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Abstract  
Recent literature underlines the increasing use of online platforms in learning undergraduate mathematics, where students 
refer to these as supplementary resources to develop their mathematical understanding. Through an intrinsic case study, 
we focus on a highly viewed YouTube learning resource for learning derivative. The selected case is from 3Blue1Brown, a 
YouTube channel whose founder has received an award from the American Mathematical Society. The video has garnered 
more than 3.3 million views in the past couple of years. Reflecting on the relevant literature, a realization tree for derivative 
is developed and then used as an analytical tool to analyze this resource to explore what realizations have been used in it to 
facilitate students’ understanding of derivative. The findings indicate that the analyzed YouTube resource discusses various 
realizations of derivative, including all its five main realizations, and effectively utilizes new digital technology for discuss-
ing these realizations. Such an exceptional resource for learning mathematics leads us to suggest that mathematics lecturers 
raise their awareness about such online free resources and incorporate them into their teaching packages when appropriate 
to facilitate student learning.
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1 Introduction

Representations play a significant role in learning mathemat-
ics, such as helping students make sense of mathematical 
objects and tasks, communicating mathematical thinking to 
oneself and others, analyzing mathematical problems, and 
it is indeed instrumental in solving mathematical modelling 
tasks (Haghjoo et al., 2023). Duval (2018) also notes the 
importance of representations in learning mathematics: “The 
power of mathematical thinking is due to the use of het-
erogeneous registers of producing a wide range of semiotic 
representations: numerical systems, algebraic expressions, 
graphs, words, statements, geometrical shapes, diagrams, 
tables” (p. 724). Effective mathematics teaching is also char-
acterized by a strong focus on using and connecting different 
mathematical representations (National Council of Teachers 
of Mathematics [NCTM], 2014).

YouTube is one of the online resources many undergradu-
ate students use to seek help when learning mathematics (e.g., 
Aguilar & Esparza Puga, 2020; Esparza Puga & Aguilar, 2023). 
Its utility has been reported for several purposes, such as devel-
oping a better understanding of the mathematical concepts dis-
cussed in the lectures (Aguilar & Esparza Puga, 2020). There-
fore, investigating what opportunities YouTube resources could 
provide for teaching and learning mathematics is important to 
explore their possible integration into teaching and learning 
mathematics to address students’ academic needs and prefer-
ences (Esparza Puga & Aguilar, 2023).

Some YouTube learning resources happen to be 
extremely popular nowadays, much more than others, and 
there is a need to better understand how the content crea-
tor of these extremely popular videos convey mathematics. 
In this study, through an intrinsic case study, we focus on 
analyzing a YouTube resource for learning derivatives, with 
a particular emphasis on utilizing multiple representations. 
The derivative is chosen as it is a central topic in calculus 
with a wide range of applications in many disciplines, such 
as economics and biology. It is also included in service cal-
culus courses offered to STEM (Science, Technology, Engi-
neering and Mathematics) major students. We consider the 
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following research question to explore the potential learning 
opportunities of YouTube resources for teaching and learn-
ing derivative:

What learning opportunities are available in YouTube 
resources for the derivative, specifically when aiming 
to enhance students’ comprehension of various repre-
sentations (realizations) of the derivative?

This research adds to the existing literature on mathemat-
ics education in several ways. Firstly, there has not been 
extensive research on analyzing online video resources for 
learning calculus. Secondly, to address the research ques-
tion, we use an analytical framework from the commognition 
theory (Sfard, 2008) called the realization tree (RT) (see 
Section 2). The RT has been used in past research for differ-
ent purposes, such as analyzing calculus textbooks (Haghjoo 
et al., 2023). However, this tool has not been used to analyze 
online learning resources, including YouTube videos. Con-
sequently, this study potentially promotes its use in math-
ematics education research. Thirdly, the RT developed for 
the derivative could also be used to analyze other learning 
resources, such as textbooks and face-to-face teaching. It can 
be also used to design tasks and activities for teaching and 
learning derivative.

2  Commognition and the realization tree

Researchers adopting a commognitive perspective take a 
discursive approach to the teaching and learning of math-
ematics, emphasizing the key role of communication in 
all human activities, including teaching and learning. This 
stands in contrast to a more traditional cognitive approach 
characterized by viewing communication “as a mere win-
dow to something else – mental schemes, conceptions, inner 
representations” (Sfard, 2017, p. 41). In this context, math-
ematical thinking could be defined as communicating with 
oneself or others in a specific way, known as mathematical 
(Sfard, 2017). In the following, we begin by outlining how 
mathematics is perceived from a commognitive perspec-
tive. Then, rituals and explorations, along with their roles in 
learning mathematics, are discussed as the two main routines 
of mathematical discourse. We continue this section by dis-
cussing the deritualization process and the teacher’s role in 
such a process. Afterwards, we turn our attention to realiza-
tions and their importance in learning mathematics, followed 
by a discussion of the realization tree and its significance in 
the teaching and learning of mathematics.

From a commognitive perspective, mathematics is a “his-
torically established discourse” (Sfard, 2020, p. 95) with 
four distinctive interrelated characteristics. It has unique 
keywords (e.g., derivative), visual mediators (e.g.,dy

dx
 ), rou-

tines, i.e., actions that are regularly used in the discourse 

(e.g., finding the derivative of a polynomial function), and 
endorsed narratives (e.g., the Rolle’s theorem) (Sfard, 
2008). Rituals and explorations are two main discursive 
routines introduced in the commognition theory. Rituals are 
process-oriented routines (Lavie et al., 2019); the goal is to 
perform a specific task and the motivation is often social and 
the discursant concerns with “how do I proceed? or how can 
I enact a specific procedure?” (Nachlieli & Tabach, 2019, p. 
255). On the other hand, explorations are product-oriented 
routines, where the goal is “constructing and endorsing a 
new narrative about mathematical objects” (Lavie et al., 
2019, p. 166). Here, a person who “learns exploratively” 
concerns with questions like “what do I want to achieve?” 
(Nachlieli & Tabach, 2019, p. 255). For example, a ritual is 
finding derivative of a function by following a given pro-
cedure without thinking of what the result represents. On 
the other hand, an exploration focusses on constructing a 
new narrative, e.g., for n ∈ ℝ , the derivative of f (x) = xn is 
f �(x) = nxn−1 , and endorsing it—determining whether it is 
true or not.

Mathematical routines to be beneficial “must evolve into 
full-fledged explorations” (Sfard, 2008, p. 167); nonethe-
less, earlier studies indicated that transitioning from ritual 
to exploration is a gradual and slow process, and many stu-
dents do not make this transition in school (Sfard, 2017). 
Deritualization is the term used in commognition theory 
for such a transition, and several properties are highlighted 
for this process (e.g., objectification (See Lavie et al., 2019; 
Sfard, 2008)). As an example, objectification refer to the 
situation where learners do not need to rely on their past 
relevant experience with concrete objects when facing a task 
situation. They are able to tell a narrative on mathematical 
objects by utilizing some of the procedures related to the 
properties of the mathematical objects in question (Lavie 
et al., 2019).

Sfard (2017) pointed out that mathematics teachers can 
support the deritualization process by “demonstrating the 
type of explorative discourse they would like their stu-
dents to develop” and “explicitly encourage the desired 
kind discourse by appropriate pedagogical moves” (p. 
44). Among other things, teachers can focus on objectifi-
cation: “Unlike ritualized discourse, which is mainly 
– and sometimes exclusively – about unobjectified signi-
fiers, explorative discourse aims at stories about abstract 
mathematical objects (p. 45). In more detail, in ritualized 
discourse, the focus is on manipulating mathematical sig-
nifiers and performing actions on symbols such as solving 
and transposing (Sfard, 2017). For example, when teach-
ing derivative, a ritual discourse could be when the 
teacher emphasizes techniques and procedures, i.e., rou-
tines for calculating derivative, including finding the 
derivative using the definition. This might involve focus-
ing on finding f (x + h) by substituting x + h into f (x ) and 
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using the technique students learn in the limits topic to 
solve the following limit lim

h→0

f (x+h)−f (x)

h
 . In explorative dis-

course, on the other hand, the focus would be understand-
ing what the derivative is, with less emphasis on its com-
putational aspect, as can be seen in the case chosen for 
this study.

Realization is a term introduced in the commogni-
tion theory instead of representation to emphasize that 
mathematical objects are the product of human discourse 
(Sfard, 2008). They are discursive constructs that emerge 
for the sake of communication about the world we live in, 
not as entities perceived to exist independently of humans 
(Sfard, 2017). Furthermore, Sfard (2008) proposed a vis-
ual mediator called the realization tree which is a con-
nected graph that shows different realizations of a given 
signifier (e.g., a mathematical object) with the realiza-
tions of these realizations and so forth. From a semiotic 
perspective, “a mathematical object can be defined as a 
mathematical signifier together with its realization tree” 
and a signifier could have many different realizations 
(Sfard, 2017, p. 43). Focusing on different realizations 
of a mathematical object is important as saming differ-
ent realizations of a mathematical object is an important 
step towards objectification (Wallach et al., 2022). Sfard 
(2017) highlighted further that the primary goal of learn-
ing mathematics in school should be to assist students 
in establishing connections between various realizations 
of mathematical objects. However, she acknowledged the 
inherent complexity and challenges involved in this pro-
cess. She noted that this aspect of learning mathematics is 
both challenging and often overlooked in research: “This 
is probably the most challenging, and at the same time, 
the least obvious and rarely studied aspect of learning 
mathematics” (p. 43). Also, past commognitive research 
pointed out the importance of discussing different reali-
zations of mathematical objects in teaching to facilitate 
explorative participation in mathematical discourse (e.g., 
Weingarden & Heyd-Metzuyanim, 2023). Constructing 
thorough RTs for mathematical objects that are well 
grounded in the relevant literature could help mathemat-
ics educators and practitioners critically evaluate how to 
enhance teaching and learning mathematics by focusing 
on different realizations of the mathematical object in 
question in teaching and learning situations (Haghjoo 
et al., 2023).

In the next section, we discuss the relevant literature on 
teaching and learning derivative, as it was instrumental 
in refining the existing realization tree for  the derivative 
(i.e., Haghjoo et al., 2023). Additionally, this literature 
could be useful for readers to gain a better understand-
ing of why certain approaches have been utilized in the 
selected YouTube learning resource.

3  The teaching and learning of derivative

The derivative is one of the core topics of calculus in 
addition to its role in other subjects, such as chemistry 
and physics (Radmehr et al., 2023; Roundy et al., 2015). 
The teaching and learning of the derivative have garnered 
notable attention from mathematics education research-
ers (Haghjoo et al., 2023; Park, 2013, 2015; Thompson, 
1994; Zandieh, 2000). In the following, we discuss perti-
nent literature related to challenges reported in relation to 
learning derivative, followed by proposed approaches for 
teaching this mathematical object.

3.1  Challenges with learning derivative

Previous literature (Biza, 2021; Orton, 1983; Kertil et al., 
2023; Ryberg, 2018; Thompson, 1994; Zandieh & Knapp, 
2006) has reported a number of challenges with learning 
the four out of the five main realizations of derivative. 
While there has been little to no investigation of students’ 
understanding of the physical realization, more focus has 
been placed on the graphical, symbolic, and verbal realiza-
tions of the derivative. Below, we summarize the student 
challenges reported in the previous studies by connecting 
them to these four main realizations:

• understanding the distinction between average rate 
of change over an interval and instantaneous rate of a 
change at a point (i.e., related to verbal realizations),

• transition from secants to the notion of tangent(s) (i.e., 
related to graphical realizations),

• finding the average rate of change at a certain point 
(i.e., related to numerical realizations),

• lack of algebraic fluency, limit, and using and interpret-
ing the related visual mediators (e.g., dy

dx
 ), (i.e., related 

to symbolic realizations).

We note that the challenges regarding symbolic realiza-
tions could be due to the complexity of the definition, and 
different visual mediators of derivative (Biza, 2021; Thomp-
son, 1994), as a result, students could have different level of 
participation in mathematical discourse about derivative. For 
instance, Zandieh and Knapp (2006) underlined that students 
have challenges in realizing derivative as a limit of rate of 
change. Furthermore, Park (2013) reported that many stu-
dents did not realize derivative “at a point as a number and 
derivative function as a function” (p. 624). And it is not easy 
to connect and move between realizing derivative at the limit 
and the function levels (Park, 2015).

Another major challenge reported in previous studies 
is graphical realizations, particularly linking the graphs 
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of a given function with its derivative and tangent lines 
(García-García & Dolores-Flores, 2021; Ryberg, 2018). 
For example, Ryberg (2018) reported that students could 
face challenges in realizing the differences between the 
graph of a function and its derivative graph. Furthermore, 
discerning/linking the slope of the graph and its derivative 
function’s graph is challenging for many students.

From the point of moving between symbolic and graphi-
cal realizations, García-García and Dolores-Flores (2021) 
noted that when transitioning from the graph of the given 
function f (x) to its derivative function f �(x) , many students 
often resort to searching for a symbolic realization of f (x) 
to calculate its derivative, rather than exploring the provided 
graphical realizations. This is due to students are proficient 
in the routines for finding derivatives using symbolic realiza-
tions (Orton, 1983).

3.2  Teaching derivative and the role of realizations

In reviewing the literature, we notice that there is a par-
ticular interest in the use of different realizations for teach-
ing derivative (Hong & Lee, 2022; Ryberg, 2018). Second, 
researchers underlined the careful use of symbolic realiza-
tions and transitioning to graphical realizations (Park, 2015, 
2016). In other words, accordingly, there seems to be a need 
for the coordination and synergy among the use of graphical 
and symbolic realizations to create a link between different 
aspects of derivative; as a function, as a number at a point 
or as limit of the rate of the change (de Almeida & da Silva, 
2018; Park, 2015, 2016; Ryberg, 2018). In addition, Ryberg 
(2018) suggested incorporating a diverse range of graphical 
realizations in the initial start of teaching derivative. Using 
the formal definition of derivative with a particular reference 
to the rate of change and its different graphical realizations 
is the main tool for having an explorative participation in 
mathematical discourse about derivative (Zengin, 2018). 
Therefore, student knowledge about limits and the limiting 
process, particularly in the context of the rate of change, is 
considered as a core element for having an explorative par-
ticipation in this discourse (Hähkiöniemi, 2006). In the fol-
lowing, we discuss a few studies that investigate the teaching 
of derivative.

Park (2015) explored three instructors’ classroom dis-
course on derivative. Instructors started from secants to the 
tangent line of a curve at a certain point to show the sym-
bolic realizations of derivative, but without exploring the 
dialectics between the symbolic and graphical realizations. 
Later, instructors moved back and forth between the limit 
and the function levels to facilitate student participation in 
the discourse about derivative. In terms of teaching deriva-
tive graphs, Hong and Lee (2022) focused on the instruc-
tors’ preferences. Instructors referred to different realiza-
tions, however, this was up to the instructors’ personal 

orientations, resources, and the limited knowledge of the 
audience. As noted by Hong and Lee (2022), this led to a 
conflict and critically influenced instructors to rely on and 
gave a particular emphasis on graphical realizations in the 
classroom. Overall, in both studies, instructors referred to 
a number of different but interrelated realizations (Park, 
2015), a common belief is that without providing multiple 
realizations, students’ knowledge and participation in the 
discourse will be limited (Hong & Lee, 2022).

Regarding instructors’ personal orientations and the 
available resources, as addressed by Hong and Lee (2022), 
textbooks could play a particular role that affect instruc-
tors’ participation in discourse in classrooms and poten-
tially influences student learning of derivative (Haghjoo 
et al., 2023). de Almeida and da Silva (2018) focused on 
semiotic systems regarding the notion of derivative in a 
textbook. They concluded that the textbook includes a 
variety of visual mediators and realizations (e.g., iconic, 
indexical, or symbolic), and learning derivative is a recur-
sive process mediated by these visual mediators and reali-
zations, with teachers playing a significant role in helping 
students navigate between them. Park (2016) also dis-
cussed the role of visual mediators and realizations fur-
ther by noting that the use of similar notations as visual 
mediators for derivative at a point and derivative as a func-
tion could lead to epistemological obstacles. Overall, it 
appears that calculus instructors need to go beyond what is 
typically offered in calculus textbooks. There is a need to 
think critically about how different realizations of deriva-
tive should be discussed and brought forth in teaching. 
Haghjoo et al.’s (2023) study supports this claim. After 
analysing 14 calculus textbooks on derivative at a point, 
they noted that none of the analyzed textbooks included 
all five main realizations of derivative.

Recently, Radmehr et al. (2023), inspired by Haghjoo 
et al.’s RT (2023), designed a teaching activity in the con-
text of chemistry for learning derivative. They suggested 
starting with physical realizations, providing the neces-
sary data to engage students in the numerical realizations 
as also suggested by others (e.g., Diaz Eaton et al., 2019; 
Roundy et al., 2015) to teach mathematics “as a labora-
tory discipline” (Diaz Eaton et al., 2019, p. 807). This 
approach, among other benefits, could help students feel 
“more agency to readily engage with the conversation on 
models and modeling” (Diaz Eaton et al., 2019, p. 807). 
Radmehr et al. (2023) proposed that graphical, symbolic, 
and verbal realizations could then be the focus of teaching. 
They also pointed out among several calculus textbooks 
(e.g., Hass et al., 2018), the physical realizations were not 
emphasized when introducing derivative. For instance, in 
Hass et al. (2018), derivative is first introduced through 
graphical and symbolic realizations.
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4  Methodology

The present study is an intrinsic case study. This qualitative 
approach is characterized by selecting a unique case that 
needs to be described and detailed (Creswell & Poth, 2018). 
We selected a highly viewed YouTube resource for learning 
derivatives from a YouTube channel named 3Blue1Brown. 
As of February 19, 2024, when we were doing the final revi-
sions on this paper, it has 5.92 million subscribers, and its 
content has been viewed more than 468 million times. This 
channel is developed by Grant Sanderson, a Stanford gradu-
ate who received an award from the American Mathematical 
Society (AMS) for his contribution to teaching and learn-
ing of mathematics. The AMS (2022) acknowledged the 
channel as a “watchable and engaging YouTube channel … 
about discovery and creativity in mathematics … Through 
3Blue1Brown videos and animations, Sanderson presents 
mathematics both as practically valuable and as an art form, 
rich with inviting stories and arresting images”. The chosen 
YouTube video is part of a series of videos on calculus titled 
the essence of calculus.1This series comprises 12 learning 
resources, and the selected YouTube video, titled, the para-
dox of the derivative, is the second video in this series. It has 
garnered 3.3 million views and can be accessed at https:// 
youtu. be/ 9vKqV kMQHKk? si= 3rgpj TfEL5 wDgT82. It is 
the most viewed YouTube learning resource on derivatives 
in English within the duration of up to 20 min, specifically 
focusing on teaching derivative. There is one YouTube video 
with more views in English (i.e., 3.5 million views) that is 
over six hours long, but its nature differs. In that video, the 
content creator solves 100 derivative tasks using derivative 
rules and some with the definition of the derivative, but the 

focus of the video is not on explaining what the derivative is. 
Furthermore, the YouTube channel is less popular compared 
to 3Blue1Brown, with only 1.24 million subscribers, and its 
content has only been viewed over 11 million times.

4.1  Data analysis

We first developed the RT as discussed below in Section 4.2. 
While revising our RT, we watched several videos on deriva-
tive including this case, multiple times. Afterward, the video 
file was deductively analyzed using the refined RT. The first 
author conducted the initial analysis, and the second author 
reviewed his work. We then discussed areas of disagreement, 
which lead to the results discussed below. The video was 
viewed at least 10 times by each author to ensure that all 
realizations are addressed in the results section, including 
both what Grant says verbally and what appears on screen.

4.2  Different realizations of the derivative

The derivative is closely related to function and limit, as 
well as the notion of rate of change (Weigand, 2014). There 
are also two main ideas associated with this mathematical 
object: The derivative at a point (local aspect) and the deriv-
ative as a function (global aspect) (de Almeida & da Silva, 
2018). The learning of the derivative is a recursive process, 
and visual mediators play a key role in such a process (de 
Almeida & da Silva, 2018). Weigand (2014) elaborated 
further to have explorative participation in the discourse 
about derivative, “it is necessary— besides understanding 
limit processes—to have adequate conceptions of the rate of 
change and to understand—in relation to limit processes—
the transformation from the average rate of change to the 
local rate of change” (p. 604). Five main realizations have 
been identified in the literature for the derivative: numerical, 1 https:// youtu. be/ WUvTy aaNkzM? si= XROwS XBqOW NvnDWb

Fig. 1  Different physical realizations of derivative

https://youtu.be/9vKqVkMQHKk?si=3rgpjTfEL5wDgT82
https://youtu.be/9vKqVkMQHKk?si=3rgpjTfEL5wDgT82
https://youtu.be/WUvTyaaNkzM?si=XROwSXBqOWNvnDWb
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symbolic, graphical, verbal, and physical. These realizations 
are discussed at ratio, limit, and function levels (Roundy 
et al., 2015; Zandieh, 2000). Haghjoo et al. (2023) unpacked 
these five main realizations in an RT with 17 roots that dis-
cusses the derivative mainly in the ratio and limit levels. 
Reflecting on the literature and our teaching and research 
experience we developed an RT for the derivative with 35 
roots that discuss the derivative at the ratio, limit, and func-
tion levels as described in the following. In the RT that we 
developed, the ellipses/nodes are not considered mathemati-
cal objects, which is why they have not been counted as 
roots in our RT. These nodes are used to cluster the realiza-
tions. Such an approach has not been used by Sfard (2008) 

Fig. 2  Different numerical realizations of derivative
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Fig. 4  A graphical realization of f (x) = x2 and how to realize df  to 
derive the derivative function
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Fig. 5  Different symbolic realizations of derivative

Fig. 6  Different verbal realizations of derivative
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Fig. 7  A full realization tree for derivative
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or others who use RT in their research (e.g., Weingarden & 
Heyd-Metzuyanim, 2023), but we found it useful to utilize 
here for the derivative considering its versatile realizations. 
In all figures, we utilized the following labeling approach. 
The first letter denotes the main type of realization (e.g., P 
for physical), and the second letter indicates the level (e.g., 
R for Ratio). If there are multiple realizations at that level, a 
brief term is also provided for readability. This allows read-
ers to navigate the results section without needing to refer 
back to these figures constantly.

4.2.1  Physical realizations

This realization of derivative is related to the measure-
ment process prior to approximating derivative using 
numerical approaches (see Fig. 1) (Roundy et al., 2015). 
Here at the ratio level, it is important that students real-
ize what the dependent and independent variables are 
and measure the dependent variable in at least two val-
ues of the independent variable. At the limit level, it is 
important that students realize that the values of the inde-
pendent variable should be chosen wisely. That is, the 
values should be close enough so that “this ratio to ‘be’ 
the derivative in the thick sense used by physicists and 
engineers” (Roundy et al., 2015, p. 923), meaning not too 
close to each other so that the measurement instrument 
can identify the difference in the dependent variable (if 
it exists) based on its sensitivity (Haghjoo et al., 2023). 
At the function level, it is related to realizing the influ-
ence of the independent variable on the values of the 
dependent variable and realizing the need for conducting 
repeated measurements to approximate the derivative of 
a function representing a phenomenon (Roundy et al., 
2015).

4.2.2  Numerical realizations

This realization is closely related to physical realizations and 
expressed as y2−y1

x
2
−x

1

 where the values in this expression are 
realized to be numerical values (see Fig. 2) obtained from 
measuring dependent and independent variables (Roundy 
et al., 2015). This realization also could be used when the 
values of a function are given, typically in a table, instead of 
providing a graphical or symbolic realization of the function. 
At the ratio level, there are not many restrictions on the cho-
sen values of the independent variables as discussed above, 
but at the limit level, Δx is very small but does not approach 
zero as in the formal definition. In other words, in this reali-
zation, the derivative has some “thickness” as opposed to the 
formal definition that requires an infinitesimal limit (Roundy 
et al., 2015, p. 923). At the function level, it is “a sequence 
of numerical ratios of difference” (Roundy et al., 2015, p. 

923) that is used to estimate the derivative over the domain 
that is defined. These differences could be calculated by 
approaching x

0
 from both the left and the hand sides of the 

point (i.e., f �(x
0
) ≈

f (x0+h)−f (x0)
h

 and f �(x
0
) ≈

f (x0)−f (x0−h)
h

 ) 
(Haghjoo et al., 2023). Furthermore, to have a better approx-
imation, the average of these could be considered for the 
numerical approximation of the derivative (i.e., 
f �(x

0
) ≈

f (x0+h)−f (x0−h)
2h

) as suggested by Hughes-Hallet et al. 
(2017, see p. 102).

4.2.3  Graphical realizations

The slope is the graphical realization of derivative (see 
Fig. 3) (Roundy et al., 2015; Zandieh, 2000). At the ratio 
level, it is the slope of a secant line joining two points on the 
graph of a function (Roundy et al., 2015). It could also be 
realized as the slope of a line segment that its endpoints are 
on the graph of a function. This slope could be calculated 
by considering one of the endpoints on the left or the right 
side of the point in the question or by considering the aver-
age slope of these two situations (Haghjoo et al., 2023). At 
the limit level, the graphical realization is the slope of the 
tangent line at the given/chosen point on the curve (Roundy 
et al., 2015). At the function level, the graphical realization 
of derivative is realizing that the slope of the tangent line 
could be different for different values of the independent 
variable (Roundy et al., 2015). tan� , where � is the angle 
between the secant line/line segment and the positive direc-
tion of the x-axis is also another realization of derivative 
at the ratio level. At the limit level, � becomes the angle 
between the tangent line and the positive direction of the x
-axis. Finally at the function level, this realization is about 
tan� could be different depending on the angle between the 
tangent line and the positive direction of the x-axis across 
the domain of the function. Another graphical realization of 
derivative is that when zooming in the graph of a function 
at a point, if it is differentiable at that point, it looks like a 
straight line, regardless of the shape of the actual function 
(Haghjoo et al., 2023). This is typically done with the assis-
tance of technology such as GeoGebra. The two final graphi-
cal realizations we consider are at the function level. The 
first is about realizing the relationship between the graph of 
f  and f ′ , for instance on the intervals where f  is decreasing, 
the graph of f ′ is below the x-axis. The second is about con-
sidering a graphical realization of the given function (e.g., 
imagining f (x) = x2 as the area of a square with a side length 
of x (Fig. 4) and exploring the difference between values of 
f (x) and f (x + dx) graphically when dx approaches zero to 
calculate derivative of the given function. This realization is 
well discussed in a YouTube video on derivative.2

2 https:// youtu. be/ S0_ qX4VJ hMQ? si= sI0Ms UohAAf_ DubQ

https://youtu.be/S0_qX4VJhMQ?si=sI0MsUohAAf_DubQ
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4.2.4  Symbolic realizations

At the ratio level, the symbolic realization of derivative 
could be shown by a difference quotient (DQ), such as 
f (x+h)−f (x)

h
 , f (x+Δx)−f (x)

Δx
 , and f (x)−f (x0)

x−x
0

 where x
0
 and x ∈ Df  and 

h or Δx represents a small increment from x(see Fig. 5) 
(Roundy et al., 2015; Zandieh, 2000). At the limit level, the 
symbolic realization of the derivative is the formal definition 
of the derivative as the limit of DQ that could be expressed 
by f �(x

0
) = lim

x→x
0

f (x)−f (x0)
x−x

0

 ,  f �(x
0
) = lim

h→0

f (x0+h)−f (x0)
h

 ,  and 

f �(x
0
) = lim

Δx→0

f (x0+Δx)−f (x0)
Δx

 (Roundy et al., 2015; Zandieh, 
2000). At the function level, one needs to realize that the 
limiting routine must be repeated for all values in the domain 
of the derivative function (Zandieh, 2000). Zandieh (2000) 
highlighted this by choosing different visual mediators when 
expressing the symbolic realization of derivative at the func-
tion level, changing x

0
 to x (i.e., f �(x) = lim

h→0

f (x+h)−f (x)

h
 ). The 

symbolic realization of derivative at the function level could 
also be expressed by f �(x) = lim

Δx→0

f (x+Δx)−f (x)

Δx
 (Roundy et al., 

2015) and f �(x) = lim
z→x

f (z)−f (x)

z−x
 (Hass et al., 2018). Leibniz’s 

notation could be also considered as another set of symbolic 
realizations of the derivative (See for example, Hughes-
Hallet et al., 2017). At the ratio level, it could be realized as 
Δy

Δx
 , and at the limit and the function levels could be realized 

as dy
dx
(x

0
) = f �(x

0
) and dy

dx
(x) = f �(x) , respectively.

4.2.5  Verbal realizations

For derivative at the ratio level, the known formal verbal reali-
zation is the average rate of change and at the limit level is the 
instantaneous rate of change (see Fig. 6) (Roundy et al., 2015; 
Zandieh, 2000). Within less formal verbal realizations that could 
be considered for the derivative, we only include the best con-
stant approximation for rate of change around a point at the limit 
level as discussed in the results section. At the function level, it is 
related to realizing that the instantaneous rate of change should 
be considered for all inputs over the derivative function domain 
(Roundy et al., 2015). Moreover, the average and instantaneous 
rate of change have numerous applications in the real world. 
Recently, Haghjoo et al. (2023) identified 26 different verbal 
realizations of the derivative over eight subjects by exploring 
several calculus textbooks, such as reaction rate in chemistry or 
growth rate in biology. However, verbal realizations of the deriva-
tive in other disciplines are not the focus of this RT (Fig. 7).

5  Results

The goal of this learning resource is set as (a) explaining 
what derivative is and (b) discussing possible misunder-
standings that students might have when learning this topic: 

“there’s some subtlety to this topic, and a lot of potential for 
paradoxes, if you’re not careful, … the secondary goal is 
you have an appreciation for what those paradoxes are and 
how to avoid them”. In analyzing the case, overall, we have 
identified 18 (Fig. 8a and b) out of the 35 roots we identified 
earlier. In the following, we discuss the main highlights of 
the video, including how some of these realizations have 
been addressed in more detail.

5.1  Introduction to the paradox of ‘instantaneous 
rate of change’

Grant discusses the paradox with V. L. Instantaneous in many 
instances. The first one appears very early in the video (Fig. 9):

It’s common for people to say that the derivative meas-
ures “instantaneous rate of change” … that phrase is 
actually an oxymoron: Change is something that hap-
pens between separate points in time, and when you 
blind yourself to all but just a single instant, there is 
not really any room for change …

He utilizes a contextual example to address this paradox: 
a car that travels from point A to B, covering a distance 
of 100 m over a 10 s interval while experiencing varying 
speeds. He illustrates this motion by plotting the distance 
travelled on a vertical axis and representing time on a hori-
zontal axis. Grant then introduces the distance function 
and explains how the graph can be interpreted, particularly 
emphasizing how the slope of the distance function reflects 
the car’s velocity (G. R. Secant) (Fig. 10).

5.2  The relationship between the graph of f  and f′  

Afterwards, he focuses on the relationship between the graph 
of f  and f ′ (G.F. f  and f ′ ) by adding the graph of the car’s 
velocity in m

s
 as a function of time on the screen3 and dis-

cusses what this graph means:

At early times, the velocity is very small. Up to the 
middle of the journey, the car builds up to some maxi-
mum velocity, covering a relatively large distance in 
each second [Figure 11]. Then it slows back down 
towards the speed of zero.

Grant then continues by highlighting that these two 
graphs are “definitely related to each other” and that chang-
ing the distance function, impacts the corresponding velocity 
function. He illustrates this by showing the graphs of several 
distance functions and their corresponding velocity func-
tions (e.g., Fig. 12).

3 The two graphs do not share the same y-axis; however, there is no 
comment about this matter in the video.
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a

b

Fig. 8  a The realizations used in the case. b The realizations used in the case with time distribution
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5.3  Associating the paradox with numerical 
realizations

Later in the video, Grant brings up the paradox he dis-
cussed earlier and points to P. R.:

… velocity at a single moment makes no sense. If I 
show you a picture of a car, a snapshot in an instant, 
and ask you how fast it’s going, you’d have no way of 
telling me. What you need are two separate points in 
time to compare …

On the screen (Fig. 13), he continues by addressing N. 
R. Right and then defining velocity as “the distance traveled 
per unit time”.

Afterwards, he returns back to the argument about the 
paradox by pointing that:

how is it that we’re looking at a function for velocity 
that only takes in a single value of t, a single snap-
shot in time. It’s weird, isn’t it? We want to associate 
individual point in time with a velocity, but actually 
computing velocity requires comparing two separate 
points in time [P. R. while revisiting G. F. f  and f ′ on 
the screen] …

Grant continues the discussion by first talking about the 
real-world example and then moves to the mathematical 
world. He starts by discussing in simple terms how cars’ 
speedometers might approximate velocity (N. L. Right). 

Fig. 9  A screenshot when Grant introduces the paradox of a ver-
bal realization of the derivative (0:46)  (Permission for all screen-
shots granted by the copyright holder, Grant Sanderson.)

Fig. 10  A screenshot when Grant introduces the distance function 
and the slope of the function at each second (2:14)

Fig. 11  A screenshot when Grant discusses the car’s velocity function 
(2:37)

Fig. 12  A screenshot when Grant illustrates how distance and veloc-
ity functions are related (2:57)

Fig. 13  A screenshot when Grant addresses N. R. Right (3:45)
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Grant highlights that “a physical car just sidesteps the para-
dox and does not actually compute speed at a single point 
in time. It computes speed during a very small amounts of 
time… [such] as 0.01 s”.

5.4  Integrating digital technologies to discuss 
different realizations

Grant utilizes digital technology effectively across this learn-
ing resource to address different realizations of the deriva-
tive. The following episode could be one of the many good 
examples. Here Grant zooms in on the graph of a function 
(G. L. Zooming) (Fig. 14) and again focuses on G. R. Secant 
discussing what could be considered as ds and dt on the 
graph of a distance function. He elaborates:

That dt is a small step to the right, since time is on the 
horizontal axis, and that ds is the resulting change in 
the height of the graph, since the vertical axis repre-
sents the distance traveled. So ds

dt
 is something you can 

think of as the rise-over-run slope between two very 
close points on this graph.

Then the box starts moving on the graph of function 
while still on the bigger box in the right top corner of the 
screen, viewers could see how the slope changes as a result 
(G. F. Tangent). Simultaneously, he addresses V. F. and S. 
F. Leibniz:

… There’s nothing special about the value t = 3, we 
could apply this to any other point in time, so we can 
consider this expression ds

dt
 to be a function of t, some-

thing where I can give you a time t, and you can give 
me back the value of this ratio at that time; the velocity 
as a function of time.

He draws the corresponding velocity function (G. F. 
f  and f ′ ). Afterwards, Grant addresses P. R. and P. F. 
(Fig. 15), following by one of its numerical realizations with 

pointing out how he programmed the computer to draw the 
velocity function (N. F.):

when I had the computer draw … the velocity function 
… first, I chose a small value for dt, I think in this case 
it was 0.01 [P. R.]. Then, I had the computer look at 
whole bunch of times t between 0 and 10 [P. F.], and 
compute the distance function s at t + dt, and then sub-
tract of the value of that function at t. In other words, 
that’s the difference in the distance traveled between 
the given time t, and the time 0.01 s after that. Then 
you can just divide that difference by the change in 
time, dt, and that gives you the velocity in meters per 
second around each point in time [N. F.] [on the screen 
viewers can see v(t) as ds

dt
(t) =

s(t+dt)−s(t)

dt
 (the right hand 

side is added later and addresses S. R. DQ-Δx)].

Grant continues by presenting several distance functions 
and their corresponding velocity functions on the screen to 
help viewers better realize their associations (G. F. f  and f ′).

5.5  The formal definition of the derivative

Grant while revisiting G. R. Secant, S. L. Leibniz, and G. F. f  
and f ′ begins to discuss the formal definition of the derivative 
by highlighting that “in pure math, the derivative is not this 
ratio ds

dt
(t) =

s(t+dt)−s(t)

dt
 [S. F. Leibniz and S. R. DQ-Δx ] for spe-

cific choice of dt [P. R.]. Instead, it is whatever that ratio 
approaches as your choice for dt approaches 0 [on the screen, 
dt takes closer values to zero starting from 0.1 (i.e., 
ds

dt
(t) =

s(t+0.1)−s(t)

0.1
 ) to 0.0000001 (i.e., ds

dt
(t) =

s(t+0.0000001)−s(t)

0.0000001

)]” [N. L. Right]. His formal definition of the derivative is 

“ ds
dt
(t) =

s(t + dt) − s(t)

dt
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

dt → 0

 ” without using the visual mediator 

lim . In terms of our realization tree, it could be count as both 
addressing S. F. Leibniz and S. F. DQ-Δx . Grant in this video 
probably intentionally does not refer to limit, and also even does 
not use the lim visual mediator when presenting the symbolic 

Fig. 14  A screenshot when Grant illustrates ds
dt

 on the graph of a dis-
tance function after zooming in on a point (6:01) Fig. 15  A screenshot when Grant addresses P. F. and N. F. (6:35)
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realization of derivative. This could be because he wants to 
make the video more inclusive, especially for viewers with 
varying levels of participation in the discourse on limits.

Grant then moves back to the visual realizations of the deriva-
tive starting from G. R. Secant and then discusses what this ratio 
means graphically when dt approaches zero (G. L. Tangent).

He emphasizes further the limit realization of the 
derivative:

… I’m not saying that the derivative is whatever hap-
pens when dt is infinitely small, whatever that would 
be, nor am I saying that you plug in 0 for dt. This dt is 
always a finitely small, nonzero value, it’s just that it 
approaches 0, is all [on the screen moving between G. 
L. Tangent and G. R. Secant].

5.6  Proposing a new verbal realization 
for the derivative

Grant introduces a new verbal realization for the derivative, 
proposing almost halfway in the video (V. L. Instantaneous 
and V. L. Best approximation):

because change in an instant still makes no sense, 
I think it’s healthiest for you to think of this slope 
not as some “instantaneous rate of change”, but 
instead, as the “best constant approximation for rate 
of change” around a point [Figure 16].

5.7  Calculating the derivative using symbolic 
realizations

Grant utilizes an example to show viewers how 

“ 
ds

dt
(t) =

s(t + dt) − s(t)

dt
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

dt → 0

 ” could be used to calculate the deriva-

tive at a specific time t. He revisits the earlier context, presenting 
a distance function for a car on a Cartesian plane, and also pro-
viding its symbolic realization, s(t) = t3 . Grant sets the task of 
calculating the velocity at t = 2 (on the screen first addresses G. 
R. Secant, then focuses on S. L. Leibniz and S. L. DQ-Δx ). He 
then calculates ds

dt
 (2) algebraically as follows and points out that 

“as dt approaches 0, representing the idea of looking at smaller 
and smaller change in time, we can just completely ignore those 
other terms [ 3(2)(dt) and (dt)2 ] [on the screen revisiting G. R. 
Secant and then G. L. Tangent]” (Fig. 17).

“ds

dt
(2) =

s(2+dt)−s(2)

dt
=

ds

dt
(t) =

(2+dt)3−(2)3

dt
= ⋯ = 3(2)

2 + 3(2)(dt) + (dt)2”.
Grant then focuses on the realization of the derivative at the 

function level by saying “there is nothing special about the time 
t = 2 ; we could more generally say that the derivative of t3 , as a 
function of t [V. F.], is 3t2 [on the screen, ds

dt
(t) =

(t+dt)3−(t)3

dt
 and 

ds

dt
(t) = 3t2 (S. F. Leibniz and S. F. DQ-Δx ) and then moving the 

tangent line of s(t) = t3 addressing G. F. Tangent]”.
Later in the video, Grant discusses why he shows 

the details calculation of the derivative algebraically/
symbolically:

When you consider the tiny change in distance caused 
by a tiny change in time for some specific value of dt, 

Fig. 16  A screenshot when Grant introduces V. L. Best approximation 
(9:42)

Fig. 17  A screenshot when Grant discusses how the derivative could 
be calculated at a specific time t  (12:35)

Fig. 18  A screenshot when Grant discusses why he has done the cal-
culation of the derivative earlier (14:15)
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you would have a kind of mess, but when you consider 
what that ratio approaches as dt approaches 0, it lets 
you ignore much of that mess, and it really does sim-
plify the problem. That right there is kind of the heart 
of why calculus becomes useful [Figure 18].

5.8  Revisiting the paradox and promoting the use 
of new verbal realization

Towards the end of the video, on the screen Grant revisits the 
paradox with V. L. Instantaneous and returns to the example 
about the car movement with the velocity of v(t) = 3t2 again 
to provide another reason why he discusses the concrete 
example and to discuss the paradox from another perspec-
tive. He points out:

Consider its motion at moment t = 0 … ask yourself 
whether or not the car is moving at that time. On the 
one hand, we can compute its speed at that point using 
the derivative …. But on the other hand, if it doesn’t 
start moving at time 0, when does it start moving? … 
Do you see the paradox? [V. L. Instantaneous].

Grant then again discusses the new verbal realization for 
the derivative that he proposed (V. L. Best approximation): 
“What it means for the derivative of the distance function 
to be 0 is that the best constant approximation for the car’s 
velocity around that point is 0 m

s
 ” (Fig. 19).

Grant continues with further elaboration:

Between t = 0 and t = 0.1 seconds, the car does move. 
It moves 0.001 m … [Fig. 20] What it means for the 
derivative of this motion to be 0 is that for smaller and 
smaller nudges in time, this ratio of m

s
 approaches 0, 

but that is not to say the car is static. Approximating its 
movement with a constant velocity of 0 is after all just 
an approximation [returning to the previous example 
on the screen for a moment revisiting G. L. Tangent 
and S. F. Leibniz and V. L. Best approximation]. So, 

whenever you here people refer to the derivative as 
‘an instantaneous rate of change’, … think of that as a 
conceptual shorthand for ‘the best constant approxima-
tion for the rate of change’ [V. L. Instantaneous and V. 
L. Best approximation].

6  Discussion

The findings suggest that online YouTube resources could 
provide many versatile opportunities for students to learn 
about different realizations of the derivatives by integrat-
ing digital technology. For example, the video that has been 
analysed from the 3Blue1Brown channel regarding the deriv-
ative have addressed all the five main realizations of the 
derivative as pointed out by Roundy et al. (2015). As shown 
in the results section, Grants utilizes digital technology very 
effectively to transition between different realizations. More 
specifically, as shown in Fig. 8b, there are numerous utiliza-
tions of graphical realizations in this learning resource, as 
suggested in the literature (e.g., Ryberg, 2018). Furthermore, 
it is worth pointing out the care taken in this video to address 
the paradox with V. L. Instantaneous. Past literature noted 
challenges with realizing V. L. Instantaneous (e.g., Kertil 
et al., 2023), and it is interesting to observe how Grant devel-
oped this learning resource, beginning with V. L. Instanta-
neous and concluding by addressing this paradox. This is 
one of the reasons that makes the video a must-watch for 
those involved in learning or teaching calculus. Addition-
ally, it seems Grant intentionally did not discuss the keyword 
limit in his discourse and did not use the lim visual mediator 
when presenting the symbolic realization of the derivative 
at the limit and function levels. That could be because of 
several reasons, such as making the video more accessible to 

Fig. 19  A screenshot when Grant revisits V. L. Best approximation 
for a concrete example (15:35)

Fig. 20  A screenshot when Grant revisits V. L. Best approximation 
(16:06)
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viewers with different levels of participation in the discourse 
about limits. Grant might avoid using heavy mathematical 
language in the video since past research (Esparza Puga & 
Aguilar, 2023) reported that students use YouTube resources 
when they need help.

Although the role of lecturers and other learning 
resources such as textbooks in facilitating student learning 
should not be overlooked, online learning resources such 
as YouTube could also play a key role here by providing 
further insight into different realizations of mathematical 
objects and bringing different perspectives that might not 
have been captured in the textbooks and/or teaching. For 
instance, recently Haghjoo et al. (2023) reported that the 
physical realizations of derivative were not discussed well 
across several high school and university calculus textbooks; 
however, in our study, we have seen that such a realization 
of derivative is discussed in this learning resource at the 
ratio and function levels. As seen in the results section, 
certain physical and numerical realizations (i.e., P. R. and 
N. R. Right) are discussed early in this learning resource. 
This approach aligns, to some extent, with Radmehr et al.’s 
(2023) suggestion of focusing on physical and numerical 
realizations of derivative early in teaching this topic.

Finally, while our analysis mainly focuses on how Grant 
moves between different realizations, it is noteworthy that 
Grant’s discourse in this video, consistent with other You-
Tube learning resources on his YouTube channel to the 
best of our knowledge, could be more aptly characterized 
as explorative discourse rather than ritualized discourse 
(Sfard, 2017). He places minimal emphasis on how to cal-
culate derivatives through the manipulation of mathematical 
symbolic signifiers and instead prioritizes what the deriva-
tive as a mathematical object is.

7  Conclusions

In this study, we have developed further a recent RT for deriv-
ative (Haghjoo et al., 2023) to account for derivative at the 
function level. This study is also seeming to be one of the first 
attempt to analyse YouTube learning resources using an RT. 
We have identified 35 roots for the derivative reflecting on the 
relevant literature and our teaching and research experiences. 
The RT was used as a lens to analyse a popular YouTube 
resource regarding derivative. We believe that calculus lec-
turers and mathematics education researchers could benefit 
from the developed RT as an analytical tool to critically reflect 
on teaching and learning of derivative in calculus courses as 
well as using them for designing activities and tasks. As Sfard 
(2017) noted, students need to be supported in establishing 
connections between various realizations of mathematical 
objects. We believe that reflecting on thorough RTs grounded 
in the relevant literature could be a good starting point for 

thinking about improving the teaching and learning of math-
ematics, as supported by others (e.g., Haghjoo et al., 2023).

We would like to conclude that past research reported 
that YouTube videos are among the learning resources 
accepted and used by many undergraduate students to learn 
or reinforce their mathematics learning (e.g., Esparza Puga 
& Aguilar, 2023). Some YouTube learning resources go 
beyond discussing procedural routines and delve into dif-
ferent realizations of mathematical objects and their connec-
tions. They emphasize moving between multiple realizations 
which could facilitate student participation as past research 
have underlined (e.g., Hong & Lee, 2022). Digital technol-
ogy has impacted the quality of many YouTube resources 
that have been developed in the past decade. At least it is 
evident from the learning resource analyzed in this study that 
these technologies have created opportunities for YouTube 
developers to discuss various realizations of mathematical 
objects simultaneously. Hence, we want to draw the atten-
tion of key stakeholders in undergraduate mathematics, such 
as mathematics lecturers and teacher assistants, to these 
resources. These resources can serve different purposes and 
could be possibly integrated into teaching and learning of 
undergraduate courses depending on students’ level of par-
ticipation in mathematics discourse and the intended learn-
ing outcome(s).
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