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Opinion statement

Although chimeric antigen receptor T cell immunotherapy has been successfully applied in
patients with hematological malignancies, several obstacles still need to be overcome,
such as high relapse rates and side effects. Overcoming the limitations of CAR-T cell
therapy and boosting the efficacy of CAR-T cell therapy are urgent issues that must be
addressed. The exploration of small-molecule compounds in combination with CAR-T cell
therapies has achieved promising success in pre-clinical and clinical studies in recent
years. Protein kinase inhibitors, demethylating drugs, HDAC inhibitors, PI3K inhibitors,
immunomodulatory drugs, Akt inhibitors, mTOR inhibitors, and Bcl-2 inhibitors exhibited
potential synergy in combination with CAR-T cell therapy. In this review, we will discuss
the recent application of these combination therapies for improved outcomes of CAR-T cell
therapy.
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Introduction

In such an era where immunotherapy develops rapidly,
CAR-T cell therapy has remarkably succeeded in treating
patients with hematologic malignancies, especially suf-
fering from relapsed/refractory B cell acute lymphoblas-
tic leukemia (r/r B-ALL) [1]. T cells are usually isolated
from patients or suitable donors, and then these cells are
genetically engineered into CAR-T cells, which can espe-
cially recognize and kill tumor cells in a non-MHC-
restrictedmanner [2]. CARs are artificial proteins includ-
ing four sections: an extracellular antigen recognition
domain, a hinge region, a transmembrane domain,
and an intracellular signal transduction domain. Con-
ventionally, according to the composition of the intra-
cellular signal transduction region, CAR-T cells are cate-
gorized into four generations [3] (Fig. 1). The first gen-
eration has only one intracellular activation domain
named CD3ζ, an immunoreceptor tyrosine-activated
motif (ITAM), triggering the downstream sequences af-
ter the activation. However, due to the lack of the cos-
timulatory signal domain, the levels of cytokine secre-
tion are low. Therefore, the anti-tumor effects are equally
inferior. Owing to the poor persistence, the first genera-
tion of CAR-T has little application in clinical practices
[4]. The second generation has one costimulatory sig-
naling domain (CD28 or 4-1BB). A large number of
studies have shown that this design increases memory
effects of tumor cell lysis and the lethal effects mediated
by CAR-T cells. In addition, the persistence of its impacts
is also improved compared to its initial generation [5].
The third generation possesses two or more costimula-
tory signaling regions (CD28, 4-1BB, ICOS, OX-40, etc.),
so T cells can produce more cytokines and exert more
robust and durable anti-tumor effects after activation.
The fourth generation of CAR-T cells is sometimes also
called TRUCK T cells (T cell redirected for universal
cytokine killing). It contains additional protein mole-
cules such as interleukin-12 or extra receptors such as
costimulatory ligands to regulate the tumor microenvi-
ronment (TME) and recruit and activate other immune

cells for tumor killing [6]. At present, six CAR-T cell
products targeting CD19 or BCMA have been launched
worldwide by the FDA. These products all pertain to the
second generation. Existing studies have demonstrated
that for patients with r/r B-ALL, the complete remission
(CR) rate of CAR-T cell therapy already reaches 70 to
90% [2, 7]. The CR rate of r/r lymphoma patients is 50 to
67% [8–10], and the remission rate in multiple myelo-
ma (MM) can reach more than 80% [11, 12].

However, with the further application and the
deepening research of CAR-T cell therapy, problems
such as resistance, recurrences, and toxicity have grad-
ually emerged [13, 14]. In combination with the
existing drugs that are applied to hematological ma-
lignancies, patients with a poor initial response to
CAR-T cell therapy or patients with disease recurrence
after CAR-T cell therapy have found new hope. At
present, small-molecule compounds can mitigate
the limitations of CAR-T cell therapy, including the
expression of inhibitory receptors, poor amplifica-
tion, inferior persistence, loss of target antigen, severe
cytokine release syndrome (CRS), or neurotoxicity,
etc. [15••]. These compounds include small-
molecule inhibitors, such as tyrosine kinase inhibi-
tors (TKIs), Bruton tyrosine kinase (BTK) inhibitors,
Janus kinase (JAK) inhibitors, phosphoInositide-3 ki-
nase (PI3K) inhibitors, mammalian target of rapamy-
cin (mTOR) inhibitors, B cell lymphoma-2 (Bcl-2)
inhibitors, histone deacetylases (HDAC) inhibitors,
cox-2 inhibitors, nuclear output selective inhibitors,
gamma-secretase inhibitors, etc., small molecules in-
cluding demethylation drugs, immunomodulators,
and cytokines, and some other cytokine-blocking
antibodies, immune checkpoint inhibitors, monoclo-
nal antibodies, and chemotherapy drugs, etc. The
purpose of this article is to summarize and briefly
analyze the research progress of CAR-T cell immuno-
therapy combined with small-molecule compounds
to treat hematological malignancies (Fig. 2).

Protein kinase inhibitors

Protein phosphorylation is a critical step in cell growth and is essential for
maintaining cellular homeostasis. Meanwhile, protein kinases are the key
enzymes that promote protein phosphorylation. Therefore, abnormal
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activation of protein kinases may cause negative effects on normal cell function
which may induce tumorigenesis [16]. According to the related theoretical
knowledge, protein kinases would be ideal targets for treating hematological
malignancies.

Tyrosine kinase inhibitors (TKIs) in combination with CAR-T cell therapy
T cell receptors (TCR) trigger the activation of T cells. The proximal signaling
pathway of TCR is essential in the process of T cell activation. Lymphocyte-
specific protein tyrosine kinase (Lck) and proto-oncogene protein tyrosine
kinase (Fyn) are members of the Src family kinase, involved in the earliest steps
of TCR activation, and Lck deficiency can prevent the conduction of proximal
TCR signaling and block T cell development and activation [17]. Therefore,

Fig. 1. The process of CAR-T cell therapy. (1) Acquiring T cells from patients’ or healthy donors’ blood; (2) Create CAR-T cells: T cells
are genetically engineered into CAR-T cells. CARs are artificial proteins, consisting of an extracellular antigen recognition region
(single-chain variable fragment (ScFv)), a hinge domain, a transmembrane region, and an intracellular signal transduction region
(zero to three costimulatory domains, and an intracellular CD3ζ activation region). According to the different structures of the
intracellular signal transduction region, it can be categorized into four generations, and the basic structure includes ScFv, a hinge
domain, a transmembrane region, and CD3ζ. The first generation only has the basic structure. The second generation adds a
costimulatory part (CD28 or 4-1BB). The third generation obtains two or more costimulatory parts (CD28, 4-1BB, ICOS, OX-40, etc.).
The fourth generation contains additional protein molecules or gets extra receptors. (3) Amplify CAR-T cells; (4) Infusion CAR-T cells
into patients: CAR-T cells are engrafted in patients and increase widely. Meanwhile, many tumor cells can be killed by one CAR-T cell.
CAR-T cells can facilitate immune surveillance, prevent tumor recurrence, and assist tumor-infiltrating lymphocytes in attacking
tumors through antigen release or the CAR-T cells’ persistence.
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most researchers believe that Lck is more critical in the signaling pathway of
TCR than Fyn [18]. Dasatinib, a second-generation BCR-ABL inhibitor, was
approved by the FDA in 2006 for the treatment of chronic myelocytic leukemia
(CML) [19]. It can inhibit cancer cell proliferation and induce its apoptosis [20,
21]. It can also block the adenosine triphosphate (ATP) binding site of Lck,
thereby exerting a powerful ability to inhibit Lck activity. Schade et al. [18] have
demonstrated that dasatinib has apparent effects on inhibiting the signal trans-
duction and early activation of T cells in vivo or in vitro and plays a vital part in
the subsequent production of chemokines and pro-inflammatory cytokines.

Fig. 2. CAR-T cell therapy in combination with different kinds of small-molecule compounds. TKIs, tyrosine kinase inhibitors; BTK,
Bruton tyrosine kinase; JAK, Janus kinase; PI3K, phosphoInositide-3 kinase; Bcl–2, B cell lymphoma-2; HDAC, histone deacetylase.
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Mestermann et al. [22] and Weber et al. [23] demonstrated that dasatinib
induces a function-off state in CD4+ and CD8+ CAR-T cells. This state can
appear immediately after the application of dasatinib. And it can persist for a
few days without influencing the viability of T cells. The function of the CAR-T
cells was completely reversible after the removal of the drug. This drug is most
likely appropriate for clinically available CAR-T cell pharmacology on/off,
allowing doctors to control CAR-T cell function in real time. It was found that
dasatinib rapidly governed the CRS of the mice that had received CD19 CAR-T
cell therapy, increasing the 48-h survival rate after CRS from 25 to 70%.
However, researchers from Zhejiang University recently found that, on the
one hand, dasatinib can reduce the differentiation and depletion of CAR-T cells
through pharmacological inhibition of T cell activation signals, thereby enhanc-
ing their therapeutic effects and persistence in vivo. On the other hand, dasati-
nib can effectively block or reverse intense activation-induced CAR-T cell differ-
entiation and depletion induced by the stimulation of CD3/CD28 beads or the
exposure of antigens, which provides the possibility of clinical application of
this drug combined with CAR-T cell therapy [24•]. Recently, Weber et al. [25••]
also proposed that treating CAR-T cells with dasatinib attenuates deleterious
CAR signaling, which could temporarily block CAR signaling to reverse dys-
function by inducing epigenetic reprogramming in exhausted CAR-T cells. In
summary, TKI inhibitors in combination with CAR-T cell therapy seem to be
safe and could increase the efficacy and safety of CAR-T cells. Future research
directions may be devoted to determining the relationship between dasatinib
and epigenetic modification molecules, as well as CAR-T cell activation, differ-
entiation, and exhaustion. We have reasons to believe that dasatinib in combi-
nation with CAR-T cell therapy will bring new hope to patients with hemato-
logical malignancies. Meanwhile, other second-generation TKIs such as bosuti-
nib and nilotinib, as well as the third-generation TKI ponatinib, may also have
the potential to enhance the efficacy of CAR-T cells. Some clinical research
about these TKIs applying to patients with Ph+ ALL is undergoing [26]. Based
on the promising results of CAR-T cell therapy combined with dasatinib, we
anticipate that these TKIs will have significant impact on patients suffering from
hematological malignancies, particularly Ph+ ALL.

Bruton’s tyrosine kinase (BTK) inhibitors in combination with CAR-T cell therapy
A non-receptor kinase called BTK plays a central role in the signaling of an
oncogene, making outstanding contributions to cell proliferation and survival
in various B cell malignancies [27]. BTK is not only involved in the signaling
pathway of the B cell receptor (BCR) but also participates in other signaling
pathways of B cells, including chemokine receptors [28], Toll-like receptors
(TLRs) [29], and the Fc receptor signaling pathways [30]. There are three kinds
of BTK inhibitors on the market, named ibrutinib, acalabrutinib, and zanubru-
tinib. Studies have shown that CAR-T cells are poorly amplified in vitro from T
cells isolated fromCLL patients. But when T cells were acquired during ibrutinib
treatment, CAR-T had a significantly better expansion [31, 32]. Fan et al. [33]
reported that adding ibrutinib during the generation of CD19 CAR-T cells did
improve CD19 CAR-T cell production and also enriched less-differentiated
naïve-like T cells with low expression of LAG-3, PD-1, and TIM3. Obviously,
according to the findings of Fan et al. [33], this novel combination is an
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extremely promising strategy, but there was no relevant data in vivo to confirm
these conclusions in this article. And then, Ruella et al. [34] introduced that
ibrutinib improved the response to the treatment of CD19 CAR-T inmantle cell
lymphoma (MCL) and enhanced the xenograft MCL mice lifespan compared
with CAR-T cell therapy alone. In the same year, the team found that ibrutinib
did not impair proliferative capacity, cytotoxicity, or the ability to recognize the
tumor of CAR-T cells. Furthermore, ibrutinib could significantly reduce the
release of several inflammatory cytokines in NSG mice models, including IL-
2, IL-6, IFN-γ, TNF-α, and GM-CSF, as well as the expression of PD-1, LAG-3,
TIM-3, and CTLA-4 in CD19 CAR-T cells [35]. Barfi et al.’s findings also suggest
that T cell-dependent anti-tumor immune responses can be enhanced by ibru-
tinib [36, 37]. Moreover, the conclusions regarding T cell cytokine secretion like
IFN-γ, IL-2, and TNF-α are similar to those ofQin J.S et al. [38]. Ruella et al. [35]
then demonstrated that when MCL cells interacted with different concentra-
tions of ibrutinib in vitro, the level of MIP-1a, MIP-1b, TNF-α, and other tumor
proteins was reduced. And this drug indeed did not affect T cell proliferation.
Therefore, CAR-T cell therapy combined with ibrutinib could reduce the risk of
CRS without affecting the efficacy of CAR-T cell therapy, whether in vitro or
in vivo. According to these findings, this team conducted a clinical trial
(NCT02640209). Finally, 20 CLL patients were enrolled, and the 48-month
overall and progression-free survival rates of 19 out of 20 patients appear to be
improved [39]. In addition, a retrospective single-center phase I study of 19
patients with CLL showed that patients treated with ibrutinib and CAR-T cell
therapy had lower severity of CRS and lower serum levels of CRS-related
cytokines [40•]. Currently, a non-randomized prospective study evaluating
ibrutinib combined with CD19 CAR-T cell therapy is underway
(NCT03331198). Liu M et al. [41] demonstrated that ibrutinib could weaken
the PD-1 expression of CD19 CAR-T both in vitro and in vivo. And then 6 of 7
B-NHL patients achieved CR (ChiCTR-ONN-16009862) after receiving ibruti-
nib combined with the second-time CD19 CAR-T cell therapy [42]. Qin, J.S
et al. [38] suggested that ibrutinib or acalabrutinib intrinsically improved the
potential of proliferation or the capacity of survival of CD19 CAR-T cells in
CD19+ tumor cells and reduced the cytokine secretion; meanwhile, according
to the tumor cell lines used in their experiment which are resistant to the growth
inhibition mediated by BTK inhibitors, they thought that pharmacological
function of CAR-T cells could be influenced by the efficacy of tumor cell biology
mediated by BTK inhibitors. However, more relevant research is needed to
verify this conclusion. Meanwhile, adverse effects including bruising/bleeding,
cardiovascular damage, skin rash, and diarrhea associated with BTK inhibitors
draw our attention [43]. There are some ongoing trials (NCT04234061,
NCT04484012) evaluating whether this strategy is safe or efficient. In summary,
BTK inhibitors are promising drugs that increase the success rate of CAR-T cell
therapy. However, the dose and timing of the BTK inhibitors’ application need
further validation.

Some inhibitors targeting the crucial signaling pathway

When CAR-T cells are infused into the human body, they may cause different
degrees of adverse reactions through different signaling pathways in the
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processes of proliferation, differentiation, and targeted tumor killing. These
pathways usually include PI3K-AKT-mTOR and JAK-STAT. Targeting key medi-
ators of signaling pathways and applying drugs to inhibit these pathways may
enhance the success rate of CAR-T cell therapy.

JAK inhibitors in combination with CAR-T cell therapy
JAK-STAT signaling pathway participates in intracellular signal transduction
pathways of hematopoietic and immune cells. It can transduce the extracellular
signal transmitted by various lymphocytes, growth factors, and cytokines, thus
playing a core role in normal hematopoiesis [44–46]. Multiple cytokines and
growth factors can activate the JAK family to different degrees, which is critical to
the expansion and differentiation of myeloid cells and lymphocytes [47•].
Genes encoding JAK protein kinases, particularly JAK2, are regularly mutated
in myeloproliferative neoplasms, which leads to abnormal activation of the
JAK/STAT signaling pathway. And this signaling pathway is correlated to the
development and survival of cancer cells as well as the progress of chronic
inflammation [48]. Ruxolitinib and fedratinib are the two currently FDA-
approved JAK2 inhibitors with potent anti-inflammatory and immunosuppres-
sive effects [47•, 49–51]. Kenderian et al. [52] demonstrated that in a mouse
xenograft model, ruxolitinib could prevent the progress of severe CRS without
compromising CAR-T cells’ anti-tumor effect. Ruxolitinib has been proven to
have a good effect in treating severe CRS and excellent tolerability in patients
[53]. A patient with Ph+ ALL developed steroid-refractory CRS after receiving
sequential CD22/CD19 CAR-T cell infusions. After taking ruxolitinib as adju-
vant therapy, the patient’s symptoms improved rapidly. They achievedminimal
residual disease-negative CR, which was associated with a reduction in circulat-
ing pro-inflammatory marker levels, suggesting that CAR-T cells’ anti-leukemia
effects were not affected by this intervention [54]. In another study, fourteen
children with r/r B-ALL received infusions with CD19 or CD22 CAR-T cells. And
four patients experienced severe (grade ≥3) CRS. They found that serum cyto-
kine levels were significantly decreased by the ruxolitinib intervention, and they
all achieved CR 30 days after the infusion. Treatment based on ruxolitinib in
two patients with T-ALL also resolved grade 3 CRS induced by CD7 CAR-T cell
therapy [55]. Not only could ruxolitinib reduce the levels of cytokines released
by other cells in the immune system, it also maintained a certain degree of
cytokines that CAR-T cells released. Although CAR-T cells’ proliferation was
significantly inhibited, their therapeutic effect was not affected after the with-
drawal of ruxolitinib at appropriate doses [56]. What’s more, a selective JAK1
inhibitor called itacitinib was developed to treat graft-versus-host disease. This
drug could address CRS with a low risk of immunosuppression and without
inhibiting the anti-tumor killing ability or expansion of CAR-T cells in vitro and
in mouse lymphoma models. Overall, these results show that itacitinib can be
used against CAR-T cell-induced CRS [57]. A phase II clinical trial evaluating
itacitinib for the prevention of CRS is currently underway (NCT04071366).
However, few studies were focused on the combined application of other kinds
of JAK inhibitors and CAR-T cell therapy. According to the above research, JAK
inhibitors may not impair the anti-tumor effect of CAR-T, but the potential
inhibitory effect of ruxolitinib on the proliferation and maintenance of CAR-T
remains amajor issue that we need to pay attention to. In addition, hemorrhage
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and thrombocytopenia are the major common side effects related to ruxoliti-
nib. Though Pan, Jing, et al. found that ruxolitinib was relatively safe during
CD19 CAR-T therapy [53], we need more evidence to verify this conclusion.
Meanwhile, according to the significant effect of this pathway on the adverse
effects of CAR-T cell therapy, this combination regimen, such as ruxolitinib
combined with CAR-T cells, is one of the directions for further research to
mitigate adverse reactions.

PI3K inhibitors in combination with CAR-T cell therapy
PI3Kδ inhibitors are one of the most widely studied targeted drugs for
treating patients with lymphoma. They cast an essential part in inhibiting
tumor progression and reshaping the TME. They have different influences
on regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs),
tumor-associated macrophages (TAMs), etc. [58–61]. Idelalisib, duvelisib,
and copanlisib are three kinds of FDA-approved drugs [62–64], of which
idelalisib is the first PI3Kδ inhibitor to be approved to treat r/r CLL. Linda
et al. [65] found that idelalisib could not only block the signal transduc-
tion pathway involved in PI3K but also regulate the differentiation and
function of T cells by inhibiting PI3K in vitro and in mouse experiments.
Christopher et al. [66] demonstrated that idelalisib increased the quantity
and function of T cells and contributed to improving T cells’ qualities
during in vitro amplification. These are consistent with the findings of
Chellappa and Hanna et al. [60, 67]. Considering the connection of CARs
and T cell antigen receptors (TCRs) with the PI3K pathway as well as the
differentiation and metabolism of T cells [61], it is feasible to utilize PI3K
inhibitors as a means of facilitating the process of producing CAR-T cells.
When Sophia et al. added idelalisib to CD19 CAR-T cells in vitro, they
found that idelalisib did increase the transduction efficiency of CD19 CAR-
T cells by inhibiting PI3Kδ. Meanwhile, it also induced the enrichment of
naïve-like T cells with less differentiation and increased the proportion of
the lymph node homing marker CD62L, and decreased the expression of
PD-1 and TIM-3, thus optimizing the proportion of CAR-T cells with this
phenotype. Idelalisib resulted in a CD4:CD8 ratio in chronic lymphocytic
leukemia (CLL) patient-derived CAR-T cells that was closer to the ratio in
healthy donors [68]. In addition, a study at the 2021 ASH meeting men-
tioned that during the culture of T cells in vitro, the use of duvelisib, dual
inhibition of PI3Kδ/γ, would give priority to the amplification of CD8+ T
cells, involving stem cell-like memory T cells and central memory T cells,
thereby enhancing CD19 CAR-T cells persistence and cytotoxicity. The
expression and epigenetic reprogramming of T cell mitochondrial fusion
proteins mitofusins1 and 2 (MFN1/2) were promoted by duvelisib [69]. At
the same time, it was found that adding duvelisib to the culture of CAR-T
cells could decrease the expression of PD-1, LAG-3, and TIM-3 in CD4+
and CD8+ subsets, increasing the survival rate of mice by enhancing CAR-T
cells’ expansion and their anti-CLL efficacy [70]. Funk et al. reconfirmed
that when CAR-T cells were exposed to duvelisib, the quantities of memory
CD8+ T cells with stem cell properties in CAR-T products were increased,
giving CAR-T cells an epigenetic pathway in vivo with greater amplification
and anti-tumor activity [71••]. Now, research on CAR-T cell therapy with
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PI3K inhibitors to treat hematological malignancies is limited. More rele-
vant data from pre-clinical and clinical trials are required to confirm the
influences on CAR-T cell therapy further.

mTOR inhibitors in combination with CAR-T cell therapy
By analyzing 52 FDA-approved kinase inhibitors, researchers discovered
that mTOR inhibitors could influence the proliferation of T cells and
relevant cytokine secretion after the activation of TCR [72]. In addition,
the PI3K/Akt/mTOR signaling plays a vital part in the cell cycle. Research-
ers have found that CAR-T cells’ anti-tumor activity will increase due to the
inhibition of Akt signaling during the preparation process of CAR-T cells,
suggesting that the inhibition of this signaling may be another therapeutic
target to enhance the anti-tumor activity of CAR-T cell therapy [73].
Meanwhile, sirolimus, temsirolimus, and everolimus are mTOR inhibitors
that are FDA-approved. A recent study showed that they could impair
cytokine secretion associated with CD19-TCB without reducing its anti-
tumor efficacy at the proper doses, whether in vivo or in lymphoma
huNSG mice. Based on these data, they thought that mTOR inhibitors
might be a better option to prevent the development of CRS without
interfering with T cell killing cells compared with JAK, Src inhibitors, and
dexamethasone [72]. In fact, mTOR inhibitors are widely applied in dif-
ferent solid cancers due to their anti-tumor activity, combined with a TCB
that targets solid tumors, which seems to be a way to prevent the occur-
rence of CRS while retaining its efficacy [74, 75]. However, the signaling of
mTOR is often dysregulated in different cancers, such as breast, prostate,
lung, liver, and renal cell carcinomas. Studies showed that the upregula-
tion of mTOR signaling may promote growth factor receptor signaling,
angiogenesis, glycolytic activity, lipid metabolism, cancer cell migration,
and the suppression of autophagy, leading to tumor growth and progres-
sion [76, 77]. Esfahani et al. [78] found that sirolimus could change the
immune landscape and promote patients with renal transplant tolerance
while maintaining anti-tumor activity mediated by pembrolizumab.
What’s more, rapamycin (Rapa) has direct anti-tumor activity, but at the
same time it can inhibit effector T cells, so it may also have an inhibitory
effect on CAR-T cells. Based on this, Huye et al. [79] developed rapamycin-
resistant CD19 CAR-T cells and found that the anti-tumor activity was
increased in Burkitt’s lymphoma and ALL cell lines. All in all, these results
support the idea that targeting the mTOR pathway is a new way to reduce
the occurrence of CRS associated with immunotherapies and promote the
development of CAR-T cell therapy.

Apoptosis regulators

Apoptosis has been a hot topic in recent years, which is of great significance in
the occurrence and development of many diseases. Tumors usually upregulate
anti-apoptotic proteins or silence pro-apoptotic proteins resulting in an imbal-
ance of apoptosis [80, 81]. CAR-T cells kill tumor cells via apoptosis induction.
The application of apoptosis inhibitors to re-sensitize tumor cells to apoptosis
before CAR-T cell therapy is an attractive strategy.
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Bcl-2 inhibitors in combination with CAR-T cell therapy
B cell lymphoma-2 (Bcl-2) is a proto-oncogene located on human chromosome
18q21. In multivariate analysis, Bcl-2 protein level was the most significant
predictor of patient overall survival. The reduced apoptotic potential and en-
hanced accumulation of leukemia cells were related to the level of its expression
[82]. Therefore, inhibiting the overexpression of the Bcl-2 familymembers plays
an essential role in the development of tumors and is also a strategy of
combination therapy. Studies in vitro showed that when tumor cells were pre-
sensitized by a Bcl-2 inhibitor called venetoclax, CD19 CAR-T cells’ killing
efficiency was significantly increased. And the early proliferation, persistence,
resistance to immune escape, and anti-tumor efficacy of CD19 CAR-T cells were
enhanced in this way [83]. Recently, a team exploited a unique CAR construct
by integrating Bcl-2 into CAR-T cells and found that this strategy could enhance
CAR-T cells’ proliferation, thereby enhancing the anti-tumor activity in xeno-
grafted lymphoma mice and prolonging their lifespan. This finding provides
new ideas for optimizing CAR-T cell therapy in anti-lymphoma strategies [84].
Navitoclax, a novel Bcl-2 inhibitor, exhibits cytotoxic activity in myeloprolifer-
ative neoplasm (MPN)-derived cell lines and in vitro specimens. Apoptosis of
tumor cells was significantly increased when combined with both CAR-T cells
and navitoclax, or with navitoclax as a pre-sensitizer [85]. Researchers should
conduct more studies to explore the molecular mechanisms associated with the
role of navitoclax in hematologic tumors (except ALL) [86].

Epigenetic modulators

Epigenetics is a discipline that mainly focuses on the study of gene transcription
and altered translation activity mediated by DNA methylation, histone mod-
ifications, chromosome remodeling, RNA, and RNA modifications [87]. In
recent years, researchers have discovered that mechanisms related to epigenetic
modifications of the genome (e.g., DNA methylation and histone modifica-
tions) may lead to impaired signaling in normal hematopoietic pathways.
Therefore, epigenetic modifications are considered important targets for the
therapy of leukemia and other hematological malignancies [88–91]. Epigenetic
drugs typically act on enzymes essential for epigenetic modifications, with the
main strategies being the inhibition of DNA methyltransferases and histone
deacetylases (HDACs). Below, we will discuss the most widely used HDAC
inhibitors and DNA demethylation drugs in clinical practice at present.

HDAC inhibitors in combination with CAR-T cell therapy
Histone acetyltransferases (HATs) and HDACs regulate histone acetylation,
thereby regulating gene expression. The imbalance of histone acetylation causes
the aberrant expression of genes, which also activates oncogenes, inactivates
tumor suppressors, inhibits the programmed death of cells, mediates the dysre-
gulation of immunity, and ultimately arouses the progression of tumors [92].
Several studies have shown that HDAC inhibitors (HDACi) can improve the
expression levels of mRNA and protein in CD20 in Burkitt lymphoma, thereby
increasing the expression of CD20 in cancer cells [93–95]. A report further
revealed that HDACi upregulated the expression of CD20 in cancer cells by
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increasing the acetylation level of H3K9 in the CD20 promoter region. At the
same time, the team discovered that after pretreatment with HDACi for 48 h,
CD20 CAR-T cells secreted more IFN-γ and TNF-α and that HDACi could
enhance the cytotoxic activity of CD20 CAR-T cells against Burkitt lymphoma
cells in vitro and in vivo [96]. However, this team did not testify whether the
secretion of IFN-γ and TNF-α influenced the development of CRS. Some papers
have described that CAR-NK cell function could be improved by HDACi [97,
98]. Romidepsin is an active HDACi that could not only enhance NKG2D
ligand expression in cancer cells but also activate NKG2D expression in NK
cells, so when Burkitt lymphoma cells were treated with romidepsin in advance,
they would be easier to kill by CD20 CAR-NK cells. In humanized Raji xeno-
grafted NSG mice, the combination of the two achieved a better therapeutic
effect than monotherapy [98]. A recent study reconfirmed that this drug in-
creased NK cells’ expansion and improved CD20 CAR-NK activity no matter
in vivo or in vitro, providing an experimental basis for the combination of
romidepsin and CD20 CAR-NK to treat CD20+ Burkitt lymphoma [97]. Torre
et al. [99] found that when human non-Hodgkin’s lymphoma cell lines
responded poorly to CD19 CAR-T cell therapy gradually, HDACi (vorinostat,
also known as SAHA or panobinostat) reversed the resistance to CD19 CAR-T
cell therapy. But we have not known the specific molecular mechanism until
now. In addition, some studies have shown that patients with B-ALL who have
failed after CD19 CAR-T therapy can receive CD22 CAR-T cell therapy, which
displays high efficacy in disease remission. However, the low density of target
antigens is still a barrier to CAR-T cell therapy among many limitations [100,
101]. Chidamide is a novel oral selective HDACi initially developed in China.
Tumor killing mediated by NK cells and antigen-specific cytotoxic T cells can be
induced and enhanced by chidamide. A recent study showed that chidamide
upregulated the density of CD22 in B cell tumor lines and primary cells, thereby
strengthening the curative effect of CD22 CAR-T cell therapy [102]. Based on
these studies, we are looking forward to the promising results that HDACi
combined with CAR-T cell therapy provides in AML because of the antigen
density improvement.

Demethylating drugs in combination with CAR-T cell therapy
DNA methylation has been shown to promote T cell depletion, and aberrant
DNA methylation plays a pivotal role in tumor development and progression
[103, 104]. Azacitidine (AZA) and decitabine (DAC), two FDA-approved DNA
demethylating drugs, have been shown to invert the DNA methylation pro-
grams correlated with exhaustion, causing tumor cell reprogramming and
improving T cell responses to tumors [103]. However, these drugs may lead
to the occurrence of pancytopenia [105], which may increase the risk of infec-
tion in patients after CAR-T cells’ infusion. The number of CFU-GM colonies in
healthy donor BMMC did not decrease further after being sub-treated with AZA
and CD123 CAR-T, suggesting that the combination of the two is unlikely to
cause severe hematopoietic insufficiency [106••]. In addition, pretreatment of
AML cells with AZA before the application of CD123 CAR-T cells promoted the
upregulation of tumor cell target antigen expression, meanwhile enhancing the
anti-tumor efficacy of CD123 CAR-T cells, and prolonging the survival time of
AML mice models. One team constructing CD70 CAR-T for AML found that
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when AML exposure to AZA at physiologically dose-dependent concentrations
increased the expression of CD70 antigen in tumor cells and enhanced the
efficacy of CD70 CAR-T, then they demonstrated this in mice models [107].
Zebley et al. [108] analyzed serial clinical samples from patients with ALL and
revealed that CD8+ CD19 CAR-T cells underwent DNAmethylation reprogram-
ming after infusion, leading to depletion of cell differentiation. Wang, Y et al.
[109••] pre-treated CD19 CAR-T cells with low-dose DAC (10nM) and found
that DAC had a demethylating effect on CAR-T cells, reduced CAR-T cell
depletion, and enhanced CAR-T proliferation and anti-tumor function in vitro
and in mouse models. This is consistent with the results of Li et al. [110]. After
treatment with DAC, they found that lymphoma cells were more susceptible to
being killed by CD19 CAR-T cells because of the increased expression of surface
antigen density, and two patients with r/r lymphoma treated with DAC and
CAR-T cells both achieved CR. It shows that this combination is feasible. You, L
et al. [111] found that pretreatment of CD123 CAR-T cells with ultra-low-dose
DAC (0.1–1μM) increased CD123 CAR-T cells activation and the anti-leukemic
effect increasing in vivo. In addition, Qu et al. [112] found that six patients
achieved molecular CR with DAC as maintenance therapy after CAR-T therapy,
indicating that the application of DAC may improve the prognosis of r/r AL
patients with TP53 alterations after receiving CAR-T therapy. However, due to
the small sample of cases, multiple variables, and lack of homogeneity between
groups, the results are yet to be validated again in the future. Overall, the
selections of CAR-T targets, the choices of demethylating drugs, and the mode
and timing of administration still need to be deliberated regarding the combi-
nation of demethylating drugs with CAR-T. Based on the current pre-clinical
reports, it is reasonable to expect that the combination of these two drugs will
bring benefits to patients with hematological malignancies.

Immunomodulatory agents in combination with CAR-T cell
therapy

Immunomodulatory drugs (IMiDs) such as thalidomide, and its derivatives
lenalidomide and pomalidomide, have been widely used in cancer and auto-
immune diseases [113]. Because these drugs can directly impair myeloma cells’
growth and facilitate the anti-tumor immune responses. At present, they are
mainly used in multiple myeloma (MM). Moreover, IMiDs can affect the
proliferation, differentiation, and function of T cells [114–117]. So the combi-
nation of CAR-T therapy with these drugs may improve the prognosis of
patients with multiple myeloma (MM). Works et al. [118] found that when
lenalidomide was combined with BCMA CAR-T, lenalidomide could increase
cytokine secretion (IL-2, IFN-γ, and TNF-α) as well as the cytolytic activity of
BCMACAR-T therapy in a concentration-dependentmanner. The count of CAR-
T cells in mice’s peripheral blood was improved in the presence of lenalido-
mide, and the survival of mice has also been enhanced. A 51-year-old man with
MM received lenalidomide the day before BCMA CAR-T therapy and achieved
very good PR lasting more than 8 months. This case demonstrated that this
combination therapy is feasible and effective [119]. In addition, because CS1 is
highly selectively expressed in MM cells and rarely expressed in other kinds of
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cells, CS1 CAR-T cells were prepared based on treatment targeting MM [120,
121]. The addition of lenalidomide to CS1 CAR-T cells in vitro and in vivo
experiments was found to improve the formation of immune synapses between
CS1 CAR-T cells and tumor cells, improve the function and persistence of CAR-
T, and increase its anti-tumor activity [121]. However, this strategy needs to be
supported by relevant clinical data. Currently, there are four ongoing clinical
trials of CS1 CAR-T for MM (NCT03710421, NCT04541368, NCT03778346,
and NCT04662099).

Cytokines in combination with CAR-T cell therapy

Cytokines are molecular messengers that enhance the function of the immune
system and enable cells to transmit information to each other. Different kinds
of cytokines play various roles in enhancing anti-tumor efficiency through the
immune system [122]. However, the toxicity and possibility of promoting the
development of tumors associated with cytokines are issues that should be
carefully considered in the specific application. Taking advantage of the favor-
able nature of cytokines and combining them with immunotherapy might be a
promising strategy. It is well known that during the preparation or design of
CAR-T cells, the addition of cytokines such as IL-2, IL-4, IL-7, IL-15, and IL-21
can promote the growth of CAR-T cells [123–126]. These cytokines can promote
T cell growth, survival, and expansion while providing resistance to immune
suppression. So far, IL-2, IL-7 [127], IL-9 [128], IL-12 [129], IL-13 [130], IL-15
[131], IL-18 [132], IL-21 [133], IL-23 [134], IL-33 [135], and other cytokines
have been used in pre-clinical studies in conjugations with CAR-T cells, while
some cytokines, such as IL-1 [136, 137], IL-6 [138, 139], IL-10 [140], TNF-α
[136, 141], IFN-γ [138], and GM-CSF [142], have some negative effects on
CAR-T cell therapy participating in the development of CRS during CAR-T cell
therapy. Due to further research on the mechanisms of CRS and ICANS, as well
as the continuous exploitation and validation of related cytokine inhibitors,
concrete results have been achieved in the treatment of adverse reactions during
CAR-T cell therapy. We hope that we will control negative responses in time to
improve the success rate of CAR-T cell therapy as possible as we can.

Some other kinds of small-molecule inhibitors in combination
with CAR-T cell therapy

In addition to the drugs mentioned above, cyclooxygenase-2 inhibitors, γ-
secretase inhibitors (GSIs), proteasome inhibitors, selective nuclear export
inhibitors, Akt inhibitors, etc. have also been studied in combination with
CAR-T cell therapy by researchers. Cyclooxygenase-2 (COX-2), an enzyme
induced by inflammatory and mitotic stimuli, enhances prostaglandin synthe-
sis in inflammatory and tumor tissues [143]. Due to the anti-inflammatory
effects of COX inhibitors, they have been recommended to treat tumors to
inhibit the levels of inflammatory factors in TME, which can promote the
expansion, survival, and migration of tumor cells [144, 145]. Previous studies
have shown that COX inhibitors inhibited normal T cells [146]. Therefore,
recently, a team investigated the effects when CD19 CAR-T cells were combined
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with various concentrations of COX inhibitors (celecoxib and aspirin) would
happen. They found that NSAIDs inhibited the expression of PD-1 and TIM-3,
induced apoptosis in CD19 CAR-T cells, and influenced CAR-T cells’ prolifera-
tion. Thus, just like every coin has two sides, the application of COX inhibitors
shows some specific anti-tumor effects, but it impairs CD19 CAR-T cells’
quantity and quality [147], so these kinds of drugs should be used cautiously
[148]. Pont et al. [149] found that when MM cell lines were co-cultured with
gamma-secretase inhibitors (GSIs), the expression of BCMA on the cell surface
increased three- to fivefold. The team has initiated a phase I clinical trial
combining BCMA CAR-T cell therapy with GSIs (NCT03502577). Notably,
when BCMA expression levels on target cells were low, applying GSIs would
enhance their density, but not when BCMA expression levels were already high.
Another study also supported the view of Pont et al. [150]. Based on these
results, patients receiving BCMA CAR-T cell therapy and GSIs together will have
a better prognosis, and to some extent, this strategy can prevent the relapse of
MM due to low antigen-expressing cells. Bortezomib, the first proteasome
inhibitor, was approved for treating MM. Ixazomib and carfilzomib are the
new generations of proteasome inhibitors. The safety and efficacy of bortezo-
mib combined with chemotherapy in r/r ALL have been demonstrated in the
pediatric population, but the role of proteasome inhibitors playing in adult r/r
ALL needs more related studies to verify [151]. At present, there are few
strategies for novel proteasome inhibitors and their combination with CAR-T
cell therapy applying in r/r ALL, so it is necessary for further research and
exploration. Exportin 1 (XPO1), a nucleocytoplasmic shuttle protein, contrib-
utes to exporting proteins from the nucleus to the cytoplasm [152]. Selinexor
and eltanexor, the selective inhibitors of nuclear export (SINEs) of XPO1,
induce apoptosis in tumor cells by promoting the accumulation of tumor
suppressor proteins in the nucleus, which has achieved success in treating
hematological malignancies currently [153–155]. When these two SINEs were
combined with CAR-T cell therapy simultaneously, they were toxic to CAR-T
cells. They hampered CAR-T cells’ functions by affecting the capacity of cyto-
kines released and their cytotoxicity. But when tumor cells were pre-treated with
eltanexor, the expressions of PD-1, TIM-3, and LAG-3 of CAR-T cells were
decreased, and the cytotoxicity improved. Thus, scholars expect that the sequen-
tial use of SINE and CAR-T cell therapy can promote the anti-tumor ability of
the latter [156].

Discussion

Asides from continuous modification of CAR-T cells, more and more research
results show that small-molecule compoundsmake significant contributions to
the collaborative treatment of hematological malignancies with CAR-T cell
therapy, demonstrating that these combined strategies could overcome many
limitations in the current CAR-T cell therapy (Fig. 3). TKIs, for instance, have
been shown to act as inhibitors in the signaling pathways of TCR and the
cytotoxicity of CAR-T cells. Dasatinib, in particular, has the potential to control
the functions of CAR-T cells like a switch, improving their safety, persistence,
and efficacy. TKIs, BTK inhibitors, cytokine receptor antagonists, JAK inhibitors,
mTOR inhibitors, etc. can decrease the probability of CRS occurrence during
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CAR-T cell therapy, prevent adverse reactions, and improve the tolerance rates
of patients. HDACis, γ-secretase inhibitors, and demethylating agents can
upregulate the density of tumor antigens on target cells’ surfaces, and reduce
tumor immune escape and disease recurrence, consequently increasing CAR-T
cell therapy’s success rates. In pre-clinical studies, when tumor cells were pre-
treated with Bcl-2 inhibitors, these cells were more easily killed by CAR-T cells,
but studies associated with this result are limited. By the way, the transduction
efficiency of CAR-T cells was increased by PI3K inhibitors, which were applied
in advance by researchers, but similar to the cases of Bcl-2 inhibitors, there are
fewer related studies, so hard pieces of evidence are lacking. There is a specific
bidirectional effect for COX-2 inhibitors and SINE in treating tumors with CAR-
T cell therapy, which requires further research to achieve a balance. Moreover,
there are also studies about immunomodulatory drugs, proteasome inhibitors,
etc., combined with CAR-T cell therapy, to some extent they could increase the
anti-tumor activity of CAR-T cells (Table 1).

Fig. 3. Mechanisms of action of small-molecule inhibitors. (a) Current acknowledgment and intervention of CRS induced by CAR-T
cells. (b) Inhibitory TCRs and their ligand, including LAG3-MHC, CTLA4-B7, PD1-PDL1, and TIM3-Gal9. CTLA 4, cytotoxic T-
lymphocyte-associated protein 4; MHC, major histocompatibility complex; LAG3, lymphocyte-activation gene 3; PD-1, programmed
cell death protein 1; PD-L1, programmed death-ligand 1; TIM-3, T cell immunoglobulin, and mucin domain-containing protein 3;
TCR, T cell receptor; Gal9, galectin-9. (c) The main mechanism of action of HDAC and HDACis in B cell lymphoma. (d) BCR signaling
and relevant inhibitors. (e) IL-6/JAK/STAT signaling and relevant inhibitors. (f) TCR signaling and relevant inhibitors. (a short red
line indicates inhibition or blocking.)
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Conclusion

Overall, the efficacy of CAR-T cell therapy can be further improved to a large
extent by the combination of small-molecule compounds. This way can also
reduce adverse reactions, improve the tolerance of patients, and then increase
the success rates of CAR-T cell therapy. These drugs are like boosters in CAR-T
cell therapy, just like a role that the icing plays on the cake. Although many
small-molecule compounds are mentioned in this article, there is no complete
detailed list, and many related clinical trials are underway. By the way, in
addition to small-molecule compounds, CAR-T cell therapy combined with
monoclonal antibodies (PD-1/PD-L1, obinutuzumab, rituximab, blinatumo-
mab, daratumumab, etc.), and drugs related to cell metabolism (etoposide,
cyclophosphamide, etc.) and so on is also worthy of exploring. Especially
immune checkpoint inhibitors which belong to monoclonal antibodies can
not only overcome the inhibition of TME but also improve CAR-T cells’ prolif-
eration, which may have a synergistic effect with CAR-T cell therapy [157, 158].
Combined immunotherapy for hematological malignancies should be ex-
plored further in order to improve the anti-tumor efficacy and reduce side
effects when compared to these treatments alone. In addition, there are some
other strategies, such as localized radiotherapy and oncolytic viruses.We eagerly
await the results of future studies.
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