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Abstract
This study was inspired by the following question: how is mathematical creativity connected to different kinds of expertise 
in mathematics? Basing our work on arguments about the domain-specific nature of expertise and creativity, we looked at 
how participants from two groups with two different types of expertise performed in problem-posing-through-investigations 
(PPI) in a dynamic geometry environment (DGE). The first type of expertise—MO—involved being a candidate or a member 
of the Israeli International Mathematical Olympiad team. The second type—MM—was comprised of mathematics majors 
who excelled in university mathematics. We conducted individual interviews with eight MO participants who were asked to 
perform PPI in geometry, without previous experience in performing a task of this kind. Eleven MMs tackled the same PPI 
task during a mathematics test at the end of a 52-h course that integrated PPI. To characterize connections between creativity 
and expertise, we analyzed participants’ performance on the PPI tasks according to proof skills (i.e., auxiliary constructions, 
the complexity of posed tasks, and correctness of their proofs) and creativity components (i.e., fluency, flexibility and origi-
nality of the discovered properties). Our findings demonstrate significant differences between PPI by MO participants and 
by MM participants as reflected in the more creative performance and more successful proving processes demonstrated by 
MO participants. We argue that problem posing and problem solving are inseparable when MO experts are engaged in PPI.

Keywords Problem posing through investigations · Geometry proof problems · Mathematics expertise · Mathematical 
creativity

1 Introduction

The research presented in this paper was motivated by sev-
eral observations concerning research associated with math-
ematical creativity, expertise, problem solving and problem 
posing and the relationships between them.

The first observation concerns research on expertise in 
mathematics (as elaborated in the background section). 
While expertise is commonly addressed as superior per-
formance in a particular domain (e.g., mathematics), in 
the research literature the notion of mathematical exper-
tise acquires a broad range of meanings, as expressed in 
different groups of target populations varying from school 
students who excel, to professional mathematicians. Tak-
ing into account this variance, we examine differences in 

creativity and proving skills among participants with rich 
mathematical backgrounds of 2 types: (1) MO—prob-
lem-solving experts who were candidates or members of 
the Israel National IMO team and (2) MM—mathematics 
majors who excelled in university mathematics courses and 
also completed a High School Mathematics Teaching Cer-
tificate. The participants in these two groups are considered 
experts with different types of mathematical expertise.

Second, over the past two decades mathematics education 
researchers have—fortunately—increasingly paid attention 
to mathematical creativity and creativity-directed activities 
as major twenty-first century skills. At the same time, there 
are inconsistent arguments about the connections between 
mathematical expertise and creativity, and, moreover, empir-
ical studies on such connections are scarce.

Third, in contrast to unconscious (to a large extent) math-
ematical creation by professional mathematicians, problem 
posing usually involves producing new problems in response 
to a requirement to do so. We found that empirical studies 
that examine connections between problem solving expertise 
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and problem posing performance are rare, and we explore 
this connection here by employing problem posing through 
investigation (PPI) tasks.

Furthermore, we base our work on arguments about the 
domain-dependency of expertise and creativity (Baer 2015). 
We focus on participants from the two groups with two dif-
ferent types of mathematical expertise in order to gain a bet-
ter understanding of the connection between mathematical 
creativity and these two types of mathematical expertise.

The PPI—problem posing through investigation—
employed in this study is a mathematical activity that com-
bines problem posing and problem solving. PPI provides 
multiple opportunities for investigations in a dynamic 
geometry environment (DGE), allowing participants to cre-
ate auxiliary constructions, measure, search for geometric 
properties, and conjecture regarding the examination and 
formulation of new problems, which the participants are 
then required to solve (Leikin 2014; Leikin and Elgrably 
2020). As such, PPI tasks are open from the start and from 
the end (Leikin 2019), since solvers are encouraged to 
choose what they examine and how, and the outcomes usu-
ally constitute an individual space of posed problems, which 
are based on the discovered properties. These collections 
differ among different individuals in terms of the number, 
types and complexity of the posed problems. A PPI task is 
completed only when all the posed problems are solved by 
the participants; they are free to choose how to prove any 
discovered property. The openness determines the complex-
ity of PPI, since an investigation can lead in unpredicted 
directions, conjectures can appear to be incorrect, or solving 
some posed problems can require knowledge and skills at a 
level that surpasses the level of problem solving expertise of 
those who posed the problems. At the same time, the open-
ness of the PPI tasks and their complexity determines the 
power of these tasks as tools for the investigation of creativ-
ity and problem-solving expertise.

2  Background

2.1  Expertise in mathematics and beyond

Ericsson and Lehmann (1996) defined expert performance 
as “consistently superior performance on a specified set of 
representative tasks for a domain” (p. 277) and stressed that 
“it is generally assumed that outstanding human achieve-
ments (i.e., expertise) reflect some varying balance between 
training and experience (nurture), on one hand, and innate 
differences in capacities and talents (nature) on the other” 
(p. 274). There is a consensus that expert knowledge dif-
fers from novice knowledge in its organization, as well as 
its extent (Glaser 1987; Lesgold 1984). Experts also rely 
on more ’abstract’ or general structures (Voss et al. 1983). 

Hoffman (1998) argued that experts differ from non-experts 
in the reasoning operations or strategies they apply, and their 
ability to apply these operations and strategies in different 
orders and with different emphases.

Experts in mathematics have the ability to focus attention 
on appropriate features of problems, and have more cogni-
zance of their own thought processes and of how others may 
think (Carlson and Bloom 2005; Lester 1994). Researchers 
characterized experts’ performance as processing flexibility 
linked to the ability to form multiple alternative interpreta-
tions or representations of problems (Hoffman 1998; Greer 
2009; Star and Newton 2009). In contrast to an expert, a nov-
ice’s system of representations of a mathematical concept 
may be deficient in number and in connections that form an 
adequate network of knowledge (Lester 1994). Mathemati-
cal knowledge and skills in experts are developed through 
deliberate practice and are characterized by robust concept 
images, procedural fluency and strategic competence in 
problem-solving, high levels of abstraction, and mathemati-
cal flexibility, expressed in the number of ways in which 
experts can tackle a problem (Schoenfeld 1985). Experts 
differ from novices in the problem-solving strategies they 
employ (Schoenfeld 1992) and in their ability to categorize 
problems according to solution principles and choose the 
most efficient ways of solving a particular type of problem 
(Sweller, Mawer and Ward 1983). Moreover, according to 
Duncker (1945) proposing an hypothesis is an intrinsic part 
of the problem-solving process for mathematical experts.

Beginning with Poincare’s (1908/1952) work, research-
ers’ studies of mathematical expertise have often been based 
on retrospective analyses of their own mathematical activi-
ties, or analysis of the mathematical performance of highly 
performing students or colleagues (Berman 2009; Schoe-
nfeld 1985; Wilkerson-Jerde and Wilensky 2011). Studies 
on mathematical expertise are often linked to studies on 
mathematical giftedness, which analyze exceptional math-
ematical performance and connect mathematical giftedness 
to the work of mathematicians (Leikin 2019; Sriraman 2005; 
Usiskin 2000). As such, studies on mathematical expertise 
and mathematical giftedness are greatly intertwined (Leikin 
2019), as reflected in the research populations of these stud-
ies, which include mathematical professors and graduate stu-
dents (Wilkerson-Jerde and Wilensky 2011), participants in 
mathematical Olympiads (Koichu 2010; Koichu and Berman 
2005; Reznik 1994), students who passed SAT-M tests with 
high scores, or participants in summer mathematics camps, 
or simply students with extremely high mathematical scores 
in school, or mathematical majors (Lubinski and Benbow 
2006).

In contrast to studies that describe and analyze mathe-
matical performance of mathematically advanced individu-
als alone, in this study we employed a differentiated view 
of mathematical expertise. We focused our study on two 
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groups of participants with different types of mathematical 
expertise (MO and MM participants). To the best of our 
knowledge, no previous study has performed a comparison 
of mathematical creativity in groups of participants with 
different types and levels of mathematical expertise.

2.2  Creativity in mathematical problem solving 
and problem posing

In the vastly changing world of the twenty-first century, the 
importance of creativity is difficult to overestimate. Devel-
opment of creativity in general and of mathematical creativ-
ity in particular is extremely important nowadays, both from 
a personal point of view—to strengthen people’s ability to 
adopt to new and challenging situations, which is essential 
for the well-being of each individual—and as a basic mecha-
nism of societal, technological, and scientific development 
(Amado, Carreira and Jones 2018; Leikin and Pitta-Pantazi 
2013; Leikin and Sriraman 2016; Sriraman and Hwa 2010).

Torrance (1974) considered creativity to be an effective 
combination of divergent and convergent thinking. Opera-
tionally, this view led to the definition of creativity based 
on four related components, namely, fluency, flexibility, 
novelty, and elaboration (Torrance 1974). Divergent think-
ing includes finding different solutions and interpretations, 
applying different techniques, and thinking originally and 
unusually, and creativity is one of the learning outcomes. 
At the same time, for convergent thinking, knowledge is of 
particular importance as a source of ideas, pathways to solu-
tions, and criteria of effectiveness and novelty.

Providing a precise and broadly accepted definition of 
mathematical creativity is extremely difficult, probably 
impossible (Mann 2006; Sriraman 2005). Sternberg and 
Lubart (2000) drew a connection between creative perfor-
mance and the ability to produce original and useful prod-
ucts, and, moreover, there is consensus among researchers 
that originality is the major component of creativity.

Mathematical creativity in school mathematics is usually 
associated with problem solving or problem posing. Problem 
posing and problem solving can be employed for the devel-
opment of mathematical creativity (Matsko and Thomas 
2015; Levav-Waynberg and Leikin 2012). Creative problem 
solving in mathematics is associated with mental flexibility 
(Silver 1997; Star and Newton 2009) and with mathematical 
insight (Ervynck 1991; Krutetskii 1976; Leikin 2009). Fol-
lowing Torrance (1974), Silver (1997) suggested developing 
creativity through problem solving as follows: Fluency is 
developed by generating multiple mathematical ideas, gen-
erating multiple answers to a mathematical problem (when 
such exist), and exploring mathematical situations. Flexibil-
ity is advanced by generating new mathematical solutions 
when at least one has already been produced. Originality 
is advanced by exploring many solutions to a mathematical 

problem and generating a new one. Leikin (2009) suggested 
a model for the evaluation of creativity using multiple solu-
tion tasks (MSTs). This model suggests evaluation of crea-
tivity with the three abovementioned categories—fluency, 
flexibility and originality—through analysis of similarities 
and differences between the multiple problem-solving strat-
egies used. The PPI tasks, as described in the introduction 
section, are an instance of MSTs, thus in the current study 
we utilized Leikin’s (2009) model with regard to the vari-
ability of problems posed by the study participants.

2.3  Relationship between creativity and expertise

The relationship between creativity and expertise is an 
intriguing research topic and one can find inconsistencies 
between researchers’ arguments about this relationship. For 
example, the publications reviewed above in this paper do 
not connect expertise and creativity. This can be seen for 
example, in the word cloud for the 60 most frequent words 
created based on Hoffman’s (1998) chapter “How can exper-
tise be defined? Implications of research from cognitive 
psychology” Fig. 1.

Baer (2015) demonstrated that creativity and expertise are 
related, but are very different things. He argues that whereas 
expertise does not usually require creativity, creativity may 
require a certain level of expertise. In contrast, the bulk of 
the research literature on mathematical expertise at high 
level considers creativity to be an integral component of 
mathematical expertise in mathematically gifted individu-
als. Poincare (1908/1952) and Hadamard (1945) character-
ized the work of professional mathematicians as a creative 
activity, based on introspective analysis of their and their 
colleagues’ activity. Sriraman (2005) suggested a theoreti-
cal model of connections between creativity and expertise 
that included 8 levels of expertise according to the creativ-
ity component (introduced by Usiskin 2000), arguing that 
“in the professional realm, mathematical creativity implies 

Fig. 1   Studies on experts do not mention creativity
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mathematical giftedness, but the reverse is not necessar-
ily true” (Sriraman 2005, p. 21). Findings about domain 
dependency of expertise and creativity (Baer 2015) are an 
additional factor that motivated our study. “People may be 
expert, and people may be creative, in many domains, or 
they may be expert, or creative, in few domains or none 
at all, and one cannot simply transfer expertise, or creativ-
ity, from one domain to another, unrelated domain” (Baer 
2015, p. 165). In our study we considered whether and how 
MO and MM types of mathematical expertise are expressed 
in PPI.

2.4  Problem posing and problem solving

In the past two decades mathematical investigations have been 
acknowledged as powerful tasks for the teaching and learning 
of mathematics (Leikin 2016; Ponte 2007; Ponte and Henr-
iques 2013; Silver 1994; Yerushalmy et al. 1990). Problem 
posing is a broad concept, usually related to the creation of 
a new problem in response to a requirement to create a prob-
lem or a set of problems. Mathematics educators categorize 
problem posing and investigation problems as ’open problems’ 
(Pehkonen 1995; Silver 1994, 1997). Some problem posing 
related to problem transformation was explored by research-
ers focusing on systematic transformations of a given problem 
involving variations in goals and givens (Brown and Walter 
1993). Silver et al. (1996) and Hoehn (1993) drew attention 
to the “symmetry” transformation of a problem, which leads 
to the creation of a problem in which the givens and the goals 
have been swapped. Silver et al. (1996) also described the 
“goal manipulation” strategy, in which the givens remain and 
only the goal is changed. Leikin and Grossman (2013) demon-
strated that “What if yes?” problem posing strategies are more 
effective when performing investigations and problem posing 
in DGE if conditions are added to givens instead of removing 
them. PPI tasks employed in this study allow both manipula-
tion of givens and goals and this activity is supported by the 
use of DGE, which is naturally associated with investigations 
in geometry (Yerushalmy et al. 1990).

Complex problem solving by experts, including Olympiad 
participants, includes problem posing; “problem formulation 
and problem solution go hand in hand, each eliciting the other 
as the investigation progresses” (Davis 1985, p 23). Duncker 
(1945) observed that problem solving by mathematical experts 
consists of successive re-formulations of an initial problem 
(which is a type of problem posing). Koichu (2010) analyzed 
problem posing in the context of teaching for advanced prob-
lem solving. However, the way in which experts with different 
types of mathematical expertise perform problem-posing tasks 
has not been explored systematically.

Reznik (1994) described the Putnam contest as designed 
to test originality as well as technical competence in prob-
lem solving. He believed that success in Olympiads and in 

studying mathematics at the university level are related, but 
not necessarily equivalent, thus not all mathematics majors 
can solve Olympiad problems. Sriraman (2005) maintained 
that in the hierarchy of mathematical giftedness, majoring in 
mathematics stands at a lower level than does participation in 
mathematical Olympiads. Thus, in our study, the two groups 
MO and MM were chosen in order to shed light on the rela-
tionships between problem-solving expertise of different types 
and levels (MO and MM), and creativity linked to PPI.

3  The study

3.1  Problem posing through investigations

PPI is a complex mathematical activity that includes the 
following (Leikin and Elgrably 2020):

Investigating a geometrical figure (from a proof problem) 
in a DGE (experimenting, conjecturing and testing), in 
order to find several [at least 2] non-trivial properties of 
the given figure and related figures that are constructed 
using auxiliary constructions. A non-trivial property is 
defined as one for which the proof includes at least 3 
stages (Fig. 2).
Formulating several [at least 2] new proof problems based 
on the investigations performed, and solving (proving) 
them.

In what follows we use the terms ‘posed problem’ and 
‘discovered properties’ interchangeably since the posed 
problems require proving the discovered properties. Fig-
ure 2 depicts the PPI task used in the study presented in 
this paper.

Task 1 was formulated using a proof problem from a 
10th grade geometry textbook. The problem required stu-
dents to prove that BE∕EA = 2 (Fig. 2). The proof problem 
is simple for both groups of participants, allowing a focus 
on their problem-posing performance. To control the level 
of participants’ expertise we examined participants’ suc-
cess in proving the posed problems.

3.2  The study goals

The major goal of the study presented here was to exam-
ine mathematical creativity as a function of mathematical 
expertise. The examination was performed with regard to 
proof skills (auxiliary constructions performed in the course 
of PPI, correctness of proof of the posed problem and com-
plexity of the posed problem) and creativity components 
(fluency, flexibility, originality and creativity). To achieve 
the goal, we asked the following research questions:
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QA. What are the differences between PPI by MO and 
MM participants from the point of view of proof skills and 
creativity components?

QB. What are the mutual relationships between proof 
skills and creativity components of PPI by MO and MM 
participants and how do these relationships differ between 
the MO and MM students?

3.3  Participants and data collection

Two groups of participants took part in this study, namely 
the MO group and the MM group. The following character-
istics led us to consider the groups as having different types 
of mathematics expertise.

The MO group included 8 participants who were can-
didates for, or members of, the Israel National Olympiad 
team—problem solving experts in this study. All these 
participants passed the problem-solving training for the 
IMO (International Mathematical Olympiads). IMO is the 
most prestigious mathematics competition nowadays, and 
includes problems from classical content areas and those 
that are not usually studied in school or university (Koichu 
and Andžāns 2009). The training is directed at the devel-
opment of the highest level of problem-solving skills and 
strategies. The 8 participants volunteered to participate in 
our study upon our request.

The MM group in this study included 11 excelling math-
ematics majors who had studied more than 1000 h of mathe-
matics in university. These 11 participants were chosen from 
a group of 68 participants in a wider study, since, in contrast 
to the other 57 participants, they received scores above 90 in 
such courses as calculus, advanced calculus, linear algebra 
and analytical geometry. In addition to holding a BSc degree 
in mathematics, these participants completed a 52-h geom-
etry course directed at the development of problem solving 
(proving) skills in geometry through the systematic employ-
ment of PPI. This course included PPI linked to Menelaus’ 
theorem, Ceva’s theorem, 9 points circle and Euler line, so 
that they discovered and proved the theorems as well as 
being asked to use them when solving other problems dur-
ing the course (Leikin and Elgrably 2020).

Participants from the MM group were asked to solve Task 
1 during the written test conducted as the final examination 
of the course. MMs were given 90 min to solve this task. 
They performed PPI in dynamic geometry and submitted 
their investigation outcomes accompanied by GeoGebra files 

that demonstrated the entire sequence of constructions and 
discoveries performed in the course of their investigations. 
Additionally, MM participants submitted written documents 
that included problems posed by the participants and their 
proofs.

Since MO participants did not have training in solving 
PPI tasks, they first received a preliminary, very short intro-
duction to PPI tasks and the ways of working with DGE, and 
then were asked to solve Task 1 during individual interviews. 
The interviews were recorded using Camtasia software that 
allowed analysis of each action during the investigation pro-
cess and formulation of the posed problems. Participants 
from both study groups were engaged in solving the PPI task 
for about 90 min. This form of data collection allowed us 
to perform identical analyses of the PPI outcomes produced 
by the participants from the two groups, as explained in the 
next section.

3.4  Data analysis

We utilized the decimal-based scoring scheme introduced in 
Leikin (2009) for all of the criteria examined in this study. 
To examine the relationship between creativity and exper-
tise, we evaluated each individual space of posed problems 
with respect to creativity components and proof skills. Proof 
skills included the following: (a) auxiliary constructions 
performed by the participants to discover a property, (b) 
correctness of proofs of the discovered properties, and (c) 
complexity of the posed problem. Creativity components 
included the following: (d) fluency, defined as the number of 
discovered properties, (e) flexibility, defined as the number 
of discovered properties of different kinds, (f) originality, 
defined as the newness and rareness of the discovered prop-
erties. An individual space of posed problems is made up of 
all of the problems the person posed based on the discovered 
properties. We evaluated each of the individual spaces of 
posed problems as explained in Table 1.

We open the findings section with a description of the 
interview with Dave—the most creative MO participant in 
our study—and explain the ways in which his performance 
on PPI tasks was scored. Then, in order to answer the 
research questions, we report our comparison of the indi-
vidual spaces of problems posed by the participants from the 
MO group and those of the participants from the MM group 
with respect to the creativity components and proof skills. 
We also report the analysis we performed of the collective 

Fig. 2  PPI task used in this 
research

Task 1
Given:   is a right triangle , ( ⊥ ) ∢ = 60°

 is an equilateral triangle,  intersects  at point .

(a) Find at least two non-trivial properties by investigation in DGE 
(b) Formulate new problems and solve them

E
D

AC

B
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spaces of the problems posed by the participants of the two 
research groups.

4  Findings

4.1  Example: interview with MO expert

Dave (pseudonym) was 17 (at the time of the interview), and 
had been studying in the Technion (Israel Institute of Tech-
nology) since the 9th grade (Spring 2014). Dave took part 
in the International Mathematical Olympiad (IMO) during 
2014–2017. He won 4 medals: 3 bronze medals and one sil-
ver medal. Dave exhibited the highest performance on a PPI 
task both for the MO and the MM groups. Figure 3 presents 
excerpts from the interview with Dave.

Before analyzing the problems posed by Dave, let 
us remember that to allow for fluency of the interview, 
MO participants were not asked to present a complete 

formulation of proof problems (given X, prove Y), but 
only to find properties that can be proven (Y).

Dave not only discovered multiple properties and 
proved them, he also refuted a number of properties either 
by construction and dragging in DGE (e.g., the points N  , 
L , H are not on one line) or by performing a formal proof 
( CI = DI  was shown to be mistaken by calculating the 
power of the point I). In the course of examining conjec-
tures by proving or in the course of proving the proper-
ties, Dave formulated additional properties that sometimes 
he did not find interesting enough to explicitly present as 
posed problems or did not recognize as discoveries at the 
time. However, he also used DGE to test the conjectures 
he raised, when proving or trying to prove some properties 
that seem to be correct based on the observation of the 
figure in DGE. After performing a number of auxiliary 
constructions he understood the power of DGE for discov-
ering properties and asked whether he is allowed ‘to build 
whatever he wants to’. After this moment of the interview 

Table 1  The scoring scheme for the evaluation of an individual space of the problems posed through investigations

Score for a particular solution 10 1 0.1

Score for individual space of posed problems (according to the discovered properties)
 Creativity components
  Fluency n, number of posed 

problems
  Flexibility, Flx =

∑n

i=1
Flx

i
Each property the participant 

discovered
Property with change in the 

type of class of the discovered 
property

Property within the class but with 
change in operation/type that 
leads to the discovered property

Repeated operation/type of dis-
covered property after additional 
auxiliary construction

Repeated operation /type of dis-
covered property

  Originality, 
Or =

∑n

i=1
Or

i

Properties that are:
New for the participant
Insight-based
Rare type (P < 10%)

Properties not learned previously, 
but which follow directly from 
the data given

Less rare type (10% ≤ P < 40%) 
but requires proof

Trivial (previously learned) 
property

Property of frequent type 
(P ≥ 40%) in the collective 
space, following directly from 
the data given

  Creativity, 
Cr =

∑n

i=1
Flx

i
Or

i

High level of complexity Mid level of complexity Low level of complexity

Proof skills
 Auxiliary constructions
  According to the number of con-

structions and to the location 
of the construction preceding 
discovery of the property

Ac =
∑n

i=1
Ac

i

There are at least 3 constructions 
inside the shape

Or
At least 2 outside the shape

There are no more than 2 con-
structions inside the shape

Or
One construct outside the shape

There is at most one construct 
within the shape

Evaluated with 0
instead of 0.1

 Complexity of a posed problem
  According to the conceptual 

density and the length of proof
Pr_c =

∑n

i=1
Pr_c

i

The proof includes at least 7 
stages and at least 5 theorems 
and/or concepts

The proof includes 4–6 stages and 
3–4 theorems and/or concepts

The proof includes 1–3 stages and 
1–2 theorems and/or concepts

 Correctness of proof
  Cor—is the maximal score 

among the performed proofs

Complete correct proof Appropriate but incomplete proof No Proof
Incorrect proof
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he performed a variety of constructions in the course of 
tackling the PPI task.

Auxiliary constructions Problems D1, D2 and D3 got a 
score of 0 because discovering the properties required at 
most one auxiliary construction. For example, to find dis-
covery D1, that ADBF is a rhombus, Dave had to perform 
one auxiliary construction, namely, drawing a line parallel 
to BD through point A, that is, the segment AF. Simi-
larly, property D8 was discovered without need for any 
auxiliary construction, and so also received a score of 0. 
On the other hand, property D4 was discovered using the 
construction of two auxiliary lines in the shape, namely, 
DF and AF, and therefore received a score of 1. In order to 
get a score of 10, more than 3 auxiliary constructions are 
required within the shape; a good example is the discovery 

of property D5, which consists of creating the points G and 
H and drawing a circle inscribing the shape.

Complexity of the posed problem Proving D1 was 
relatively simple: AF∥BD is an auxiliary construc-
tion (1) AD∥BC—if alternate interior angles are equal 
(∢BAD = ∢ABC = 60°), the lines are parallel; (2) then AFBD 
is a parallelogram (according to definition). (3) AD = BD—
adjacent sides in the parallelogram thus AFBD is a rhombus. 
The proof included 3 stages, use of 2 definitions and the 
equality of alternate interior angles as a sufficient condition 
for parallel lines. Thus complexity of D1 was scored with 1.

The proof for property D4 was based on the proof of D1 
and the additional stages: (1) FH = HD since the diagonals 
bisect each other, and therefore AH is a median line, (2) 
the diagonals in a rhombus are perpendicular, therefore 

Fig. 3  Excerpts from the inter-
view with Dave (the highest 
performer in the study)

Dave 
1-2

A straight line that is parallel to , going through .  is a rhombus [D1], 
nice. [Draws a circle around  through the points , , ]. This could be 
interesting… Ahh, no, it isn’t interesting. But maybe I’ll try using other circles…. 
[Finds point of intersect between  and , and marks it as ]. Ahh, now it 
looks like  is the midpoint of  [D2]. Hmm, there’s got to be some simple 
reason why.

Dave 
3-4

I want to go ahead and prove it. It looks like it’s right. Ah, what I need to do is say that  is a parallelogram, 
and… yes, that’s true. Because this thing is an angle bisector [meaning  is the diagonal in the rhombus]. So here 
there’s a 30 degree angle  and here  we have 30 degrees.
So it turns out that  is a parallelogram [D3] [marks ]. , for instance, is the intersection of the = ∩

median lines in the triangle  [D4]. Now (laughs) I’ll build whatever I want to. Right?

Dave 
5-6

[Draws an arc through the points , , ]. For sure that won’t go through 
, no, through .

Yes, it doesn’t. … Maybe . …Even though I don’t think so. Huh, it 
does.That looks like the same circle. No, it doesn’t look like the same circle. 
I’m not sure anymore… if it looks like the same circle or not. But, hmm... 
let’s check [draws  and the line perpendicular to  through point ]. 
Yes, so it is the same circle.  are on one Circle [D5], ,

… , that’s what I check now, and I know that  is .∢ = 90° ∢ 90°

The triangle  is equilateral, and ,  is the midpoint of , so  and that’s why there’s a circle here. = 90°

That’s nice… 
[Marks as  the point that the circle intersects on the segment  and [A stage in proving he discovers that the points 

, , and  are on one straight line [D6].   central ]∢ = 30° ⇒ ∢ = 60°

Dave 
7, 8

…I want to draw the circle with diameter  and see if it goes through . [Draws the circle through A].  
.tievorplliwtahtdnatahtyasottnawI?yhwwoN.eurtebotmeesseodtaht,seY ∙ = ∙ ( = ∙ )

[Tries to use such concepts as the radical axis, power of a point, Ceva’s theorem. Menelaus’ theorem, Calculates ratios 
,sitahT:tahtsevorP.noitamrofsnartlaripsdna   is on the same circle as , , [D7]. 2 = ∙ ( = ∙ )

Using Menelaus theorem in  and the points   proves  [D8]]∆ , , ( ∙ ∙ = 1) =

Dave 
9-10-
11-12

…[Marks the point of intersection between the large circle and the line 
[AJ] as ]. 
It looks like they’re on a single straight line [the points , , ]. Let’s 
try this [creates a straight line through the points  and ] 
No, it looks like it really doesn’t go through . OK.
 Maybe ,  and  will be on a single straight line? 
[Creates a straight line through  and , zooms in by dragging the point 

and sees that the point  is not on the line ]. 
No. OK. ,  and  are not collinear.

[In what followed Dave discovered and proved that  are collinear [D9],  is an isosceles trapezoid , , 

[D10],  is tangent to a circle centered around  [D11];  checks by calculating the power of a point and turns =

out to be mistaken;  The points , , and [D12] are on a single straight line]∩ =

The text in squared parentheses presents the authors’ additions and explanations. 
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∢BHF = 90°, (3) FD∥AC—if corresponding angles are equal 
(∢BHF = ∢BAC = 90°) then the lines are parallel, (4) ACFD 
is a parallelogram according to definition. (5) The diagonals 
in a parallelogram bisect each other, and therefore AG = FG 
and therefore DG is a median line and E is the intersection of 
the medians in the triangle. The proof included 4 additional 
stages to the proof of D1.

Proof correctness Dave proved all the discovered proper-
ties but the last, which he did not prove due to the end of the 
interview. Each of his proofs was scored with 10.

Fluency Overall Dave discovered and explicitly formu-
lated 12 properties (D1–D12, see Fig. 3), thus his fluency 
score was 12.

Flexibility The properties (see Fig. 3 and Table 2) were of 
6 different types: D1, D3 and D10—special quadrilaterals, 
D2 midpoint of a segment, D4 a point is a triangle’s center 

of mass, D5 and D7 four points on a circle, D8 two segments 
ratio, D6, D9 and D12—three points on a straight line, and 
D11 a line is tangent to a circle. Properties D1, D2, D4, 
D5, D6 and D11 were scored with 10 points for flexibility 
as these properties were of different types. D8 was scored 
with 0.1 points for flexibility since it was the same property 
as D2. D3 was scored with 1 for flexibility since D1 also 
was a parallelogram (rhombus), however, D10 was scored 
with 10 since it was a different type of special quadrilateral 
than D1 and D3, and the discovery of D10 required many 
complex auxiliary constructions. D7, D9 and D12 were 
repeating properties discovered in different locations of the 
figure based on a series of auxiliary constructions, and this 
received a score of 1 for flexibility.

Originality Originality of the problems was evaluated 
based on the frequency of the property, as determined by 

Table 2  Evaluation of Dave’s individual space of posed problems
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the number of participants who discovered the property. The 
frequency was calculated based on the problems posed by 
the participants from MO group and the big MM group. 
Each of the properties ‘the quadrilateral is a rhombus’, ‘the 
quadrilateral is an isosceles trapezoid’, and ‘4 points are on 
a circle’ appeared in the spaces of posed problems of 1 to 5 
performers each. Thus D1, D4, D5, D7, D10 and D11 were 
scored with 10 points for originality. On the other hand, 
more than 97% participants from the big study group posed 
problems that included a ratio of segments and areas. Thus 
D2 and D8 each received 0.1 for originality.

Creativity The creativity of each posed problem within an 
individual space of posed problems was evaluated as a prod-
uct of flexibility and originality of the associated discovered 
property (Leikin 2009).

4.2  Comparing problems posed by MO participants 
and those by MM participants

4.2.1  Individual spaces of posed problems of Dave 
and Jerry

Table 2 below depicts, in a condensed form, the indi-
vidual space of problems posed by Dave (see Sect. 4.1), 

including a summary of the auxiliary constructions, all 
the discovered properties and their evaluation. Table 3 
presents the space of problems posed by Jerry, who is a 
MM participant with the highest creativity score among 
the MM participants.

Jerry’s space of posed problems received the highest 
creativity score among the 11 excelling MM participants. 
He posed 7 problems, which is fewer than Dave did (12). 
In Dave’s space of posed problems, 7 problems included 
complex properties (scored with 10), whereas Jerry’s 
space included 4 problems with complex properties scored 
with 10. Dave proved 11 of the 12 problems that he posed, 
whereas Jerry proved 5 of 7 problems. Dave’s flexibility 
score was 74.1 whereas Jerry’s flexibility score was 42.1. 
Dave made 6 original discoveries and his originality score 
was 64.2 while Jerry’s originality score was 51.1. Jerry’s 
original discoveries included the following properties: a 
quadrilateral is a parallelogram, ratio of areas of two quad-
rilaterals equals 4.5, similarity of two triangles and tan-
gency of a circle and a line. Note here that ratios of areas 
and ratios of segments were commonly examined by the 
participants in the MM group. As a result, all the charac-
teristics of the spaces of posed problems were higher for 
Dave than for Jerry.

Table 3  Evaluation of Jerry’s individual space of posed problems
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4.2.2  Overall differences between the spaces 
of the problems posed by MM and MO participants

Table 4 displays the number of problems in the collective 
spaces of posed problems by MO and MM groups, evaluated 
with the highest scores for different examined criteria. Fig-
ure 4 depicts boxplots representing range, mean and median 
for the all examined criteria.

Table 4 and Fig. 4 demonstrate that the 8 MO participants 
produced more than twice as many problems through inves-
tigations than did the 11 MM participants. The mean number 
of problems posed by MO participants was 3 times bigger 
than that of participants from the MM group. We compared 
the spaces of problems posed by the participants from the 
two groups according to the highest scores for all the exam-
ined criteria. We found that overall, problems posed by MO 
participants were based on a larger number of complex 
auxiliary constructions, included more complex discovered 
properties, and were proved in 97% of cases as compared to 
59%. The properties discovered by MO participants demon-
strated more flexibility and were more original. On average 
MO participants posed 3 times more problems that received 
100 for creativity than did MM participants.

Figure 4 illustrates most of the examined criteria. The 
highest score assigned for the problems posed by MM par-
ticipants was lower than the lowest score attained in the MO 
group for all the participants except Jerry. This result held 
for auxiliary constructions (44 vs 57), proof correctness (70 
vs. 110), fluency (10 vs.12), flexibility (51 vs. 58), origi-
nality (22.2 vs. 33.83) and creativity (201 vs 275). Jerry’s 

scores on originality and creativity (Table 3) were within the 
range of scores of MO students. Comparing median scores 
for all the examined proof skills and creativity components 
showed significant differences in the quality of discoveries: 
median scores were more than 4.9 times higher in the MO 
group than in the MM group for auxiliary constructions, 5.4 
times for proofs, 2.9 times for complexity of discoveries. 
The ratio of median scores in creativity components was 
2.8 for fluency, 4 for flexibility, 3.6 for originality and 3.2 
for creativity. A Mann–Whitney test demonstrated that the 
differences among the posed problems were significant for 
all the proof skills and creativity components.

4.2.3  Relationships between different creativity 
components and proof skills linked to PPI 
within the groups of MO and MM participants

An additional comparison between the PPI performed by 
MO and MM participants was conducted focusing on corre-
lations between the associated proof skills and the creativity 
components separately for MO and MM groups. A Spear-
man correlation test was applied to all the proof-related and 
creativity scores within each study group. Consistent with 
the findings of our previous studies (Leikin and Elgrably 
2020; Levav-Waynberg and Leikin 2012), in the 2 groups of 
participants the correlation between creativity and original-
ity was found to be significant (rs = 0.881, p < 0.01 in MO 
group; rs = 0.991, p < 0.01 in MM group). This correlation 
confirms the validity of the model suggested for the evalua-
tion of creativity linked to PPI.

Table 4  Numbers of posed problems with 10-score for different examined category

Overall no. of 
posed prob-
lems

Mean no. of 
posed problems 
per participant

No. of posed problems with a score of 10 for Creativity = 100

Auxiliary 
construc-
tions

Complexity 
of the posed 
problem

Proof correct-
ness

Flexibility 
excluding a 
problem posed 
as the first one

Originality

OM participants (N = 8)
 Total no 141 17.63 92 57 137 56 38 27
 % of 141 65.2% 40.4% 97.2% 39.7% 27% 19.1%
 Mean no 

of prob-
lems per 
partici-
pant

11.5 7.1 17.1 7 4.8 3.4

MM participants (N = 11)
 Total no 66 6 25 21 39 14 17 12
 % of 66 37.9% 31.8% 59.1% 21.2% 25.8% 18.2%
 Mean no 

of prob-
lems per 
partici-
pant

2.27 1.91 3.55 1.27 1.55 1.1



901Creativity as a function of problem‑solving expertise: posing new problems through…

1 3

Based on the initial analysis of the individual and col-
lective spaces of the problems posed by the two groups of 
participants, and based on our previous study with a big-
MM group (Leikin and Elgrably 2020), we hypothesised 
that auxiliary constructions performed by the participants 
in the course of PPI led to more complex properties and a 
more flexible discovery process. To our surprise, the com-
plexity and number of auxiliary constructions performed 
(as reflected in the auxiliary constructions score) did not 
correlate significantly either with complexity of the posed 
problems, or with creativity-related criteria linked to PPI.

For the problems posed by the MO participants we found 
significant correlations between fluency and flexibility 
(rs = 0.862, p < 0.01 for fluency and flexibility in MO). This 
correlation demonstrated that a larger number of posed prob-
lems led to a larger number of problems of different types 
posed by MO participants. This correlation supports our obser-
vations regarding the MO students’ inclination to find ‘inter-
esting’ discoveries, as was obvious in the interview with Dave. 
This connection between fluency and flexibility of the PPI pro-
cess was specific to the MO participants. This correlation did 
not appear to be significant in the MM group. Interestingly, 
both fluency and flexibility of PPI correlated significantly with 
proof correctness in MO participants only (rs = 0.970, p < 0.01 
for fluency and proof in MO; rs = 0.905, p < 0.01 for flexibility 

and proof in MO). This correlation supports our observation 
that, as in the case of Dave’s PPI, many of the properties dis-
covered by MO participants were discovered in the course of 
searching for proofs of earlier discovered properties, and PPI 
by MO participants constituted chains of proofs and discover-
ies supported by DGE.

Flexibility of PPI in the MM group correlated significantly 
both with originality and creativity of the PPI (rs = 0.900, 
p < 0.01 for flexibility and originality in MM; rs = 0.945, 
p < 0.01 for flexibility and creativity in MM). MMs’ ability to 
pose more different problems was related to their success in 
posing original problems. Surprisingly, these correlations did 
not appear to be significant in the MO group. We suggest that 
the proof skills that characterised MO mathematical expertise 
led to their flexibility, while the posing of original problems 
was rooted in their geometrical curiosity, expressed in an incli-
nation to find interesting properties.

5  Conclusions, discussion and some 
additional facts that explain our findings

The goal of the study presented in this paper was to exam-
ine relationships between creativity and expertise in math-
ematics in two groups of participants with different types 

Fig. 4  Boxplots of scores 
assigned to the posed problems 
in the two groups
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of mathematical expertise. The first group (MO) included 
8 candidates or members of the Israel National Olympiad 
team. MOs were experts in mathematical problem solving at 
high level, including solving complex geometry problems. 7 
of them did not study university mathematics before or dur-
ing the study. The second group (MM) included mathemati-
cal majors that excelled in mathematical courses during their 
studies for a BSc degree in mathematics. They succeeded in 
solving different kinds of problems at an advanced level but 
were not experts in solving complex mathematical problems 
at the Olympiad level.

The study demonstrates significant differences between 
the two kinds of expertise in mathematics. We found that 
problem solving expertise at high (MO) level significantly 
influences the quality of PPI as reflected in proof skills 
and creativity components. Unfortunately, we found again 
(Leikin and Elgrably 2020) that university mathematics 
courses do not develop creative mathematical abilities and 
skills. The MO participants appeared to perform PPI sig-
nificantly better than MM participants. They were more 
fluent, flexible and original and produced more complex 
problems with more complex auxiliary constructions. The 
lowest scores on almost all the examined criteria in MO 
were higher than the highest scores achieved by MMs on 
PPI tasks. This result was in spite of the fact that MMs com-
pleted university degrees in mathematics, excelled in their 
mathematics courses, and took a geometry course with a 
specific focus on PPI.

One possible explanation, that expert knowledge is the 
reward of years (10 years) of concentrated effort, does not 
apply well to our findings, since both groups invested time 
and effort in studying mathematics. We assume that the dif-
ference is related rather to the type of training for Olympiads 
(Koichu and Andžāns 2009) and considerations of participa-
tion in international competitions as an established indicator 
of expertise and talent (Bloom 1985), than to majoring in 
mathematics (Sriraman 2005).

We found that the high level of mathematical expertise of 
MO participants was reflected in the significant correlation 
between proof skills and creativity skill. We demonstrated 
clearly—both through the analysis of the interview example 
and by means of the correlation analysis—that problem pos-
ing performed by MOs and proving by MOs were insepa-
rable. These findings are in accord with Duncker’s (1945) 
position that raising a hypothesis is an intrinsic part of the 
problem-solving process in mathematical experts. Accord-
ing to Duncker, problem solving by experts involves deep 
understanding of available data, seeking information to test 
alternatives, and producing a judgment. The MOs in our 
study tended to approach PPI as a problem-solving task, and 
through seeking for alternative properties which were more 
interesting for them. They used DGE mostly to test their 
hypotheses about additional properties, along with searching 

for properties using dynamic geometry. The auxiliary con-
structions that they performed were performed consciously, 
oriented to a goal. We suggest that this behavior is reflected 
in the absence of correlations between the auxiliary con-
structions performed by MOs and other examined criteria. 
In addition, since they approached PPI similarly to proof 
problems, and based their hypotheses about new properties 
on their previous experiences in solving mainly proof prob-
lems, high correlations between proof correctness, fluency 
and flexibility were found. An additional explanation for our 
findings can be found in Hoffman’s (1998) argument that 
expert performance is characterized by flexible reasoning 
linked to the ability to form multiple alternative interpreta-
tions or representations of problems, and an increased abil-
ity to revise old strategies and create new ones as problem-
solving proceeds (Shanteau and Phelps 1977). Most of the 
MO participants searched for more original properties based 
on their inner curiosity.

Note here that a major study limitation is the different 
formats (i.e., a test and individual interviews) in which the 
task was employed with the two groups of participants. 
Nonetheless, both of these two different formats included 
solving a PPI task in the same dynamic geometry environ-
ment and tracking the auxiliary constructions performed and 
the problems posed by the participants. This data allowed 
us to conduct identical analyses of the PPI outcomes pro-
duced by the participants from the two groups. In contrast to 
the individual interviews performed with MO participants, 
the test conducted with MM participants did not record PPI 
strategies. Thus comparative analysis of the PPI strategies 
used by the participants from these two groups is a subject 
for a further investigation.
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