Skip to main content

Advertisement

Log in

Systemic Therapy for Lung Cancer Brain Metastases

  • Neuro-oncology (GJ Lesser, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Systemic therapy for brain metastases (BM) is quickly moving from conventional cytotoxic chemotherapy toward targeted therapies, that allow a disruption of driver molecular pathways. The discovery of actionable driver mutations has led to the development of an impressive number of tyrosine kinase inhibitors (TKIs), that target the epidermal growth factor receptor (EGFR) mutations, anaplastic-lymphoma-kinase (ALK) rearrangements, and other rare molecular alterations in patients bearing metastatic non-small cell lung cancer (NSCLC) in the brain, with remarkable results in terms of intracranial disease control and overall survival. Moreover, these drugs may delay the use of local therapies, such as stereotactic radiosurgery (SRS) or whole-brain radiotherapy (WBRT). New drugs with higher molecular specificity and ability to cross the CNS barriers (BBB, BTB and blood-CSF) are being developed. Two major issues are related to targeted therapies. First, the emergence of a resistance is a common event, and a deeper understanding of molecular pathways that are involved is critical for the successful development of effective new targeted agents. Second, an early detection of tumor progression is of utmost importance to avoid the prolongation of an ineffective therapy while changing to another drug. In order to monitor over time the treatment to targeted therapies, liquid biopsy, that allows the detection in biofluids of either circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA) or exosomes, is increasingly employed in clinical trials: with respect to BM the monitoring of both blood and CSF is necessary. Also, radiomics is being developed to predict the mutational status of the BM on MRI.

For patients without druggable mutations or who do not respond to targeted agents, immunotherapy with checkpoint inhibitors is increasingly employed, alone or in combination with radiotherapy. Pseudoprogression after immunotherapy alone maybe a challenge for several months after the start of treatment, and the same is true for radionecrosis after the combination of immunotherapy and SRS. In this regard, the value of advanced MRI techniques and PET imaging for a better distinction of pseudoprogression/radionecrosis and true tumor progression is promising, but needs validation in large prospective datasets. Last, a new frontier in the near future will be chemoprevention (primary and secondary), but we need to identify among solid tumors those subgroups of patients with a higher risk of relapsing into the brain and novel drugs, active on either neoplastic or normal cells of the microenvironment, that are cooperating in the invasion of brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Soffietti R, Abacioglu U, Baumert B, et al. Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO). Neuro Oncol. 2017;19(2):162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Planchard D, Popat S, Kerr K, et al. ESMO Guidelines Committee. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann 2018;29(Suppl 4):ivl92-iv237. Erratum in: Ann Oncol. 2019;30(5):863–870.

  3. Iuchi T, Shingyoji M, Itakura M, et al. Frequency of brain metastases in non-small-cell lung cancer, and their association with epidermal growth factor receptor mutations. Int J Clin Oncol. 2015;20(4):674–9.

    Article  CAS  PubMed  Google Scholar 

  4. Camidge DR, Kiin HR, Ahn MJ, et al. Brigatinib versus Crizotinib in ALK-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2018;379(21):2027–39.

    Article  CAS  PubMed  Google Scholar 

  5. Gainor JF, Tseng D, Yoda S, et al. Patterns of Metastatic Spread and Mechanisms of Resistance to Crizotinib in ROSl-Positive Non-Small-Cell Lung Cancer. JCO Precis Oncol. 2017;2017:PO.17.00063.

    Google Scholar 

  6. Awad MM, Oxnard GR, Jackman DM, et al. MET Exon 14 Mutations in Non-Small-Cell Lung Cancer Are Associated With Advanced Age and Stage-Dependent MET Genomic Amplification and c-Met Overexpression. J Clin Oncol. 2016;34(7):721–30.

    Article  CAS  PubMed  Google Scholar 

  7. Vaishnavi A, Capelletti M, Le AT, et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med. 2013;19(11):1469–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suda K, Mitsudomi T. Emerging oncogenic fusions other than ALK, ROS1, RET, and NTRK in NSCLC and the role of fusions as resistance mechanisms to targeted therapy. Transl Lung Cancer Res. 2020;9(6):2618–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Toma A, Lo Russo G, Signorelli D, et al. Uncommon targets in non-small cell lung cancer: Everyone wants a slice of cake. Crit Rev Oncol Hematol. 2021;160:103299.

    Article  PubMed  Google Scholar 

  10. Lin JJ, Cardarella S, Lydon CA, et al. Five-Year Survival in EGFR-Mutant Metastatic Lung Adenocarcinoma Treated with EGFR-TKIs. J Thorac Oncol. 2016;11(4):556–65.

    Article  PubMed  Google Scholar 

  11. Duruisseaux M, Besse B, Cadranel J, et al. Overall survival with crizotinib and next-generation ALK inhibitors in ALK-positive non-small-cell lung cancer (IFCT-1302 CLINALK): a French nationwide cohort retrospective study. Oncotarget. 2017;8(13):21903–17.

    Article  PubMed  PubMed Central  Google Scholar 

  12. McCoach CE, Berge EM, Lu X, et al. A Brief Report of the Status of Central Nervous System Metastasis Enrollment Criteria for Advanced Non-Small Cell Lung Cancer Clinical Trials: A Review of the C1inicalTrials.gov Trial Registry. J Thorac Oncol. 2016;1 I(3):407–13.

    Article  Google Scholar 

  13. Levy A, Faivre-Finn C, Hasan B, et al.; Young Investigators EORTC Lung Cancer Group (YI EORTC LCG). Diversity of brain metastases screening and management in non-small cell lung cancer in Europe: Results of the European Organisation for Research and Treatment of Cancer Lung Cancer Group survey. Eur J Cancer. 2018;93:37–46

  14. Wijaya I, Fukuda Y, Schuetz JD. Obstacles to Brain Tumor Therapy: Key ABC Transporters. Int J Mol Sci. 2017;18(12):2544.

    Article  PubMed Central  Google Scholar 

  15. Soria JC, Ohe Y, Vansteenkiste J, et al.; FLAURA Investigators. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N Engl I Med. 2018;378(2):113–125.

  16. Hida T, Nokihara H, Kondo M, et al. Alectinib versus crizotinib in patients with ALK-positive non-small- cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet. 2017;390(10089):29–39.

    Article  CAS  PubMed  Google Scholar 

  17. Tan WL, Ng QS, Lim C, et al. Influence of afatinib dose on outcomes of advanced EGFR-mutant NSCLC patients with brain metastases. BMC Cancer. 2018;18(1):1198. Erratum in: BMC Cancer. 2018;18(1):1288.

  18. Shriyan B, Patil D, Guljar M, et al. Safety and CSF distribution of high-dose erlotinib and gefitinib in patients of non-small cell lung cancer (NSCLC) with brain metastases. Eur J Clin Pharmacol. 2020;76(10):1427–36.

    Article  CAS  PubMed  Google Scholar 

  19. Soffietti R, Ahluwalia M, Lin N, et al. Management of brain metastases according to molecular subtypes. Nat Rev Neurol. 2020;16(10):557–74.

    Article  CAS  PubMed  Google Scholar 

  20. Yang JCH, Kim SW, Kim DW, et al. Osimertinib in Patients With Epidermal Growth Factor Receptor Mutation-Positive Non-Small-Cell Lung Cancer and Leptomeningeal Metastases: The BLOOM Study. J Clin Oncol. 2020;38(6):538–47.

    Article  CAS  PubMed  Google Scholar 

  21. Veerman GDM, Hussaarts KGAM, Jansman FGA, et al. Clinical implications of food-drug interactions with small-molecule kinase inhibitors. Lancet Oncol. 2020;21(5):e265–79.

    Article  CAS  PubMed  Google Scholar 

  22. Hussaarts KGAM, Veerman GDM, Jansman FGA, et al. Clinically relevant drug interactions with multikinase inhibitors: a review. Ther Adv Med Oncol. 2019;11:1758835918818347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brastianos PK, Carter SL, Santagata S, et al. Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discov. 2015;5(11):1164–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. • Shih DJH, Nayyar N, Bihun I, et al. Genomic characterization of human brain metastases identifies drivers of metastatic lung adenocarcinoma. Nat Genet. 2020;52(4):371–7. The amplification of MYC, YAP1, MMP13, and the deletions in CDKN2A/B are highly expressed in BM compared with paired primary NSCLC, suggesting a key-role in the development of CNS recurrences.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Berghoff AS, Bartsch R, Wöhrer A, et al. Predictive molecular markers in metastases to the central nervous system: recent advances and future avenues. Acta Neuropathol. 2014;128(6):879–91.

    Article  CAS  PubMed  Google Scholar 

  26. Preusser M, Berghoff AS, Ilhan-Mutlu A, et al. ALK gene translocations and amplifications in brain metastases of non-small cell lung cancer. Lung Cancer. 2013;80(3):278–83.

    Article  PubMed  Google Scholar 

  27. Li Y, Liu B, Connolly ID, et al. Recurrently Mutated Genes Differ between Leptomeningeal and Solid Lung Cancer Brain Metastases. J Thorac Oncol. 2018;13(7):1022–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. • Boire A, Brastianos PK, Garzia L, et al. Brain metastasis. Nat Rev Cancer. 2020;20(1):4–11. Four leading Experts provide their opinions regarding the role of molecular and anatomic divergence of BM, microenvironment, metabolic constraints and immune environment, which differs from extracranial lesions and contributes to the development of acquired resistance and/or failure of targeted agents and/or immunotherapies.

    Article  CAS  PubMed  Google Scholar 

  29. Nagasaka M, Zhu VW, Lim SM, et al. Beyond Osimertinib: The Development of Third-Generation EGFR Tyrosine Kinase Inhibitors For Advanced EGFR+ NSCLC. J Thorac Oncol. 2020;S1556–0864(20):31105–9.

    Google Scholar 

  30. Lai-Kwon J, Tiu C, Pal A, Khurana S, et al. Moving beyond epidermal growth factor receptor resistance in metastatic non-small cell lung cancer - a drug development perspective. Crit Rev Oncol Hematol. 2021;159:103225.

    Article  PubMed  Google Scholar 

  31. Naito T, Shiraishi H, Fujiwara Y. Brigatinib and lorlatinib: their effect on ALK inhibitors in NSCLC focusing on resistant mutations and central nervous system metastases. Jpn J Clin Oncol. 2021;51(1):37–44.

    Article  PubMed  Google Scholar 

  32. Rolfo C, Mack PC, Scagliotti GV, et al. Liquid Biopsy for Advanced Non-Small Cell Lung Cancer (NSCLC): A Statement Paper from the IASLC. J Thorac Oncol. 2018;13(9):1248–68.

    Article  PubMed  Google Scholar 

  33. •• Boire A, Brandsma D, Brastianos PK, et al. Liquid biopsy in central nervous system metastases: a RANO review and proposals for clinical applications. Neuro Oncol. 2019;21(5):571–84. An overview on technical issues and potential applications of liquid biopsies (CTCs and ctDNA) from CSF and plasma in CNS metastases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aldea M, Hendriks L, Mezquita L, et al. Circulating Tumor DNA Analysis for Patients with Oncogene-Addicted NSCLC With Isolated Central Nervous System Progression. J Thorac Oncol. 2020;15(3):383–91.

    Article  CAS  PubMed  Google Scholar 

  35. Huang R, Xu X, Li D, et al. Digital PCR-Based Detection of EGFR Mutations in Paired Plasma and CSF Samples of Lung Adenocarcinorna Patients with Central Nervous System Metastases. Target Oncol. 2019;14(3):343–50.

    Article  PubMed  Google Scholar 

  36. Ma C, Yang X, Xing W, et al. Detection of circulating tumor DNA from non-small cell lung cancer brain metastasis in cerebrospinal fluid samples. Thorac Cancer. 2020;11(3):588–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zheng MM, Li YS, Tu BY, et al. Genotyping of Cerebrospinal Fluid Associated With Osimertinib Response and Resistance for Leptomeningeal Metastases in EGFR-Mutated NSCLC. J Thorac Oncol. 2021;16(2):250–8.

    Article  CAS  PubMed  Google Scholar 

  38. Rosell R, Carcereny E, Gervais R, et al.; Spanish Lung Cancer Group in collaboration with Groupe Francais de Pneumo-Canc6rologie and Associazione Italiana Oncologia Toracica. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239–246.

  39. Sequist LV, Yang JC, Yamamoto N, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013;31(27):3327–34.

    Article  CAS  PubMed  Google Scholar 

  40. Schuler M, Wu YL, Hirsh V, et al. First-Line Afatinib versus Chemotherapy in Patients with Non-Small Cell Lung Cancer and Common Epidermal Growth Factor Receptor Gene Mutations and Brain Metastases. J Thorac Oncol. 2016;11(3):380–90.

    Article  PubMed  Google Scholar 

  41. Mok TS, Wu Y-L, Ahn M-J, et al.; AURA3 Investigators. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N Engl J Med. 2017;376(7):629–640.

  42. Ramalingam SS, Vansteenkiste J, Planchard D, et al.; FLAURA Investigators. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N Engl J Med. 2020;382(1):41–50.

  43. Goss G, Tsai CM, Shepherd FA, et al. Osimertinib for pretreated EGFR Thr790Met-positive advanced non-small-cell lung cancer (AURA2): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2016;17(12):1643–52.

    Article  CAS  PubMed  Google Scholar 

  44. Yang JC, Ahn MJ, Kim DW, et al. Osimertinib in Pretreated T790M-Positive Advanced Non-Small-Cell Lung Cancer: AURA Study Phase II Extension Component. J Clin Oncol. 2017;35(12):1288–96.

    Article  CAS  PubMed  Google Scholar 

  45. Ahn MJ, Tsai CM, Shepherd FA, et al. Osimertinib in patients with T790M mutation-positive, advanced non-small cell lung cancer: Long-term follow-up from a pooled analysis of 2 phase 2 studies. Cancer. 2019;125(6):892–901.

    Article  CAS  PubMed  Google Scholar 

  46. •• Goss G, Tsai CM, Shepherd FA, et al. CNS response to osimertinib in patients with T790M-positive advanced NSCLC: pooled data from two phase II trials. Ann Oncol. 2018;29(3):687–93. A pooled analysis that displayed a significant impact of the third-generation TKI osimertinib on BM from T790M-mutated NSCLC.

    Article  CAS  PubMed  Google Scholar 

  47. •• Reungwetwattana T, Nakagawa K, Cho BC, et at. CNS Response to Osimertinib Versus Standard Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients With Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. J Clin Oncol. 2018:JCO20187831l8. Osimertinib confers a better intracranial response and a reduced risk of developing BM from NSCLC compared with standard EGFR-TKIs gefitinib or erlotinib.

  48. Thress KS, Paweletz CP, Felip E, et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med. 2015;21(6):560–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu S, Wang Q, Zhang G, et al. CT190: a multi-center, open-label, single arm, phase II study: the third-generation EGFR tyrosine kinase inhibitor almonertinib for pre-treated EGFR T790M-positive locally advanced metastatic non-small cell lung cancer APOLLO. Paper presented at: 2020 AACR Annual Meeting; April 27–28,2020.

  50. Kim SW, Ahn MJ, Han JY, et al. Intracranial anti-tumor activity of lazertinib in patients with advanced NSCLC who progressed after prior EGFR TKI therapy: Data from a phase I/II study. J Clin Oncol. 2020;38:9571–9571.

    Article  Google Scholar 

  51. Shi Y, Hu X, Zhang S, et al. Efficacy and safety of alflutinib (AST2818) in patients with T790M mutation-positive NSCLC: a phase 2b multicenter single-arm study. J Clin Oncol. 2020;38:9602–9602.

    Article  Google Scholar 

  52. Shi Y, Fang J, Shu Y, et al. A phase I study to evaluate safety and antitumor activity of BPI-7711 in EGFRM+/T790M+ advanced or recurrent NSCLC patients. J Thorac Oncol. 2019;37:9034–9034.

    Google Scholar 

  53. Park S, Ku BM, Jung HA, et al. EGFR C7975 as a resistance mechanism of lazertinib in non-small cell lung cancer with EGFR T790M mutation. Cancer Res Treat. 2020;52:1288–90.

    PubMed  PubMed Central  Google Scholar 

  54. Song HN, Jung KS, Yoo KB, et al. Acquired C797S mutation upon treatment with a T790M-specific third-generation EGFR inhibitor (HM61713) in non-small cell lung cancer. J Thorac Oncol. 2016;11:e45–7.

    Article  PubMed  Google Scholar 

  55. Zhang YC, Chen ZH, Zhang XC, et al. Analysis of resistance mechanisms to abivertinib, a third-generation EGFR tyrosine kinase inhibitor, in patients with EGFR T790M-positive non-small cell lung cancer from a phase I trial. EBioMedicine. 2019;43:180–7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lei H, Fan S, Zhang H, et al. Discovery of novel 9-heterocycly1 substituted 9H-purines as L85812/T790M/C797S mutant EGFR tyrosine kinase inhibitors. Eur J Med Chem. 2020;186:111888.

    Article  CAS  PubMed  Google Scholar 

  57. Schalm SS, Dinen T, Lim SM, et al. BLU-945, a highly potent and selective 4th generation EGFR TKI for the treatment of EGFR T790M/C797S resistant NSCLC. Ann Oncol. 2020;31:S839.

    Article  Google Scholar 

  58. Yun J, Lee SH, Kim SY, et al. Antitumor Activity of Amivantamab (JNJ-61186372), an EGFR-MET Bispecific Antibody, in Diverse Models of EGFR Exon 20 Insertion-Driven NSCLC. Cancer Discov. 2020;10(8):1194–209.

    Article  CAS  PubMed  Google Scholar 

  59. Planchard D, Feng PH, Karaseva N, et al. 1401P Osimertinib plus platinum/pemetrexed in newly-diagnosed EGFR mutation (EGFRm)-positive advanced NSCLC: Safety run-in results from the FLAURA2 study. Ann Oncol. 2020;31:S4.

    Article  Google Scholar 

  60. Yu HA, Schoenfeld AJ, Makhnin A, et al. Effect of Osimertinib and Bevacizumab on Progression-Free Survival for Patients With Metastatic EGFR-Mutant Lung Cancers: A Phase 1/2 Single-Group Open-Label Trial. JAMA Oncol. 2020;6(7):1048–54.

    Article  PubMed  Google Scholar 

  61. Costa DB, Shaw AT, Ou SH, et al. Clinical Experience With Crizotinib in Patients With Advanced ALK-Rearranged Non-Small-Cell Lung Cancer and Brain Metastases. J Clin Oncol. 2015;33(17):1881–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Soria JC, Tan DSW, Chiari R, et al. First-line ceritinib versus platinum based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet. 2017;389:917–29.

    Article  CAS  PubMed  Google Scholar 

  63. Shaw AT, Kim TM, Crino L, et al. Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2017;18(7):874–86.

    Article  CAS  PubMed  Google Scholar 

  64. Novello S, Mazieres J, Oh IJ, et al. Alectinib versus chemotherapy in crizotinib-pretreated anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer: results from the phase III ALUR study. Ann Oncol. 2018;29(6):1409–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Peters S, Camidge DR, Shaw AT, et al.; ALEX Trial Investigators. Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2017;377(9):829–838.

  66. Kim DVV, Tiseo M, Ahn MI, et al. Brigatinib in Patients With Crizotinib-Refractory Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer: A Randomized, Multicenter Phase 11 Trial. J Clin Oncol. 2017;35(22):2490–8.

    Article  CAS  PubMed  Google Scholar 

  67. Huber RM, Hansen KH, Paz-Ares Rodriguez L, et al. Brigatinib in Crizotinib-Refractory ALK+ NSCLC: 2-Year Follow-up on Systemic and Intracranial Outcomes in the Phase 2 ALTA Trial. J Thorac Oncol. 2020;15(3):404–15.

    Article  CAS  PubMed  Google Scholar 

  68. •• Camidge DR, Kim HR, Ahn MJ, et al. Brigatinib Versus Crizotinib in Advanced ALK Inhibitor-Naive ALK-Positive Non-Small Cell Lung Cancer: Second Interim Analysis of the Phase III ALTA-1L Trial. J Clin Oncol. 2020;38(31):3592–603. The ALTA trial reported the superior activity of third-generation TKI brigatinib compared with first-generation TKI crizotinib in ALK rearranged BM from NSCLC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Solomon BJ, Besse B, Bauer TM, et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol. 2018;19(12):1654–67.

    Article  CAS  PubMed  Google Scholar 

  70. Shaw AT, Solomon BJ, Chiari R, et al. Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1–2 trial. Lancet Oncol. 2019;20(12):1691–701.

    Article  CAS  PubMed  Google Scholar 

  71. •• Shaw AT, Bauer TM, de Marinis F, et al; CROWN Trial Investigators. First-Line Lorlatinib or Crizotinib in Advanced ALK-Positive Lung Cancer. N Engl J Med. 2020;383(21):2018–2029. Lorlatinib is considered the most effective ALK inhibitor on BM from ALK-rearranged NSCLC based on the iORR of 82% (71% of complete response) from the CROWN trial.

  72. Johung KL, Yao X, Li F, et al. A clinical model for identifying radiosensitive tumor genotypes in non-small cell lung cancer. Clin Cancer Res. 2013;19:5523–32.

    Article  CAS  PubMed  Google Scholar 

  73. Zeng YD, Liao H, Qin T, et al. Blood-brain barrier permeability of gefitinib in patients with brain metastases from non-small-cell lung cancer before and during whole brain radiation therapy. Oncotarget. 2015;6:8366–76.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Dai Y, Wei Q, Schwager C, et al. Synergistic effects of crizotinib and radiotherapy in experimental EML4- ALK fusion positive lung cancer. Radiother Oncol. 2015;114:173–81.

    Article  CAS  PubMed  Google Scholar 

  75. Wang C, Lu X, Lyu Z, et al. Comparison of up-front radiotherapy and TKI with TKI alone for NSCLC with brain metastases and EGFR mutation: A meta-analysis. Lung Cancer. 2018;122:94–9.

    Article  PubMed  Google Scholar 

  76. Magnuson WJ, Lester-Coll NH, Wu Al, et al. Management of brain metastases in tyrosine kinase inhibitor-naive epidermal growth factor receptor-mutant non-small-cell lung cancer: a retrospective multi-institutional analysis. J Clin Oncol. 2017;35:1070–7.

    Article  CAS  PubMed  Google Scholar 

  77. Johung KL, Yeh N, Desai NB, et al. Extended survival and prognostic factors for patients with ALKrearranged non-small-cell lung cancer and brain metastasis. J Clin Oncol. 2016;34:123–9.

    Article  CAS  PubMed  Google Scholar 

  78. Landi L, Chiari R, Tiseo M, et al. Crizotinib in MET-deregulated or ROS1-rearranged pretreated non-small cell lung cancer (METROS): a phase II, prospective, multicenter. Two-arms trial. Clin Cancer Res. 2019;25(24):7312–9.

    Article  CAS  PubMed  Google Scholar 

  79. Wu YL, Smit EF, Bauer TM. Capmatinib for patients with non-small cell lung cancer with MET exon 14 skipping mutations: A review of preclinical and clinical studies. Cancer Treat Rev. 2021;95:102173.

    Article  CAS  PubMed  Google Scholar 

  80. Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020;21(2):271–82.

    Article  CAS  PubMed  Google Scholar 

  81. Hong DS, DuBois SG, Kummar S, et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020;21(4):531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Drilon A, Oxnard G, Wirth L, et al. Registrational results of LIBRE’TTO-001: A phase 1/2 trial of LOX0- 292 in patients with RET fusion-positive lung cancers. J Thorac Oncol. 2019;14:S6-7.

    Article  Google Scholar 

  83. Planchard D, Smit EF, Groen HJM, et al. Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol. 2017;18(10):1307–16.

    Article  CAS  PubMed  Google Scholar 

  84. Camy F, Karpathiou G, Dumollard JM, et al. Brain metastasis PD-L1 and CD8 expression is dependent on primary tumor type and its PD-Ll and CD8 status. J Immunother Cancer. 2020;8(2):e000597.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Goldberg SB, Gettinger SN, Mahajan A, et al. Pembrolizumab for patients with melanoma or non-small cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016;17(7):976–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang M, Rodrigues AJ, Pollom EL, et al. Improved survival and disease control following pembrolizumab-induced immune-related adverse events in high PD-Ll expressing non-small cell lung cancer with brain metastases. J Neurooncol. 2021;152(1):125–34.

    Article  CAS  PubMed  Google Scholar 

  87. Metro G, Gili A, Signorelli D, et al. Upfront pembrolizumab as an effective treatment start in patients with PD-L1 > 50% non-oncogene addicted non-small cell lung cancer and asymptomatic brain metastases: an exploratory analysis. Clin Transl Oncol. 2021. https://doi.org/10.1007/s12094-021-02588-8.

  88. Frost N, Kollmeier J, Misch D, et al. Pembrolizumab as First-Line Palliative Therapy in PD-L1Overexpressing (> 50%) NSCLC: Real-world Results with Special Focus on PS > 2, Brain Metastases, and Steroids. Clin Lung Cancer. 2021;S1525–7304(21):00024–33.

    Google Scholar 

  89. Grossi F, Genova C, Crino L, et al. Real-life results from the overall population and key subgroups within the Italian cohort of nivolumab expanded access program in non-squamous non-small cell lung cancer. Rte J Canc. 2019;12(3):72–80.

    Google Scholar 

  90. Molinier C, Audigiervalette J, Cadranel I, et al. OA 17.05 IFCT- l 502 CLINIVO: real-life experience with nivolumab in 600 patients (pts) with advanced non-small cell lung cancer (NSCLC). J Thorac Oncol. 2017;12.

  91. Dudnik E, Yust-Katz S, Nechushtan H, et al. Intracranial response to nivolumab in NSCLC patients with untreated or progressing CNS metastases. Lung Canc. 2016;98:114–7.

    Article  Google Scholar 

  92. Watanabe H, Kubo T, Ninomiya T, et al. The effect of nivolumab treatment for central nervous system metastases in non-small cell lung cancer. J Clin Oncol. 2017;35:e20601–e20601.

    Article  Google Scholar 

  93. Geier M, Descourt R, Cone R, et al. MA08.10 real-life intracerebral efficacy of nivolumab in non-small cell lung cancer patients with brain metastases. J Thorac Oncol. 2018;13.

  94. Gauvain C, Vauldon E, Chouaid C, et al. Intracerebral efficacy and tolerance of nivolumab in non-small-cell lung cancer patients with brain metastases. Lung Cancer. 2018;116:62–6.

    Article  PubMed  Google Scholar 

  95. Borghaei H, Pluzanski A, Caro RB, et al. Abstract CT221: nivolumab (NIVO) + ipilimumab (IPI) as first-line (1L) treatment for patients with advanced non-small cell lung cancer (NSCLC) with brain metastases: results from CheckMate 227. Canc Res. 2020;80:CT221–CT221.

    Article  Google Scholar 

  96. Zhang G, Cheng R, Wang H, et al. Comparable outcomes of nivolumab in patients with advanced NSCLC presenting with or without brain metastases: a retrospective cohort study. Canc Immunol Immunother. 2020;69:399–405.

    Article  CAS  Google Scholar 

  97. • Reck M, Ciuleanu T, Dols MC, et al. Nivolumab (NIVO) + ipilimumab (IPI) + 2 cycles of platinum-doublet chemotherapy (chemo) vs 4 cycles chemo as first-line (1L) treatment (tx) for stage IV/recurrent non-small cell lung cancer (NSCLC): CheckMate 9LA. J Clin Oncol. 2020;38:9501–9501. The addition of conventional chemotherapy to anti-PD1 and anti-CTLA4 prolong the OS compared with chemotherapy alone.

    Article  Google Scholar 

  98. Gadgeel SM, Lukas RV, Goldschmidt J, et al. Atezolizumab in patients with advanced non-small cell lung cancer and history of asymptomatic, treated brain metastases: exploratory analyses of the phase III OAK study. Lung Canc. 2019;128:105–12.

    Article  Google Scholar 

  99. Rizvi NA, Cho BC, Reinmuth N, et al. Durvalumab with or without tremelimumab vs standard chemotherapy in first-line treatment of metastatic non-small cell lung cancer: the MYSTIC phase 3 randomized clinical trial. JAMA Oncol. 2020;6:661–74.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Barlesi F, Vansteenkiste J, Spigel D, et al. Avelumab versus docetaxel in patients with platinum-treated advanced non-small-cell lung cancer (JAVELIN Lung 200): an open-label, randomised, phase 3 study. Lancet Oncol. 2018;19:1468–79.

    Article  CAS  PubMed  Google Scholar 

  101. • Patel P, Alrifai D, McDonald F, et al. AstraZeneca UK Limited. Beyond chemoradiotherapy: improving treatment outcomes for patients with stage III unresectable non-small-cell lung cancer through immuno-oncology and durvalumab (Imfinzi®▼, AstraZeneca UK Limited), Br J Cancer. 2020;123(Suppl 1):18–27. The addition of the anti-PD-L1 durvalumab to traditional chemotherapy results in a reduced risk of development of BM compared with chemotherapy alone, suggesting a chemopreventive activity.

  102. • Leighl NB, Laurie SA, Goss GD, et al. CCTG BR.34: a randomized trial of durvalumab and tremelimumab +1-platinum-based chemotherapy in patients with metastatic (Stage IV) squamous or nonsquamous non-small cell lung cancer (NSCLC). J Clin Oncol. 2020;38:9502–9502. Some evidence of a synergic effect from the combination of anti-PD-L1 durvalumab with anti-CTLA4 tremelimumab in patients with BM.

    Article  Google Scholar 

  103. Chen L, Douglass J, Kleinberg L, et al. Concurrent Immune Checkpoint Inhibitors and Stereotactic Radiosurgery for Brain Metastases in Non-Small Cell Lung Cancer, Melanoma, and Renal Cell Carcinoma. Int J Radiat Oncol Biol Phys. 2018;100(4):916–25.

    Article  PubMed  Google Scholar 

  104. Singh C, Qian JM, Yu JB, et al. Local tumor response and survival outcomes after combined stereotactic radiosurgery and immunotherapy in non-small cell lung cancer with brain metastases. J Neurosurg. 2019;132:512–7.

    Article  PubMed  Google Scholar 

  105. Kotecha R, Kim JM, Miller JA, et al. The impact of sequencing PD-1/PD-L1 inhibitors and stereotactic radiosurgery for patients with brain metastasis. Neuro Oncol. 2019;21:1060–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Enright TL, Witt JS, Burr AR, et al. Combined Immunotherapy and Stereotactic Radiotherapy Improves Neurologic Outcomes in Patients with Non-small-cell Lung Cancer Brain Metastases. Clin Lung Cancer. 2021;22:110–9.

    Article  CAS  PubMed  Google Scholar 

  107. Schapira E, Hubbeling H, Yeap BY, et al. Improved overall survival and locoregional disease control with concurrent PD-1 pathway inhibitors and stereotactic radiosurgery for lung cancer patients with brain metastases, IM. J Radiat Oncol Biol Phys. 2018;101:624–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Pellerino MD, PhD.

Ethics declarations

Conflict of Interest

Alessia Pellerino declares that she has no conflict of interest.

Francesco Bruno declares that he has no conflict of interest.

Roberta Rudà declares that she has no conflict of interest.

Riccardo Soffietti declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellerino, A., Bruno, F., Rudà, R. et al. Systemic Therapy for Lung Cancer Brain Metastases. Curr. Treat. Options in Oncol. 22, 110 (2021). https://doi.org/10.1007/s11864-021-00911-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11864-021-00911-7

Keywords

Navigation