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Opinion statement

New molecular insights are being achieved in synovial sarcoma (SS) that can provide new 
potential diagnostic and prognostic markers as well as therapeutic targets. In particular, 
the advancement of research on epigenomics and gene regulation is promising. The con-
crete hypothesis that the pathogenesis of SS might mainly depend on the disruption of 
the balance of the complex interaction between epigenomic regulatory complexes and the 
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consequences on gene expression opens interesting new perspectives. The standard of care 
for primary SS is wide surgical resection combined with radiation in selected cases. The role 
of chemotherapy is still under refinement and can be considered in patients at high risk 
of metastasis or in those with advanced disease. Cytotoxic chemotherapy (anthracyclines, 
ifosfamide, trabectedin, and pazopanib) is the treatment of choice, despite several possible 
side effects. Many possible drug-able targets have been identified. However, the impact of 
these strategies in improving SS outcome is still limited, thus making current and future 
research strongly needed to improve the survival of patients with SS.

Introduction

Synovial sarcoma (SS) is a malignant mesenchymal 
neoplasm [1, 2]. Multipotent mesenchymal stem cells 
have been considered as putative originators for sev-
eral years, but SS origins are still unknown [3–7].
Synovial sarcoma accounts for 5 to 10% of all soft tissue 
sarcomas (STSs), and it predominantly occurs in older 
children and young adults [2, 8–10]. In the pediatric 
population, SS is the most common non-rhabdomyo-
sarcoma STS [11–13]. It is almost ubiquitarious, but 
its intra-articular occurrence is very uncommon [14, 
15]. Synovial sarcoma can arise anywhere in the soft 
tissues, generally as a progressively expanding mass. The 
most common clinical presentation is a slow-growing 
lump in the soft tissues of the lower limb (46.1% in the 
National Cancer Institute’s Surveillance—NEER data-
base [16•]), especially around the knee and the ankle. 
The head and neck region, abdominal wall, retroperi-
toneum, mediastinum, pleura, lungs, and other organs 
are less common locations.
Various symptoms may be related to different sites 
(such as difficulty in swallowing and breathing, or 

alteration of voice in the head and neck SS), although 
a painless swelling is the most frequent appearance. 
Pain may be related to the involvement of nerves or 
perilesional phlogosis in the advanced stages. Slow 
tumor growth and the apparent harmlessness of symp-
toms often lead to a delayed diagnosis.
Synovial sarcoma is characterized by local invasive-
ness and a propensity to metastasize. Nevertheless, at 
the time of diagnosis, less than 10% of cases present 
with metastases [17, 18]. However, there is a high 
incidence of late metastases [17], reported in up to 
50–70% of cases [19]. Most metastasis develop in the 
lungs (80%), although bone (9.9%) and liver (4.5%) 
are the next most frequent locations [20]. While STS 
are known to primarily metastasize by hematogenous 
route to the lungs, lymph node metastasis is not 
uncommon in SS, with clinically detectable lymph 
node disease found in 1–27% of newly diagnosed 
patients [21–23]. Metastases were found to be more 
frequent in older patients [24].

Imaging

Radiographs show no pathological findings in approximately 50% of cases of 
SS, but eccentric or peripheral calcifications may be identified in up to 30% 
of cases [12, 25, 26].

The ultrasound appearance of SS often reveals a focal, nodular, typically 
ovoid or slightly lobulated, solid but hypoechoic soft-tissue mass suggestive 
of an indolent process [27]. Prominent heterogeneity was reported in less 
than 20% of cases, with both homogeneous hypoechoic well-defined areas 
(reflecting cystic or necrotic change) and heterogeneous hyperechoic areas 
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with irregular margins (corresponding to cellular areas of aggressive viable 
tumor, hemorrhage, calcification, or fibrosis) [27].

Computed tomography typically shows a heterogeneous, non-infiltrative 
mass with attenuation similar to or slightly lower than that of muscle [12, 
28–31], often with punctate, peripheral calcifications [32, 33]. Calcifications 
may also be identified in metastasis, particularly in the lungs [33]. Heterogene-
ous post-contrast enhancement was reported in 89–100% of cases [29], help-
ing to distinguish SS that initially appear as a cystic lesion or hematoma [32].

 Synovial sarcoma has a variety of magnetic resonance imaging (MRI) 
appearances, ranging from small, homogenous nodules to large heterogene-
ous masses encasing vessels and nerves. One study found that 33% of SS were 
less than 5 cm, and they had commonly benign imaging characteristics, with 
a predominantly homogeneous appearance on all MRI sequences [34]. On 
T1-weighted MRI images, SS typically appears as a heterogeneous multilobu-
lated soft-tissue mass with signal intensity similar to or slightly higher than 
that of muscle [34–39]. Prominent heterogeneity (“triple sign”) is reported 
in up to 57% of cases [27, 29, 40]. It is represented by intermixed areas of 
low, intermediate, and high signal intensity on long repetition time images, 
as the result of the mixture of solid cellular elements, hemorrhage or necrosis, 
and calcified or fibrotic regions (Fig. 1) [40]. However, the “triple sign” lacks 
in specificity, as it is also seen in other STS, particularly in malignant fibrous 
histiocytoma [12]. Areas of hemorrhage, seen as fluid–fluid levels or foci of 
high signal intensity on T1- and T2-weighted MRI, are frequent. Fluid levels 
have been described in 10–25% of SS in several series [12]. This combination 
of features, particularly largely cystic areas or prominent hemorrhagic foci, 
often creates a “bowl of grapes” appearance (Fig. 2) [41]. Areas of calcifica-
tion remain low-to-intermediate signal intensity on all MRI. MRI typically 

Fig. 1  T2w axial MRI of the left thigh in a 54-year-old male, affected by synovial sarcoma with multiple lung metastasis 
at diagnosis, showed a large inhomogeneous mass with the so-called “triple sign”: fibrotic areas (low signal intensity — 
arrow), solid cellular elements (intermediate signal — arrowhead), and hemorrhage/necrosis areas (high signal intensity — 
asterisks)
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reveals conspicuous post-contrast enhancement in SS, usually heterogeneous, 
reflecting the intermixture of non-enhancing necrotic, cystic, or hemorrhagic 
regions and enhancing solid regions [39, 40].

Positron emission tomography (PET) of SS has been reported in few stud-
ies, but a marked increased tracer uptake was constantly described [42, 43].

Imaging may also play a role in prognostic assessment. In fact, several imag-
ing features of SS have been found to be associated with poorer prognosis. 
In details, tumors larger than 5 cm, located more proximally (upper thigh, 
inguinal region, head and neck, and trunk), lack of calcification, intra-tumoral 
hemorrhage, and the presence of “triple sign” were found to be significantly 
associated with worse disease-free survival [29]. Early gadolinium enhancement 
on MRI (within 7 s after arterial enhancement) was also found to be associated 
with a more aggressive behavior [44]. FDG-PET may also provide prognostic 
elements because pre-treatment SUV greater than 4.4 was found to be associ-
ated with an increased risk of local recurrence and metastatic disease [45].

Pathology

Macroscopically, SSs are multinodular masses, highly variable in size. Cal-
cifications are common features, but they can be difficult to discern grossly. 
Occasionally, there are smooth-walled cysts containing mucoid fluid or 
blood. Hemorrhage and necrosis can be prominent in poorly differentiated 
SS, although less than in high-grade pleomorphic sarcomas [46].

Microscopically, three distinct subtypes are recognized: monophasic, 
biphasic, and poorly differentiated [47, 48]. Classification into subtypes is 

Fig. 2  Conventional radiograph (left) and T2w axial fat-saturated MRI (right) of the left thigh in 32-year-old female with 
synovial sarcoma, showed calcific area (arrow), and the so-called “bowl of grapes” appearance with rounded cystic necrotic/
hemorrhagic areas (arrowheads), containing a large fluid–fluid level (dotted arrow)
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based upon somewhat subjective criteria, and there is a certain degree of 
overlap.

The monophasic type (the most common subtype) is composed of 
hypercellular arrays of small spindle cells with uniform, ovoid, vesicular 
nuclei with dispersed chromatin, inconspicuous nuclei, and very scarce 
amphophilic cytoplasm [2]. There is scarce intervening stroma, and the 
cells appear tightly packed. The stroma of SS can range from collagenous/
hyalinized, rarely with amianthoid fibers [49], to extensively myxoid. An 
increase in hyalinized stromal collagen may be seen in neoplasms recurring 
after radiation therapy (RT) [50]. A hemangiopericytic vascular pattern, with 
sparse, dilated, thin-walled vessels, is seen in approximately 60% of cases 
[51]. Mast cells are relatively a characteristic feature of SS, but the presence 
of other inflammatory cells is atypical [50]. The monophasic epithelioid 
subtype, in which the histologic pattern is uniformly glandular, is rarely 
characterized [52–54], and it is histologically often indistinguishable from 
adenocarcinoma, requiring molecular confirmation for diagnosis.

Biphasic SSs consist of a mixture of both fibroblast-like spindle cells 
(similar in appearance to those of the monophasic spindle cell subtype) and 
epithelial cells (often forming gland-like structures). Although the propor-
tions of the two components fluctuate, often, they are approximately the 
same. The epithelial cells have round or ovoid vesicular nuclei, moderate 
amounts of amphophilic cytoplasm, and distinct cell borders. The classi-
cal architecture of the epithelial element consists of relatively well-formed 
glands with lumina containing mucin that can form papillary structures 
with cores containing spindled tumor cells rather than connective tissue 
[50]. However, the epithelial components can also appear less well differ-
entiated, forming solid nests.

The poorly differentiated subtype is highly cellular and usually comprises 
sheets of small, rounded cells, with hyperchromatic nuclei and amphophilic 
cytoplasm, with frequent mitotic activity and necrosis. A poorly differenti-
ated component can be seen focally within SS [55], or it can account for 
the entire tumor, thus resembling other small round cell neoplasms. Two 
other types of poorly differentiated SS have been recognized: a large cell 
epithelioid variant, with polygonal cells with abundant cytoplasm, and a 
high-grade pleomorphic spindle cell variant [50, 56]. Poorly differentiated 
histology may occur more frequently in older adults [57].

Focal calcification, with or without ossification, is seen in approximately 
30% of SS, more often in biphasic subtypes [50].

Synovial sarcoma has a differentiation score of 3, and it is therefore always 
a high-grade sarcoma (grade 2 or 3). Some authors proposed grading as an 
important prognostic factor [58].

Genomic features

Synovial sarcomas harbor a highly specific, usually balanced and reciprocal 
translocation t(X;18)(p11.2;q11.2), in which the SS18 (formerly SYT) gene 
(18q11) fuses with SSX genes, leading to the generation of SS18-SSX fusion 
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oncogenes [59–63]. Nine SSX genes (SSX1-9) have been described which are 
highly homologous [64].

SS18-SSX can be detected in more than 95% of SS [65], for which it is 
specific and has been seen in all morphologic subtypes. Approximately two-
thirds of SS harbor SS18- SSX1 gene fusions and one-third SS18-SSX2 [47, 
64, 66, 67].

The specific gene fusion has been shown to correlate with tumor histol-
ogy. Almost all biphasic SSs have been shown to harbor SS18-SSX1 fusions 
[66–68], and almost all of the SS18-SSX2 tumors show absence of glandular 
differentiation (monophasic histology) [66]. The rearrangement has been 
shown to be present in both (epithelial and spindle) cellular components of 
biphasic SS [69].

Recent data suggest that fusion type does not have prognostic value [47, 
70], despite earlier studies suggesting that SS18-SSX1 produces more aggres-
sive disease than SSX2 [47, 71–74].

Fluorescence in situ hybridization (FISH) using an SS18 break-apart probe 
is currently the most widely used approach to demonstrate the presumptive 
presence of one of the SS18-SSX fusions. However, other approaches includ-
ing RT-PCR and, increasingly, massive parallel sequencing, are being more 
widely used [75]. Although highly specific, RT-PCR and SS18 break-apart 
FISH that are not perfect and have had reported sensitivities as low as 94% 
and 83%, respectively [76, 77]. The use of both techniques has been recom-
mended in the ancillary diagnosis of SS, giving at least 96% sensitivity and 
100% specificity [55]. However, the rare cases of neoplasms morphologi-
cally and immunohistochemically typical of SS but without SS18-SSX fusions 
could represent tumors with unusual variant transcripts, which cannot be 
detected using routine molecular techniques [78].

Other than this translocation, SS tumors are mutationally quiet [79, 80]. 
Despite this, metastatic SSs are associated with increased tumor genomic 
instability [81, 82].

Epigenomic

As mentioned above, the SS18-SSX fusion proteins are widely considered to 
be the main driver of SS pathogenesis [83, 84], as their expression is sufficient 
to induce SS tumors in mice [6, 72], and their silencing causes SS cells to 
revert to mesenchymal stem cell-like cells [5].

Recent efforts have focused on unraveling the mechanism behind the 
SS18-SSX-mediated epigenetic rewiring, focusing on the interplay between 
the SS fusion protein and the chromatin remodeling machinery, in particu-
lar with regard to the two key protein complex families of epigenetic modi-
fiers: SWItch/Sucrose NonFermentable (SWI/SNF) and Polycomb Repressive 
Complexes (PRC) [79, 85, 86]. While PRC leads to chromatin compac-
tion and gene repression, SWI/SNF complexes facilitate transcription by 
remodeling nucleosomes, thereby promoting gene activation by permitting 
increased access of transcription factors to their binding sites [87].
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The SWI/SNF or BRG1/BRM-associated factor (BAF) complexes are mem-
bers of a family of Trithorax-group proteins (TrxG) [88, 89]. Only one of the 
three mammalian SWI/SNF complexes, the canonical BAF (cBAF) complex, 
contains SS18 and has been shown to interact with the SS fusion proteins. 
The SS18-SSX fusion proteins have been shown to competitively replace the 
wild-type SS18 in the cBAF complexes [90, 91], thus resulting in ejection of 
SWI/SNF-related matrix-associated actin-dependent regulator of chromatin 
subfamily B member 1 (SMARCB1) and its subsequent proteasome-medi-
ated degradation [92••]. These oncogenic BAF complexes are subsequently 
retargeted to PRC-repressed domains and have been shown to activate them 
[91], recruiting RNA Polymerase II to initiate transcription [93].

Another current theory is that the SS18-SSX oncoprotein mediates its 
transcriptional silencing via interaction with PRC1 and PRC2, since stud-
ies have shown SS18-SSX to co-localize with the complexes [94, 95]. The 
canonical PRC1 consists of two core subunits: RING1A/B and PCGF16. 
The PCGF components are important for maintaining the protein–protein 
interactions that initiate chromatin silencing [96, 97] and the knockdown 
of PCGF4 or either of the RING proteins, leading to a global reduction in 
PRC1 activity [98]. Concurrent with this, Barco et al. also found that the 
presence of SS18-SSX2 is associated with a downregulation of PCGF4 and 
subsequently with a decreased PRC1 activity [99]. There are also several 
heterogeneous non-canonical PRC1 complexes [86, 100]. In another pro-
posed model, SS18-SSX utilizes lysine-specific demethylase 2B (KDM2B) 
as part of one of these non-canonical PRC1 (PRC1.1) to target cBAF to 
unmethylated CpG islands, generating a BAF-mediated PRC2 antagonism 
and aberrant gene activation at these sites [101]. PRC2 executes its chroma-
tin silencing functions via its catalytic subunit Enhancer of Zeste 2 (EZH2), 
a histone methyltransferase [102]. SS18-SSX can serve a bridging function 
connecting activating transcription factor 2 (ATF2) to the PRC2 member 
transducin-like enhancer protein 1 (TLE1) and in doing so represses the 
expression of important tumor suppressor genes, including cyclin-depend-
ent kinase inhibitor 2A (CDKN2A) and early growth response protein 1 
(EGR1) [103–105].

There is currently no definitive theory for the pathogenesis of SS; how-
ever, the previous hypothesis shows that it could principally depend on the 
disruption of the balance of the complex interplay between the TrxG and 
PcG complexes. Therefore, a better understanding of the effects and conse-
quences of the expression of SS18-SSX fusion proteins on the epigenomic 
regulators is needed [91, 106].

Expression profile

Gene expression studies have also shown several differences between SS18-
SSX1 and SS18-SSX2 fusion types, suggesting that these may lead to different 
downstream events [107].

Studies on the direct and indirect interactions of SS18-SSX oncoproteins 
suggest that they particularly affect cell growth and proliferation and have 
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highlighted cyclin D1, Wnt/β catenin pathway components (LEF1, TCF7, 
ZIC2, WNT5A, AXIN2, and FZD10), TP53 pathway components, EGR1, insu-
lin-like growth factor 2 together with its receptor IGF-1R, and chromatin 
remodeling mechanisms, as the most important targets of these oncoproteins 
contributing to sarcomagenesis [108].

However, an independent role might be played by the above-mentioned 
TLE1 gene (9q21.32), a member of the TLE family of genes that encode 
Groucho-like transcriptional corepressors. In fact, TLE1 is one of the most 
frequently overexpressed genes in SS [107, 109–111]. It binds other basic 
helix-loop-helix proteins to repress target genes [112–114] thus inhibiting 
the Wnt/βcatenin signaling and other cell fate determination signals and have 
an established role in repressing differentiation [115, 116].

Other genes and pathways that exhibit perturbations in SS include Hedge-
hog (SMO, PTCH1), NY-ESO-1 (CTAG1A), and Notch (JAG1, JAG2, and 
HES1) and RTKs (FGF2, FGF3, EGFR, PDGFR, and IGFBP3) [111, 117, 118]. 
Moreover, the propensity for epithelial differentiation has been associated to 
the derepression of the transcription of E-cadherin [65]. Nevertheless, 21 dif-
ferent microRNAs (including let-7e, miR-99b, and miR-125a-3p) were found 
significantly upregulated in SS, suggesting that also these molecules have a 
potential oncogenic role [119].

Because these pathways and genes are not consistently affected in all cases, 
efforts have been made to identify a genetic signature that predicts survival 
or tumor progression [80]. For example, a downregulation of genes associ-
ated with neuronal and skeletal development and cell adhesion, as well as 
the upregulation of genes on the 8q21.11 locus, were identified in poorly dif-
ferentiated SS [111]. However, further characterization of expression profiles 
is needed to identify possible prognostic factors and potential therapeutic 
targets.

Immunohistochemistry

A range of immunohistochemical (IHC) markers have been proposed to sup-
port the diagnosis of SS, most notably TLE1 [120]. However, to date, no single 
IHC marker or combination of markers can definitively confirm or exclude 
the diagnosis of SS [75]. Thus, despite FISH and molecular testing being 
expensive, not widely available, and time consuming in comparison to IHC, 
these approaches still represent the “gold standard” in SS diagnosis.

TLE1, due to its upregulation in SS, was identified from gene expres-
sion studies as a useful biomarker for distinguishing SS from other STSs 
[121]. TLE1 shows strong and diffuse nuclear staining in SS [116], with 
positive nuclear expression observed in more than 90% of cases [122, 
123]. A recent systematic review examining the role of TLE1 as a diagnostic 
biomarker for SS found that the mean sensitivity and specificity of TLE1 
in detecting SS were 94% (95% CI 91–97%) and 81% (95% CI 72–91%), 
respectively. The mean positive predictive value of TLE1 was 75% (95% 
CI 62–87%), whereas the negative predictive value was 96% (95% CI 
93–98%) [118]. However, TLE1 expression has also been reported in up 
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to one-third of non-SS [123], including potential mimics in differential 
diagnosis such as 17–20% of solitary fibrous tumors, 13–30% of malig-
nant peripheral nerve sheath tumors, and 69% of malignant mesothelio-
mas [124] and, less commonly, 7% of carcinomas [120, 122, 125–127]. 
Nuclear TLE1 expression is also observed in non-neoplastic tissues, with 
variable expression in basal keratinocytes, adipocytes, perineurial cells, 
endothelial cells, and mesothelial cells [122]. Therefore, particularly when 
its expression is moderate or strong, TLE1 is helpful in distinguishing SS 
from its histologic mimics; however, it should be used only in the context 
of a panel of antibodies (including keratins, EMA, CD34, and bcl-2) [120, 
122].

NY-ESO-1, a cancer testis antigen, is also strongly and diffusely 
expressed in most SS (as in 76% of tumors) but rarely in other mesenchy-
mal lesions and may be useful in distinguishing SS from other spindle 
cell neoplasms [128, 129].

Brachyury transcription factor and CD34 are consistently negative in SS 
[130], while SMARCB1/INI1 protein expression was found to be reduced 
in 69% of cases, although no case with complete loss of expression was 
recognized [131, 132].

The diagnostic value of other markers has been limited by their lack of 
sensitivity and/or specificity. More than 90% of SS, including all histologic 
subtypes, show focal expression of epithelial markers cytokeratins and 
epithelial membrane antigen (EMA), with a characteristic patchy pattern 
in the spindle cell component and a more uniform staining in the epithe-
lial component [133–135]. Cytokeratin subtypes CK7 and CK19 appear 
essentially restricted to SS and are helpful in their diagnosis [136–138]. 
As a significant number of SS are keratin positive but EMA negative or vice 
versa [133, 134], both markers should be used in a complementary man-
ner. Other immunomarkers with some utility include carcinoembryonic 
antigen (CEA), vimentin, calponin, Bcl2, CD99, and S100 protein [80, 
116, 120–123, 128, 129, 131, 132, 135, 139–141].

Two new rabbit monoclonal antibodies have recently been developed 
and proposed to be highly sensitive and specific for the diagnosis of SS 
[142]: E9X9V (cat no 72364, Cell Signaling Technology, Danvers, MA 
USA) designed to recognize the SS18-SSX fusion proteins without cross 
reacting with wild-type SS18 or SSX proteins and E5A2C, and E5A2C (cat 
no 23855, Cell Signaling Technology, Danvers MA USA) designed to rec-
ognize the C-terminal end of the SSX1, SSX2 and SSX4 proteins [142]. If 
validated, these results could lead to introduce these antibodies in clinical 
practice to support SS diagnosis.

Prognosis

SS is generally considered a high-grade sarcoma, marked by a poor prognosis, 
with an overall survival (OS) rate of 87.3% at 1 year, 59.4% at 5 years, 50.8% 
at 10 years and 42.8% at 20 years follow-up, according to a recent large series 
[16•]. The difference between medium- to long-term survival reflects the fact 
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that metastases in SS often occur very late, even beyond 10 years [17]. Patients 
with metastasis at diagnosis have a very poorer prognosis, with a 3-year sur-
vival rate of 27.2% [143].

Older patients, primary tumor located to the trunk, and large tumor size 
have been consistently reported to be associated with worse outcomes [24, 
144, 145]. Tumor site can also affect prognosis, with a worse outcome for 
tumors arising from anatomic sites other than the extremities [41, 146–148].

Xiong et al. reported higher 5- and 10-year survival rates in the biphasic 
subtype (69% and 60%, respectively), followed by the monophasic subtype 
(59% and 49%, respectively) and lowest in the epithelioid subtype (32% 
and 26%, respectively) [149]. Bianchi et al. confirmed this observation, also 
reporting a worse survival in patients affected by FNLCC grade 3 SS than in 
those with grade 2 SS [58].

Treatment

Standard treatment of primary, localized SS is represented by wide surgical 
resection of the tumor. However, there is conflicting evidence regarding the 
systemic benefits of adjuvant RT [150–153]. Some prospective, randomized 
controlled studies on STS show evidence that adjuvant RT improves local con-
trol but not OS [151, 154, 155]. Specifically to SS, Rhomberg et al. observed 
that SS might be resistant to RT [156]. However, Seo et al. observed that RT is 
more effective in a subgroup with characteristics of old age (age > 20 years), 
male patients, large tumors (> 5 cm), extremity locations, early stages, and 
biphasic subtypes [157]. These data can partially support routine implemen-
tation of RT in the multimodality treatment of patients with SS [151].

The combination of RT combined with chemotherapy (ChT) can be sig-
nificantly toxic, including risk of treatment-related deaths. Therefore, when 
treating patients with SS, clinicians may choose to forego RT and/or combi-
nation ChT with RT in favor of ChT alone as the combination of modalities 
increases toxicity and may lead to ChT dose reduction.

Cytotoxic chemotherapy

Cytotoxic ChT is often considered in both the neoadjuvant and adjuvant set-
tings for patients with advanced SS [148]. Ferrari et al. reported 5-year, metas-
tasis free survival rates of 60 and 40% for patients treated with and without 
ChT, respectively [158]. Edmonson et al. showed partial tumor regression in 
5 of 12 patients with residual, recurrent, or metastatic tumors, with a median 
OS of 11 months [159].

Combined treatment with doxorubicin and ifosfamide represent front-line 
therapy for SS, with an expected response rate (RR) ranging between 25 and 
60% [160–162]. For patients not amenable to anthracycline, single-agent 
high-dose ifosfamide is a valid alternative option, as it is in patients already 
pretreated with ifosfamide [163].
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In some cases, ifosfamide monotherapy can be considered after this first-
line combination treatment, in particular when there has been a reason-
able interval between the end of first- and the start of second-line treatment. 
Single-center data on ifosfamide rechallenge in different STS subtypes showed 
the highest activity in SS [164]. In less fit patients, sequential doxorubicin 
and ifosfamide can be considered.

Recently, evofosfamide, a hypoxia-activated prodrug of bromo-isophos-
phoramide mustard, was evaluated within a randomized phase III trial in 
STS, which included patients with SS, who were randomly assigned to receive 
doxorubicin alone or doxorubicin plus evofosfamide. Evofosfamide showed 
an improvement in OS for the SS despite no evidence of survival benefit in 
the overall population [165].

An alternative treatment is the combination of gemcitabine and docetaxel, 
which may be considered in patients who cannot tolerate or are resistant to 
standard protocols. However, early studies suggested that gemcitabine, despite 
its effectiveness in STS, might not have much activity in SS [166, 167]. Simi-
larly, in an early randomized study, patients receiving docetaxel exhibited no 
discernible responses [168, 169].

In second and later lines, trabectedin demonstrated antitumor effect in 
SS, with a 6-month progression-free survival (PFS) rate of 22% to 23% in two 
different retrospective studies and a 15% RR [170, 171]. The mechanism of 
action is still being elucidated; it may affect transcription factors and tumor 
microenvironment through neoplastic macrophage depletion [172, 173].

Molecular targets

Tyrosine kinase inhibitors (TKIs) have some activity in SS, but pazopanib 
is the only one approved for treatment of STS. Pazopanib is an oral, multi-
targeted tyrosine kinase inhibitor directed against the receptor tyrosine 
kinases (RTKs) vascular endothelial growth factor receptors (VEGFR) 1/2/3, 
platelet-derived growth factor receptors (PDGFR) α/β, and KIT, thereby block-
ing tumor growth and inhibiting angiogenesis. In the randomized phase III 
registration study, pazopanib was administered to 38 patients affected by 
SS and, compared with placebo, it improved the median PFS of 3 months 
(4.1 vs 1.0 month) [174–176]. Recent phase II and III studies suggest that 
pazopanib has activity in metastatic and refractory SS [177, 178]. Another 
TKI under investigation in STS is the multikinase VEGFR/PDGFR inhibitor 
regorafenib [179, 180]. Finally, there are anecdotal reports on the activity 
of sorafenib and sunitinib and of bevacizumab combined with cediranib 
[181–183]. Although pazopanib and regorafenib were reported to signifi-
cantly improve PFS compared with placebo in advanced SS patients, these 
treatment strategies did not improve the OS [179, 184, 185]. Apatinib is an 
oral anti-angiogenesis TKI, a highly and selective inhibitor on VEGFR with 
promising efficacy in advanced SS patients, although the evidence level of this 
study seems preliminary [186••, 187, 188]. Other trials have been designed 
to inhibit specific targets in SS, in particular VEGF antibodies and the IGF-1R 
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antibody cixutumumab [80, 189]. Olaratumab, a selective PDGFR mono-
clonal antibody, showed promising results in combined regimens [190]. In 
addition, PDGFR expression was recently reported in 84% of 44 SS tumor 
samples evaluated with immunostaining [191].

A new class of drugs able to inhibit EZH2 (the catalytic component of 
PRC2) is presently under investigation in tumors with BAF47/INI1 loss. The 
results of a phase II study of EZH2 inhibitor tazemetostat in the cohort of 33 
patients with SS unluckily showed only a limited antitumor effect, with no 
objective responses and a 5-month median PFS [192].

Radiotherapy induces DNA double-strand breaks, stimulating DNA repair 
mechanisms, particularly those involving HDAC [193]. In preclinical studies, 
HDAC inhibitors induced differentiation, apoptosis, and growth arrest of SS 
cells while increasing tumor cell sensitivity to RT and ChT [103, 194, 195]. 
A phase II trial (NCT00112463) to study the efficacy of an HDAC inhibitor 
(romidepsin) in SS has recently closed to accrual, and results of the trial are 
pending [80].

Preclinical studies suggested several other actionable targets in SS, among 
which are the WNT-b-catenin and the protein kinase B (AKT)-mammalian 
target of rapamycin (mTOR) pathways, anaplastic lymphoma kinase (ALK), 
MET, and the cyclin D1-CDK4/6-Rb axis [117, 191, 196–200]. Moreover, vari-
ous epigenomic regulators such as BCOR (a PRC1.1 component) [100] as well 
as SKP2 (an E3 ubiquitin ligase) were found to be overexpressed in undif-
ferentiated SS, thus being a potential targetable gene [201].

However, despite the promising preclinical studies, the translation of these 
results to improved clinical outcomes remains challenging, and the benefit 
achieved from the introduction of new agents for management of advanced 
SS has been limited over the last decade.

Immunotherapy

Programmed death-1 protein (PD-1) is normally expressed on the surface of 
activated T-cells and suppresses unwanted or excessive immune responses, 
including autoimmune reactions. Its ligand PD-L1 can be expressed by vari-
ous cells, including macrophages and tumor cells. The PD-1/PD-L1 interac-
tion is a major pathway used by tumors to suppress immune control. Several 
studies have assessed the expression of PD-L1 in sarcomas [202]. However, a 
recent study by Pollack et al. [203] demonstrated that among STS, SS has the 
lowest expression of PD-1/PD-L1 and the lowest T-cell infiltration [204]. This 
explains different trials with pembrolizumab, ipilimumab, and nivolumab 
demonstrated no activity of cytotoxic T-lymphocyte antigen 4 (CTLA4) or 
PD-1 inhibition for the treatment of SS [205, 206]. Nonetheless, Jerby-Arnon 
et al. recently reported a novel “core oncogenic program” driven by SS18-
SSX, with implications for treatment strategies based on epigenetics, cell-cycle 
control, and immune augmentation [204]. Therefore, further studies might 
examine whether HDAC and CDK4/6 inhibitors could induce T-cell priming 
and recruitment due to cell damage and test potential synergies with different 
forms of cancer immunotherapies, such as immune checkpoint blockade, 

Curr. Treat. Options in Oncol. (2021) 22: 109109   Page 12 of 22



adoptive T-cell therapies, or cancer vaccines. Several clinical trials evaluat-
ing the efficacy of these new therapeutic approaches are currently ongoing. 
Thus far, it has been reported that trials with more targeted immunotherapies 
against tumor-specific antigens have shown greater promise in SS, in particu-
lar vaccines that trigger priming of NY-ESO-1-specific T-cell response [207], as 
well as therapies based on autologous T-cells transduced with a T-cell receptor 
directed against NY-ESO-1 [208].

Metabolic therapy

Arginino-succinate synthetase 1 (ASS1) is the rate-limited enzyme in the 
urea cycle responsible for the formation of arginine-succinate from citrul-
line and aspartate. When ASS1 is not expressed, cells are reliant on extracel-
lular sources of the aminoacid arginine. Loss of expression of ASS1 due to 
methylation has been demonstrated to be the most common defect among 
STS, including SS [209]. This loss makes SS an attractive cancer for treatment 
with arginine starvation with agents such as pegylated arginine deiminase 
[210]. Arginine starvation alters SS metabolism and glutathione levels, mak-
ing it more sensitive to treatment with ChT [210]. This metabolic defect is 
under development as the basis for a multiagent biomarker-driven metabolic 
therapy for SS.

Conclusions

Substantial advances in the understanding of the natural history and patho-
genesis of SS have been made. However, the prognosis is still scarce.

The standard of care for primary SS is wide surgical resection combined 
with RT in selected cases. The role of ChT is still under refinement and can 
be considered in patients at high risk of metastasis or in those with advanced 
disease. Cytotoxic ChT (anthracyclines, ifosfamide, trabectedin, and pazo-
panib) are the treatments of choice, despite several possible side effects. Many 
possible drug-able targets have been identified. However, the impact of these 
strategies in improving SS outcome is still limited, thus making current and 
future research strongly needed to improve the survival of patients with SS.
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