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Abstract This paper is a study on a new kind modulation spaces M(P, Q)(Rd) and
A(P, Q, r)(Rd) for indices in the range 1 < P < ∞, 1 ≤ Q < ∞ and 1 ≤ r <
∞, modelled on Lorentz mixed norm spaces instead of mixed norm L P spaces as
the spaces M p,q

m (Rd) (Feichtinger in Modulation spaces on locally compact Abelian
groups, 1983; Gröchenig in Foundations of Time-Frequency Analysis. Birkh äuser,
Boston, 2001), and Lorentz spaces as the spaces M(p, q)(Rd) (Gürkanlıin J Math
Kyoto Univ 46:595–616, 2006). First, we prove the main properties of these spaces.
Later, we describe the dual spaces and determine the multiplier spaces for both of them.
Moreover, we investigate the boundedness of Weyl operators and localization opera-
tors on M(P, Q)(Rd). Finally, we give an interpolation theorem for M(P, Q)(Rd).

Keywords Gabor transform · Lorentz mixed norm space · modulation space ·
Weyl operator · Multiplier

Mathematics Subject Classification 42A38 · 43A15 · 43A22 · 46E30

1 Introduction

In this paper we will work on R
d with Lebesgue measure dx . We denote by Cc(R

d)

and S(Rd) the spaces of complex-valued continuous functions with compact support
and the space of complex-valued continuous functions on R

d rapidly decreasing at
infinity, respectively. Let f be a complex valued measurable function on R

d . The
operators Tx f (t) = f (t − x) and Mw f (t) = e2π iwt f (t) are called translation and
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modulation operator for x, w ∈ R
d , respectively. The compositions

Tx Mw f (t) = e2π iw(t−x) f (t − x) or MwTx f (t) = e2π iwt f (t − x)

are called time-frequency shifts (see [14]). We write (L p(Rd), ‖.‖p) the Lebesgue
spaces for 1 ≤ p ≤ ∞.

For f ∈ L1(Rd) the Fourier transform
∧
f (or F f ) is defined as

∧
f (t) =

∫

Rd

f (x)e−2π i xt dx,

where xt = ∑d
i=1 xi ti is the usual scalar product on R

d .

Fix a function g �= 0 (called the window function). The short-time Fourier transform
(STFT) of a function f with respect to g is given by

Vg f (x, w) =
∫

Rd

f (t)g(t − x)e−2π i twdt,

for x, w ∈ R
d . It is known that if f, g ∈ L2(Rd) then Vg f ∈ L2(Rd × R

d) and Vg f
is uniformly continuous. Moreover

Vg(Tu Mη f )(x, w) = e−2π iuwVg f (x − u, w − η)

for all x, w, u, η ∈ R
d .

The cross-Wigner distribution of f, g ∈ L2(Rd) is defined to be

W ( f, g)(x, w) =
∫

Rd

f

(
x + t

2

)
g

(
x − t

2

)
e−2π i tw dt.

If f = g, then W ( f, f ) = W f is called the Wigner distribution of f ∈ L2(Rd).

Given a symbol σ ∈ S ′(R2d), the Weyl operator Lσ is defined by

〈Lσ f, g〉 = 〈σ,W (g, f )〉

for f, g ∈ S(Rd). The mapping σ → Lσ is called the Weyl transform (see [14]).
The time-frequency localization operator Aϕ1,ϕ2

a with symbol a ∈ S ′(Rd) and
windows ϕ1, ϕ2 is defined to be

Aϕ1,ϕ2
a f (t) =

∫

R2d

a(x, w)Vϕ1 f (x, w)MwTxϕ2 dxdw.



On Lorentz mixed normed modulation spaces 265

Moreover, the Weyl operator and the time-frequency localization operator Aϕ1,ϕ2
a are

related by the formula

Aϕ1,ϕ2
a = La∗W (ϕ2,ϕ1),

where σ = a ∗ W (ϕ2, ϕ1) (see [8]).
A weight function w on R

d is a non-negative, continuous and locally integrable
function. The weight v is called submultiplicative if v(x + y) ≤ v(x)v(y) for all
x, y ∈ R

d . Let v be a submultiplicative function on R
d . A weight function w on R

d

is v−moderate if w(x + y) ≤ Cv(x)w(y) for all x, y ∈ R
d . Further, w is a weight of

polynomial growth if

w(x) ≤ Cvs(x) = C(1 + |x |2) s
2

for some C > 0, s ≥ 0 and x ∈ R
d .

Fix a non-zero window g ∈ S(Rd) and 1 ≤ p, q ≤ ∞. Let m be a weight
function of polynomial growth and vs−moderate on R

2d . Then the modulation space
M p,q

m (Rd) consists of all tempered distributions f ∈ S ′(Rd) such that the short-
time Fourier transform Vg f is in the weighted mixed-norm space L p,q

m (R2d). The
norm on M p,q

m (Rd) is ‖ f ‖M p,q
m

= ‖Vg f ‖L p,q
m
. If p = q, then we write M p

m(R
d)

instead of M p,p
m (Rd) and if m = 1, we have the standard modulation space M p,q(Rd)

(see[11,14]).
L(p, q) spaces are function spaces which are closely related to L p spaces. We con-

sider complex valued measurable functions f defined on a measure space ( X, μ). The
measure μ is assumed to be nonnegative. We assume the functions f are finite valued
a.e. and some y > 0, μ(Ey) < ∞, where Ey = Ey[ f ] = {x ∈ X | | f (x)| > y}.
Then, for y > 0,

λ f (y) = μ(Ey) = μ({x ∈ X | | f (x)| > y})

is the distribution function of f . The rearrangement of f is given by

f ∗(t) = inf{y > 0 | λ f (y) ≤ t} = sup{y > 0 | λ f (y) > t}

for t > 0. The average function of f is also defined by

f ∗∗(x) = 1

x

x∫

0

f ∗(t)dt.

Note that λ f , f ∗ and f ∗∗ are nonincreasing and right continuous functions on
(0,∞). If λ f (y) is continuous and strictly decreasing f ∗(t) is the inverse function of
λ f (y). The most important property of f ∗ is that it has the same distribution function
as f. It follows that
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⎛
⎝

∫

X

| f (x)|pdμ(x)

⎞
⎠

1
p

=
⎛
⎝

∞∫

0

[ f ∗(t)]pdt

⎞
⎠

1
p

. (1.1)

The Lorentz space denoted by L(p, q)(X, μ) (shortly L(p, q)) is defined to be vec-
tor space of all (equivalence classes) of measurable functions f such that ‖ f ‖∗

pq < ∞,

where

‖ f ‖∗
pq =

⎛
⎝ q

p

∞∫

0

t
q
p −1 [

f ∗ (t)
]q

dt

⎞
⎠

1
q

, 0 < p, q < ∞

‖ f ‖∗
pq = sup

t>0
t

1
p f ∗(t), 0 < p ≤ q = ∞.

By (1.1), it follows that ‖ f ‖∗
pp = ‖ f ‖p and so L(p, p) = L p. Also L(p, q)(X, μ) is

a normed space with the norm

‖ f ‖pq =
⎛
⎝ q

p

∞∫

0

t
q
p −1[ f ∗∗(t)]qdt

⎞
⎠

1
q

, 0 < p, q < ∞

‖ f ‖pq = sup
t>0

t
1
p f ∗∗(t), 0 < p ≤ q = ∞.

For any one of the cases p = q = 1; p = q = ∞ or 1 < p < ∞ and 1 ≤ q ≤ ∞,

then the Lorentz space L(p, q)(X, μ) is a Banach space with respect to the norm
‖.‖pq . It is also known that if 1 < p < ∞, 1 ≤ q ≤ ∞ we have

‖.‖∗
pq ≤ ‖.‖pq ≤ p

p − 1
‖.‖∗

pq ,

(see [7,17,21]).
It is known that by [17], L(∞, q) = {0} if q �= ∞ and L(∞, q) = L∞ if q = ∞.

But in [1,3], L(∞, q) are defined as the class of all measurable functions f for which
f ∗(t) < ∞ for all t > 0 and for which f ∗∗(t)− f ∗(t) is a bounded function of t such
that

‖ f ‖∞q =
⎛
⎝

∞∫

0

[ f ∗∗(t)− f ∗(t)]q dt

t

⎞
⎠

1
q

< ∞, 0 < q < ∞.

Moreover, if q = 1, L(∞, 1) = L∞ and the norms coincide.
Let X and Y be two measure spaces with σ -finite measures μ and ν, respec-

tively, f be a complex valued measurable function on (X × Y, μ × ν), 1 < P =
(p1, p2) < ∞ and 1 ≤ Q = (q1, q2) ≤ ∞. The Lorentz mixed norm space
L(P, Q) = L(P, Q)(X × Y ) is defined by
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L(P, Q) = L(p2, q2)[L(p1, q1)] = { f : ‖ f ‖P Q = ‖ f ‖L(p2,q2)(L(p1,q1))

= ‖‖ f ‖p1q1‖p2q2 < ∞}.

So, L(P, Q) occurs by taking an L(p1, q1) -norm with respect to first variable and
an L(p2, q2) -norm with respect to second variable. The L(P, Q) space is a Banach
space under the norm ‖.‖P Q (see [6,13]).

Fix a window function g ∈ S(Rd)\{0} and 1 ≤ p, q ≤ ∞. We let M(p, q)(Rd)

denote the subspace of tempered distributions S ′(Rd) consisting of f ∈ S ′(Rd) such
that the Gabor transform Vg f of f is in the Lorentz space L(p, q)(R2d).We endow it
with the norm ‖ f ‖M(p,q) = ‖Vg f ‖pq , where ‖.‖pq is the norm of the Lorentz space.
It is known that M(p, q)(Rd) is a Banach space and different windows yield equiv-
alent norms. If p = q, then we denote it by M(p, p)(Rd) = M(p)(Rd). Observe
that the space M(p) coincides with the standard modulation space M p. This space
M(p, q)(Rd) is defined and studied in [16]. Furthermore, the space M(p, q)(Rd)was
generalized to M(p, q, w)(Rd) by taking weighted Lorentz space rather than Lorentz
space in [24].

In this paper, we will denote the mixed norm space by L p,q; the Lorentz space by
L(p, q); the Lorentz mixed norm space L(P, Q) or sometimes L(p2, q2)[L(p1, q1)],
where P = (p1, p2) and Q = (q1, q2); the standard modulation space by M p,q and
the modulation space which is defined using Lorentz space by M(p, q).

Let A be a Banach algebra and V,W be left (right) Banach A−modules. We write
MA(V,W ) or Hom A(V,W ) for the space of all bounded linear operators satisfying
T (ab) = aT (b) for all a ∈ A, b ∈ V . This operators are called multiplier (left) or
module homomorphism from V into W (see [22,23]).

In this paper, we introduce new generalizations of modulation spaces, called
M(P, Q)(Rd) and A(P, Q, r)(Rd) spaces, which contain as special cases both the
standard modulation spaces M p,q(Rd), introduced by Feichtinger in 1983, and the
Lorentz-type modulation spaces M(p, q)(Rd), introduced by Gürkanlı in 2006. We
prove many properties of these spaces, in particular, they are Banach spaces, their
definition is independent on the choice of the window function, convolution relations,
duality relations.

Then, we study the action of Weyl operators and localization operators on the
Lorentz mixed normed modulation space M(P, Q)(Rd). In particular, boundedness
results are obtained, using estimates on the cross-Wigner distribution. Finally, we
focus on multiplier spaces of M(P, Q)(Rd) and A(P, Q, r)(Rd).

2 The Lorentz mixed normed modulation spaces

2.1 Definition and basic properties

Throughout the paper, the letters P and Q will denote 2-tuples P = (p1, p2) and
Q = (q1, q2), where pi and qi , i = 1, 2, are between 1 and ∞.When i = 1, we shall
write P = p and Q = q. Moreover, P ≤ Q will mean pi ≤ qi for i = 1, 2. Further,
we will agree that 1

P + 1
P ′ = 1 if and only if 1

p1
+ 1

p′
1

= 1 and 1
p2

+ 1
p′

2
= 1.
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Definition 1 Fix a non-zero window g ∈ S(Rd), 1 ≤ P = (p1, p2) < ∞ and
1 ≤ Q = (q1, q2) ≤ ∞. Then the space M(P, Q)(Rd) (or M(p1, q1; p2, q2)(R

d))
is the set of all tempered distributions f ∈ S ′(Rd) such that the short-time Fourier
transform Vg f of f is in the Lorentz mixed norm space L(P, Q)(R2d). We endow
the vector space M(P, Q)(Rd) with the norm

‖ f ‖M(P,Q) = ‖Vg f ‖P Q = ‖‖Vg f (x, .)‖p1q1‖p2q2 .

If p1 = q1 = p and p2 = q2 = q, then the space M(P, Q)(Rd) is the standard
modulation space M p,q(Rd). Moreover, when P = (p, p), Q = (q, q) and p �= q,
L(p, q)(R2d) �= L(p, q)[L(p, q)](R2d) by [9, p. 287] , and so M(P, Q)(Rd) �=
M(p, q)(Rd). But, since L(P, Q) = L(p, q) for P = p and Q = q, in this case
M(P, Q)(Rd) = M(p, q)(Rd).

Let P = (∞,∞) and 1 ≤ Q ≤ ∞. Then the mixed norm space L(P, Q)(R2d) is
the set of all measurable functions f for which distribution function of f is finite and
for which f ∗∗ − f ∗ is a bounded function such that

‖ f ‖P Q = ‖‖ f ‖∞q1‖∞q2 < ∞.

Hence, we can define the space M(P, Q)(Rd) as the set of all f ∈ S ′(Rd) such
that

‖ f ‖M(P,Q) = ‖Vg f ‖P Q = ‖‖Vg f ‖∞q1‖∞q2 < ∞.

If Q = (1, 1), then L(∞, 1)[L(∞, 1)](R2d) coincides with L∞(R2d), since
L(∞, 1)(Rd) is L∞(Rd) and M(∞, 1;∞, 1)(Rd) is the standard modulation space
M∞(Rd). If P = Q = (∞, 1), then L(1, 1)[L(∞,∞)](R2d) is the mixed norm space
L∞,1(R2d) and M(∞,∞; 1, 1)(Rd) = M∞,1(Rd). Furthermore, if P = p = ∞ and
Q = q = 1, then M(P, Q)(Rd) = M(p, q)(Rd) = M(∞, 1)(Rd) = M∞(Rd).

Proposition 2 If 1 ≤ P < ∞, 1 ≤ Q < ∞ then S(Rd) ⊂ M(P, Q)(Rd).

Proof Let f ∈ S(Rd) and P ≤ Q. Then we write ‖.‖P Q ≤ ‖.‖P P by Proposition 5.1
in [13] and we have

‖ f ‖M(P,Q) = ‖‖Vg f (x, .)‖p1q1‖p2q2

≤ ‖{ sup
x∈Rd

(1 + |(x, w)|)n Vg f (x, w)}‖(1 + |(x, .)|)−n‖p1q1‖p2q2

≤ { sup
z∈R2d

(1 + |z|)n Vg f (z)}‖(1 + |z|)−n‖P Q

≤ { sup
z∈R2d

(1 + |z|)n Vg f (z)}‖(1 + |z|)−n‖P P

= { sup
z∈R2d

(1 + |z|)n Vg f (z)}‖(1 + |z|)−n‖L p1,p2 ,
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where z = (x, w) ∈ R
2d . Then the right side of this expression is finite for sufficiently

large n. If P > Q, we write

‖ f ‖M(P,Q) ≤ { sup
z∈R2d

(1 + |z|)n Vg f (z)}‖‖(1 + |(x, .)|)−n‖p1q1‖p2q2 .

By one variable proof [16, Lemma 2.1], ‖(1+|(x, .)|)−n‖p1q1 < ∞ for sufficiently
large n. The proof is completed by repeating the same procedure with respect to the
second variable. ��
Remark 3 It is known that the Lorentz space L(p, q)(Rd) is translation invariant
and holds ‖Tx f ‖pq = ‖ f ‖pq for x ∈ R

d (see [7]). By using iteration and the one
dimensional proofs given in [7] it can easily be shown that the Lorentz mixed norm
space L(P, Q)(R2d) is also translation invariant and holds ‖Tz f ‖P Q = ‖ f ‖P Q, for
z ∈ R

2d .

The following proposition gives us convolution relations between Lorentz mixed
norm space and L1 space and will be used frequently.

Proposition 4 If 1 < P < ∞, 1 ≤ Q ≤ ∞, F ∈ L1(R2d) and G ∈ L(P, Q)(R2d),

then F ∗ G ∈ L(P, Q)(R2d) and

‖F ∗ G‖P Q ≤ ‖F‖1‖G‖P Q .

Proof Let H ∈ L(P ′, Q′)(R2d). By Fubini Theorem and Hölder inequality for
Lorentz mixed norm space [13], we can change order of integration and obtain

|〈F ∗ G, H〉| =

∣∣∣∣∣∣∣
∫

R2d

∫

R2d

F(w)G(z − w)H(z) dwdz

∣∣∣∣∣∣∣

≤
∫

R2d

|F(w)|
⎛
⎜⎝

∫

R2d

|G(z − w)H(z)|dz

⎞
⎟⎠ dw

≤
∫

R2d

|F(w)|‖G(z − w)‖P Q‖H‖P ′ Q′ dw

=
∫

R2d

|F(w)|dw‖G‖P Q‖H‖P ′ Q′ = ‖F‖1‖G‖P Q‖H‖P ′ Q′ .

Then by duality we get

‖F ∗ G‖P Q = sup
‖H‖P ′ Q′≤1

|〈F ∗ G, H〉| ≤ ‖F‖1‖G‖P Q .

��
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Theorem 5 Assume that 1 < P < ∞, 1 ≤ Q < ∞ and g, γ ∈ S(Rd) are non-zero
window functions. Then

1. V ∗
γ maps L(P, Q)(R2d) into M(P, Q)(Rd) and satisfies

‖V ∗
γ F‖M(P,Q) ≤ ‖Vgγ ‖1‖‖F‖p1q1‖p2,q2 . (2.1)

2. If F = Vg f , then the inversion formula

f = 1

〈γ, g〉
∫∫

R2d

Vg f (x, y)My Txγ dxdy (2.2)

holds in M(P, Q)(Rd). In short, IM(P,Q) = 〈γ, g〉−1V ∗
γ Vg.

Proof 1. Take any F ∈ L(P, Q)(R2d). We show first that V ∗
γ F ∈ S ′(Rd). Let

f ∈ S(Rd). As S(Rd) ⊂ M(P ′, Q′)(Rd) by Proposition 2, then, Vγ f ∈
L(P ′, Q′)(R2d), where 1

P + 1
P ′ = 1 and 1

Q + 1
Q′ = 1. Using Hölder inequality

for Lorentz mixed norm space, we write

|〈V ∗
γ F, f 〉| =

∣∣∣∣∣∣∣
∫∫

R2d

F(x, y)Vγ f (x, y)dxdy

∣∣∣∣∣∣∣
≤ ‖F‖P Q‖Vγ f ‖P ′ Q′ .

Now let P ≥ Q (hence P ′ ≤ Q′). Then we have

|〈V ∗
γ F, f 〉| ≤ ‖F‖P Q‖Vγ f ‖P ′ Q′ ≤ ‖F‖P Q‖Vγ f ‖P ′ P ′

≤ ‖F‖P Q{ sup
z∈R2d

(1 + |z|)n Vg f (z)}‖(1 + |z|)−n‖
L p′

1,p
′
2

where z = (x, w) ∈ R
2d . This expression is finite for sufficiently large n. Using

the equivalence of the seminorms (see [14, Corollary 11.2.6]), we have V ∗
γ F ∈

S ′(Rd). If P < Q (hence P ′ > Q′), then

‖(1 + |z|)−n‖P ′ Q′ < ∞

for sufficiently large n by Lemma 2.1 in [16]. Thus

|〈V ∗
γ F, f 〉| ≤ ‖F‖P Q{ sup

z∈R2d
(1 + |z|)n Vg f (z)}‖(1 + |z|)−n‖P ′ Q′

is finite. Hence V ∗
γ F ∈ S ′(Rd). Since g ∈ S(Rd) and V ∗

γ F ∈ S ′(Rd), we have

VgV ∗
γ F(u, t) =

∫∫

R2d

F(x, y)e−2π i x(t−y)Vgγ (u − x, t − y) dxdy
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and

|VgV ∗
γ F(u, t)| ≤ (|F | ∗ |Vgγ |)(u, t). (2.3)

Since Vgγ ∈ S(R2d) ⊂ L1(R2d), by Proposition 4 and (2.3), we obtain

‖V ∗
γ F‖M(P,Q) = ‖Vg(V

∗
γ F)‖P Q ≤ ‖F‖P Q‖Vgγ ‖1.

2. If F = Vg f ∈ L(P, Q)(R2d), then f̃ = 1
〈γ,g〉 V ∗

γ Vg f ∈ M(P, Q)(Rd) by the

above proof. As every element of M(P, Q)(Rd) is a tempered distribution, then
f̃ = f by [14, Corollary 11.2.7]. ��

By using the same proof technique as that employed in Proposition 11.3.4 and Theorem
11.3.5 in [14], it is easy to prove the following two theorems.

Theorem 6 S(Rd) is dense in M(P, Q)(Rd) for 1 < P < ∞, 1 ≤ Q < ∞.

Theorem 7 The normed space M(P, Q)(Rd) is a Banach space for 1 < P < ∞, 1
≤ Q < ∞. Moreover M(P, Q)(Rd) is independent of the window g ∈ S(Rd)\{0}.
Different windows yield equivalent norms.

It is known that the Lorentz spaces L(p1, q1) and L(p2, q2) have absolutely con-
tinuous norms when 1 < pi < ∞, 1 ≤ qi < ∞, i = 1, 2 (see [4]). Then the
space L(P, Q) has also absolutely continuous norm and (L(P, Q))∗ = L(P ′, Q′) for
1 < P < ∞, 1 ≤ Q < ∞ (see [6, p. 158]). The next theorem gives us the dual space
of M(P, Q)(Rd). The proof is the same as that of Theorem 2.3 in [16].

Theorem 8 Let 1 < P < ∞ and 1 ≤ Q < ∞. Then (M(P, Q)(Rd))∗ =
M(P ′, Q′)(Rd), where 1

P + 1
P ′ = 1 and 1

Q + 1
Q′ = 1.

The inclusion property of M(P, Q)(Rd) spaces is connected with the indices Q as
in L(P, Q) spaces. Let Q1 = (q1

1 , q2
1 ) and Q2 = (q1

2 , q2
2 ). Recall that Q1 ≤ Q2 if

and only if qi
1 ≤ qi

2, i = 1, 2.

Proposition 9 Let Q1 ≤ Q2. Then M(P, Q1)(R
d) ⊂ M(P, Q2)(R

d).

Proof Let f ∈ M(P, Q1)(R
d). Then Vg f ∈ L(P, Q1)(R

2d). If Q1 ≤ Q2, then
L(P, Q1)(R

2d) ⊂ L(P, Q2)(R
2d) by Proposition 5.1 in [13]. Thus we have Vg f ∈

L(P, Q2)(R
2d) and hence f ∈ M(P, Q2)(R

d). ��
Theorem 10 The space M(P, Q)(Rd) is invariant under time-frequency shifts. More-
over, if 1 < P < ∞ and 1 ≤ Q < ∞, then the mapping (u, η) �−→ MηTu f, from
R

2d into M(P, Q)(Rd), is continuous.

Proof Let f ∈ M(P, Q)(Rd). Then Vg f ∈ L(P, Q)(R2d). Using the equality
T(u,η)Vg f (x, y) = e2π i(y−η)u Vg(MηTu f )(x, y) and the fact that the Lorentz mixed
norm space is translation invariant, we have

‖MηTu f ‖M(P,Q) = ‖Vg(MηTu f )‖P Q = ‖e2π i(η−y)u Vg f (x − u, w − η)‖P Q

= ‖T(u,η)Vg f ‖P Q = ‖Vg f ‖P Q = ‖ f ‖M(P,Q).
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Hence M(P, Q)(Rd) is invariant under time-frequency shifts. Now let f ∈
M(P, Q)(Rd) and u, η ∈ R

d . We write

‖MηTu f − f ‖M(P,Q) = ‖Vg(MηTu f )−Vg f ‖P Q =‖e2π i(η−y)u T(u,η)Vg f −Vg f ‖P Q

≤ ‖e2π i(η−y)u T(u,η)Vg f − e2π i(η−y)u Vg f ‖P Q

+‖e2π i(η−y)u Vg f − Vg f ‖P Q

= ‖T(u,η)Vg f − Vg f ‖P Q + ‖(e2π i(η−y)u − 1)Vg f ‖P Q

= ‖‖T(u,.)Vg f − Vg f ‖p1q1‖p2q2

+‖‖(e2π i(.−y)u − 1)Vg f ‖p1q1‖p2q2 .

Since the translation operator is continuous from R
d into L(p, q)(Rd) by Lemma

3.2 in [7], then (u, .) �−→ T(u,.)Vg f is continuous from R
d into L(p1, q1)(R

d).

Repeating the same procedure with respect to the second variable we get ‖T(u,η)
Vg f −Vg f ‖P Q → 0 as (u, η) tends to zero. Moreover, it is known that ‖(e2π i(.−y)u −
1)Vg f ‖p1q1 tends to zero as u tends to zero by the proof of the Proposition 2.2 in [16].
The continuity of ‖.‖p2q2 implies that ‖(e2π i(η−y)u − 1)Vg f ‖P Q → 0 as (u, η) tends
to zero. This completes the proof. ��

2.2 Convolution theorems

Theorem 11 Let 1 < P < ∞ and 1 ≤ Q < ∞. If f ∈ M(P, Q)(Rd) and h ∈
L1(Rd), then f ∗ h ∈ M(P, Q)(Rd) and satisfies

‖ f ∗ h‖M(P,Q) ≤ ‖ f ‖M(P,Q)‖h‖1.

Proof Let f ∈ M(P, Q)(Rd) and let h ∈ L1(Rd). Then Vg f ∈ L(P, Q)(R2d). By
using the equality Vg f (x, w) = e−2π i xw( f ∗ Mwg∼)(x), where g∼(x) = g(−x),
and the fact that L(P, Q)(R2d) is strongly translation invariant by Remark 3, we write

‖ f ∗ h‖M(P,Q) = ‖Vg( f ∗ h)‖P Q = ‖h ∗ ( f ∗ Mwg∼)‖P Q

= ‖
∫

Rd

h(t)( f ∗ Mwg∼)(x − t)dt‖P Q

≤
∫

Rd

|h(t)|‖T(t,0)Vg f ‖P Qdt

=
∫

Rd

|h(t)|‖Vg f ‖P Qdt = ‖Vg f ‖P Q

∫

Rd

|h(t)|dt

= ‖ f ‖M(P,Q)‖h‖1.

This completes the proof. ��
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Theorem 12 Let 1 < P1, P2 <∞, 1 ≤ Q1, Q2 ≤ ∞, 1
P1

+ 1
P2
> 1, f ∈ M(P1, Q1)

(Rd), h ∈ M(P2, Q2)(R
d), then f ∗ h ∈ M(R, S)(Rd), where 1

R = 1
P1

+ 1
P2

− 1 and

S > 0 is any number such that 1
Q1

+ 1
Q2

≥ 1
S , and

M(P1, Q1)(R
d) ∗ M(P2, Q2)(R

d) ↪→ M(R, S)(Rd)

with norm inequality

‖ f ∗ h‖M(R,S) ≤ ‖ f ‖M(P1,Q1)‖h‖M(P2,Q2),

where P1 = (p1
1, p2

1), P2 = (p1
2, p2

2), Q1 = (Q1
1, Q2

1), Q2 = (Q1
2, Q2

2), R =
(r1, r2) and S = (s1, s2).

Proof Let us choose the windows as in Proposition 2.4 in [8]. Namely, g0(x) =
e−πx2

and g(x) = 2− n
d e− πx2

2 = (g0 ∗ g0)(x) ∈ S(Rd). Moreover, it is known
that different windows yield equivalent norms for the spaces M(R, S)(Rd) by
Theorem 7. Let f ∈ M(P1, Q1)(R

d) and h ∈ M(P2, Q2)(R
d). Then Vg0 f ∈

L(P1, Q1)(R
2d), Vg0 h ∈ L(P2, Q2)(R

2d). Using the equalities Vg0 f (x, w) =
e−2π i xw( f ∗ Mwg∼

0 )(x),Mw(g∼
0 ∗ g∼

0 ) = Mwg∼
0 ∗ Mwg∼

0 , Minkowski integral
inequality and Theorem 2.12 in [5], we write

‖Vg( f ∗ h)‖r1s1(η2) = ‖e−2π i xw(( f ∗ h) ∗ Mwg∼
0 )‖r1s1(η2)

= ‖( f ∗ Mwg∼
0 ) ∗ (h ∗ Mwg∼

0 )‖r1s1(η2)

≤ (‖ f ∗ Mwg∼
0 ‖p1

1q1
1

∗ ‖h ∗ Mwg∼
0 ‖p1

2q1
2
)(η2)

= (‖Vg0 f ‖p1
1q1

1
∗ ‖Vg0 h‖p1

2q1
2
)(η2).

Applying the same procedure with respect to the second variable, we obtain

‖ f ∗ h‖M(R,S) ≤ ‖‖Vg0 f ‖p1
1q1

1
‖p2

1q2
1
‖‖Vg0 h‖p1

2q1
2
‖p2

2q2
2

= ‖ f ‖M(P1,Q1)‖h‖M(P2,Q2).

This is desired result. ��

Theorem 11 implies one of the conditions to be Banach module. The next theorem
refers to this property and is proved using the same argument as Theorem 2.2 in [16].
Moreover, it is necessary to find the multiplier space of M(P, Q)(Rd).

Theorem 13 Let 1 < P < ∞ and 1 ≤ Q < ∞. Then M(P, Q)(Rd) is an essential
Banach convolution module over L1(Rd).
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2.3 Boundedness of Weyl operators and localization operators

Theorem 14 Let σ ∈ M(∞,∞; 1, 1)(R2d). If 1 < P < ∞, 1 ≤ Q ≤ ∞, then Lσ
is bounded from M(P, Q)(Rd) to M(P, Q)(Rd) with norm estimate

‖Lσ f ‖op ≤ ‖σ‖M(∞,∞;1,1).

Proof It follows from a small variation of Gröchenig’s proof (see [14, Theorem
14.5.2]). ��

The following proposition and theorem gives us an estimate for the cross-Wigner
distribution for Lorentz mixed normed modulation space and the boundedness of the
time-frequency localization operator on M(P, Q)(Rd), respectively. The proofs are
similar to Proposition 2.5 and Theorem 3.2 in [8] but let us provide the details anyway,
for completeness’ sake.

Proposition 15 Let P = (1, p2), Q = (q1, q2), 1 ≤ Q < ∞ and 1 < p2 < ∞.

If ϕ1 ∈ M1(Rd) and ϕ2 ∈ M(p2, q2)(R
d), then W (ϕ2, ϕ1) ∈ M(P, Q)(R2d) and

satisfies

‖W (ϕ2, ϕ1)‖M(P,Q) ≤ ‖ϕ1‖M1‖ϕ2‖M(p2,q2).

Proof Let ϕ1, ϕ2, g ∈ S(Rd). Then W (ϕ2, ϕ1) ∈ S(R2d) and so V
(W (ϕ2, ϕ1)) ∈
S(R4d) by Lemma 14.5.1(a) and Theorem 11.2.5 in [14], where
 = Wg ∈ S(R2d).

Moreover, it is known that

|V
W (ϕ2, ϕ1)(z, ζ )| = |Vgϕ1(z + ζ̃

2
)||Vgϕ2(z − ζ̃

2
)|

by Lemma 14.5.1.b. in [14], where ζ = (ζ1, ζ2) ∈ R
2d , ζ̃ = (ζ2,−ζ1). On the other

hand, if ϕ1 ∈ S(Rd), then it is known that ϕ1 is in the standard modulation space
M1(Rd), if ϕ2 ∈ S(Rd), then ϕ2 ∈ M(p2, q2)(R

d) by Proposition 2.1 in [16]. Thus
by using the inequality ‖.‖1q1 ≤ ‖.‖11 = ‖.‖1 when 1 ≤ q1 and changing variables

z → z − ζ̃
2 , we have

‖V
W (ϕ2, ϕ1)‖1q1(ζ ) ≤ ‖V
W (ϕ2, ϕ1)‖1(ζ )

= |Vgϕ1| ∗ |Vgϕ2|(ζ̃ ).

Again using the fact that the Lorentz space L(p2, q2)(R
2d) is an essential Banach

convolution module over L1(R2d), we obtain

‖W (ϕ2, ϕ1)‖M(P,Q) = ‖‖V
W (ϕ2, ϕ1)‖1q1‖p2q2

≤ ‖|Vgϕ1| ∗ |Vgϕ2|‖p2q2 ≤ ‖Vgϕ1‖1‖Vgϕ2‖p2q2

= ‖ϕ1‖M1‖ϕ2‖p2q2 .

��
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Theorem 16 Let 1 < P < ∞, 1 ≤ Q ≤ ∞, a ∈ M∞(R2d), ϕ1, ϕ2 ∈ M1(Rd).

Then the localization operator Aϕ1,ϕ2
a is bounded on M(P, Q)(Rd). Moreover we

have the norm estimate

‖Aϕ1,ϕ2
a ‖op ≤ ‖a‖M∞‖ϕ1‖M1‖ϕ2‖M1 .

Proof Let ϕ1, ϕ2 ∈ M1(Rd). Then W (ϕ2, ϕ1) ∈ M1(Rd) and σ = a ∗ W (ϕ2, ϕ1) ∈
M∞,1(R2d) by Proposition 2.5 and convolution relations for the standard modulation
space in [8], respectively. Thus the operator Aϕ1,ϕ2

a = La∗W (ϕ2,ϕ1) is bounded on
M(P, Q)(Rd) for all 1 < P < ∞, 1 ≤ Q ≤ ∞ from Theorem 14. ��

We observe that this result extends Theorem 3.2 in [8], since the same sufficient con-
ditions provide boundedness on both classical and Lorentz mixed normed modulation
spaces.

2.4 Interpolation theorems

Now we will give interpolation theorems for the M(P, Q)(Rd) spaces. The interpola-
tion theorems for Lorentz mixed norm spaces are given in [20, p. 6] suggests a similar
statement for the M(P, Q)(Rd) spaces. So we omit the proof.

Proposition 17 Let 0 < θ < 1, 1
ri

= 1−θ
pi

+ θ
qi
, 1

ui
= 1−θ

si
+ θ

ti
, i = 1, 2. Let T be a

linear operator mapping M p1,p2 into M(s1,∞; s2,∞); M p1,q2 into M(s1,∞; t2,∞);
Mq1,p2 into M(t1,∞; s2,∞) and Mq1,q2 into M(t1,∞; t2,∞), continuously. Then,
interpolating we have

T :(M p1,p2 ,M p1,q2)θ,r2 → (M(s1,∞; s2,∞),M(s1,∞; t2,∞))θ,r2

T :M p1,r2 → M(s1,∞; u2, r2)

and

T :(Mq1,p2 ,Mq1,q2)θ,r2 → (M(t1,∞; s2,∞),M(t1,∞; t2,∞))θ,r2

T :Mq1,r2 → M(t1,∞; u2, r2).

Moreover, if p2 ≤ s2 and q2 ≤ t2, then r2 ≤ u2. Thus

T :(M p1,r2 ,Mq1,r2)θ,r2 → (M(s1,∞; u2, r2),M(t1,∞; u2, r2))θ,r2

T :M(r1, r2; r2, r2) → M(u1, r2; u2, u2)

continuously.
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3 The spaceA(P, Q, r)(Rd)

Definition 18 Fix a non-zero window g ∈ S(Rd), 1 ≤ P = (p1, p2) < ∞, 1 ≤
Q = (q1, q2) < ∞ and 1 ≤ r < ∞. The space A(P, Q, r)(Rd) is given by

A(P, Q, r)(Rd) = Lr (Rd) ∩ M(P, Q)(Rd)

= { f ∈ Lr (Rd) | Vg f ∈ L(P, Q)(R2d)}.

It is easy to show that

‖ f ‖A(P,Q,r) = ‖ f ‖r + ‖ f ‖M(P,Q) = ‖ f ‖r + ‖Vg f ‖P Q

is a norm on the vector space A(P, Q, r)(Rd).

Theorem 19 Let 1 < P < ∞, 1 ≤ Q < ∞, and Q ≤ P, i.e. qi ≤ pi , i = 1, 2.
Then (A(P, Q, r)(Rd), ‖.‖A(P,Q,r)) is a Banach space.

Proof Let ( fn) be a Cauchy sequence in A(P, Q, r)(Rd). Then ( fn) and (Vg fn)

are Cauchy sequence in Lr (Rd) and L(P, Q)(R2d), respectively. Since Lr (Rd) and
L(P, Q)(R2d) are Banach spaces, there exists f ∈ Lr (Rd) and h ∈ L(P, Q)(R2d)

such that

‖ fn − f ‖r → 0 (3.1)

and

‖Vg fn − h‖P ≤ ‖Vg fn − h‖P Q → 0. (3.2)

Thus (Vg fn) converges to the function h in the mixed norm space L P (R2d) =
L p1,p2(R2d). This implies that (Vg fn) has a subsequence (Vg fnk ) which converges
pointwise to h a.e. by the Theorem 1 [2, p. 304]. Moreover, since fn − f ∈ Lr (Rd)

and MwTx g ∈ Lr ′
(Rd), using Hölder inequality and (3.1), we have

|Vg fn(x, w)− Vg f (x, w)| = |〈 fn − f,MwTx g〉|
≤ ‖ fn − f ‖r‖MwTx g‖ŕ

= ‖ fn − f ‖r‖g‖ŕ → 0.

Thus (Vg fn) converges pointwise to Vg f. Again, since ( fn) is a Cauchy sequence,
we get by (3.1)

|Vg fnk (x, w)− Vg f (x, w)| ≤ |〈 fnk − fn,MwTx g〉| + |〈 fn − f,MwTx g〉|
≤ ‖ fnk − fn‖r‖g‖ŕ + ‖ fn − f ‖r‖g‖ŕ → 0.

Finally we obtain

|Vg f (x, w)−h(x, w)| ≤ |Vg fnk (x, w)−Vg f (x, w)|+|Vg fnk (x, w)−h(x, w)| → 0
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and we have Vg f = h a.e. Thus by (3.1) and (3.2), we have

‖ fn − f ‖A(P,Q,r) = ‖ fn − f ‖r + ‖Vg fn − Vg f ‖P Q

= ‖ fn − f ‖r + ‖Vg fn − h‖P Q → 0.

Hence (A(P, Q, r)(Rd), ‖.‖A(P,Q,r)) is a Banach space. ��
Remark 20 Since Lr (Rd) and M(P, Q)(Rd) are invariant under time-frequency shifts
for 1 ≤ r < ∞, 1 < P < ∞, 1 ≤ Q < ∞, then A(P, Q, r)(Rd) is invariant under
time-frequency shifts. Again the function (u, η) �−→ MηTu f is continuous on R

2d

into Lr (Rd) and on R
2d into M(P, Q)(Rd), then it is also continuous on R

2d into
A(P, Q, r)(Rd). Moreover, as Lr (Rd) and M(P, Q)(Rd) are Banach convolution
modules over L1(Rd), then A(P, Q, r)(Rd) is a Banach convolution module over
L1(Rd), for 1 < P < ∞, 1 ≤ Q < ∞ and Q ≤ P. Also it can be shown that
A(P, Q, r)(Rd) is an essential Banach module over L1(Rd). The proof is the same
as that in Theorem 2.2 in [16]. If r = 1, 1 < P < ∞, 1 ≤ Q < ∞ and Q ≤ P, then
we have

‖ f ∗ h‖A(P,Q,1) = ‖ f ∗ h‖1 + ‖ f ∗ h‖M(P,Q)

≤ ‖ f ‖1‖h‖1 + ‖ f ‖M(P,Q)‖h‖1

= ‖ f ‖A(P,Q,1)‖h‖1

for f ∈ A(P, Q, 1)(Rd) and h ∈ L1(Rd). So A(P, Q, 1)(Rd) is a Banach ideal.
Additionally, it is an essential Banach ideal over L1(Rd) by module factorization the-
orem. Furthermore A(P, Q, 1)(Rd) is a Banach convolution algebra for r = 1, 1 <
P < ∞, 1 ≤ Q < ∞ and Q ≤ P.

Theorem 21 If r = 1, 1 < P < ∞, 1 ≤ Q < ∞ and Q ≤ P, then the space
A(P, Q, 1)(Rd) is a Segal algebra.

Proof It is known that from the Remark 20, the space A(P, Q, 1)(Rd ) is a Banach con-
volution algebra, strongly translation invariant and translation operator is continuous
on R

d into A(P, Q, 1)(Rd). For the proof it is enough to see that A(P, Q, 1)(Rd) is
dense in L1(Rd). By Proposition 2, we have S(Rd) ⊂ M(P, Q)(Rd). It is also known
that S(Rd) ⊂ L1(Rd) is dense in L1(Rd). As S(Rd) ⊂ L1(Rd) ⊂ A(P, Q, 1)(Rd)

and S(Rd) is dense in L1(Rd), then A(P, Q, 1)(Rd) is dense in L1(Rd). ��
For 1 < P < ∞, 1 ≤ Q < ∞, let the function


 : A(P, Q, r)(Rd) → Lr (Rd)× L(P, Q)(R2d)

be given by 
( f ) = ( f, Vg f ). Also let

H = {( f, Vg f ) : f ∈ A(P, Q, r)(Rd)} = 
(A(P, Q, r)(Rd)).

Then

‖
( f )‖ = ‖( f, Vg f )‖ = ‖ f ‖r + ‖Vg f ‖P Q
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is a norm on H. Thus 
 is an isometry. Moreover we set

K =
⎧⎨
⎩

(ϕ, ψ) : (ϕ, ψ) ∈ Lr ′ (
R

d
) × L

(
P ′, Q′) (

R
2d

)
,∫

Rd

f (y) ϕ (y) dy + ∫∫
R2d

Vg f (z) ψ (z) dz = 0, for all
(

f, Vg f
) ∈ H

⎫⎬
⎭ ,

where 1
P + 1

P ′ = 1, 1
Q + 1

Q′ = 1 and 1
r + 1

r ′ = 1.

Proposition 22 Let 1 < P < ∞, 1 ≤ Q < ∞. Then the dual space of the space
A(P, Q, r)(Rd) is isomorphic to Lr ′

(Rd)× L(P ′, Q′)(R2d)/K , where 1
P + 1

P ′ = 1,
1
Q + 1

Q′ = 1 and 1
r + 1

r ′ = 1.

Proof This proposition is easily proved by the Duality Theorem 1.7 in [19]. ��

4 Multiplier spaces

4.1 Multiplier spaces of M(P, Q)(Rd)

Proposition 23 Let 1 < P < ∞, 1 ≤ Q < ∞. If 1
P + 1

P ′ = 1 and 1
Q + 1

Q′ = 1, then

1. HomL1(Rd )(L
1(Rd),M(P ′, Q′)(Rd)) = M(P ′, Q′)(Rd).

2. HomL1(M(P, Q)(Rd), L∞(Rd)) = HomL1(L1(Rd),M(P ′, Q′)(Rd)).

Proof 1. Using Theorem 8, Theorem 13 and [22, Corollary 2.13], we obtain

HomL1(Rd )(L
1(Rd),M(P ′, Q′)(Rd)) = (L1(Rd) ∗ M(P, Q)(Rd))∗

= (M(P, Q)(Rd))∗ = M(P ′, Q′)(Rd).

2. It is known that the dual space of L1(Rd) is L∞(Rd). Applying again [22, Corol-
lary 2.13] we have

HomL1(M(P, Q)(Rd), L∞(Rd)) = (L1(Rd) ∗ M(P, Q)(Rd))∗

= (M(P, Q)(Rd))∗ = M(P ′, Q′)(Rd).

Corollary 24 If we take p1 = q1 = p and p2 = q2 = q in Proposition 23, then we
obtain

1. HomL1(Rd )(L
1(Rd),M p′,q ′

(Rd)) = M p′,q ′
(Rd).

2. HomL1(M p,q(Rd), L∞(Rd))= HomL1(L1(Rd),M p′,q ′
(Rd)),where M p,q(Rd)

and M p′,q ′
(Rd) are the standard modulation spaces.

4.2 Multiplier spaces of A(P, Q, r)(Rd)

Consider a net (eα), which is a bounded approximate identity in L1(Rd) and having
∧
eα with compact support, ∀α ∈ I. Define

MA(P,Q,1)(R
d) = {μ ∈ M(Rd) | ‖μ ∗ eα‖A(P,Q,1) ≤ C(μ)},
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where

‖μ‖MA(P,Q,1) = sup{‖μ ∗ eα‖A(P,Q,1)

‖eα‖1
},

M(Rd) is the space of bounded regular Borel measure on R
d and C(μ) is a constant

depending on the measure μ. As A(P, Q, 1)(Rd) is a Segal algebra and an essential
Banach ideal for 1 < P < ∞, 1 ≤ Q < ∞ and Q ≤ P, then MA(P,Q,1)(R

d) is
uniquely defined as independent of the approximate identity, for 1 < P < ∞, 1 ≤
Q < ∞ and Q ≤ P by Proposition 3 in [10].

Proposition 25 Let 1 < P < ∞, 1 ≤ Q < ∞ and Q ≤ P. Then for a linear
operator T : L1(Rd) → A(P, Q, 1)(Rd), the following are equivalent:

1. T ∈ M(L1(Rd), A(P, Q, 1)(Rd)).

2. There exists a unique measure μ ∈ MA(P,Q,1)(R
d) such that T f = μ ∗ f

for every f ∈ L1(Rd). Moreover, the spaces M(L1(Rd), A(P, Q, 1)(Rd)) and
MA(P,Q,1)(R

d) are homeomorphic.

Proof If 1 < P < ∞, 1 ≤ Q < ∞ and Q ≤ P, it is known that the space
A(P, Q, 1)(Rd) is a Segal algebra and an essential Banach ideal by Theorem 21 and
Remark 20. Thus by Theorem 4 in [10], the proof is completed. ��

The next proposition is proved as Proposition 23.

Proposition 26 Let 1 < P < ∞, 1 ≤ Q < ∞ and Q ≤ P. Then
HomL1(A(P, Q, r)(Rd), L∞(Rd)) and HomL1(L1(Rd), (A(P, Q, r)(Rd))∗) are
isomorphic to Lr ′

(Rd) × L(P ′, Q′)(R2d)/K , where 1
P + 1

P ′ = 1, 1
Q + 1

Q′ = 1

and 1
r + 1

r ′ = 1 and (A(P, Q, r)(Rd))∗ is the dual of A(P, Q, r)(Rd).

Theorem 27 Let 1 < P, Q < ∞, Q ≤ P, g ∈ S(Rd)\{0} and T : A(P, Q, 1)
(Rd) → L1(Rd) be a linear transformation. Then the following are equivalent:

1. T ∈ M(A(P, Q, 1)(Rd), L1(Rd)).

2. There exists a unique μ ∈ M(Rd) such that T f = μ ∗ f for every f ∈
A(P, Q, 1)(Rd), where M(Rd) is the space of bounded regular Borel measure
on R

d .

Proof Let μ ∈ M(Rd) and T f = μ ∗ f for every f ∈ A(P, Q, 1)(Rd). Hence we
get

‖T f ‖1 = ‖μ ∗ f ‖1 ≤ ‖μ‖‖ f ‖1 ≤ ‖μ‖‖ f ‖A(P,Q,1).

It is easy to see the other conditions to be multiplier from A(P, Q, 1)(Rd)

into L1(Rd). Thus T ∈ M(A(P, Q, 1)(Rd), L1(Rd)). Conversely, let T ∈
M(A(P, Q, 1)(Rd), L1(Rd)). Thus we have

‖T f ‖1 ≤ ‖T ‖‖ f ‖A(P,Q,1) = ‖T ‖(‖ f ‖1 + ‖Vg f ‖P Q). (4.1)
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By (4.1) and the inequality (4.10) in [16], we have

2‖T f ‖1 ≤ ‖T ‖(2‖ f ‖1 + lim
s→∞‖Vg f + e−2π iswT(s,0)Vg f ‖P Q)

for all f ∈ A(P, Q, 1)(Rd). Again by using Lemma 4.1 and Lemma 4.2 in [16], we
have

lim
s→∞‖Vg f+e−2π iswT(s,0)Vg f ‖p1q1 = lim

s→∞‖Vg f + T(s,0)Vg f ‖p1q1 =2
1
p1 ‖Vg f ‖p1q1 .

The continuity of ‖.‖p2q2 implies that

‖Vg f + e−2π iswT(s,0)Vg f ‖P Q → 2
1
p1 ‖Vg f ‖P Q

as s → ∞. Hence we obtain

2‖T f ‖1 ≤ ‖T ‖(2‖ f ‖1 + 2
1
p1 ‖Vg f ‖P Q)

and

‖T f ‖1 ≤ ‖T ‖(‖ f ‖1 + 2
1
p1

−1‖Vg f ‖P Q).

Repeating this process n times, we have

‖T f ‖1 ≤ ‖T ‖(‖ f ‖1 + 2
n( 1

p1
−1)‖Vg f ‖P Q)

for all f ∈ A(P, Q, 1)(Rd). Since p1 > 1 we have lim
n→∞2

n( 1
p1

−1) = 0, thus we get

through

‖T f ‖1 ≤ ‖T ‖‖ f ‖1.

So, since T is a continuous linear transformation from A(P, Q, 1)(Rd) to L1(Rd)

and A(P, Q, 1)(Rd) is dense in L1(Rd), then T has a unique continuous linear exten-

sion
∼
T : L1(Rd) → L1(Rd) and ‖∼

T ‖ = ‖T ‖. Thus there exists a unique measure
μ ∈ M(Rd) such that T f = μ ∗ f for all f ∈ A(P, Q, 1)(Rd) by Theorem 0.1.1
in [18]. ��

The following theorem can be easily proved by Theorem 4.2 in [16].

Theorem 28 If 1 < P, Q < ∞ and Q ≤ P, then the multipliers M(A(P, Q, 1)(Rd ),

A(P, Q, 1)(Rd)) is isometrically isomorphic to M(Rd).
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