for some r > 0 (for every r > 0). We have

P ⊆ P0
E,s1 ⊆ PE,s1 ⊆ P0

E,s2 ⊆ PE when s2 < s1

and

PE,s = PE when s ≤ 1,

where the last equality follows from the fact that if ω ∈ PE (Rd) (ω ∈ P0
E (Rd)),

then

ω(x + y) � ω(x)er |y| and e−r |x | ≤ ω(x) � er |x |, x, y ∈ Rd (2.3)

hold true for some r > 0 (for every r > 0) (cf. [18]).

2.2 Gelfand–Shilov spaces

Let 0 < h, s, σ ∈ R be fixed. Then Sσ
s,h(Rd) consists of all f ∈ C∞(Rd) such that

‖ f ‖Sσ
s,h

≡ sup
|xα∂β f (x)|

h|α+β|α!s β!α (2.4)
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is finite. Here the supremum should be taken over all α, β ∈ Nd and x ∈ Rd .
Obviously Sσ

s,h is a Banach space, contained in S , and which increases with h, s
and σ and Sσ

s,h ↪→ S . Here and in what follows we use the notation A ↪→ B when
the topological spaces A and B satisfy A ⊆ B with continuous embeddings.

The Gelfand–Shilov spaces Sσ
s (Rd) and �σ

s (Rd) are defined as the inductive and
projective limits respectively of Sσ

s,h(Rd). This implies that

Sσ
s (Rd) =

⋃

h>0

Sσ
s,h(Rd) and �σ

s (Rd) =
⋂

h>0

Sσ
s,h(Rd), (2.5)

and that the topology for Sσ
s (Rd) is the strongest possible one such that the inclusion

map from Sσ
s,h(Rd) to Sσ

s (Rd) is continuous, for every choice of h > 0. The space

�σ
s (Rd) is a Fréchet spacewith seminorms ‖ · ‖Sσ

s,h
, h > 0.Moreover,�σ

s (Rd) �= {0},
if andonly if s+σ ≥ 1 and (s, σ ) �= ( 12 ,

1
2 ), andSσ

s (Rd) �= {0}, if andonly if s+σ ≥ 1.
If s and σ are chosen such that �σ

s (Rd) �= {0}, then �σ
s (Rd) is dense in S (Rd) and

in Sσ
s (Rd). The same is true with Sσ

s (Rd) in place of �σ
s (Rd) (cf. [16]).

The Gelfand–Shilov distribution spaces (Sσ
s )′(Rd) and (�σ

s )′(Rd) are the projec-
tive and inductive limit respectively of (Sσ

s,h)′(Rd). This means that

(Sσ
s )′(Rd) =

⋂

h>0

(Sσ
s,h)′(Rd) and (�σ

s )′(Rd) =
⋃

h>0

(Sσ
s,h)′(Rd). (2.5)′

Weremark that in [16] it is proved that (Sσ
s )′(Rd) is the dual ofSσ

s (Rd), and (�σ
s )′(Rd)

is the dual of �σ
s (Rd) (also in topological sense). For conveniency we set

Ss = Ss
s , S ′

s = (Ss
s )′, �s = �s

s and �′
s = (�s

s )
′.

For every admissible s, σ > 0 and ε > 0 we have

�σ
s (Rd) ↪→ Sσ

s (Rd) ↪→ �σ+ε
s+ε (Rd) ↪→ S (Rd)

↪→ S ′(Rd) ↪→ (�σ+ε
s+ε )′(Rd) ↪→ (Sσ

s )′(Rd) ↪→ (�σ
s )′(Rd). (2.6)

From now on we let F be the Fourier transform which takes the form

(F f )(ξ) = f̂ (ξ) ≡ (2π)−
d
2

∫

Rd
f (x)e−i〈x,ξ〉 dx

when f ∈ L1(Rd). Here 〈 · , · 〉 denotes the usual scalar product on Rd . The map
F extends uniquely to homeomorphisms on S ′(Rd), from (Sσ

s )′(Rd) to (Ss
σ )′(Rd)

and from (�σ
s )′(Rd) to (�s

σ )′(Rd). Furthermore, F restricts to homeomorphisms
on S (Rd), from Sσ

s (Rd) to Ss
σ (Rd) and from �σ

s (Rd) to �s
σ (Rd), and to a unitary

operator on L2(Rd). Similar facts hold true when s = σ and the Fourier transform is
replaced by a partial Fourier transform.
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Let φ ∈ Sσ
s (Rd) be fixed. Then the short-time Fourier transform Vφ f of f ∈

(Sσ
s )′(Rd) with respect to the window function φ is the Gelfand–Shilov distribution

on R2d , defined by

Vφ f (x, ξ) ≡ ( f , φ( · − x)ei〈 · ,ξ〉).

If in addition f is an integrable function, then

Vφ f (x, ξ) = (2π)−
d
2

∫
f (y)φ(y − x)e−i〈y,ξ〉 dy.

Gelfand–Shilov spaces and their distribution spaces can in convenient ways be
characterized by means of estimates of Fourier and short-time Fourier transforms
(see e.g. [6,20,33,35]). Here some extension of the map ( f , φ) �→ Vφ f are also
given, for example that this map is uniquely extendable to a continuous map from
(Sσ

s )′(Rd) × (Sσ
s )′(Rd) to (Sσ,s

s,σ )′(R2d) (see also [1] for notations).

2.3 Modulation spaces

We recall that a quasi-norm ‖ · ‖B of order r ∈ (0, 1] on the vector-space B over C
is a nonnegative functional onB which satisfies

‖ f + g‖B ≤ 2
1
r −1(‖ f ‖B + ‖g‖B), f , g ∈ B,

‖α · f ‖B = |α| · ‖ f ‖B, α ∈ C, f ∈ B (2.7)

and

‖ f ‖B = 0 ⇔ f = 0.

The vector spaceB is called a quasi-Banach space if it is a complete quasi-normed
space. IfB is a quasi-Banach space with quasi-norm satisfying (2.7) then on account
of [3,27] there is an equivalent quasi-norm to ‖ · ‖B which additionally satisfies

‖ f + g‖r
B ≤ ‖ f ‖r

B + ‖g‖r
B, f , g ∈ B. (2.8)

From now on we always assume that the quasi-norm of the quasi-Banach space B is
chosen in such way that both (2.7) and (2.8) hold.

Let φ ∈ �1(Rd)\0, p, q ∈ (0,∞] and ω ∈ PE (R2d) be fixed. Then the modula-
tion space M p,q

(ω) (Rd) consists of all f ∈ �′
1(R

d) such that

‖ f ‖M p,q
(ω)

≡
( ∫ ( ∫

|Vφ f (x, ξ)ω(x, ξ)|p dx
)q/p

dξ
)1/q

< ∞ (2.9)
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(with the obvious modifications when p = ∞ and/or q = ∞). We set M p
(ω) = M p,p

(ω) ,

and if ω = 1, then we set M p,q = M p,q
(ω) and M p = M p

(ω).
The following proposition is a consequence of well-known facts in [9,15,17,34].

Here and in what follows, we let p′ denotes the conjugate exponent of p, i.e.

p′ =

⎧
⎪⎪⎨

⎪⎪⎩

∞ when p ∈ (0, 1]
p

p − 1
when p ∈ (1,∞)

1 when p = ∞.

Proposition 2.1 Let p, q, p j , q j , r ∈ (0,∞] be such that r ≤ min(1, p, q), j = 1, 2,
let ω,ω1, ω2, v ∈ PE (R2d) be such that ω is v-moderate, φ ∈ Mr

(v)(R
d)\0, and let

f ∈ �′
1(R

d). Then the following is true:

(1) f ∈ M p,q
(ω) (Rd) if and only if (2.9) holds, i.e. M p,q

(ω) (Rd) is independent of the

choice of φ. Moreover, M p,q
(ω) is a quasi-Banach space under the quasi-norm in

(2.9), and different choices of φ give rise to equivalent quasi-norms.
If in addition p, q ≥ 1, then M p,q

(ω) (Rd) is a Banach space with norm (2.9);
(2) if p1 ≤ p2, q1 ≤ q2 and ω2 � ω1, then

�1(Rd) ⊆ M p1,q1
(ω1)

(Rd) ⊆ M p2,q2
(ω2)

(Rd) ⊆ �′
1(R

d).

We refer to [9,12–15,17,28,34] for more facts about modulation spaces.

2.4 A broader family of modulation spaces

Asannounced in the introductionwe consider inSect. 3mappingproperties for pseudo-
differential operators when acting on a broader class of modulation spaces, which are
defined by imposing certain types of translation invariant solid BF-space norms on the
short-time Fourier transforms. (Cf. [9–13].)

Definition 2.2 LetB ⊆ Lr
loc(R

d) be a quasi-Banach space of order r ∈ (0, 1], and let
v ∈ PE (Rd). ThenB is called a translation invariant Quasi-Banach function space
on Rd (with respect to v), or invariant QBF space on Rd , if there is a constant C such
that the following conditions are fulfilled:

(1) if x ∈ Rd and f ∈ B, then f ( · − x) ∈ B, and

‖ f ( · − x)‖B ≤ Cv(x)‖ f ‖B; (2.10)

(2) if f , g ∈ Lr
loc(R

d) satisfy g ∈ B and | f | ≤ |g|, then f ∈ B and

‖ f ‖B ≤ C‖g‖B .

If v belongs toPE,s(Rd) (P0
E,s(R

d)), thenB in Definition 2.2 is called an invari-
ant BF-space of Roumieu type (Beurling type) of order s.



344 J. Toft

It follows from (2) in Definition 2.2 that if f ∈ B and h ∈ L∞, then f · h ∈ B,
and

‖ f · h‖B ≤ C‖ f ‖B‖h‖L∞ . (2.11)

If r = 1, thenB in Definition 2.2 is a Banach space, and the condition (2) means that
a translation invariant QBF-space is a solid BF-space in the sense of (A.3) in [10]. The
spaceB in Definition 2.2 is called an invariant BF-space (with respect to v) if r = 1,
and Minkowski’s inequality holds true, i.e.

‖ f ∗ ϕ‖B � ‖ f ‖B‖ϕ‖L1
(v)

, f ∈ B, ϕ ∈ C∞
0 (Rd). (2.12)

Example 2.3 Assume that p, q ∈ [1,∞], and let L p,q
1 (R2d) be the set of all f ∈

L1
loc(R

2d) such that

‖ f ‖L p,q
1

≡
( ∫ ( ∫

| f (x, ξ)|p dx
)q/p

dξ
)1/q

if finite. Also let L p,q
2 (R2d) be the set of all f ∈ L1

loc(R
2d) such that

‖ f ‖L p,q
2

≡
( ∫ ( ∫

| f (x, ξ)|q dξ
)p/q

dx
)1/p

is finite. Then it follows that L p,q
1 and L p,q

2 are translation invariant BF-spaces with
respect to v = 1.

For translation invariant BF-spaces we make the following observation.

Proposition 2.4 Assume that v ∈ PE (Rd), and that B is an invariant BF-space with
respect to v such that (2.12) holds true. Then the convolution mapping (ϕ, f ) �→ ϕ∗ f
from C∞

0 (Rd)×B toB extends uniquely to a continuous mapping from L1
(v)(R

d)×B

to B, and (2.12) holds true for any f ∈ B and ϕ ∈ L1
(v)(R

d).

The result is a straight-forward consequence of the fact that C∞
0 is dense in L1

(v).
Next we consider the extended class of modulation spaces which we are interested

in.

Definition 2.5 Assume that B is a translation invariant QBF-space on R2d , ω ∈
PE (R2d), and that φ ∈ �1(Rd)\0. Then the set M(ω,B) consists of all f ∈ �′

1(R
d)

such that

‖ f ‖M(ω,B) ≡ ‖Vφ f ω‖B

is finite.
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Obviously, we have M p,q
(ω) (Rd) = M(ω,B) when B = L p,q

1 (R2d) (cf. Exam-
ple 2.3). It follows that many properties which are valid for the classical modulation
spaces also hold for the spaces of the form M(ω,B). For example we have the fol-
lowing proposition, which shows that the definition of M(ω,B) is independent of the
choice of φ whenB is a Banach space. We omit the proof since it follows by similar
arguments as in the proof of Proposition 11.3.2 in [17].

Proposition 2.6 Let B be an invariant BF-space with respect to v0 ∈ PE (R2d) for
j = 1, 2. Also let ω, v ∈ PE (R2d) be such that ω is v-moderate, M(ω,B) be
the same as in Definition 2.5, and let φ ∈ M1

(v0v)(R
d)\0 and f ∈ �′

1(R
d). Then

f ∈ M(ω,B) if and only if Vφ f ω ∈ B, and different choices of φ gives rise to
equivalent norms in M(ω,B).

Next we recall the following result on completeness for M(ω,B). We refer to [35]
for a proof of the first assertion and [22] for the second one.

Proposition 2.7 Let ω be a weight on R2d , and let B be an invariant QBF-space with
respect to the submultiplicative v ∈ PE (R2d). Then the following is true:

(1) if in addition B is a mixed quasi-norm space of Lebesgue types, then M(ω,B)

is a quasi-Banach space;
(2) if in addition B an invariant BF-space with respect to v, then M(ω,B) is a

Banach space.

Finally we remark that certain modulation spaces without the condition on solidity
are considered in [23].

2.5 Mixed quasi-normed Lebesgue spaces

In most cases, the quasi-Banach spaces B are mixed quasi-normed Lebesgue space,
which are defined next. Let E = {e1, . . . , ed} be an orderd basis of Rd . Then the
corresponding lattice is

�E = { j1e1 + · · · + jded ; ( j1, . . . , jd) ∈ Zd },

We define for each q = (q1, . . . , qd) ∈ (0,∞]d

max(q) = max(q1, . . . , qd) and min(q) = min(q1, . . . , qd).

Definition 2.8 Let E = {e1, . . . , ed} be an orderd basis of Rd , ω be a weight on Rd ,
p = (p1, . . . , pd) ∈ (0,∞]d and r = min(1, p). If f ∈ Lr

loc(R
d), then

‖ f ‖L p
E,(ω)

≡ ‖gd−1‖L pd (R),

where gk(zk), zk ∈ Rd−k , k = 0, . . . , d − 1, are inductively defined as

g0(x1, . . . , xd) ≡ | f (x1e1 + · · · + xded)ω(x1e1 + · · · + xded)|,
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and

gk(zk) ≡ ‖gk−1( · , zk)‖L pk (R), k = 1, . . . , d − 1.

The space L p
E,(ω)(R

d) consists of all f ∈ Lr
loc(R

d) such that ‖ f ‖L p
E,(ω)

is finite, and

is called E-split Lebesgue space (with respect to p and ω).

Let E , p andω be the sameas inDefinition2.8.Then the discrete version �
p
E,(ω)(�E )

of L p
E,(ω)(R

d) is the set of all sequences a = {a( j)} j∈�E such that the quasi-norm

‖a‖�
p
E,(ω)

≡ ‖ fa‖L p
E,(ω)

, fa =
∑

j∈�E

a( j)χ j ,

is finite. Here χ j is the characteristic function of j + κ(E), where κ(E) is the paral-
lelepiped spanned by the basis E . We also set L p

E = L p
E,(ω) and �

p
E = �

p
E,(ω) when

ω = 1.

Definition 2.9 Let E be an ordered basis of the phase space R2d . Then E is called
phase split if there is a subset E0 ⊆ E such that the span of E0 equals { (x, 0) ∈
R2d; x ∈ Rd }, and the span of E0 and E\E0 equals { (x, 0) ∈ R2d ; ξ ∈ Rd }
respective { (0, ξ) ∈ R2d ; ξ ∈ Rd }.

2.6 Pseudo-differential operators

Next we recall some facts on pseudo-differential operators. For any set �, M(d, �)
is the set of all d × d-matrices with entries in �. Let A ∈ M(d,R) be fixed and
let a ∈ �1(R2d). Then the pseudo-differential operator OpA(a) is the linear and
continuous operator on �1(Rd), defined by the formula

(OpA(a) f )(x)

= (2π)−d
∫∫

a(x − A(x − y), ξ) f (y)ei〈x−y,ξ〉 dydξ. (2.13)

The definition of OpA(a) extends to any a ∈ �′
1(R

2d), and then OpA(a) is continuous
from �1(Rd) to �′

1(R
d). Moreover, for every fixed A ∈ M(d,R), it follows that

there is a one to one correspondence between such operators, and pseudo-differential
operators of the form OpA(a). (See e.g. [21].) If A = 2−1 I , where I ∈ M(d,R)

is the identity matrix, then OpA(a) is equal to the Weyl operator Opw(a) of a. If
instead A = 0, then the standard (Kohn–Nirenberg) representation Op(a) = a(x, D)

is obtained.
If a1, a2 ∈ �′

1(R
2d) and A1, A2 ∈ M(d,R), then

OpA1
(a1) = OpA2

(a2) ⇔ a2(x, ξ) = ei〈(A1−A2)Dξ ,Dx 〉a1(x, ξ). (2.14)

(Cf. [21].)
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The following special case of [36, Theorem 3.1] is important when discussing
continuity of pseudo-differential operators when acting on quasi-Banach modulation
spaces.

Proposition 2.10 Let ω1, ω2 ∈ PE (R2d) and ω0 ∈ PE (R2d ⊕ R2d) be such that

ω2(x, ξ)

ω1(y, η)
� ω0(x, η, ξ − η, y − x). (2.15)

Also let p ∈ (0,∞]2d , E be a phase split basis of R2d and let a ∈ M∞,1
(ω0)

(R2d). Then

Op0(a) is continuous from M(L p,E , ω1) to M(L p,E , ω2).

In the next section we discuss continuity for pseudo-differential operators with
symbols in the following definition. (See also the Sect. 1.)

Definition 2.11 Let ω0 be a weight on Rd , and let s ≥ 0.

(1) The set �(ω0)
s (Rd) consists of all a ∈ C∞(Rd) such that

|∂α f (x)| � h|α|α!sω0(x), α ∈ Nd , (2.16)

for some constant h > 0;
(2) The set �

(ω0)
0,s (Rd) consists of all a ∈ C∞(Rd) such that (2.16) holds for every

constant h > 0.

Remark 2.12 We have

P ⊆ P0
E,s1 ⊆ PE,s1 ⊆ P0

E,s2 , s2 < s1.

Hence, despite that �(ω0)
0,s ⊆ �

(ω0)
s ⊆ S(ω0) holds for every ω0, we have

�
(ω)
0,s �

⋃

ω0∈P
S(ω0)

for some ω ∈ P0
E,s , and

�
(ω)
0,s �

⋃

ω0∈P0
E,s

�(ω0)
s

for some ω ∈ PE,s .

3 Continuity for pseudo-differential operators with symbols in 0(!)
s

and 0(!)
0,s

In this section we discuss continuity for operators in Op(�(ω0)
s ) and Op(�(ω0)

0,s ) when
acting on a general class of modulation spaces. In Theorem 3.5 below it is proved
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that if ω,ω0 ∈ P0
E,s , A ∈ M(d,R) and a ∈ �

(ω0)
0,s , then OpA(a) is continuous

from M(ω0ω,B) to M(ω0,B). This gives an analogy to [32, Theorem 3.2] in the
framework of operator theory and Gelfand–Shilov classes.

We need some preparations before discussing these mapping properties. The fol-
lowing result shows that for anyweight inPE , there are equivalent weights that satisfy
strong Gevrey regularity.

Proposition 3.1 Let ω ∈ PE (Rd) and s > 0. Then there exists a weight ω0 ∈
PE (Rd) ∩ C∞(Rd) such that the following is true:

(1) ω0 � ω;
(2) |∂αω0(x)| � ω0(x)h|α|α!s � ω(x)h|α|α!s for every h > 0.

Proof We may assume that s < 1
2 . It suffices to prove that (2) should hold for some

h > 0. Let φ0 ∈ �s
1−s(R

d)\0, and let φ = |φ0|2. Then φ ∈ �s
1−s(R

d) is non-negative.
In particular,

|∂αφ(x)| � h|α|α!se−c|x | 1
1−s

,

for every h > 0 and c > 0. We set ω0 = ω ∗ φ.
Then

|∂αω0(x)| =
∣∣∣∣
∫

ω(y)(∂αφ)(x − y) dy

∣∣∣∣

� h|α|α!s
∫

ω(y)e−c|x−y| 1
1−s

dy

� h|α|α!s
∫

ω(x + (y − x))e−c|x−y| 1
1−s

dy

� h|α|α!sω(x)

∫
e− c

2 |x−y| 1
1−s

dy � h|α|α!sω(x),

where the last inequality follows (2.2) and the fact that φ is bounded by a super
exponential function. This gives the first part of (2).

The equivalences in (1) follows in the same way as in e.g. [33]. More precisely, by
(2.2) we have

ω0(x) =
∫

ω(y)φ(x − y) dy =
∫

ω(x + (y − x))φ(x − y) dy

� ω(x)

∫
ec|x−y|φ(x − y) dy � ω(x).

In the same way, (2.3) gives
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ω0(x) =
∫

ω(y)φ(x − y) dy =
∫

ω(x + (y − x))φ(x − y) dy

� ω(x)

∫
e−c|x−y|φ(x − y) dy � ω(x),

and (1) as well as the second part of (2) follow. ��
The next result shows that �(ω)

s and �
(ω)
0,s can be characterised in terms of estimates

of short-time Fourier transforms.

Proposition 3.2 Let s ≥ 1, φ ∈ Ss(Rd)\0, and let f ∈ S ′
1/2(R

d). Then the following
is true:

(1) If ω ∈ P0
E,s(R

d), then f ∈ C∞(Rd) and satisfies

|∂α f (x)| � ω(x)h|α|α!s, (3.1)

for some h > 0, if and only if

|Vφ f (x, ξ)| � ω(x)e−r |ξ | 1s , (3.2)

for some r > 0;
(2) If ω ∈ PE,s(Rd) and in addition φ ∈ �s(Rd), then f ∈ C∞(Rd) and satisfies

(3.1) for every h > 0 (resp. for some h > 0), if and only if (3.2) holds true for
every r > 0 (resp. for some r > 0).

Proof We shall follow the proof of Proposition 3.1 in [5]. We only prove (2), and
then when (3.1) or (3.2) are true for every ε > 0. The other cases follow by similar
arguments and are left for the reader.

Assume that φ ∈ �s(Rd), ω ∈ PE,s(Rd) and that (3.1) holds for every ε > 0.
Then for every x ∈ Rd the function

y �→ Fx (y) ≡ f (y + x)φ(y)

belongs to �s , and ω(x + y) � eh0|y| 1s ω(x) for some h0 > 0. By a straight-forward
application of Leibnitz formula and the facts that

|∂αφ(x)| � ε|α|α!se−h|x | 1s and ω(x + y) � ω(x)eh0|y| 1s

for some h0 > 0 and every ε, h > 0 we get

|∂α
y Fx (y)| � ω(x)e−h|y| 1s ε|α|α!s,

for every ε, h > 0. In particular,

|Fx (y)| � ω(x)e−h|y| 1s and |F̂x (ξ)| � ω(x)e−h|ξ | 1s , (3.3)



350 J. Toft

for every h > 0. Since |Vφ f (x, ξ)| = |F̂x (ξ)|, the estimate (3.2) follows from the
second inequality in (3.3). This shows that if (3.1) holds for every ε > 0, then (3.2)
holds for every ε > 0.

Next suppose that (3.2) holds for every ε > 0. By Fourier’s inversion formula we
get

f (x) = (2π)−
d
2 ‖φ‖−2

L2

∫∫

R2d
Vφ f (y, η)φ(x − y)ei〈x,η〉 dydη.

By differentiation and the fact that φ ∈ �s we get

|∂α f (x)| �
∣∣∣∣∣∣

∑

β≤α

(
α

β

)
i |β|

∫∫

R2d
ηβ Vφ f (y, η)(∂α−βφ)(x − y)ei〈x,η〉 dydη

∣∣∣∣∣∣

≤
∑

β≤α

(
α

β

) ∫∫

R2d
|ηβ Vφ f (y, η)(∂α−βφ)(x − y)| dydη

�
∑

β≤α

(
α

β

) ∫∫

R2d
|ηβω(y)e−ε3|η| 1s (∂α−βφ)(x − y)| dydη

�
∑

β≤α

(
α

β

)
ε
|α−β|
2 (α − β)!s

∫∫

R2d
|ηβ |ω(y)e−ε3|η| 1s e−ε1|x−y| 1s dydη,

for every ε1, ε2, ε3 > 0. Since

|ηβe−ε3|η| 1s | � ε
|β|
2 β!se−ε3|η| 1s /2,

when ε3 is chosen large enough compared to ε−1
2 , we get

|∂α f (x)| � ε
|α|
2

∑

β≤α

(
α

β

)
(β!(α − β)!)s

∫∫

R2d
ω(y)e−ε3|η| 1s /2e−ε1|x−y| 1s dydη

� (2ε2)
|α|α!s

∫

Rn
ω(y)e−ε1|x−y| 1s dy

Since ω(y) ≤ ω(x)eh0|x−y| 1s for some h0 ≥ 0 and ε1 can be chosen arbitrarily
large, it follows from the last estimate that

|∂α f (x)| � (2ε2)
|α|α!sω(x),

for every ε2 > 0, and the result follows. ��
The following result is now a straight-forward consequence of the previous propo-

sition and the definitions.
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Proposition 3.3 Let s ≥ 1, q ∈ (0,∞], ω0 ∈ PE,s(Rd) and let ωr (x, ξ) =
ω0(x)e−r |ξ | 1s when x, ξ ∈ Rd . Then

⋃

r>0

M∞,q
(1/ωr )

(Rd) = �(ω0)
s (Rd) and

⋂

r>0

M∞,q
(1/ωr )

(Rd) = �
(ω0)
0,s (Rd).

The following lemma is a consequence of Theorem 4.6 in [5].

Lemma 3.4 Let s ≥ 1 ω ∈ PE (R2d), A1, A2 ∈ M(d,R), and that a1, a2 ∈ �′
1(R

2d)

are such that OpA1
(a1) = OpA2

(a2). Then

a1 ∈ �(ω)
s (R2d) ⇔ a2 ∈ �(ω)

s (R2d)

and

a1 ∈ �
(ω)
0,s (R2d) ⇔ a2 ∈ �

(ω)
0,s (R2d).

We have now the following result.

Theorem 3.5 Let A ∈ M(d,R), s ≥ 1, ω,ω0 ∈ P0
E,s(R

2d), a ∈ �
(ω0)
s (R2d), and

thatB is an invariant BF-space onR2d . ThenOpA(a) is continuous from M(ω0ω,B)

to M(ω,B).

We need some preparations for the proof, and start with the following lemma.

Lemma 3.6 Suppose s ≥ 1, ω ∈ PE (Rd0) and that f ∈ C∞(Rd+d0) satisfies

|∂α f (x, y)| � h|α|α!se−r |x | 1s ω(y), α ∈ Nd+d0 (3.4)

for some h > 0 and r > 0. Then there are f0 ∈ C∞(Rd+d0) and ψ ∈ Ss(Rd) such
that (3.4) holds with f0 in place of f for some h > 0 and r > 0, and f (x, y) =
f0(x, y)ψ(x).

Proof By Proposition 3.1 there is a submultiplicative weight v0 ∈ PE,s(Rd) ∩
C∞(Rd) such that

v0(x) � e
r
2 |x | 1s (3.5)

and

|∂αv0(x)| � h|α|α!sv0(x), α ∈ Nd (3.6)

for some h > 0. Since s ≥ 1, a straight-forward combination of Faà di Bruno’s
formula and (3.6) gives
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∣∣∣∣∂
α

(
1

v0(x)

)∣∣∣∣ � h|α|α!s · 1

v0(x)
, α ∈ Nd (3.6)′

for some h > 0. It follows from (3.5) and (3.6)′ that if ψ = 1/v, then ψ ∈ Ss(Rd).
Furthermore, if f0(x, y) = f (x, y)v0(x), then an application of Leibnitz formula
gives

|∂α
x ∂α0

y f0(x, y)| �
∑

γ≤α

(
α

γ

)
|∂δ

x∂α0
y f (x, y)| |∂α−δv0(x)|

� h|α|+|α0| ∑

γ≤α

(
α

γ

)
(γ !α0!)se−r |x | 1s ω(y)(α − γ )!sv0(x)

� (2h)|α|+|α0|(α!α0!)se−r |x | 1s v0(x)ω(y)

� (2h)|α|+|α0|(α!α0!)se− r
2 |x | 1s ω(y)

for some h > 0, which gives the desired estimate on f0, The result now follows since
it is evident that f (x, y) = f0(x, y)ψ(x). ��

For the next lemma we recall that for any a ∈ �′
1(R

2d) there is a unique b ∈
�′

1(R
2d) such that Op(a)∗ = Op(b), and then b(x, ξ) = ei〈Dξ ,Dx 〉a(x, ξ) in view

of [21, Theorem 18.1.7]. Furthermore, by the latter equality and [5, Theorem 4.1] it
follows that

a ∈ �(ω)
s (R2d) ⇔ b ∈ �(ω)

s (R2d).

Lemma 3.7 Let s ≥ 1, ω ∈ P0
E,s(R

2d), ϑ ∈ P0
E,s(R

d) and v ∈ P0
E,s(R

d) be such

that v is submultiplicative, ω ∈ �
(ω)
0,s (R2d) is v ⊗ v-moderate, ϑ = v− 1

2 and ϑ ∈
�

(ϑ)
0,s (Rd). Also let a ∈ �

(ω)
s (R2d), choose b ∈ �

(ω)
s (R2d) such that Op(b) = Op(a)∗,

f ∈ Ss(Rd), φ ∈ �s(Rd), ϕ = φ̂ · v,

�(x, ξ, y, η) = b(y, ξ + η)

ω(x, ξ)v(x − y)v(η)
(3.7)

and

H(x, ξ, y) = v(x − y)

∫
�(x, ξ, y, η)ϕ(η)ei〈y−x,η〉 dη.

Then

Vφ(Op(a) f )(x, ξ) = (2π)−d( f , ei〈 · ,ξ〉 H(x, ξ, · ))ω(x, ξ). (3.8)

Furthermore the following is true:
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(1) H ∈ C∞(R3d) and satisfies

|∂α H(x, ξ, y)| � h|α|
0 α!se−r0|x−y| 1s , (3.9)

for some h0, r0 > 0;
(2) there are functions H0 ∈ C∞(R3d) and φ0 ∈ Ss(Rd) such that

H(x, ξ, y) = H0(x, ξ, y)φ0(y − x), (3.10)

and such that (3.9) holds for some h0, r0 > 0, with H0 in place of H.

Proof When proving the first part, we shall use some ideas in the proof of [32, Lemma
3.3]. By straight-forward computations we get

Vφ(Op(a) f )(x, ξ) = (2π)−
d
2 (Op(a) f , φ( · − x) ei〈 · ,ξ〉)

= (2π)−
d
2 ( f ,Op(b)(φ( · − x) ei〈·,ξ〉))

= (2π)−d( f , ei〈 · ,ξ〉 H1(x, ξ, · ))ω(x, ξ), (3.11)

where

H1(x, ξ, y) = (2π)
d
2 e−i〈y,ξ〉(Op(b)(φ( · − x) ei〈·,ξ〉))(y)/ω(x, ξ)

=
∫

b(y, η)

ω(x, ξ)
φ̂(η − ξ)e−i〈x−y,η−ξ〉 dη

= v(x − y)

∫
�(x, ξ, y, η − ξ)ϕ(η − ξ)e−i〈x−y,η−ξ〉 dη.

If η − ξ are taken as new variables of integrations, it follows that the right-hand side
is equal to H(x, y, ξ). This gives the first part of the lemma.

In order to prove (1), let

�0(x, ξ, y, η) = �(x, ξ, y, η)ϕ(η),

and let � = F4�0, where F4�0 is the partial Fourier transform of �0(x, ξ, y, η)

with respect to the η variable. Then it follows from the assumptions that

|∂α�0(x, ξ, y, η)| � h|α|
0 α!se−r0|η| 1s ,

for some h0, r0 > 0, which shows that η �→ �0(x, ξ, y, η) is an element in Ss(Rd)

with values in �
(1)
s (R3d). As a consequence, � satisfies

|∂α�(x, ξ, y1, y2)| � h|α|
0 α!se−r0|y2| 1s ,
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for some h0, r0 > 0. The assertion (1) now follows from the latter estimate, Leibnitz
rule and the fact that

H(x, ξ, y) = v(x − y)�(x, ξ, x − y).

In order to prove (2) we notice that (3.9) shows that y �→ H(x, ξ, x − y) is an
element in Ss(Rd) with values in �

(1)
s (R2d). By Lemma 3.6 there are H2 ∈ C∞(R3d)

and φ0 ∈ Ss(Rd) such that (3.9) holds for some h0, r0 > 0 with H2 in place of H ,
and

H(x, ξ, x − y) = H2(x, ξ, x − y)φ0(−y).

This is the same as (2), and the result follows. ��
Proof of Theorem 3.5 We may assume that A = 0. Let g = Op(a) f . By Lemma 3.7
we have

Vφg(x, ξ) = (2π)−
d
2F (( f · φ0( · − x)) · H0(x, ξ, · ))(ξ)ω(x, ξ)

= (2π)−dF (( f · φ0( · − x))) ∗ (F (H0(x, ξ, · )))(ξ)ω(x, ξ)

= (2π)−d((Vφ0 f )(x, · ) ∗ (F (H0(x, ξ, · ))))(ξ)ω(x, ξ)

Since ω and ω0 belongs toP0
E,s(R

2d), (2) in Lemma 3.7 gives

|Vφg(x, ξ)ω0(x, ξ)| � |Vφ0 f )(x, · )ω(x, · )ω0(x, · )| ∗ e− r0
2 | · | 1s .

Here we have used the fact that

ω(x, ξ)ω0(x, ξ) � ω(x, ξ − η)ω0(x, ξ − η)e
r0
2 |η| 1s .

By applying the B norm we get for some v ∈ P0
E,s(R

d),

‖g‖M(ω0,B) � ‖|Vφ0 f ) · ω · ω0| ∗ (e−r0| · | 1s ⊗ δ0)‖B
≤ ‖Vφ0 f ) · ω · ω0‖B‖e−r0| · | 1s v‖L1 � ‖ f ‖M(ω·ω0,B).

This gives the result. ��
By similar arguments as in the proof of Theorem 3.5 and Lemma 3.7 we get the

following. The details are left for the reader.

Theorem 3.8 Let A ∈ M(d,R), s ≥ 1, ω,ω0 ∈ PE,s(R2d), a ∈ �
(ω0)
0,s (R2d), and let

B be an invariant BF-space on R2d . Then OpA(a) is continuous from M(ω0ω,B) to
M(ω,B).
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Lemma 3.9 Let s ≥ 1, ω ∈ PE,s(R2d), ϑ ∈ PE,s(Rd) and v ∈ PE,s(Rd) be

such that v is submultiplicative, ω ∈ �
(ω)
0,s (R2d) is v ⊗ v-moderate, ϑ = v− 1

2 and

ϑ ∈ �
(ϑ)
0,s (Rd). Also let a ∈ �

(ω)
0,s (R2d), f , φ ∈ �s(Rd), φ2 = φv, and let � and H

be as in Lemma 3.7. Then (3.8) and the following hold true:

(1) H ∈ C∞(R3d) and satisfies (3.9) for every h0, r0 > 0;
(2) there are functions H0 ∈ C∞(R3d) and φ0 ∈ �s(Rd) such that (3.10) holds, and

such that (3.9) holds for every h0, r0 > 0, with H0 in place of H.

Wefinish the section by discussing continuity for pseudo-differential operators with
symbols in �

(ω0)
s or in �

(ω0)
0,s when acting on quasi-Banach modulation spaces. More

precisely, by straight-forward computations it follows that if ω,ω0 ∈ PE,s(R2d)

(ω,ω0 ∈ P0
E,s(R

2d)), then

ω(x, ξ)

ω(y, η)ω0(y, η)
� er(|ξ−η| 1s +|y−x | 1s )

ω0(x, η)
.

holds for some r > 0 (for every r > 0). Hence the following result is a straight-forward
consequence of Propositions 2.10 and 3.3, and Lemma 3.4. (Cf. Definition 2.9 for the
definition of phase split basis.)

Theorem 3.10 Let A ∈ M(d,R), s ≥ 1, ω,ω0 ∈ P0
E,s(R

2d), p ∈ (0,∞]2d , E be

a phase split basis of R2d , and let a ∈ �
(ω0)
s (R2d). Then OpA(a) is continuous from

M(L p
E (R2d), ω0ω) to M(L p

E (R2d), ω).

The same holds true with PE,s and �
(ω0)
0,s , or with P and S(ω0) in place of P0

E,s

and �
(ω0)
s , respectively, at each occurence.

Corollary 3.11 Let A ∈ M(d,R), s ≥ 1 and ω,ω0 ∈ P0
E,s(R

2d), p, q ∈ (0,∞], and

let a ∈ �
(ω0)
s (R2d). Then OpA(a) is continuous from M p,q

(ω0ω)(R
d) to M p,q

(ω) (Rd).

The same holds true with PE,s and �
(ω0)
0,s , or with P and S(ω0) in place of P0

E,s

and �
(ω0)
s , respectively, at each occurence.

4 Examples

In this section we list some examples and show how the continuity results of the
pseudo-differential operators in the previous section leads to continuity on certain
Sobolev spaces, weighted Lebesgue spaces and on �

(ω)
0,s spaces.

In the examples here we consider pseudo-differential operators with symbols in
�

(ω)
0,s spaces. By some modifications, we may also deduce similar continuity results

for operators with symbols in �
(ω)
s spaces.
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Example 4.1 Let s ≥ 1, r , r0 ∈ R, A ∈ M(d,R), and let H2
r (Rd) be the Sobolev

space of all f ∈ �′
1(R

d) such that f̂ ∈ L2
loc(R

d) and

‖ f ‖H2
r

≡
(∫

Rd
| f̂ (ξ)er |ξ | 1s |2 dξ

) 1
2

is finite. If a ∈ C∞(R2d) satisfies

|∂αa(x, ξ)| � h|α|α!ser0|ξ | 1s (4.1)

for every h > 0, then OpA(a) is continuous from H2
r (Rd) to H2

r−r0(R
d).

In fact, if ωr (x, ξ) = er |ξ | 1s ∈ PE,s(R2d), then it follows that the condition

(4.1) holds true for every h > 0 is the same as a ∈ �
(ωr0 )

0,s (R2d). By a straight-forward

applications of Fourier’s inversion formulawe also have H2
r (Rd) = M2,2

(ωr )
(Rd) (cf. the

proof of [17, Proposition 11.3.1]). The assertion now follows from these observations
and lettingB = L2(R2d) in Theorem 3.8.

Example 4.2 Let s ≥ 1, r , r0 ∈ R, A ∈ M(d,R), and let L2
r (R

d) be the set L2
r (R

d)

which consists of all f ∈ L2
loc(R

d) such that

‖ f ‖L2
r

≡
(∫

Rd
| f (x)er |x | 1s |2 dx

) 1
2

is finite. If a ∈ C∞(R2d) satisfies

|∂αa(x, ξ)| � h|α|α!ser0|x | 1s

for every h > 0, then OpA(a) is continuous from L2
r (R

d) to L2
r−r0(R

d).

In fact, if ωr (x, ξ) = er |x | 1s ∈ PE,s(R2d), then it follows that the conditions

a is the same as a ∈ �
(ωr0 )

0,s (R2d), and that L2
r (R

d) = M2,2
(ωr )

(Rd) (cf. the proof
of [17, Proposition 11.3.1]). The assertion now follows from these observations and
Theorem 3.8.

Example 4.3 Let s ≥ 1, ϑ ∈ PE,s(R2d), ϑ0 = ϑ( · , 0) ∈ PE,s(Rd), ωr and ω0 be
the same as in Proposition 3.3, A ∈ M(d,R), and let a ∈ �

(ϑ)
0,s (R2d). Then OpA(a) is

continuous from �
(ω0)
0,s (Rd) to �

(ω0ϑ0)
0,s (Rd).

In fact, by Theorem 3.8 it follows that

OpA(a): M∞,1
(1/ωr )

(Rd) → M∞,1
(1/(ωr ϑ))(R

d) (4.2)

is continuous. Since M∞,1
(1/ωr )

(Rd) is decreasing with respect to r and that

ωr−r0ϑ0 � ωrϑ � ωr+r0ϑ0,
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for some fixed r0 ≥ 0, Proposition 3.3 shows that

⋂

r>0

M∞,1
(1/(ωr ))

(Rd) = �
(ω0)
0,s (Rd) and

⋂

r>0

M∞,1
(1/(ωr ϑ))(R

d) = �
(ω0ϑ0)
0,s (Rd).

The asserted continuity now follows from these intersections and (4.2).
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