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Opinion statement

Heart failure (HF) is increasingly recognized as the major complication of chemotherapy
regimens. Despite the development of modern targeted therapies such as monoclonal anti-
bodies, doxorubicin (DOXO), one of the most cardiotoxic anticancer agents, still remains the
treatment of choice for several solid and hematological tumors. The insurgence of cardiotox-
icity represents the major limitation to the clinical use of this potent anticancer drug. At the
molecular level, cardiac side effects of DOXO have been associated to mitochondrial dysfunc-
tion, DNA damage, impairment of iron metabolism, apoptosis, and autophagy dysregulation.
On these bases, the antioxidant and iron chelator molecule, dexrazoxane, currently represents
the unique FDA-approved cardioprotectant for patients treated with anthracyclines.
A less explored area of research concerns the impact of DOXO on cardiac metabolism. Recent
metabolomic studies highlight the possibility that cardiac metabolic alterations may critically
contribute to the development of DOXO cardiotoxicity. Among these, the impairment of
oxidative phosphorylation and the persistent activation of glycolysis, which are commonly
observed in response to DOXO treatment, may undermine the ability of cardiomyocytes tomeet
the energy demand, eventually leading to energetic failure. Moreover, increasing evidence
links DOXO cardiotoxicity to imbalanced insulin signaling and to cardiac insulin resistance.
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Although anti-diabetic drugs, such as empagliflozin and metformin, have shown interesting
cardioprotective effects in vitro and in vivo in different models of heart failure, their
mechanism of action is unclear, and their use for the treatment of DOXO cardiotoxicity is still
unexplored.
This review article aims at summarizing current evidence of the metabolic derangements
induced by DOXO and at providing speculations on how key players of cardiac metabolism
could be pharmacologically targeted to prevent or cure DOXO cardiomyopathy.

Introduction

Doxorubicin (DOXO) is a highly effective chemothera-
peutic drug belonging to non-selective class I anthracy-
cline family [1], widely used for the treatment of several
cancers, such as solid tumors, acute leukemia, lympho-
mas, and breast cancer [2, 3]. However, its clinical use is
hampered by its cumulative and irreversible cardiotox-
icity, which leads tomyocardial dysfunctionmanifesting
as aberrant arrhythmias, ventricular dysfunction, and
congestive heart failure, even years after chemotherapy
cessation [4–6].

As the number of cancer survivors is steadily increas-
ing, the long-term side effects of DOXO administration
are becoming ever more apparent [7]. Despite the expo-
nential growth of the field of cardio-oncology in the last
decade, the molecular mechanisms underlying DOXO-
induced cardiotoxicity have not been fully elucidated yet
[8]. The finding that antioxidants fail to prevent DOXO-
induced cardiotoxicity has challenged the classical view
according to which oxidative stress is the main determi-
nant of the cardiac side effects of DOXO, suggesting the
involvement of additionalmechanisms [8, 9]. Among the
theories that have been proposed are mitochondrial dys-
function [10], DNAdamage [11], defects in iron handling
[10], apoptosis [12], and dysregulation of autophagy
[13–15].

Although the exact mechanism of DOXO cardiotoxic-
ity remains to be defined, mitochondrial damage and
accumulation of dysfunctional mitochondria have been
shown as key hallmarks of DOXO-induced cardiotoxic
effects [13]. Mitochondria constitute around 50% of the
cardiomyocyte volume and are vitally important for energy
generation. As DOXO accumulates in the inner mitochon-
drial membrane by binding cardiolipin, this perturbs mi-
tochondrial protein function and uncouples mitochondri-
al respiratory chain complexes, eventually impairing ATP

production [16]. Moreover, the ATP deficiency linked to
DOXO cardiotoxicity has been directly correlated to alter-
ations of mitochondrial energy metabolism and
bioenergetics.

The myocardium can fulfill the elevated metabolic
requests thanks to an incredible metabolic flexibility
according to which ATP can be generated starting from
a variety of energy substrates such as glucose, fatty acids,
and ketone bodies. Of note, build-up of each of these
carbon sources is associated with increased rates of car-
diovascular diseases [17], and, in general, metabolic
dysregulations play a critical role in the pathophysiology
of heart failure (HF) [18, 19].

The association between metabolic dysregulation
and cardiotoxicity has been demonstrated with different
cancer therapies, such as copanlisib in relapsed follicular
lymphoma [20], nilotinib in chronic myelogenous leu-
kemia [21, 22], and androgen deprivation (AD) in pros-
tate cancer [17], which were found associated to glucose
dysregulation and hyperglycemia, or increased choles-
terol level. Multiple studies have shown that AD therapy
consistently increase insulin resistance, total cholesterol,
and the rate of incident diabetes mellitus leading to
increased risk of myocardial infarction and sudden car-
diac death [23, 24]. However, less is known about the
cardiac metabolic dysregulations involved in DOXO
cardiotoxicity. Important clues come from a recent clin-
ical study conducted in breast cancer patients treated
with anthracyclines [25•], where a metabolite profiling
approach has been used to define the early metabolic
changes associated with the development of cardiotox-
icity. Patients who developed cardiotoxicity display
changes in citric acid and aconitic acid, along with an
increased level of purine and pyrimidine metabolites in
the plasma, that may be related to the systemic DNA
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damage induced by chemotherapy [25]. Of note, the
identification of early metabolic changes as well as the
measurement of circulating metabolites in the plasma
could provide insight into the mechanisms associated
with the development of DOXO cardiotoxicity.

In further support of the importance of exploring
metabolic changes linked to DOXO treatment, there is
growing evidence that drugs approved for the treatment
of metabolic diseases, such as diabetes, could protect
against anthracycline cardiotoxicity. Among them, two
anti-diabetic agents, metformin (MET) and empagliflo-
zin (EMPA), have shown promising results since, along
with their glucose-lowering effects, they protect against
the development of cardiometabolic diseases as well as
DOXO-related cardiotoxicity [26, 27]. Moreover,

empagliflozin, a SGLT2 inhibitor, exhibits protective
effects in DOXO-induced HF in mice without diabetes
[27•]. Taken together, these findings suggest that an
improved understanding of the mechanisms underlying
the regulation of cardiac metabolism in response to
DOXO treatment may lead to the identification of novel
pharmacological targets as well as the development of
new strategies to prevent the cardiotoxic effects of
DOXO in cancer patients.

Here, we focus on the description of the molecular
processes governing cardiac metabolism whose deregu-
lation has been linked to DOXO cardiotoxicity. More-
over, we discuss how the identification of key players of
cardiac metabolism may be instrumental to improve
and refine current therapeutic strategies.

DOXO cardiotoxicity and iron metabolism

Impairment of cellular ironmetabolism has been suggested as a main source of
reactive oxygen species (ROS) in DOXO-induced cardiotoxicity, a theory re-
ferred to as “ROS and iron hypothesis” [28, 29]. It has been demonstrated that
inside the cell DOXO is reduced to a cytotoxic semiquinone radical (SQ) that is
rapidly converted back to the original molecule usingO2 as an electron acceptor
[30, 31]. This process leads to superoxide formation that is detoxicated inH2O2,
either spontaneously or by superoxide dismutase activity (Fig.1). The cellular
pool of chelatable and redox-active iron, defined as labile iron pool (LIP),
strongly reacts with H2O2, generating ROS through Fenton reaction. Further-
more, LIP can directly interact with DOXO, creating DOXO-Fe complexes that
drive ROS production [32, 33]. In support of this evidence, it is reported that
DOXO interferes with mechanisms involved in cellular iron homeostasis. First,
DOXO modulates the mRNA maturation of transferrin receptor and ferritin,
through irreversible inactivation of the RNA-binding activity of iron regulatory
proteins 1 and 2 (IRP-1 and 2) (Fig. 1) [34, 35]. Moreover, DOXO disrupts the
cellular localization of iron, increasing iron/ferritin binding in the cytosol [36]
and reducing its release from cellular storages, such as mitochondria (Fig. 1)
[35]. In agreement, a mouse model of hereditary hemochromatosis (HH), in
which the lack of theHfe gene drives an aberrant iron accumulation in the heart
and other organs, is characterized by increased iron accumulation into mito-
chondria and high susceptibility to DOXO cardiotoxicity. Thus, in response to
DOXO treatment, the cytosolic iron concentration is maintained at physiolog-
ical levels through reduced mobilization of cellular storages and ferritin turn-
over, but its accumulation within mitochondria compromises mitochondrial
iron metabolism [10]. Ichikawa et al. demonstrated, both in vitro and in vivo,
that overexpression of the mitochondrial transporter ABCB8 facilitates the
efflux of iron frommitochondria, reduces ROS production, and protects against
DOXO-induced cardiotoxicity [10]. Iron accumulation into mitochondria has
been linked to ferroptosis, a recently described form of iron-dependent cell
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death, which is morphologically, biochemically, and genetically distinct from
apoptosis, necrosis, and autophagy. Ferroptosis is featured by mitochondria
iron accumulation and lipid peroxidation [37] and has been previously associ-
ated with other pathologies, such as cancer [38], stroke [39], and ischemia/
reperfusion injuries [40]. Fang and colleagues revealed for the first time the role
of ferroptosis in DOXO-induced cardiomyopathy. Mice defective for canonical
activators of necroptosis or apoptosis or both, Ripk3 −/−, Mlkl −/−, or Fadd
−/−Mlkl −/− respectively, showed typical hallmarks of ferroptosis in cardiomyo-
cytes after DOXO administration. This study demonstrates that ferroptosis is
triggered by heme oxygenase-1-mediated heme degradation through an Nrf2-
dependentmechanism that drastically induces iron overload intomitochondria
and ferroptosis activation [41].

Fig. 1. Metabolic changes induced by DOXO in cardiomyocytes. DOXO interferes with Fe2+ metabolism, leading to activation of
ferroptosis through ROS production, disruption of IRP-1 activity, and iron accumulation into mitochondria. These events are
hallmarks of mitochondrial dysfunction that leads to a block of fatty acid oxidation (FAO) and an increase in glycolysis, as a
consequence of AMPK inhibition. Acetyl-CoA carboxylase (ACC), a direct downstream target inhibited by AMPK, is overactivated and
catalyzes the formation of Malonyl-CoA, blocking FAO irreversibly. At the plasma membrane, DOXO promotes glucose uptake via
GLUT4 through insulin-mediated activation of AMPK and AKT2. In addition, DOXO increases the expression of GLUT1, an insulin-
independent glucose transporter, normally absent in the adult heart. Following the insulin desensitization induced by tumor-
secreted factors, AKT1 signaling is disrupted and promotes FOXO1 nuclear translocation, inducing the activation of the apoptotic
pathway through the expression of pro-apoptotic members of the Bcl-2 family. Finally, DOXO cardiotoxicity has been linked to
autophagy dysregulation. DOXO inhibits autophagy by activating mTOR or by blocking AMPK, resulting in accumulation of
undegraded autophagosomes and mitochondrial dysfunction with increased production of ROS. This figure was created with
BioRender.com.
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Strategies to reduce iron accumulation into mitochondria in response to
DOXO, using, for example, iron chelators, have been explored. Dexrazoxane is
the unique molecule approved by FDA for the treatment of DOXO cardiotox-
icity, for its dual activity as inhibitor of topoisomerase 2β (Top-2β) [42] and
iron chelator [41]. By limiting mitochondria iron accumulation in cardiomyo-
cytes [41•], dexrazoxane prevents the activation of apoptotic and ferroptotic
pathways. Nevertheless, several side effects have been linked to the use of
dexrazoxane, including the development of secondary malignancies, myelo-
suppression [43], and reduction of DOXO antitumoral efficacy as a conse-
quence of the inhibition of the topoisomerase 2 isoform expressed in cancer
cells, Top-2α [44, 45]. Nowadays, some of dexrazoxane-associated side effects
have been retracted [46, 47], and further studies elucidate that the cardiopro-
tective effect of dexrazoxane is mainly linked to its inhibition of Top-2β than its
iron-chelating property [48].

On the other hand, specific iron chelators, such as deferiprone [10], deferox-
amine [49], and deferasirox [50], failed to counteract DOXO-mediated cardio-
toxicity, probably due to their limited lipophilic properties and accessibility to
iron mitochondrial storage [51]. Instead, a mild protection against DOXO
toxicity has been documented with the small lipophilic iron chelator pyridoxal
isonicotinoyl hydrazone and its analogue [52]. Interestingly, the ferroptosis
inhibitor ferrostatin-1 has been proved to reduce iron-mediated lipid peroxida-
tion [53, 54]. Mice treated with ferrostatin-1 are protected against DOXO-
induced cardiotoxicity, suggesting the use of this molecule as a valid alternative
to dexrazoxane [41]. Overall, this evidence suggests that specific iron chelator
molecules fail to show a significant cardioprotective effect, likely because of
their inability to reach iron storage into mitochondria. In this scenario, the
inhibition of ferroptosis may represent a new promising approach to target one
of the multiple mechanisms driving DOXO cardiotoxicity.

Cardiac metabolic changes triggered by DOXO: a focus on fatty
acid oxidation and glycolysis

Cardiac metabolism is a highly sophisticated mechanism that in physiological
conditions uses fatty acids (FAs) as a major source for catabolic reactions while
switching to glycolysis in response to several pathological insults [18]. Despite
the glycolytic switch that represents an early compensatory event, persistent
glucose usage eventually turnsmaladaptive and leads to energetic failure, where
glycolysis and impaired mitochondrial function do not allow cardiomyocytes
to meet the cellular energy demand [55]. Studies with animal models have
shown that cardiac insulin resistance and metabolic modifications, such as
reducedmitochondrial oxidation of glucose, lactate, and fatty acids, are putative
early markers of heart stress [56]. In agreement, the inhibition of glucose uptake
consequent to insulin signaling desensitization has been identified as one of the
prevalent risk factors for HF, and disruption of physiological cardiac metabo-
lism adaptation has been associated with worse prognosis [57]. Despite these
observations, the use of insulin-sensitizing agents failed to show improvements
in patients and, on the contrary, has been associated with potential risk of
cardiac side effects [58]. In line with this evidence, Taegtmeyer and co-workers
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have proposed insulin resistance as a physiological adaptation to non-ischemic
heart damage, protecting cardiomyocytes from substrate overload in dysregu-
lated metabolic states [59]. Impairment of insulin signaling has been reported
to reduce glucose uptake and activate fatty acid oxidation in an AMPK-
dependent manner [60].

Similarly, cardiotoxic chemotherapeutic drugs have been shown to impair
intracellular mechanisms controlling cardiac metabolism [61•]. Specifically,
DOXO induces the systemic insulin resistance typical of type II diabetes, with
augmented serum triglyceride and blood glucose levels [62, 63], and, at the
same time, triggers massive cardiac glucose uptake [64, 65]. Furthermore,
DOXO has been demonstrated to affect gene expression involved in aerobic
fatty acid oxidation and anaerobic glycolysis (Fig. 1) [66].

A central role in this process is exerted by AMPK, themaster sensor of cellular
energy status, that acts as a “fuel gauge” [67]. AMPK triggers long-term catabolic
pathways that generate ATP, including fatty acid oxidation and glycolysis, while
downregulating processes that are dispensable for short-term cell survival, such
as the biosynthetic metabolism that rapidly consumes the ATP pool [68].
DOXO-mediated disruption of AMPK drives metabolic disarrangements and
cellular substrate overload [69]. Experimental evidence shows that DOXO-
induced AMPK inhibition increases glucose uptake after 2 weeks of treatment
[70], probably due to concomitant expression of GLUT1 [71], an insulin-
independent glucose transporter normally absent in the adult heart. Further-
more, Malonyl-CoA overproduction by acetyl coenzyme A carboxylase (ACC),
an enzyme directly inhibited by AMPK [72], irreversibly blocks FAO and
increases lipid synthesis and accumulation (Fig. 1) [73]. In agreement,
cardiomyocyte-specific overexpression of adipose triglyceride lipase limits FA
accumulation and shows a beneficial effect on cardiac function after DOXO
treatment [74].

Additionally, in response to cellular stress, AMPK inhibits the activity of
enzymes that reduce and consume ATP, such as creatine kinase [75]. DOXO
impairs the high-energy phosphate pool through direct inhibition of AMPK
[72] and creatine kinase (CK) system [76], reducing the phosphocreatine-to-
creatine (PCr/Cr), PCr-to-ATP (PCr/ATP), and ATP-to-ADP (ATP/ADP) ratios
[77]. In line with these observations, the recovery of AMPK activity exerts
beneficial effect on mitochondria, reducing oxidative stress and preserving
mitochondrial energy production [78].

The pivotal role of the AMPK pathway in the cardiac metabolic rearrange-
ments induced by DOXO has been recently confirmed in cardiomyocytes
derived from human-induced pluripotent stem cells (hi-PSCs), which have
been established as a powerful model for drug toxicity screening on cells
isolated from cancer patients under chemotherapy regimen [79••]. In these
cells, impairment of gene modulating cardiac metabolism is one of the main
effects of chemotherapeutic agents, including DOXO [80]. The use of specific
AMPK-inducing agents was proven effective in counteracting the bioenergetic
failure linked to the use of trastuzumab [80] and might be a new strategy to
counteract the development of cardiotoxicity during chemotherapy regimens.
Among these AMPK-restoring agents ismetformin, a hypoglycemic drug used to
treat patients with type 2 diabetes, which is known to trigger the AMPK pathway
in insulin-sensitive organs, such as the heart [81]. Notably, several studies have
reported the cardioprotective effects of metformin against DOXO-induced
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toxicity [26, 82, 83]. Furthermore, metformin also displays an AMPK-
dependent antitumoral activity [84], which makes this molecule a new prom-
ising agent to treat patients that suffer both HF and cancer.

Importantly, cancer and cardiovascular diseases are known to share several
risk factors, including aging, smoking, overweight, and physical inactivity, but
whether these two disease conditions are directly linked is still to be defined
[48, 85]. In this context, metabolic diseases have emerged as a common risk
factor for both cancer and heart failure [86–89]. Moreover, a clinical study has
reported that patients with comorbidities, such as diabetes, dyslipidemia, and
obesity, exhibit higher incidence of DOXO-related cardiotoxicity [9]. All these
indications suggest that metabolic diseases affect the clinical outcome of
patients subjected to DOXO treatment. In this context, insulin signaling plays
a fundamental role, in modulating both heart metabolism and cancer growth,
with AMPK being one of the main regulators.

In the following paragraph, we will describe how advanced cancer itself
dramatically interferes with the cardiac insulin pathway further exacerbating
drug-induced toxicity.

Insulin resistance at the crossroad of tumor growth and DOXO
cardiotoxicity

Metabolic diseases, such as obesity and diabetes, significantly increase the
incidence of HF in patients, where insulin resistance is a common risk factor.
Insulin desensitization occurring in this state drastically reduces the important
effects of insulin on cardiac tissue. Insulin receptor is widely expressed on the
surface of many cell types, including cardiomyocytes, where upon ligand bind-
ing and insulin receptor substrates (IRS) 1 and 2 are recruited. IRS1 more than
IRS2 is fundamental for regulation of the PI3K/Akt pathway and the MAP
kinase cascade, such as ERK, both involved in the control of metabolism and
cell survival [90]. Three members of the AKT family are known, AKT1, AKT2,
and AKT3, but how these isoforms differentially contribute to cardiac cell
function is not completely clear. It has been established that AKT1 is required
for cardiomyocyte survival, while AKT2 is essential for the modulation of genes
involved in cardiac metabolism. Indeed, AKT2 promotes glucose uptake
through the mobilization and fusion of GLUT4-containing vesicles to the
plasma membrane (Fig. 1) [90]. Despite the role of AKT during cardiac
stress condition is still debated, it is reported that short-term AKT
activation may exert cardioprotective effects, enhancing glycolysis and
reducing oxidative phosphorylation. Controversially, chronic and long-
term activity of AKT1 in the adult heart is associated with high risk of
cardiac complications and reduced mitochondrial functions. Following
insulin stimulation, AKT1 phosphorylates and blocks FOXO1 nuclear
translocation, inhibiting the expression of pro-apoptotic proteins belong-
ing to the Bcl-2 family (Fig. 1) [91]. FOXO1 has emerged as one of the
key players in chronic metabolic diseases, promoting hyperglycemia and
glucose intolerance [92]. In physiological conditions, pro-survival stimuli
was induced by insulin repress FOXO1 activity through PI3K/AKT1
pathway. Following stress stimuli, FOXO1 translocates in the nucleus
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and induces a negative feedback on insulin pathway through a JNK-
dependent mechanism that drastically reduces IRS-1 activity (Fig.1) [93].

Although the imbalance of insulin signaling has been extensively studied in
several models of obesity and type 2 diabetes, only a few studies have addressed
its role in DOXO-induced cardiotoxicity, and the underlying molecular mech-
anisms are still poorly understood. Recent studies demonstrate that aberrant
FOXO1 activity is responsible of DOXO-induced cardiotoxicity and its specific
pharmacological targeting has been shown to ameliorate the cardiac outcome
[94, 95].

In addition to chemotherapy, the tumor itself can negatively affect cardiac
insulin signaling. Interestingly, Thackeray et al. have reported that advanced
cancer contributes to the impairment of cardiac insulin signaling through
secretion of insulin-degrading enzymes, massive glucose adsorption, and re-
duced production of pancreatic insulin. In this scenario, other cancer-mediated
mechanisms, such as promotion of proteolysis by ubiquitin-proteasome and
autophagy-related lysosomal pathways, mitochondrial dysfunction, impair-
ment of catabolism and anabolism reactions, and release of the proinflamma-
tory cytokines such as IL-6 and TNF-α [96, 97], further contribute to increasing
the risk of heart failure development [91]. In agreement with the well-
established pro-survival role of insulin-stimulated AKT1 pathway in cardio-
myocytes, administration of low-dose insulin rescues cardiac function in
tumor-bearing mice by restoring AKT signaling and autophagy inhibition in
cardiomyocytes, without affecting cancer glucose uptake [98••]. Furthermore,
expression of a constitutively active form of AKT1 by adenoviral vector prevents
heart damage and protects mice from DOXO-induced cardiotoxicity [99],
suggesting that the lack of insulin-mediated AKT1 activation during cancer
progression could aggravate the cardiotoxicity induced by DOXO. In agree-
ment, previous report shows that insulin depletion is associated with increased
accumulation of DOXO into the heart and reduced cardiac function [100].

In addition to defective insulin signaling, the massive glucose uptake by the
tumor can deprive cardiac cells of a pivotal energetic source during stress
conditions [98]. Particularly, as described by Warburg in 1920, malignant cells
based their energy production on the use of glycolysis and generate lactate. This
metabolic adaptation, called “Warburg effect”, confers the ability to cancer cells
to survive in several stress conditions, including anaerobic environment of solid
tumor inner mass. In this scenario, the use of 2-deoxyglucose (2-DG), a glucose
analogue which blocks glycolysis, represent an interesting therapeutic strategy
to treat cancer. 2-DG is phosphorylated to 2-DG-6-P inside the cell by hexoki-
nase and cannot be further metabolized. It is thought that 2-DG-6-P competes
with glucose utilization into glycolysis and drastically reduces energy produc-
tion of cancer cells. Moreover, despite that 2-fluorodeoxy-D-glucose is a more
potent glycolysis inhibitor, themain effect of 2-DG is the inhibition of N-linked
glycosylation process, causing its high structural similarity to Mannose. The
block of oligosaccharide formation required for the assembling of structural
lipids andmaturation of glycoproteins has been observed to induce tumor cells’
death even in aerobic condition [101, 102]). Moreover, further studies were
conducted to investigate the combining of 2-DG with others antineoplastic
agents. In vivo evidence established that 2-DG co-treatment with adriamycin or
paclitaxel increased their antitumoral efficacy against osteosarcoma and non-
small cell lung cancers [103]. Previous work showed that caloric restriction
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treatment based on the administration of 2-DG prevents DOXO-mediated
cardiotoxicity through several mechanisms, including activation of AMPK-
dependent mechanism [104].

Of note, the targeted therapy with a 2-DG-based adriamycin complex
showed promising results, by specifically targeting tumor growth and, at the
same time, limiting the organ toxicity of anthracyclines in vivo [105]. Overall,
these findings suggest that the tumor itself negatively impacts on cardiac func-
tion through secreted factors that act in an endocrine manner and identify
dysregulation of the cardiac insulin pathway as a major mechanism whereby
the tumor negatively affects cardiac cell survival (Fig. 1).

Autophagy at the crossroad of metabolism and cell survival in
DOXO cardiotoxicity

Autophagy is a highly conserved process which is aimed to maintain cell and
tissue homeostasis, promoting the elimination of damaged and long-lived
organelles and misfolded proteins under both physiological and pathological
conditions [106, 13]. Importantly, autophagy plays an essential role in the
regulation of cellular metabolism, both in normal conditions and in the setting
of energy depletion, since it has been involved in the regulation and mobiliza-
tion of energy stores, such as lipids and glycogen [107]. Accumulating evidence
indicates that the cardiac side effects of DOXO may be closely related to a
dysregulation of autophagy signaling and an imbalance in cellular metabolism,
leading to intracellular Ca2+ accumulation, energy depletion, andmitochondri-
al dysfunction [108]. However, there is still controversy on whether DOXO
inhibits or activates autophagy and whether autophagy activation has a bene-
ficial or maladaptive role in this process [14].

Several studies have revealed that DOXO interferes with the initiation of the
autophagic process by modulating the two main regulatory pathways [109],
AMPK and mammalian target of rapamycin (mTOR). AMPK and mTOR pro-
mote and inhibit autophagy, respectively, by finely regulating the activity of the
autophagy activating kinase Ulk-1 (Fig. 1). AMPK is the main metabolic sensor
of the cell and is sensitive to changes in AMP:ATP ratio that is indicative of the
cellular energy state. In low energy state, activation of AMPK relieves mTOR-
inhibition of ULK1, leading to induction of autophagy [110]. Conversely, in the
presence of high levels of energy substrates, AMPK activity is antagonized by
mTOR which inhibits autophagy [111].

It has been shown that cardiac AMPK is inhibited in response to DOXO [72,
112]. Although the exact mechanism of such regulation remains elusive, r-
activation of AMPK has been proposed as a therapeutic strategy to counteract
DOXO-induced HF, and the cardioprotective effects of this approach have been
linked to reactivation of autophagy [113]. Importantly, promoting a negative
energy balance before DOXO treatment, i.e., via starvation or exercise, restores
AMPK signaling and autophagy and ultimately reduces DOXO-induced cardi-
otoxicity [114]. For instance, dietary restriction in rats treated with DOXO
modulates the ATP:AMP ratio inducing AMPK activation, increasing fatty acid
oxidation rates and ATP levels, and ultimately leads to improved cardiac
function [115]. In addition, AMPK activation, and the ensuing reduction in
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apoptosis and increase in autophagy, was further achieved in DOX-treated rat
neonatal cardiomyocytes with the caloric restriction mimetic 2-deoxyglucose
[104].

Mitochondrial dysfunction at the interplay of autophagy and metabolism
The exact link between autophagy andmetabolism regulation in the pathogenic
sequelae of DOXO cardiomyopathy is still to be defined. However, the prevail-
ing view is that DOXO-induced mitochondrial dysfunction and the ensuing
production of reactive oxygen species stand at the crossroad of these two cellular
processes. As a consequence of its accumulation within mitochondria, DOXO
uncouples mitochondrial respiratory chain complexes, eventually impairing
ATP production [16]. In keeping with this model, cardiomyocytes exposed to
DOXO exhibit low levels of ATP associated with dysregulation of autophagy
[116]. Thus, DOXO cardiotoxicity directly contributes to ATP deficiency, alter-
ing mitochondrial energy metabolism and bioenergetics [117], even though it
is still debated whether ATP deficiency is the trigger or the result of autophagy
deregulation.

Compelling evidence reveals that mitochondrial autophagy or mitophagy is
defective in models of DOXO-induced cardiotoxicity [118]. DOXO disrupts
cardiac mitochondrial autophagy by inhibiting lysosomal biogenesis and fu-
sion with autophagosomes, thus preventing proper digestion of damaged
mitochondria engulfed by autophagosomes [119, 120]. Recently, a compre-
hensive study by Abdullah et al. showed a direct association between autophagy
dysregulation and defects in mitochondrial respiration in the development of
DOXO-associated cardiomyopathy [118••]. In this study, both in vivo and
in vitro analyses showed that DOXO cardiotoxicity results in a gradual accu-
mulation of autophagosomes (Fig. 1); DOXO-induced autophagosome accu-
mulation, in turn, results in altered expression of proteins involved in the
regulation of mitochondrial dynamics and oxidative phosphorylation
(OXPHOS and PDH proteins) and in mitochondrial respiratory dysfunction
[118••]. Mitochondria isolated from both DOXO-treated hearts and intact
neonatal cardiomyocytes exposed to DOXO show decreased oxygen consump-
tion rate, indicating a suppression ofmitochondrial bioenergetics [118••]. Such
mitochondrial dysfunction could result from defects inmitochondrial substrate
uptake or in the activity of the entire TCA cycle, causing cardiomyocyte death by
ATP deprivation.

In agreement, another study reports that DOXO-treated cardiomyo-
cytes exhibit decreased levels of ATP which, in turn, activate autophagy
[121]. This study demonstrates that DOXO induces the production of 4-
hydroxynonenal (4-HNE), a product of lipid peroxidation which is toxic
to the heart and that mediates autophagy activation through lipid
peroxidation-derived aldehydes [121]. On the other hand, DOXO
reduces the expression of the mitochondrial aldehyde dehydrogenase
(ALDH2) [122], which has been shown to mediate cardioprotective
effects by reducing the production of 4-HNE and ROS [123, 124].
ALDH2 controls 4-HNE-induced autophagy via the regulation of
AMPK-Akt-mTOR-signaling pathway. The ALDH2 activator Alda-1 was
shown to prevent DOXO effects in neonatal cardiomyocytes, such as
downregulation of Akt phosphorylation and upregulation of autophagy
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proteins like Beclin-1, Atg5, and LC3-II [121]. In further support of a
link between ALDH2 and autophagy regulation in response to DOXO,
the autophagy inducer rapamycin could abolish the protective action of
Alda-1 against DOXO-induced cardiomyocyte dysfunction, whereas the
autophagy inhibitor 3-MA reduced DOXO cardiotoxicity [121]. A similar
study by Ge et al. demonstrated that ALDH2 knock-in mice treated with
DOXO had better cardiac function compared to DOXO-treated wild-type
mice [125]. Taken together, these results suggest that promoting ALDH2
expression and inhibition of 4-HNE-induced autophagy may be a plau-
sible approach to reduce DOXO-induced cardiac dysfunction.

Another possible link between mitochondrial metabolism dysfunction
and autophagy dysregulation in DOXO-induced cardiotoxicity could be
represented by intracellular calcium signaling [126, 127]. Decuypere
et al. reported intracellular Ca2+ as one of the regulators of autophagy
[128]. In healthy conditions, intracellular Ca2+ signaling suppresses
autophagy, while under stress conditions and low energy production
Ca2+ signaling is enhanced and stimulates autophagy. It has been
reported that DOXO perturbs the expression of Ca2+-handling proteins
and alters Ca2+ homeostasis, causing mitochondrial dysfunction and
apoptosis in the myocardium [126]. By disrupting Ca2+ handling,
DOXO dysregulates autophagy in human cardiac progenitor cells
(hCPCs), which are important regulators of myocardial homeostasis
[127]. In hCPCs, the cytotoxic effects of DOXO induce abnormal cyto-
solic Ca2+ accumulation which, in turn, disrupts mTOR-mediated regu-
lation of autophagy. Additionally, DOXO reduces the expression of the
autophagosome marker LC3 and of an anti-senescence marker, SMP30,
leading to reduced autophagosome formation and cellular viability,
respectively [127]. Accordingly, autophagy activation with the mTOR
inhibitor rapamycin rescues DOXO cardiotoxicity in hCPCs, with a
significant reduction in DOXO-mediated cytosolic Ca2+ accumulation
and restored autophagosome formation as well as SMP30 expression
[127].

Rapamycin has been also shown to alleviate the autophagic interruption
mediated by insulin-like growth factor II receptor α (IGF-IIRα) in DOXO-
treated H9c2 cells [129]. IGF-IIRα is a novel stress-inducible contributor to
cardiac damage which has been linked to DOXO-induced oxidative stress and
autophagy alteration [129]. Interestingly, IGF-IIRα overexpression in combina-
tion with DOXO treatment increases LC3 expression and perturbs autophago-
somal formation, impairing autophagy both in vitro in H9c2 cells and in vivo
in transgenic rat models [129].

Overall, these findings suggest that DOXO-mediated dysregulation of
autophagy drives mitochondrial dysfunction via different cytosolic and mito-
chondrial signaling axes and that restoring autophagy may be a valuable
therapeutic approach to target DOXO toxicity.

Metabolic agents as potential strategies to restore autophagy in DOXO cardiotoxicity
Currently, there are no specific treatments for DOXO cardiotoxicity, and
cancer patients experiencing cardiac issues are primarily treated with
standard heart failure medications, such as renin angiotensin system
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blockers and beta blockers. As discussed above, reactivation of AMPK
has been proposed as a therapeutic option to treat heart failure associ-
ated with different metabolic diseases. Intriguingly, the anti-diabetic
drug and AMPK activator, metformin, has been shown to improve
cardiac function in a diabetic OVE26 mouse model by increasing
autophagy activity [130]. Consistent with these findings, Zilinyi and
co-workers reported that co-administration of DOXO and metformin
increases autophagic activity and confers cardioprotection in a rat model
[26]. This study shows that metformin restores LC3 levels and induces
AMPK autophagy initiation, leading to improved cardiac function and
reduced DOXO cardiotoxicity [26].

Recently, new hypoglycemic drugs like SGLT2 inhibitors have been
shown to restore DOXO-mediated dysregulation of autophagy and to
improve cardiac function [131, 132•]. Among these, empagliflozin
(EMPA) has showed important cardioprotective effects in both diabetic
and non-diabetic in vivo models undergoing DOXO treatment [27].
Previous work with diabetic animal models treated with EMPA has led
to the hypothesis that EMPA prevents heart failure by improving ATP
generation and thereby enhancing cardiac efficiency [132•, 133]. Con-
sistently, Zucker diabetic fatty rats treated with EMPA show enhanced
cardiac autophagy via increased AMPK activation [132•]. Moreover,
EMPA enhances the cardiac energy pool by increasing cardiac energy
production from glucose and fatty acid oxidation, whereas it reduces
the cardiac content of sphingolipids and glycerophospholipids, major
factors contributing to insulin resistance-induced HF [132•]. Although
the effects of EMPA in DOXO-induced cardiotoxicity are still under
evaluation, preliminary results have shown improved cardiac function
in mice treated with EMPA [27]. Of note, EMPA showed a protective
effect against DOXO in H9C2 cells and in DOXO-treated mice [27].
From a mechanistic perspective, EMPA has been shown to increase
blood ketone levels, as beta hydroxybutyrate (βOHB) which, in turn,
improves cell viability and restores mitochondrial dysfunction, ulti-
mately reducing ROS generation and increasing intracellular ATP levels
in cardiomyocytes [27].

In conclusion, these observations unravel the possibility of repurposing
metabolic drugs to restore autophagy and mitochondrial metabolism to treat
or prevent DOXO cardiotoxicity.

The emerging role of gut microbiota-derived metabolites in
DOXO cardiotoxicity

Gut microbiota has been shown to be implicated in several cardiovas-
cular and metabolic diseases, such as atherosclerosis [134], dyslipidemia
[135], hypertension [136], chronic kidney disease [137], obesity [138],
type I [139] and type II [140] diabetes mellitus, as well as HF [141]. The
novel emerging approach of metagenomic has permitted to identify new
species of bacteria colonizing human gut that were not able to be
cultured in vitro [142] and allowed to compare the gut microbiota
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composition in patients with HF [141]. It is now well accepted that
microbiota-derived metabolites from dietary metabolism influence the
pathogenesis of cardiometabolic disorders [143]. These molecules are
secreted, degraded, or modified by different metabolic pathways active
in intestinal bacteria and can directly or indirectly affect the organism,
demonstrating how the gut microbiome can be considered a new and
independent endocrine organ in the host [144]. Among the most impor-
tant metabolites produced by gut microbiota, short chain fatty acids including
acetate, propionate, and butyrate have shown an interesting effect on cardiac
function in animal models [145]. The cardioprotective effects of butyrate are
primarily linked to its epigenetic action since it functions as a potent HDAC
inhibitor, and HDAC inhibitors are known to protect the heart from maladap-
tive hypertrophy and ischemic injuries [146–149]. Furthermore, many studies
conducted by Raphaeli and colleagues have elucidated the dual activity of
butyrate and its prodrugs which, on the one hand, synergize the antitumoral
activity of DOXO in cancer models and, on the other hand, protect the cardi-
omyocytes against DOXO-induced cardiotoxicity [150–152]. Recently, it has
been demonstrated for the first time that in vivo oral administration of FBA, a
novel synthetic derivative of butyrate, is able to protect the heart from DOXO-
induced cardiotoxicity, preventingmitochondrial dysfunction [153•]. Thus, the
use of GUT-microbiota-derived metabolite as nutraceutical may represent a
new promising therapeutic approach for DOXO cardiotoxicity.

Conclusion and future perspectives

The impact of major anticancer treatments on cardiac metabolism has long
been ignored and only recently has started to be investigated. The emerging
view is that cardiac metabolic alterations may be used not only as early
markers of iatrogenic cardiac injury but also as targets for pharmacological
interventions aimed at restraining the late-onset and chronic cardiotoxicity
associated to the use of anthracyclines. In this scenario, repurposing meta-
bolic drugs for the treatment of cardiotoxicity represents an intriguing ap-
proach. The new anti-diabetic drug empagliflozin has proven effective in
reducing glucose blood levels and, at the same time, rescuing heart function.
However, despite these promising cues, the molecular mechanisms behind
the cardioprotective effects of empagliflozin are still mysterious since the
putative molecular target of the drug, the sodium-glucose co-transporter-2, is
not expressed in cardiomyocytes. Other molecules employed for the treat-
ment of metabolic disorder, such as rosiglitazone, exhibited controversial
clinical results [58], thus highlighting the need of further work to clarify
these inconsistencies. On the other hand, compelling evidence is available in
support of the use of metformin, especially given its dual ability to modu-
late cardiac metabolism on the one side and to induce cancer cell death in
an AMPK-dependent manner on the other side. In perspective, the identifi-
cation of new and previously undescribed players specifically involved in the
metabolic adaptations induced by anthracyclines will pave the way towards
the design of new therapeutics that may prevent cardiotoxicity without
affecting the antineoplastic proprieties of the drug.
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