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Abstract
The purpose of the work described in this paper is to emphasize the importance of using mathematical models and math-
ematical modelling in order to be able to understand and to learn possible behaviours in epidemic situations such as that of 
the COVID-19 pandemic, besides suggesting modelling techniques with which to evaluate certain sanitary decisions and 
policies which do, in fact, affect society as a whole. The mathematical tools that are used derive from nonlinear systems of 
difference equations (possibly viable at a high school level, using spreadsheets or adequate software) as well as nonlinear 
systems of ordinary differential equations (therefore using mathematical tools and software well within the reach of under-
graduate students of many courses). This purpose is accomplished by motivating students and learners to study existing 
SIR-type models and modifying them in order to have a fully understandable translation of dynamics for infectious diseases 
such as COVID-19 in several different realistic scenarios, that is to say, situations that consider social distancing policies, 
widespread vaccination programmes, as well as possible and even probable results when in the presence of negationist 
postures and attitudes. Several modelling choices referring to real-life situations are shown and explored. These models are 
analysed and discussed, implicitly proposing similar attitudes and evaluations in learning environments. Conclusions are 
drawn, stimulating further work using the described mathematical tools and resources.

Keywords COVID-19 · Mathematical modelling · SARS-Cov-2 variants · Mathematical epidemiology · Nonlinear systems 
of ODE

1 Introduction

Ubiratan D’Ambrósio (1998), in a characteristically pro-
vocative statement, wrote that the “Mathematics we teach 
in school is obsolete, boring and useless” (p. 28, informal 
translation by the authors). This statement has often been 
referred to in relation to the need for continuing to change 
how, why, and what for, mathematics is taught—and some-
times learned. He did not even need to mention examples 
present in mathematics syllabi at practically all levels, nor 
to mention our didactic practices in which so many teachers 
prefer paper and pencil (and, consequently, twelfth century 
technology) to modern software and databases (technologies 

of the present century), and also choose memorization 
instead of the ability to find information on-line and to think. 
According to Clements (2013) and others, the resource of 
technology plays a fundamental part in learning processes, 
in fact, as Williams and Goos (2013) stated, “This notion 
situates ‘technology’—and mathematics, also—as an essen-
tial part or ‘moment’ of the whole activity, alongside other 
mediational means; thus it can only be fully understood in 
relation to all the other moments” (p. 549). Now these move-
ments involve the whole procedure of the study, compre-
hension, and expression of real-life problems, besides the 
mathematical efforts that follow, as well as evaluation and 
criticism.

Sometimes mathematical concepts and operations can 
be introduced playfully with games during which certain 
mechanical calculation results are remembered, but the 
ongoing challenge is to enable students to become full con-
scious citizens—and, for this, the mathematics to which Ubi-
ratan D'Ambrósio referred is unfortunately quite irrelevant. 
An implicit corollary is that, as in much of the effective 
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work with mathematics in the past centuries, mathematical 
development has also been based upon the need to change 
the world and its realities, besides its theoretical challenges. 
The authors believe that an immediate change of attitude in 
mathematics teaching is needed, in order to accomplish a 
reversal of Ubiratan D'Ambrósio's phrase.

All this is unfortunately true, not only in teaching and 
learning mathematics but in so many other areas as well. 
D'Ambrósio's words reflect a universe that is slowly (too 
slowly, for the authors) being relegated to the past in world-
wide teaching experiences, but much of it still thrives in 
many schools. And it must be said that this is sadly true at 
all levels and in practical as well as theoretical teaching and 
learning situations.

In implicit agreement with Ubiratan D'Ambrósio, Freire 
(1967) stated that the first step in an educational process is 
(in his terms) “to 'read' the world”. But this is not so eas-
ily done, even if it is simple to say. There are many ethical 
requirements, many historical and cultural contexts and a 
quasi-infinite list of interpretations of facts that are discussed 
in a school environment, as in society.

Paulo Freire (1967) went on to mention that the second 
step is to construe knowledge with dialogue, collectively, 
with frequent back-tracking, modifications, and the accept-
ance of an enormous range of all kinds of differences.

The third step is to criticize and evaluate the knowledge 
thus obtained. Again, for this, there must be a combination 
of ethnic, cultural, historical and social contexts and envi-
ronments. And there is also the transdisciplinary dialogue 
that is necessary for a critical understanding of what has 
been learnt, but not only this: in addition it must be asked, 
for how long do these concepts that were understood remain 
relevant in a learner’s daily activities?

For some, these three steps complete the learning cycle, 
but Freire has another 4th step: that of putting the acquired 
knowledge to use in serving communities, regions, groups 
and even whole towns.

Choosing to work with the COVID-19 pandemic in this 
pedagogical context inverts Ubiratan D'Ambrósio's state-
ment: solving a social or natural problem using several dif-
ferent scientific fields with the help of mathematical model-
ling tools brings out mathematics which is interesting, useful 
(and necessary) as well as up to date, both theoretically and 
technologically.

We do not claim that working in this way is easy—it 
most certainly is not! Modelling a social situation like the 
successive dynamics of COVID-19 with its several variants 
succeeding each other in affecting human beings (as well as 
animals), leaves those responsible for this study in learning 
environments with some difficult challenges: there are no 
‘correct’ answers, only adequate approximations; different 
ideas and techniques, with the use of many different soft-
wares, is undertaken with the certainty that to disagree is 

not only accepted, but stimulated, and welcomed. In general 
this attitude may not only go beyond existing syllabi, but it 
presents a pedagogical problem: many times there is only the 
problem in itself—and no mathematical questions are asked, 
as in many mathematics textbooks, as well as most textbooks 
in general. Questions must be provided by the modellers 
themselves so that, consequently, approximations of the 
desired solutions must inevitably include the collective and 
dialogical evaluation both from a mathematical point of view 
as well as from a social stance.

In fact, Stillman, Brown and Geiger (2015), pro-
vided this challenging reference: Finding or generat-
ing a problem from a real world messy situation is 
a crucial cognitive step (Getzels, 1979). Besides this 
“mathematics of 'messy' needs”, Wolff-Michael Roth 
(2007)—referring to mathematical modelling and 
mathematics education—calls our attention to the fact 
that “... emotions are central to decision-making, 'moti-
vation', learning and identity” which he presents as 
inherent to the modelling of real-world situations and, 
consequently, one can “no longer theorize mathemati-
cal modelling independent of emotions and emotional 
valence” (Roth, 2007). (Leash et al., p. 95)

For the authors, in agreement with vast literature sources, 
this is especially true when, instead of proposed problems by 
the teacher whose main purpose is to teach a mathematical 
concept, it becomes necessary to face those problems that 
affect student, their communities or towns and countries, 
or, as is the case with the COVID-19 pandemic, the whole 
world.

In this paper, we present the results of a modelling effort 
to describe successive models, studied and modified in order 
to learn about the dynamics of this disease in diversified 
societies with their dramatically different histories, cul-
tures, governments, beliefs and resources. This activity was 
undertaken with a heterogeneous group of mathematicians 
and mathematics students at several levels of their courses, 
ranging from undergraduate to post-doctoral participants, in 
the search for an understanding of the multifaceted problem 
of the spread of the pandemic in so many different societies 
with so many different results.

In Sect. 2, we very briefly mention the history of the kind 
of model that was (and still is) used for the description and 
simulation of the pandemic in a society, mathematically 
working out the details. It is necessary to mention that, in 
all this, technology plays a very important part. Historically, 
as described by Murray (2002), models had to be much sim-
pler in order for it to be possible to use almost exclusively 
analytical tools. Nevertheless, this type of modelling effort 
was not only revolutionary, it also allowed professionals to 
understand some of the basic concepts, limitations, thresh-
olds and possibilities, some of which are still valid.



51Relevant mathematical modelling efforts for understanding COVID‑19 dynamics: an educational…

1 3

In Sect. 3, we present some modifications of the original 
modelling efforts in order to include other situations, such 
as the asymptomatic transmission of the SARS-CoV-2 virus, 
adopted social distancing policies, as well as widespread 
vaccination campaigns. The results are evaluated critically 
and we hope that a challenge will emerge: new and improved 
models, using better software, must continue to be devel-
oped, so that decision-makers may have an auxiliary tool 
in mathematics, mathematical modelling and technological 
resources.

In Sect. 4, we present our conclusions, hoping that, in 
fact, these so-called ‘conclusions’ may serve as a starting 
point for other mathematicians.

2  Historical background

In 1927, 1932 and 1933, and building upon ideas of Ronald 
Ross and Hilda Hudson, A. G. McKendrick and W. O Ker-
mack developed a theory that led to the use of compartmen-
tal models in the description and study of endemic and epi-
demic diseases. These models established an important trend 
in mathematical epidemiology. Their initial studies focused 
on cholera spread in the nineteenth century, which from the 
Ganges river delta, spread around the world. Besides study-
ing the spread of the Spanish Flu, they also studied some 
aspects of several phenomena of the Bubonic plague, also 
called the Black Death, that entered Europe in the seven-
teenth century with almost unbelievable effects in terms of 
painful deaths throughout the entire continent (Kermack & 
McKendrick, 1927, 1932, 1933; Ross & Hudson, 1917).

Possible similarities in the dynamics and the geographical 
spread of infectious diseases led us to the modelling of the 
behaviour of this kind of disease using previous studies by 
Ross and Hudson (1917). The model they developed needed 
relatively more complex mathematical tools since it used the 
ages of susceptible individuals in identifying incidence of 
infection as well as removal and transmission rates. These 
mathematical tools evolved and became what is identified 
today as the model of Kermack and McKendrick (1927, 
1932, 1933). This is much more than a model: it opens up a 
theory with which many diseases can be analysed, studied, 
understood and simulated (Edelstein-Keshet, 2005).

Whereas initial mathematical considerations focused 
only on the infected individual's etiology and evolution, 
Kermack and McKendrick's model considered society as a 
whole. The fundamental idea was that of dividing a popu-
lation into separate compartments, acknowledging the fact 
that any individual must be in only one compartment at a 
time; and the movement from one of these compartments to 
another is used to describe, for example, the infection of a 
susceptible individual.

In the initial model, the considered population was 
divided into three compartments, namely, that of the Suscep-
tible (identified as S), one for Infected individuals (denoted I) 
and the third compartment of Removed individuals (denoted 
by R). In some instances, this third compartment refers to 
those individuals who were removed to a cemetery and, in 
other situations and models, the R stands for permanently 
resistant (as in measles, for example) or temporarily resistant 
(as in cases of the common flu).

This can be illustrated with the following diagram 
(Fig. 1), which indicates that, in contact with Infected indi-
viduals, Susceptible ones also become Infected, and, after a 
certain time period, Infected individuals become removed, 
resistant or partially resistant.

The causes for the movement from one compartment 
to another are based on the transmission through indi-
vidual contact and the time-periods during which indi-
viduals remain infected, or the time-period of a temporary 
resistance.

For university students, the Kermack and McKendrick 
model may be presented as a nonlinear system of differ-
ential equations, whereas at a high school level, a system 
of difference equations can be used, with which a discrete 
mathematical approach is not only completely adequate 
and feasible in terms of mathematics applications but also 
desirable in the concept of a trans-disciplinary educa-
tional practice.

3  Effective modelling

Schematically, Fig. 1 presents a visual model which indi-
cates, albeit qualitatively, the spread of a disease in a certain 
population. It indicates that, as time passes, susceptible can 
become infected, infected become removed, which eventu-
ally become resistant, totally or partially. Using discrete 
difference equations, the dynamics of a disease in a soci-
ety can be described identifying the movement individuals 
undertake when they stop belonging to one compartment 
and become individuals in another one. By using these 
difference equations, therefore, and assuming that a set of 
parameters can describe how this happens, we can describe 

Fig. 1  Flow chart for the SIR model
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the disease in a society using the system of equations given 
by the following:

Here, βSI and γIR respectively represent how conta-
gion moves a susceptible individual into the compartment 
of infected individuals in the context of 1/(time.person) 
whereas γIR is the inverse of the time during which an indi-
vidual remains infected. After this time-period an infected 
individual becomes removed or permanently resistant. A 
similar system can model a disease where resistance is tem-
porary, a disease to which individuals have resistance for a 
period of time:

In this situation, δSR (when staying in compartment R is 
temporary) stands for the inverse of the time during which 
the temporary resistance remains. Some remarks are in 
order:

1. In both of these systems, the considered disease has a 
short duration, so the number of individuals in the entire 
population remains constant, say, N. Then,

2. A disease is considered endemic when we have, 
for whatever moment n in time after an initial 
period, S(n + 1) = S(n) = S, I(n + 1) = I(n) = I and 
R(n + 1) = R(n) = R, where the constant numbers S, I 
and R respectively represent the number of susceptible, 
infected and resistant individuals in the studied society 
for any given time.

3. Due to the equation in the first remark, one has R(n) = N 
− S(n) − I(n), and the three-dimensional system can be 
reduced to a bi-dimensional one; in which casa the alge-
braic work becomes somewhat simpler.

Working with these systems can be quite easy using ade-
quate spreadsheet software. Also, a phase diagram can be 
used to illustrate different situations by using the x-axis for 
successive values of S(n) and the y-axis for successive val-
ues of I(n), and with these graphs, to analyse how different 
behaviours—which means different values for the parameter 
βSI, representing mask use, for example, lockdowns or vacci-
nation procedures—affect a disease dynamic. In general, the 
necessary initial conditions that are used take into account 

(1)

⎧
⎪⎨⎪⎩

S(n + 1) − S(n) = −�SI .S(n).I(n),

I(n + 1) − I(n) = �SI .S(n).I(n) − �IR.I(n),

R(n + 1) − R(n) = �IR.I(n).

(2)

⎧⎪⎨⎪⎩

S(n + 1) − S(n) = −�SI .S(n).I(n) + �SR.R(n),

I(n + 1) − I(n) = �SI .S(n).I(n) − �IR.I(n),

R(n + 1) − R(n) = �IR.I(n) − �SR.R(n).

S(n) + I(n) + R(n) = N.

the beginning of a disease, with only one infected individual: 
S(0) = N − 1, I(0) = 1 and R(0) = 0.

In the first months of the COVID-19 pandemic, discrete 
equations (as in systems (1) and (2)) were very useful but, 
as time went by, this disease showed itself to last much 
longer. This led to a modification in the initial models and 
mathematicians resorted naturally to the use of ordinary dif-
ferential equations in which, instead of successive discrete 
time steps, a continuous variable is used for time: the deriva-
tives of S(t), I(t) and R(t) are used instead of the differences 
S(n + 1) − S(n), I(n + 1) − I(n) and R(n + 1)  − R(n).

The second model described above (for temporary resist-
ance) becomes the following:

For S(t), I(t), R(t), given S(0), I(0), R(0), and for t varying 
in the interval [0,T],

Here, the first model is obtained simply making parameter 
δSR = 0.

In a mathematical sense, the first equation of system (3) 
describes the instantaneous change in the rate with which 
susceptible individuals become infected ones. The same with 
the second and third equations.

These equations describe the movement per time unit 
from S to I, from I to R and from R back to I given by the 
dynamics of the disease, as presented in Fig. 2.

The chart presented in Fig. 2 indicates that S, the num-
ber of susceptible individuals decreases as I, the number 
of infected individuals increases, and at the same rate, βSI. 
Analogously, the number of infected individuals decreases 
as the number of removed or resistant individuals increases, 
also by the same rate, δSR.

As mentioned above, it is necessary to note that no 
increase in the total population is considered in this model, 
used for an illness that has a relatively short duration, such 
as measles, and not as in the case of Chagas’ or Hansen’s 
diseases, which are generally long-lasting phenomena.

(3)

⎧⎪⎨⎪⎩

dS(t)

dt
= −�SI .S(t).I(t) + �SR.R(t),

dI(t)

dt
= �SI .S(t).I(t) − �IR.I(t),

dR(t)

dt
= �IR.I(t) − �SR.R(t).

Fig. 2  Flow chart for the SIR model
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Considering (3) as the continuous form of (2) will per-
mit us to analyse the equations that make up both systems 
and to obtain conclusions about the dynamics of the con-
sidered disease—and this can be done numerically and 
graphically, on the following two levels: systems (1) and (2) 
for a high-school environments and system (3) for univer-
sity undergraduate students. But rather than trying to solve 
these non-linear systems (a very nice theoretical analysis 
and approximation can be found in Murray, 2002, 2003), the 
mathematical work developed in an adequate software envi-
ronment and even in a spreadsheet will enable us to gather 
relevant information based on a modern, useful and interest-
ing use of mathematics.

Considering both the continuous (3) and the discrete sys-
tems presented by (1) and (2), a question that arises is that of 
recognizing when the number of infected individuals begins 
to decrease in a society—possibly leading to the disappear-
ance of the disease. In other words, when is it that I(n) or I(t) 
decrease, or I(n + 1) < I(n)? The same kind of question might 
be asked of S, the set of susceptible, or of R, the set of resist-
ant or temporarily resistant individuals, who after a certain 
period of time, return to the compartment of Susceptible: 
when do the populations is each compartment increase or 
decrease? To answer this question, we can rewrite the right-
hand side of the second equation of system (2), in order to 
have a better working posture, as follows:

We can then see that, since I(n) is a number of individuals 
and therefore greater than zero, which means that the popu-
lation of infected individuals increases, then this product is 
positive whenever

On the other hand, the number of infected persons in a 
disease decreases, i.e. I(n + 1) < I(n), when we have 
S(n) <

𝛾IR

𝛽SI
 and this indicates that, mathematically, a disease 

begins to decrease only when (in a colloquial sense) you run 
out of susceptible individuals to whom the disease may be 
transmitted. The very same conclusion with the same ine-
quation holds for the model that uses, continuously, system 
(3). Of course many other possibilities can and should be 
considered in analysing the dynamics of the studied disease. 
Nevertheless, in all its simplicity, this model is still used to 
identify a possible turning point in the spread of a disease.

But since this model is for short-term diseases, one can 
always recover the dynamics of the R compartment simply 
by using

I(n).
[
�SI .S(n) − �IR

]
.

𝛽SI .S(n) − 𝛾IR > 0, or when

S(n) >
𝛾IR

𝛽SI
.

whether the model is discrete or continuous, allowing one 
to use curves in a plane to describe the interaction of the two 
compartments S and I. Using this ‘phase diagram’, we can 
observe the evolution of the behaviour of both populations 
simultaneously whether for discrete or continuous models 
(Fig. 3).

With the construction of phase planes like this one pre-
sented in Fig. 3, it can be remarked that, for whatever initial 
condition one begins with, the values of S and I tend to 
the same stationary point and, therefore, so does R. As we 
can see in this illustration, the model chosen for the simula-
tion—with a temporary resistance—indicates the endemic 
situation, in which, after some time, the three compartments 
achieve a stationary point at which the population as a whole 
coexists with a permanent proportion of individuals in the 
susceptible, infected and temporarily resistant categories: 
the disease does not go away, rather, it is permanent in the 
population for as long as the parameters effectively describe 
the disease's behaviour.

Another possibility is to present in the same graph the 
number of individuals in each one of the three compartments 
as a function (susceptible, infected and temporarily removed, 
as in Fig. 4) of the considered time steps.

With this graph, the observation made for Fig. 3 still 
holds, since S, I and R tend to a stationary situation in which 
the disease co-exists with the whole population at a constant 
level. In the graph presented in Fig. 4 we can verify that the 
three considered compartments do, in fact, reach an equilib-
rium which indicates an endemic situation. Now this model, 
simple as it may be, does indicate what happens if the value 
of βSI decreases, meaning that transmissibility is smaller as 
is the case, for example, if the use of masks, through some 
public sanitary policy, becomes mandatory, or at least, usual. 
Students can see this, when, using a simple programme, the 
results are obtained when for two different values of βSI, 
different equilibrium stages are assumed, either with a con-
tinuous system or with a discrete one.

This same model can be used—although not in COVID-
19 situations—with a simpler mathematical expression, for 
the study of other diseases, such as measles, mumps, and 
chickenpox, for example. The model may (with no loss of its 
generality, as seen above) consider exclusively susceptible 
and infected individuals. This happens for many reasons, two 
of which (the main ones) are as follows: this type of model, 
which can be used to understand rapid epidemic surges that 
do not last for a long time in society—so that the increase 
of the latter need not be considered and, secondly, the case 
in which, since resistance is permanent, the return from the 
R compartment to the S one does not exist. Therefore, the 
model can be used with only two compartments, S and I. 

R = N − (S + I),
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We will then have, for the discrete model, also called an SI 
model,

(4)
{

S(n + 1) − S(n) = −�SI .S(n).I(n),

I(n + 1) − I(n) = �SI .S(n).I(n),

where n represents the time-step.
System (1) has now become a nonlinear one with only 

two equations, a form of system (4) which is easier to ‘see’ 
or with which it can be easier to ‘read’ the world. To use 
the model, students in high school (and those who wish to 
become mathematics teachers) can use what has been learnt 
for sequences (usually one-dimensional), to accompany the 
behaviour of a disease in society, thereby developing math-
ematical concepts before actually formalizing them. In fact, 
this process may be described as intuitively learning math-
ematics. On the other hand, for undergraduate students in 
teacher education, the introduction of this kind of system 
of discrete difference equations as well as differential ones 
presents mathematics not as an objective in itself, but rather 
as an important and useful tool with which to understand 
life, effectively showing with a present and urgent situation, 
the educational value of working out these models (i.e., 
systems of both difference and differential equations). For 
the authors, situations and mathematical approaches such 
as those described here permit students at many levels to 
understand that the boundaries between themes such as 
mathematics and epidemiology are not crisply defined, but 
rather fuzzy—as always happens in real life situations.

Besides this, what else can be accomplished with the 
presentation and use of models like these (and the equiva-
lent programmes)? Well, an important aspect is that different 
situations, derived from this initial one, can be proposed. 
One challenge is presented in the next section.

3.1  The inclusion of vaccination

What can be accomplished with the presentation of this 
model? One challenge would be that of considering a vacci-
nation programme that modifies the model presented in (2), 
with the inclusion of a new compartment, which includes the 
vaccinated population with a temporary immunity, as seems 
to be the case for all COVID-19 vaccines.

This model requires another compartment, besides that 
of Susceptible, Infected and Temporarily Resistant individu-
als—that of Vaccinated individuals. An illustrative chart for 
this new proposition, is presented in Fig. 5.

This figure has the purpose of describing the modifica-
tion of the previous models with the introduction of a new 
compartment, that of vaccinated individuals. This picture 

Fig. 3  The phase plane for the SIR model: simultaneous behav-
iour of susceptible and infected individuals (developed in Wolfram 
 Mathematica®)

Fig. 4  Evolutionary dynamic of the SIR model

Fig. 5  Flow chart for the SIRV model
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shows that besides the previous movements, there is also a 
movement from the compartment of susceptible individuals 
to that of vaccinated ones. And from the latter back to the 
former, due to the end of the validity of the immunization 
given by the vaccine. This chart indicates the passage from 
the compartment of susceptible individuals to infected ones, 
as well as the return from temporary resistance and, besides 
the return from temporary resistance R back to Susceptibles, 
also the passage from Susceptibles to Vaccinated and back.

Borba (2021) suggested that we use the COVID-19 pan-
demic as a mathematical tool, for example using the appli-
cation of exponential functions to explain the spread of the 
coronavirus. However, we propose using the pandemic to 
obtain a function that describes the behaviour of vaccina-
tion. This illustrates the fact that, in real-life situations, we 
use what we can to study and understand phenomena. And, 
sometimes, we create mathematical tools in order to study 
and understand these facts in a better way.

In Brazil, the National Vaccination Campaign against 
COVID-19 started on January 18, 2021, and four vaccines 
are currently available in Brazil. Ever since the first vaccines 
appeared, they have had a different vaccination schedule and 
variations in effectiveness (Pruβ̈, 2021). The graph presented 
in Fig. 6 provides us with information about the overall 
immunization behaviour as a function of time for Brazil.

As the vaccination data are dynamic and there was a step 
in the number of people with full immunization as of May 
25, we considered the data from that day onwards for adjust-
ing an exponential curve to the data, using the least squares 
method.

The question arises: how can students work with this type 
of data? The main focus is on the analysis of the dynamics 
of a vaccination policy. A relationship between time and the 
number of vaccinated persons could permit simulations to 
be made, and different vaccination policies to be studied for 
such a functional relationship to be found; a good strategy 
could be to obtain the best simple linear regression model, 
observing that the ‘best’ model is subjective to the chosen 
tools, as is the case with many so-called ‘objective’ math-
ematical results.

The given data for the considered time-period can be 
described by a curve with exponential characteristics. This 
adjustment demands technological resources and this neces-
sity for technology increases with the complexity of the cho-
sen curves for adjustment using least square methods. The 
chosen curve relating a dependent variable y (the number of 
vaccinated individuals) to a single independent variable x 
(time) is given by the following:

With this choice comes an implicit warning about the 
validity of mathematical modelling with regard to the range 

y(x) = a.eb.x,

of variation of the variables, both dependent and independ-
ent: these adjustments serve the modelling process in so far 
as the modelling assumptions remain valid.

The graph of the comparison of the number of people 
who received the second dose of vaccines and the obtained 
curve (by the least square method) is shown in Fig. 7.

3.2  Adapting the original model to include 
vaccination

Although the possibility of vaccinated individuals contract-
ing the SARS-CoV-2 virus exists in relevant quantities, 
the simplified model adopted here will suppose that vac-
cinated persons, after a period during which any individual 
remains immune, become susceptible again. As in the pre-
vious example, we assume that the total population does 
not change significantly, so that S(t) + I(t) + V(t) + R(t) = N, 
a constant value.

This demands the creation of the above-mentioned 
compartment for persons that are neither susceptible, nor 

Fig. 6  Number of people in Brazil during 2021 according to the num-
ber of vaccination doses (Our World in Data, 2021)
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infected nor temporarily resistant: the compartment of vac-
cinated individuals.

When knowing the values of S(0), I(0), R(0) and V(0), 
a discrete mathematical model for obtaining the succes-
sive values of S(n), I(n), R(n), V(n) can be developed. It 
is similar to that of system (3), with the presence of the 
vaccinated individuals as described previously. And besides 
using the same parameters representing the very same move-
ments between compartments, system (5) includes υSV and 
υVS indicating the movement of susceptible individuals to 
the compartment of vaccinated ones and, after the period of 
immunization, returning to the susceptible state.

where n represents the time-step.
A new figure can be presented with all four compartments 

changing in time (with the same parameters as in system 
(5)) in order to be able to understand how vaccination pro-
grammes can affect the final results. For this, we can use, 
instead of system (5), a system of ODE's, in a continuous 
context:

for t varying in the interval [0,T].
There is a justification for the use of both kinds of model-

ling efforts. If, on the one hand, data are collected daily—
which is to say in a discrete way and, therefore with differ-
ence equations—on the other hand, the long period of time 
permits the use of a continuous model and, consequently, 
using differential equations. A study of the phase planes of 
both systems (5) and (6) leads to the same kind of graph and 
very similar numerical values. A use of system (6) would 
probably not be possible in a high school environment. And 
a spreadsheet would only be useful for discrete systems such 
as (5), whereas, for simulating system (6) there is the need 
to approximate numerically the solutions of ordinary differ-
ential equations. In spite of the possibility of using a spread-
sheet for a discrete system, the results presented here were 
obtained using Wolfram  Mathematica®, in which numerical 
methods for ordinary differential equations were used in the 
approximations.

Although the general aspect is qualitatively similar to that 
of the SIR model as seen in previous figures, in Fig. 8 it can 
be seen that the endemic stationary situation happens with 
a smaller population of infected individuals. In other words, 

(5)

⎧⎪⎨⎪⎩

S(n + 1) − S(n) = −�SI .S(n).I(n) + �SR.R(n) − �SV .S(n) + �VS.V(n),

I(n + 1) − I(n) = �SI .S(n).I(n) − �IR.I(n),

V(n + 1) − V(n) = �SV .S(n) − �VS.V(n),

R(n + 1) − R(n) = �IR.I(n) − �SR.R(n),

(6)

⎧⎪⎪⎨⎪⎪⎩

dS(t)

dt
= −�SI .S(t).I(t) + �SR.R(t) − �SV .S(t) + �VS.V(t),

dI(t)

dt
= �SI .S(t).I(t) − �IR.I(t),

dV(t)

dt
= �SV .S(t) − �VS.V(t),

dR(t)

dt
= �IR.I(t) − �SR.R(t),

the disease tends to an endemic situation (called a ‘steady 
state’) in which the number of individuals in each of the 
compartments remains the same.

This graph (Fig. 9) illustrates the positive effect of an 
adequate vaccination policy, showing a much smaller popu-
lation level for infected individuals than the steady-state val-
ues in the graphs shown in Figs. 3 and 4, where the model 
does not include vaccination, in spite of the fact that the 
utilized vaccine does not guarantee permanent immunity for 
the disease.

Modelling at this level, and using technologies, be it to 
approximate the behaviour of systems of difference equa-
tions or of systems of ordinary differential equations, will 
permit modelling techniques and attitudes to be tested, to be 
evaluated and to have results criticized both mathematically 
and socially. In the next section, a further modification is 
discussed, always in the same spirit of trying, testing, check-
ing… and learning. The purpose of this modification is to 
show how a useful model can be extended by including, 

Fig. 7  Number of people with full immunization and the adjusted 
curve (Our World in Data, 2021)
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or eliminating, aspects such as compartments, parameters, 
relationships, as is done in the next section.

3.3  Modelling including confinement

Another possible (and necessary) modification can very well 
be that of having an additional compartment of those people 
who can stay at home, respecting social distancing in a dis-
ciplined manner. In such a case, it must be considered that 
for many people, this is not possible: hospital and sanitary 
professionals, bus and truck as well as taxi drivers, cannot 
operate from a home office. These and so many other pro-
fessionals must be ready to face the pandemic, depending 
mostly on individual protection equipment, as well as hoping 
that others also have similar socially responsible behaviour 
and attitudes.

Figure 10 presents this new situation in which social dis-
tancing is respected by those who have the opportunity to 
do so. The chart describes a situation in which, besides com-
partments of susceptible, infected and removed individuals, 

there is another compartment of confined persons. confined 
persons are also subject to the possibility of catching the 
disease, even with a much smaller possibility and, therefore, 
the passage from confined to infected can exist, as can also 
happen that due to social or economic pressures, individuals 
may leave the compartment of confined persons returning to 
the compartment of susceptible ones. The diagram, however, 
takes into account that the rate with which those in suscepti-
ble move to confined is, in fact, the difference between those 
that go from S to C minus those that return from C to S.

Using a system of difference equations, with the intention 
of working this out quantitatively at a high school level, with 
adequately simple spreadsheet software, we may very well 
have a discrete mathematical model given by the following:

For S(n), C(n), I(n), R(n) and knowing S(0), C(0), I(0) 
and R(0), we have

(7)

⎧⎪⎨⎪⎩

S(n + 1) − S(n) = −�SI .S(n).I(n) − �SC.S(n) + �SR.R(n),

C(n + 1) − C(n) = �SC.S(n) − �CI .C(n).I(n),

I(n + 1) − I(n) = �SI .S(n).I(n) + �CI .C(n).I(n) − �IR.I(n),

R(n + 1) − R(n) = �IR.I(n) − �SR.R(n),

Fig. 8  The phase plane for SIRV model, considering only S and I 
(developed in Wolfram  Mathematica®)

Fig. 9  Evolutionary dynamic of the SIRV model
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where n represents the time-step.
Again, as in previous settings, this can be worked out 

numerically with a relatively simple theoretical explana-
tion. This is qualitatively indicated in Figs. 11 and 12. If it 
becomes necessary to use, instead of system (7), a system 
of ODE's, we will have the following system:

for t varying in the interval [0,T].
The results of system (8) are qualitatively indicated in 

Figs. 11 and 12.
Figures 11 and 12 also indicate an endemic situation 

in which, as in previous ones, the disease remains affect-
ing society, with all its dire consequences, even if the level 
of infected populations is low with respect to that of other 
compartments.

As in both previously presented situations, an endemic 
situation is obtained, and COVID-19 (or any analysed dis-
ease) will remain within society—and society will have to 
learn to live with this presence. These previous modelling 
efforts, however, demonstrate that employing only vaccines 
or only social distancing, cannot, in general, eliminate a dis-
ease such as the one theoretically described here.

The use of convenient software (or, preferably, of ade-
quate freeware) can enable us to consider a continuous 
modelling effort, using an analogue system of ordinary dif-
ferential equations, such as the one described in system (8).

All this should possibly lead us to a new step in the mod-
elling process, namely, that of considering a combination 

(8)

⎧⎪⎪⎨⎪⎪⎩

dS(t)

dt
= −�SI .S(t).I(t) − �SC.S(t) + �SR.R(t),

dC(t)

dt
= �SC.S(t) − �CI .C(t).I(t),

dI(t)

dt
= �SI .S(t).I(t) + �CI .C(t).I(t) − �IR.I(t),

dR(t)

dt
= �IR.I(t) − �SR.R(t),

of social distancing with self-confinement together with a 
vaccination programme.

3.4  Modelling including confinement 
and vaccination

The chart in Fig. 13 illustrates a situation in which the sus-
ceptible are vaccinated but the immunity is only for a period 
of time, after which individuals become susceptible again. 
Besides that, it considers that isolated individuals may still 
be infected albeit in a very much smaller proportion than that 
of non-confined individuals.

For S(n), C(n), I(n), R(n), V(n) and S(0), C(0), I(0), R(0) 
and V(0), we have

Fig. 10  Flow chart for the SCIR model

Fig. 11  The phase plane for SCIR model: simultaneous behaviour of 
susceptible and infected cases (developed in Wolfram  Mathematica®)
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where n represents the time-step.
Assumptions are similar to those of the previous models 

in order to emphasize possible and many times necessary 
adaptations and modifications, in order to include differ-
ent considerations in the modelling processes. We can use, 
instead of system (9), the following system of ODE's:

for t varying in the interval [0,T].
In this case, there are some relevant comments. The first 

one is that the parameter that describes the movement of 
confined individuals to the compartment of infected ones is 
significantly smaller than the one that describes the move-
ment from susceptible to infected compartments. Another 
comment is that this model could possibly be improved, 
considering the fact that confined persons may return to the 
compartment of susceptible individuals facing social pres-
sures, as mentioned before.

As in other modelling efforts with other hypotheses, this 
graph (Fig. 14) indicates that an endemic situation is reached 
in the relative quantities of individuals in the Susceptible and 
Infected categories.

As in the Fig. 14, this graph (Fig. 15) clearly indicates 
an endemic situation in which the disease remains in soci-
ety—unless new measures appear, introducing the need for 
changes in the present models.

3.5  A comparison of models

In this section, we present the different types of evolutionary 
behaviour of the models we have discussed previously. This 
is not in any way a comprehensive list of models—there 
are, in fact a vast number of other choices for this model-
ling (Aguiar, et al., 2020; Amaku, et al., 2021; Ciufolini 
& Paolozzi, 2020; Thomas, et al., 2020; Zeb, et al., 2020). 
Also, there are other types of modelling efforts using dif-
ferent mathematical tools and numerical procedures. It is 
not only the choice of different models that can adapt the 
mathematical work of different situations and contexts. Even 

(9)

⎧
⎪⎪⎨⎪⎪⎩

S(n + 1) − S(n) = −�SI .S(n).I(n) − �SC.S(n) + �SR.R(n) − �SV .S(n) + �VS.V(n),

C(n + 1) − C(n) = �SC.S(n) − �CI .C(n).I(n),

I(n + 1) − I(n) = �SI .S(n).I(n) + �CI .C(n).I(n) − �IR.I(n),

V(n + 1) − V(n) = �SV .S(n) − �VS.V(n),

R(n + 1) − R(n) = �IR.I(n) − �SR.R(n),

(10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dS(t)

dt
= −�SI .S(t).I(t) − �SC.S(t) + �SR.R(t) − �SV .S(t) + �VS.V(t),

dC(t)

dt
= �SC.S(t) − �CI .C(t).I(t),

dI(t)

dt
= �SI .S(t).I(t) + �CI .C(t).I(t) − �IR.I(t),

dV(t)

dt
= �SV .S(t) − �VS.V(t),

dR(t)

dt
= �IR.I(t) − �SR.R(t),

choosing to use only non-linear systems of ordinary differen-
tial equations, it is necessary to consider that very important 
changes in the parameters may be necessary and may have 
surprising results. For example, the choice of having the 
transmissibility parameter varying in time in order to simu-
late successively changing virus strains, as well as varying 
social attitudes, will modify the rates of change in confined 
and vaccinated compartmental populations, thus changing 
the outcomes of the results.

For the models cited above, a comparative considera-
tion can and should be used. From an educational point of 
view, these graphs can motivate a critical evaluation of the 
modelling efforts, as well as their capability in simulating 
social scenarios. And we believe that qualitative illustra-
tions, such as that in Fig. 16, may very well be used to assess 
and evaluate social and sanitary policies chosen and adopted 
by authorities. Figure 16 illustrates, therefore, the tendencies 
according to different models and possible outcomes.

A comparison with and a subsequent adaptation to real-
life data, as undertaken by Meyer et al. (2021), can be quite 
useful in testing values, decisions, policies. Of course, 
when a model is forced to agree with real-life information, 
there is always a risk of ‘'spoiling’' simulations, since mod-
els demand empirical as well as heuristic evaluations and 
corrections.

As we mentioned before, another challenge is to use sim-
plicity in altering models of this kind in order to test sce-
narios. For example, we could very well consider a model 
in which vaccinated individuals, after a period of time, can 
be considered as temporarily resistant to the disease and, 
therefore, do not return immediately to the compartment of 
Susceptible, passing previously by the compartment of tem-
porarily resistant persons.

3.6  The pedagogical value of these models 
on the pandemic COVID‑19

For the authors, besides some comments in the introduction 
(as well as elsewhere) on the importance of pedagogical val-
ues evident in working with a sequence of different mathe-
matical models for real-life situations, there is another aspect 
to be mentioned. In lieu of a meaningless learning of math-
ematics, working with the models described here, as well as 
with their viable modifications, can present learners with a 
mathematics of necessities, to be used as an instrument to 
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understand the world around us—and to change it. There-
fore, not only in the sense that these mentioned models can 
enable students, also working in groups, to use mathematics 
to understand, criticize and simulate different governmental 
actions to combat the pandemic as well as to evaluate sev-
eral actions that were (or that were not, in some countries) 
adopted in combating COVID-19. That is to say that work-
ing with these models and procedures can be considered as 
Mathematics for Education and not the other way round. 
Using different mathematical tools, researchers world-wide 
have evaluated governmental attitudes in terms of the cri-
teria for adopting public health policies (an example is that 
of Silva & Sagastizábal, 2021, with results for some regions 
in Brazil).

Another important factor for learners and students is 
the fact that, in the majority of situations, the exhibition of 
apparently precise numerical results of mathematical model-
ling of phenomena, such as those related to the pandemic, 
say very little in different areas, to the media and to many 
professionals in public health about possible simulations 
and results, and mathematics is not, in any way, exact (in 
spite of what common sense states). Instead, the presentation 
of qualitative results, of possible tendencies, of illustrative 

graphs, albeit inexact, may very well display what the math-
ematical results are about, in the sense of the ‘what if’ ques-
tions, which should arise in the simulations; and those cases 
should be discussed by teachers with their students, in order 
to adjust the mathematical modelling to describe the real 
scenarios in a better way.

There is a third pedagogical value that can justify the use 
of the modelling of social and natural phenomena in the 
learning of mathematics and where it is needed: that is, using 

Fig. 12  Evolutionary dynamic of the SCIR model

Fig. 13  Flow chart for the SCIRV model

Fig. 14  The phase plane for SCIRV model: simultaneous behaviour of 
susceptible and infected (developed in Wolfram  Mathematica®)
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simulations and corresponding graphs can lead to a better 
interpretation of data. There are almost infinite links to data 
on the internet. These data, in order to become information, 
need mathematics and, in very many cases, mathematical 
modelling of the problem under study. It goes without saying 
that the same number can very well represent a catastrophic 
sanitary problem in one place, while showing an inevitable 
improvement in other regions. In this case, both the use of 
derivatives, as is the case with differential equations, and the 
use of discrete differences, which are the basis for difference 
equations, can immediately identify very different tenden-
cies and, in so doing, permit a dynamical description of the 
problem, in spite of some similar numerical results.

For the authors, there is a fourth and important factor in 
the use of this type of modelling in classroom and school 
activities: models can and do function while situations 
remain the same. A very small change in the transmissibil-
ity of a virus may result in a substantial modification of 
the complete model. In other words, applying mathematics 
to real-life situations through some mathematical model-
ling effort is almost never the same in time, neither does it 
necessarily hold when space variables change: mathemati-
cal modelling consists in constantly evaluating results and 

adjusting procedures, models, equations, and instruments 
whenever necessary.

This section was used to emphasize that the use of math-
ematical modelling of social and environmental phenomena 
does have a very important place in the learning of math-
ematics, as well as in school activities. Four possibilities 
were mentioned, out of many other possible aspects, as 
follows: the mathematics of necessity, resulting from chal-
lenges to being able to study and understand a developing 
and demanding world; the inexactness of mathematics allied 
to its strength in simulations which can be decisive in evalu-
ating social and natural situations; the always urgent need 
of interpreting data to obtain faithful information; and the 
ever-changing real world impinging on the dynamics of 
mathematical modelling.

Finally, there is another provocative remark: in these situ-
ations, here described and mentioned, there is generally no 
specific mathematical question. While students learn how to 
obtain the unique and exact answers to classroom problems, 
real life demands that they be able to ask the right questions 
as well.

4  Conclusions

The main objective of the work described in this paper is to 
present modelling techniques that students can use to learn 
(1) to adapt models to slight changes and prepare for the 
creation of new models, (2) to evaluate modelling choices 
of state variables, parameters and mathematical tools, (3) 
to recognize modelling limitations and, most certainly, to 
understand critically how the use of mathematical models, 
also employing technological and numerical strategies, can 
be useful for learning about a certain problem and under-
standing its aspects, and for simulating scenarios for social 
and natural decisions as regards human actions in society 
and nature. In the introduction, the expression ‘messy’ was 
used for real-life situations, an evaluation to which both 
authors agree. On the other hand, in a text written by Kai-
ser et al. (2011), (with a very appropriate title in its refer-
ence to “Authentic Modelling Problems in Mathematics”) 
the readers' attention is called not only to the mathematical 
difficulties but also to the problem of choosing an adequate 
hypotheses for modelling a studied situation. Attitudes, 
as described in the mentioned text, which “promote the 
whole range of [learning] modelling competencies” as well 
as enhancing the need for students to take action (this last 
phrase is an interpretation of the text), must be learnt.

It is not always the complex mathematical outlook which 
leads to the best results, even though, in general, sophisti-
cated mathematics as well as advanced software packages 
do result in better understanding and evaluations. This is 
especially true in an environment where mathematics is used 

Fig. 15  Evolutionary dynamic of the SCIRV model
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for studying both non-mathematical as well as mathemati-
cal situations and creating knowledge for relevant social 
responsibilities.

The modelling efforts presented and discussed above can, 
both in a high school and at undergraduate levels, motivate 
the use of mathematics, coupled with other scientific out-
looks, creating an essential, albeit auxiliary tool, which is, 
in fact, an important support for decision-making procedures 
in a transdisciplinary situation.

Another purpose of this text, possibly implicit in all that 
is stated, refers to the fact that a mathematical model as 
well as mathematical modelling is not necessarily ‘good’ per 
se. It does, in fact, promote learning, evaluation, decision-
making, and critical analysis concerning mathematical pro-
cesses—but in which context or in which contexts? Now this 
is put forth from the point of view of mathematics education, 
since a model can be very ‘good’ in its efficiency, regardless 
of ethical consequences. Some years ago, in the questions-
and-answers period after a conference, Professor Nelson 
Maculan, who was the chancellor of the Rio de Janeiro Fed-
eral University, said that in his childhood, the photograph 
from the simple graduation ceremony of his junior school 
was taken, as was the case for all his little colleagues, with 
a coloured terrestrial globe beside each child. He went on 
to say that, for older students, the equivalent of the globe, 
which should be used today against negationist theories, 
was the mathematical model (Maculan Filho, 2018). The 
authors tend to agree with him, but it is also true that the 
attitude behind modelling in a school environment must 
always take into account that mathematics is an essential 

tool in the modelling process, and that it can (and should) 
become a very important tool in the sense of Mathematics 
for Education.

Mathematical Modelling has always been used, for exam-
ple, in creating and improving mass destruction artifacts, in 
the production of toxic material which is said to be useful 
in the culture of cereal grains, in calculating the increase in 
profits coupled to both the increase in quantities as well as 
the reduction of quality in so many areas of human activi-
ties. The model can be an efficient tool, but wielding it cor-
rectly needs education in a critically ethical sense, educa-
tion for effective human development, or, as a UNESCO 
study suggests, “Learning to study, inquire and co-construct 
together (learning to learn), Learning to collectively mobi-
lize, Learning to live in a common world and Learning to 
attend and care” (Sobe, 2021, p. 1) or, in the words of Rod-
rigues (2021), “Learning to know, learning to do, learning to 
live together and learning to be” (p. 3). This attitude identi-
fies the perspective of mathematical modelling with what it 
entails for an education to improve the context for humanly 
relevant values, for society and nature. Villa-Ochoa and Ber-
río (2015) affirmed that, (in the authors’ words) besides, 
“[activating] other dynamics of the individual knowledge 
of some members of a culture”, the individual’s knowledge 
“[is] to be discussed, … socially organized, thus becoming 
a body of knowledge which is a response to its members' 
needs and will” (p. 249). This perspective places a challenge 
for the educational use of mathematical modelling that does, 
in fact, reach quite farther than the useful and necessary 
learning of mathematical concepts and processes.

There are, of course, many other models and possible 
approaches for infected diseases in a human-to-human 
transmission, in vector-born infections, and in situations in 
which these mentioned vectors provide the contact between 
humans and natural hosts.

Simpler models are not always the best, but they are nec-
essary for the procedure that might eventually lead to impor-
tant tools for understanding, studying, analysing, and simu-
lating infectious diseases in many environments. Besides, 
simpler models can and do lead the way to the learning of 
mathematical concepts and uses, and they enable mathe-
matics students, most especially those who are learning to 
become mathematics teachers, not only to exhibit the power 
and the necessity of mathematics for developing the posture 
of conscientious citizens, but to interact in a transdiscipli-
nary way with other knowledge, other points of view, other 
backgrounds and cultures, as well as so many other ways 
for coping with the challenge of living in an ever-changing 
world. In other words, this enterprise involves understanding 
how mathematics is, together with other sciences, essential 
in reading the world, creating knowledge, evaluating it, and 
using it for a better society and a better environment.

Fig. 16  Number of the Infected people using different models
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