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Opinion statement

Natural killer (NK) cells have played a critical—if largely unrecognized or ignored—role in
the treatment of B cell non-Hodgkin lymphoma (NHL) since the introduction of CD20-
directed immunotherapy with rituximab as a cornerstone of therapy over 25 years ago.
Engagement with NK cells leading to lysis of NHL targets through antibody-dependent
cellular cytotoxicity (ADCC) is a critical component of rituximab’s mechanism of action.
Despite this important role, the only aspect of B cell NHL therapy that has been adopted as
standard therapy that even indirectly augments or restores NK cell function is the
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introduction of obinutuzumab, a CD20 antibody with enhanced ability to engage with NK
cells. However, over the last 5 years, adoptive immunotherapy with effector lymphocytes
of B cell NHL has experienced tremendous growth, with five different CAR T cell products
now licensed by the FDA, four of which target CD19 and have approved indications for
some subtype of B cell NHL—axicabtagene ciloleucel, brexucabtagene autoleucel, liso-
cabtagene maraleucel, and tisagenlecleucel. These T cell-based immunotherapies essen-
tially mimic the recognition, activation pathway, and cytotoxic machinery of a CD19
antibody engaging NK cells and lymphoma targets. Despite their efficacy, these T cell-
based immunotherapies have been difficult to implement because they require 4–6 weeks
of manufacture, are costly, and have significant toxicities. This renewed interest in the
potential of cellular immunity—and the manufacturing, supply chain, and administration
logistics that have been addressed with these new agents—have ignited a new wave of
enthusiasm for NK cell-directed therapies in NHL. With high safety profiles and proven
anti-lymphoma efficacy, one or more new NK cell-directed modalities are certain to be
introduced into the standard toolbox of NHL therapy within the next few years, be it
function-enhancing cytokine muteins, multi-domain NK cell engagers, or adoptive therapy
with expanded or genetically modified NK cells.

Introduction

Approximately 90,000 new cases of lymphoma are
diagnosed in the USA per year, approximately 90%
of which (estimated 81,560 in 2021 per American
Cancer Society) are non-Hodgkin lymphoma (NHL),
and the majority of these are B cell NHL [1–3]. While
the survival rate for newly diagnosed children and
adolescents with B cell NHL treated with chemother-
apy and antibody-based regimens has more than
doubled from the 1970s to the early 2000s (45%
to 9 90%) [1], the prognosis is dismal in patients
with relapsed/refractory B cell NHL [4, 5, 6••, 7, 8,
9•]. Novel approaches with CD19- and BCMA-
targeted CAR T cellular immunotherapy have recent-
ly been approved by the FDA for patients with
relapsed/refractory B cell NHL including CD19 CAR

T cells [10, 11••, 12••, 13••]. However, treatment
with CAR T cells is complicated by high cost, manu-
facturing logistics, and toxicity.

In contrast, NK cells have similar cytotoxic effector
mechanisms as T cells but appear to have a broader
safety profile and are more amenable to generating
allogeneic ready-to-infuse (a.k.a. “off-the-shelf”)
products. Like T cells, NK cells can also be genetically
modified for antigen-specific targeting [3]. Liu et al.
recently reported the safety and efficacy of cord blood
derived CD19 CAR NK cells in patients with relapsed/
refractory CD19 B-cell NHL and chronic lymphocytic
leukemia (CLL) [13••]. We now summarize the clin-
ical and preclinical experience with NK cells and CAR
NK cells in B-cell NHL.

Endogenous NK cells in B-cell NHL

NK cells are innate lymphocytes that play a key role in the recognition of cells
that are cancerous or virus-infected. NK cell activation or inhibition (tolerance)
is determined by an integrated balance of signals from NK cell activating and
inhibitory receptors binding to their corresponding ligands on target cells [14]
(Fig. 1). As part of our first line of defense, NK cells exert their effector function
directly via cellular cytotoxicity and indirectly via proinflammatory cytokine
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secretion. In the last few decades, NK cells have moved to the forefront of
immune oncology for several reasons. First, improved understanding of NK
cell biology, discovery of new NK cell sources, and advances in NK cell culture
techniques have made it possible to expand and activate NK cells for adoptive
cell therapy. In addition, in contrast to T cells, NK cells do not depend on

Fig. 1. NK cell recognition of target cells. NK cell effector function is dependent on a balance of activating and inhibitory signals to
distinguish between healthy cells (tolerance) and cancer or virally infected cells. The absence of MHC Class I ligand (missing self,
observed with HLA downregulation or induced with KIR-ligand mismatch in HLA mismatched recipient/donor pairs) combined with
upregulation of stress-induced activating receptor ligands leads to target recognition, NK cell activation, and cytotoxicity.
Reproduced with permission from: Cooley S, Parham P, Miller JS. Strategies to activate NK cells to prevent relapse and induce
remission following hematopoietic stem cell transplantation. Blood. 2018;131(10):1053-62. doi: 10.1182/blood-2017-08-752170.
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antigen presentation but instead utilize a balance of inhibitory and activating
cell receptors that recognize self and stress ligands to determine effector func-
tion. Without the need for antigen presentation, NK cells can be ubiquitously
effective even in cancers where tumor specific antigens remain elusive. Finally,
allogeneic NK cell therapy is safe with no reports of dose limiting toxicities
including graft versus host disease (GVHD), even with minimal HLA matching
[15–17].

In patients with lymphoma, decreased number and function of NK cells
portends a poor prognosis [18–20, 21•]. Methods of immune evasion in the
lymphoma tumor microenvironment (TME) include immune checkpoints,
hypoxia-induced immune modulation, and aberrant NK cell receptor/ligand
expression [22–27]. Similar to the well described graft-versus tumor effect in
hematopoietic stem cell transplant (HSCT) for leukemia, early and robust NK
cell recovery after autologous and allogeneic HSCT in lymphoma is associated
with improved survival [28–32]. To facilitate improved NK cell function after
autologous HSCT in lymphoma, several studies administered low dose recom-
binant IL-2 as maintenance immunotherapy to prevent relapse [33–35]. In a
study of relapsed/refractory NHL patients undergoing autologous HSCT, 10
patients received low dose recombinant IL-2 (rIL2) as maintenance therapy for
12 months after autologous HSCT. Following rIL2 therapy, peripheral blood
(PB) samples from patients had a significant increase in NK cell number,
function, and CD16-mediated ADCC compared to their baseline number and
function before therapy [33]. None of the 10 patients treated on the protocol
had relapse of their disease, with a median follow up of 16 months from the
start of rIL2. Interestingly, two patients who still had residual disease after HSCT
showed complete resolution of the residual disease while receiving rIL2 therapy.
A similar study by Miller et al. using low dose IL-2 after autologous HSCT in
patients with lymphoma and breast cancer also demonstrated a more than 10-
fold increase in PB NK cells with enhanced cytotoxicity against resistant cell
lines [35]. To build off of these early studies, clinical trials utilizing adoptive
transfer of autologous ex vivo-activated NK cells or lymphokine-activated killer
cells in patients with lymphoma emerged with onlymodest activity [34, 36–40]
(Table 1). In addition, although feasible, the use of autologous NK cells was
costly, often required more than one apheresis procedure, and NK cell doses
were limited to around 107/kg [44]. To improve clinical efficacy, more recent
studies have utilized highly functional expanded NK cells and/or allogeneic NK
cell sources to facilitate the graft versus tumor effect. Yang et al. demonstrated
the safety of expanded random healthy donor PB NK cells for treatment of
malignant lymphoma and other solid tumors [42]. Multiple doses of up to 3 ×
107/kg were administered with no dose limiting toxicities and no GVHD.
Clinical responses, however, were limited with only 8/17 patients with stable
disease as best response overall response and no complete responses. Although
the safe use of donor derived NK cells represented progress in the field, allor-
eactive NK cells alone did not appear to be enough to eliminate bulk disease.

Targeting NK cells to NHL with antibodies

Antibody-based therapy has become a critical part of the treatment landscape in
hematologic malignancies in the past few decades and several monoclonal
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antibodies have been FDA approved that target the lymphoma-specific antigens
CD19 (loncastuximab tesirine and tafasitimab-cxix), CD20 (rituximab, obinu-
tuzumab, ofatumumab, ibritumomab tiuxetan), CD30 (brentuximab vedotin),
CD52 (alemtuzumab), CD38 (daratumumab, isatuximab), CD79b (polatuzu-
mab vedotin), andCCR4 (mogamulizumab). One of themechanisms bywhich
antibodies mediate tumor cell lysis is through ADCC by NK cells. NK cells
recognize the Fc portion of antibodies bound to the surface of target cells via the
Fc-gamma receptor III (CD16). Optimal efficacy of antibody therapy depends
on high number and function of NK cells. In patients withDLBCL and follicular
lymphoma treated with anti-CD20 monoclonal antibodies, low pre-treatment
NK cell count was associated with shorter progression free survival and de-
creased overall survival compared to patients with higher pre-treatment NK cells
[45]. NK cell ADCC has been exploited in antibody therapy by systemic cyto-
kine stimulation of endogenous NK cells [46–50] or in combination with
adoptive NK cell therapy [43, 51]. Autologous cytokine-expandedNK cells were
combined with chemotherapy and rituximab in 9 patients with relapsed CD20-
positive lymphoma patients to enhance ADCC [43]. A single dose of escalating
expanded NK cells (1 × 106/kg, 3 × 106/kg, and 10 × 106/kg) was given on the
day after rituximab. Complete responses were observed in 7/9 patients and
there was a significant increase in PBNK cells and cytolytic activity in all patients
two weeks after infusion. In a phase II trial, patients with relapsed/refractory
CD20+ NHL were given IL-2-activated haploidentical PB NK cells after lympho-
depleting chemotherapy [21•]. A single dose of 0.5–3.27 × 107 NK cells/kg was
given in combination with IL-2 every other day × 6 doses and weekly rituximab
× 4 doses. The NK cells were well tolerated and elicited responses in 4/14
evaluable patients, including 2 complete responses. Importantly, the authors
noted improved NK cell persistence and effector function in patients with
higher endogenous IL-15 at the time of NK cell infusion highlighting the
importance of in vivo cytokine stimulation. Based on this and similar observa-
tions, subsequent studies utilizing IL-15 alone or in combination with adoptive
NK cell infusion are being investigated. ALT-803 is an IL-15 super agonist
complex developed to mimic physiologic trans-presentation of IL-15 and pro-
long the half-life. A phase I study of ALT-803 in 33 adult patients with hema-
tologicmalignancies who relapsed after allogeneic HSCT demonstrated that the
cytokine therapy was safe and significantly increased NK and CD8+ T cell
number and function [52]. Although only 4 patients had objective responses
(1 CR, 1 PR, 2 SD) after 5 doses of ALT-803, the enhanced immune milieu and
tolerability has led to further trials of ALT-803 and related compounds com-
bined with rituximab [53] and/or adoptive NK cell therapy, including in
lymphoma (NCT02890758) (Table 2).

Targeting NK cells to NHL with CARs

With the success of CD19CAR T cell therapy in hematologicmalignancies, there
has been a push to develop CAR NK cells targeting a wide variety of tumor
antigens. Currently, the FDA-approved CAR T cell products are manufactured
from autologous T cells due to the risk of GVHD from the native T cell receptor
in allogeneic CAR T cells. Manufacturing CAR T cells on a patient-by-patient
basis is costly, time consuming, and often fails due to poor T cell function in
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heavily pretreated cancer patients. CARs usually contain a single chain variable
fragment from a monoclonal antibody, a transmembrane hinge region, a
signaling domain such as CD3-zeta, and one or more co-stimulatory domains
such as CD28, 4-1BB, or 2B4 (CD244) [54, 55] (Fig. 2). Since NK cells utilize
many of the same signaling domains and activation pathways as T cells, NK
cells can also be redirected to specifically target tumor antigens by the intro-
duction of a CAR, which then permanently recapitulates the targeting function
of an antibody and activation pathways for cytotoxicity. Moreover, the addition
of a CAR does not abrogate the NK cell’s innate recognition of cancer through
endogenous receptors. One clear advantage of NK cells is the ability to use
donor derived, “off-the-shelf” NK cells that minimize or eliminate the need for
HLA matching without the risk of GVHD. Recently, Liu et al. developed a novel
cord blood derived, IL-15 expressing, CD19 CAR NK cells with an inducible
caspase 9 suicide gene (iC9/CAR.19/IL-15 CBNK cells) [56]. In a phase I/II trial,
11 patients with relapsed/refractory CD19-positive cancers were given escalat-
ing doses of these CD19 CAR NK cells after lymphodepleting chemotherapy
with fludarabine and cyclophosphamide [13••]. Of 11 patients treated (5 with
CLL, 4 with NHL), 8 patients (73%) had an objective response, including 7
patients with a complete response (Fig. 3). The NK cell infusions were safe
with no CRS, neurologic toxicity, or GVHD, and the NK cells were detect-
able (by assaying for the vector transgene) for at least 12 months after
infusion. Progress in the field of genetic modification of NK cells has
opened the door for true “off-the-shelf” CAR NK cell therapy. Additional

Fig. 2. Chimeric antigen receptor (CAR) structure. CAR constructs typically consist of an extracellular antigen binding domain
(single chain variable fragment (scFv)), a transmembrane domain, and an intracellular signaling domain comprised of a stimulatory
domain without (first generation) or with one (second generation) or more (third generation) costimulatory domains. Fourth
generation CARs include additional elements such as cytokine secretion or inducible suicide genes. Reproduced with permission
from: Barth MJ, Chu Y, Hanley PJ, Cairo MS. Immunotherapeutic approaches for the treatment of childhood, adolescent and young
adult non-Hodgkin lymphoma. Br J Haematol. 2016;173(4):597-616. doi: 10.1111/bjh.14078.

The Future of Natural Killer Cell Immunotherapy Chu et al. 389



CAR NK cell targets for lymphoma currently under clinical investigation
include CD19, CD22, and CD7 (Table 3).

Sources of NK or CAR NK cells for adoptive NK cell-based immu-
notherapy for B cell NHL

There are numerous donor sources for isolation, purifying, and targeted NK
cells for adoptive NK cell-based immunotherapy. These include autologous NK
cells from patients, allogeneic NK cells from peripheral blood, umbilical cord
blood, CD34 hematopoietic stem cells, embryonic stem cells, and induced
pluripotent stem cells, and leukemia- or lymphoma-derived NK cell lines [34,
57–69]. An extensive review of the pros, cons, and experience to date with these
NK cell sources has recently been published [70].

Fig. 3. Clinical responses to CD19 CAR-NK therapy for CD19 positive lymphoid malignancies. Clinical outcomes of 11 patients
treated with cord blood derived, IL-15 expressing, CD19 CAR NK Cell with an inducible caspase 9 suicide gene (iC9/CAR.19/IL-15 CB
NK cells). The legend denotes partial response (PR), complete response (CR), minimal residual disease (MRD), and hematopoietic
stem cell transplantation (HSCT). Reproduced with permission from: Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar
R, et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N Engl J Med. 2020;382(6):545-53. doi:
10.1056/NEJMoa1910607.
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Ex vivo NK cell expansion for adoptive NK cell-based immuno-
therapy for B cell NHL
Ex vivo NK expansion with feeder cells for B cell NHL

To overcome the limitation of small number of active NK cells in the
donor PB, NK cells can be ex vivo activated and expanded with feeder
cells such as irradiated PBMCs [71–73], Epstein-Barr virus-transformed
lymphoblastoid cell lines (EBV-LCL) [74], or gene-modified cell lines such
as K562 [75–78]. Preclinical studies demonstrated that highly cytotoxic NK
cells can be expanded with irradiated and activated autologous PBMCs to
efficiently kill lymphoma cells in vitro and in mice xenografted with
human lymphoma cells [71–73]. These NK cells expanded with irradiated
autologous PBMC are suitable for allogeneic transfer without the risk of
graft-versus-host disease induction [71–73]. Our group and others have
successfully expanded active PB NK cells or CB NK cells in vitro by co-
culture with irradiated EBV-LCL, or with K562 cells expressing transfected
cell-membrane bound IL-15 and 4-1BBL to kill leukemia and B-NHL [74–
77]. Lee and colleagues have developed a novel feeder cell line what was
engineered to express membrane bound IL-21 and 4-1BB ligand (K562-
mbIL21-41BBL) to expand PB NK or CB NK ex-vivo [78]. This method
resulted in over 35,000-fold increase in NK cells in 3 weeks while avoiding
telomere shortening and NK cell senescence and significant increase in NK
cell functional activation against lymphoma (Fig. 4) [78].

Table 3. CAR-NK clinical trials for lymphoma

Target Antigen Tumor Type Type of NK
Cell

Phase NCT Number Status Country

CD19 NHL Not Listed Early Phase I NCT04639739 Not yet recruiting China

CD19 ALL, CLL, Mantle Cell
and Follicular Lymphoma

NK-92 Phase I/II NCT02892695 Unknown China

CD19 ALL, NHL, CLL Cord Blood Phase I NCT04796675 Recruiting China

CD19 ALL, NHL, CLL Cord Blood Phase I/II NCT03056339 Recruiting USA

CD19 ALL, CLL, B Cell Lymphoma Cord Blood Phase I NCT04796688 Recruiting China

CD19 B cell lymphoma, Mantle cell
and Follicular Lymphoma

Cord Blood Phase I/II NCT03579927 Withdrawn USA

CD19 B Cell Lymphoma, CLL iPSC Phase I NCT04245722 Recruiting USA

CD19 B Cell Lymphoma Not Listed Early Phase I NCT03690310 Not yet recruiting China

CD19/CD22 B cell Lymphoma Not Listed Early Phase I NCT03824964 Unknown China

CD22 B Cell Lymphoma Not Listed Early Phase I NCT03692767 Not yet recruiting China

CD7 AML, T-ALL, T-LLy, NK/T-LLy NK-92 Phase I/II NCT02742727 Unknown China

CAR chimeric antigen receptor, NK natural killer, NCT national clinical trial, NHL non-Hodgkin lymphoma, AML acute myelogenous leukemia, ALL
acute lymphoblastic leukemia, LLy lymphoblastic lymphoma, CLL chronic lymphocytic leukemia
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Ex-vivo NK cell expansion without feeder cells for B cell NHL
NK cells can also be ex vivo activated and expanded with feeder-free systems.
Clinical responses were observed in 4 of 6 B cell NHL patients who were
administered rituximab and haploidentical donor PB NK cells activated with
IL2 [41]. However, due to host Treg proliferation stimulated by the IL2, the
donor NK cell expansion was inhibited in the peripheral blood [41]. Nicotin-
amide (NAM) is a form of Vitamin B3. Preclinical studies showed that NAM
enhanced expansion (60-80 fold) of functional donor NK cells in feeder-free
cultures stimulated with IL-2 and IL-15 for 2 weeks and the expanded NK cells
with NAM displayed the increased in vitro cytotoxicity against Burkitt lympho-
ma (BL) cells, in vivo homing, and survival in immunodeficient mice [79].
Additionally, NK cells can be expanded with a feeder-free, particle-based ap-
proach, which uses plasma membrane particles (PM-particles) derived from
K562-mbIL15-41BBL or K562-mbIL21-4-1BBL cell lines [80, 81], but preclini-
cal studies in B cell NHL have not yet been reported.

Preclinical studies of CAR engineered NK cells for B cell NHL

CAR NK therapy is promising and may provide some advantages over CAR T
cells such as low risk of on-target/off-tumor toxicity to normal tissues, reduced
risk for GVHD, and reduced frequency and severity of cytokine release

Fig. 4. Schema for NK cell manufacturing with genetically-engineered feeder cells. Feeder cells were produced by genetic
modification of K562 to express costimulatory molecules and membrane-bound cytokines. To expand NK cells ex vivo, unfractio-
nated PBMC are stimulated weekly with irradiated PBMC, inducing rapid proliferation of NK cells and a variable degree of non-
specific expansion of T cells. Contaminating T cells may be depleted before or during expansion, and the remaining purified NK cells
may be stimulated weekly by the artificial antigen-presenting cells as needed to obtain sufficient numbers. Expanded NK cells may
be used directly or cryopreserved for future use. Reproduced with permission from: Denman CJ, Senyukov VV, Somanchi SS et al.
(2012), Membrane-Bound IL-21 promotes sustained ex vivo proliferation of human Natural Killer cells. PLoS ONE 7(1): e30264. doi:
10.1371/journal.pone.0030264.
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syndrome (CRS) or immune effector cell-associated neurotoxicity
(ICANS) [55]. NK cells can be engineered to express CAR through several
technologies such as transposons, messenger ribonucleic acid (mRNA)-
mediated gene delivery, lentiviruses, and CRISPR/AAV targeted gene in-
sertion [82]. We and others have engineered expanded PB NK (exPBNK)
cells with anti-CD19 CAR or anti-CD20 CAR utilizing retroviral integra-
tion or CAR mRNA electroporation to target B cell malignancies includ-
ing B-NHL [83, 84]. We previously reported that anti-CD20 CAR exPBNK
cells had significantly enhanced in vitro cytotoxicity against BL, limit BL
tumor metastasis, and extended the survival of NSG mice xenografted
with human BL cells [84]. The combination of anti-CD20 CAR exPBNK
cells with a histone deacetylase inhibitor romidepsin, which enhanced
expression of NKG2D ligands on the surface of BL, significantly killed
BL, reduced tumor burden, and extended the survival in NSG mice
xenografted with human BL cells [85]. Similarly, engineering the NK-
like lymphoma cell line NK92 with an anti-CD19 CAR significantly
increased in vitro cytotoxicity and prominently induced apoptosis in
rituximab- and obinutuzumab-resistant cell lines and patient-derived
cells, and delayed tumor growth in B-NHL xenografts [86]. Liu et al.
genetically modified NK cells expanded from cord blood (CB) cells with
a retroviral vector (iC9/CAR.19/IL-15) [56]. Their preclinical studies dem-
onstrated that iC9/CAR.19/IL-15 CB NK cells efficiently killed CD19+

primary leukemia cells and Raji in vitro and significantly prolonged the
survival in a xenograft Raji lymphoma murine model [56]. Emerging
preclinical evidence shows that IL-12 and IL-18 plus IL-15 can induce
murine and human NK cells with long-lasting memory-like functionality
[87]. These cytokine-induced memory-like (CIML) NK cells display in-
creased proliferative capacity, prolonged persistence in vivo, and superior
functionality in killing of rituximab-coating Raji lymphoma cells com-
pared with control NK cells in vitro, and substantially reduced growth of
established lymphoma tumors in mice [88–90]. Anti-CD19 CAR-modi-
fied CIML NK cells displayed significantly increased interferon-γ (IFNγ)
secretion and cytotoxicity against NK-resistant lymphoma lines and pri-
mary lymphoma tumor cells, and significantly reduced lymphoma bur-
den and significantly improved the survival in human lymphoma xeno-
graft models [91]. Goodridge et al. developed a CAR NK product FT596,
derived from a master induced pleuripotent stem cell (iPSC) line engi-
neered to uniformly express anti-CD19-CAR, an enhanced functioning
high-affinity, non-cleavable CD16, and a recombinant fusion of IL-15
and IL-15 receptor alpha (IL-15RF) [92]. FT596 showed significantly
enhanced clearance of Raji tumor cells in combination with rituximab
in a Raji xenografted mouse model [92]. Furthermore, utilizing an allo-
genic human CD34 engrafted NSG mouse model, FT596 demonstrated
improved survival and safety over primary CAR19 T cells, either as a
monotherapy or as a combination therapy with rituximab against Raji
tumor cells [92]. These preclinical findings have provided the preliminary
results to conduct a Phase I dose-finding study of FT596 as monotherapy
and in combination with rituximab or obinutuzumab in subjects with
relapsed/refractory B cell lymphoma or CLL (NCT04245722).
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Preclinical studies of combinatorial therapies of NK cells for B
cell NHL

A large number of preclinical studies of combination therapies incorporating
NK cells for B cell NHL have been reported (Table 4), a number of which are
summarized below.

Combinatorial therapy of NK cells with a novel type II anti-CD20 antibody Obinutuzumab
Obinutuzumab is a humanized, type II anti-CD20 monoclonal antibody gly-
coengineered to enhance Fc receptor affinity and has been approved for the
treatment of patients with previously untreated advanced-stage follicular lym-
phoma [100, 101]. Our preclinical studies demonstrated that obinutuzmab has
significantly enhanced ADCC compared to rituximab and induced apoptosis in
BL in vitro, and the combination of obinutuzumab with exPBNK significantly
enhanced overall survival of NSG mice xenografted with Raji tumor cells as
compared to the combination of rituximab with exPBNK [93]. Our group is
currently conducting a clinical trial to evaluate the safety and response rate of
obinutuzumab as a single agent alone and in combination with ifosfamide,
carboplatin and etoposide (O-ICE) without exogenous NK cells in children,
adolescents and young adults with recurrent refractory CD20+ mature B-NHL
including BL (NCT02393157).

Combinatorial therapy of NK cells with bispecific or trispecific killer engagers
Bispecific killer engagers (BiKEs) or trispecific killer engagers (TriKEs) are
designed to have one “arm” binding to CD16 on NK cells and the other one
or two “arms” targeting to the specific antigen(s) on the tumor cells [102]. The
engager substitutes for traditional antibody-Fc interactions in mediating the
immunological synapse between tumor cells and NK cells to stimulate NK
activation and killing [102]. Gleason and colleagues developed an anti-CD16/
CD19 BiKE and an anti-CD16/CD19/CD22 TriKE, and showed that they trigger
NK cell activation through direct signaling of CD16 to secrete lytic granules and
induce BL tumor death via a caspase-3 apoptosis pathway [94•]. A TriKE
designated 161519 was developed combining the cytokine IL-15 with the
anti-CD16 scFv and the anti-CD19 scFv (98) in order to link cytokine signaling
with antigen-specific NK cell activation. Preclinical studies demonstrated that
this novel 161519 TriKE induced more degranulation and IFNγ production in
NK cells, resulting in the highest level of Raji cell death as compared with
rituximab, 1619 BiKE, or controls [95], indicating the potential immunothera-
peutic value of 161519 TriKE in B cell NHL.

Combinatorial therapy of NK cells with IL15 superagonist (N-803) and rituximab
IL-15 shares similar functions with IL-2 but has a distinct advantage over IL-2
for cancer immunotherapy due to its minimal binding to the low-affinity IL-2
receptor CD25, resulting in a lack of effect on Tregs [103]. N-803 is an IL-15
superagonist (originally named ALT-803) that consists of a high-affinity
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interleukin-15 mutein (IL-15N72D) and a dimeric IL-15 receptor alpha (IL-
15Rα)/Fc fusion protein [104]. N-803 has at least 25 times the activity of the
wild type IL-15 in vivo and a significantly longer serum half-life in vivo than
wild-type IL-15 (25 h vs. G 40 min) [104, 105]. The study from Rosario et al.
showed that the combination of N-803 with rituximab significantly increased
the expression of granzyme B and perforin, IFNγ production, and ADCC of
human NK cells against BL cell lines or primary follicular lymphoma cells [97].
The study supports the future clinical investigation of N-803 plus NK cells and
anti-CD20 mAbs in patients with aggressive B cell NHL.

Combinatorial therapy of NK cells with N-820, a novel antibody-N-803 fusion
N-820 was generated by fusing four single-chains of rituximab to the N termi-
nus of N-803 [98]. N-820 activated primary NK cells to enhance ADCC and
induced apoptosis of B cell NHL in vitro and in BL xenografted NSGmice [98].
N-820 also significantly enhanced the cytotoxicity of exPBNK against
rituximab-sensitive and -resistant BL cells in vitro and in BL xenografted NSG
mice in vivo, as compared to controls [99]. Our study and others suggest that
N-820 is an attractive novel agent to be combined with NK therapy for CD20+

relapsed/refractory B-NHL [99].

Future directions

Althoughmuch is now established regarding the importance of NK cell number
and function in the context of cancer survival, the parameters that define the
optimal NK cell with respect to phenotype, function, proliferative potential, and
long-term persistence are not well defined. In vitro assays that accurately reflect
in vivo conditions, tumor microenvironment, trafficking, and cross-talk with
other immune cells are much needed, and fully murine models have only
partially filled this gap because of significant differences between mouse and
human NK cell biology. It is also important to recognize that the definition of
“optimal” may vary between different cancers and with different combination
therapies.

This baseline understanding of optimal will be important in defining
differences—pro and con—between the various starting material/sources from
which NK cells are generated, expansion methods, genetic modification meth-
ods, and cytokine adjuvants. With several new options now enabling engineer-
ing of NK cells after decades of difficulty in this area, the wide variety of
targeting domains, signaling and cytokine combinations, and cell sources liter-
ally provide hundreds of potential CAR NK products that are now feasible and
therefor will need to be tested in robust models for each disease.

In addition, the combinations with exogenous cytokines, engagers, immune
modulators, and checkpoint inhibition will result in many new options for
patients that need careful investigation. To achieve the best outcome quickly,
clinical investigation will require cooperation, intelligent trial design, and im-
plementation of multi-cohort, basket, or surrogate endpoints.

Lastly, this review has focused on the relevance of NK cells in the treatment
of B cell NHL. Several antibodies have been developed for T cell NHL (e.g.,
alemtuzumab (anti-CD52), brentuximab (anti-CD30), and mogalizumab (an-
ti-CXCR4)), all of which mediate at least part of their anti-lymphoma efficacy
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through ADCC. Thus, approaches to enhancing NK cell number and activity
may also be highly relevant for T cell NHL.

Summary

NK cell-based immunotherapy holds tremendous promise for patients with B-
NHL. A robust, carefully designed, and centrally coordinated systematic inves-
tigation of the available modalities should lead to significantly improved out-
comes in the near future.
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