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Abstract
Research on mathematical problem solving has a long tradition: retracing its fascinating story sheds light on its intricacies 
and, therefore, on its needs. When we analyze this impressive literature, a critical issue emerges clearly, namely, the pres-
ence of words and expressions having many and sometimes opposite meanings. Significant examples are the terms ‘realistic’ 
and ‘modeling’ associated with word problems in school. Understanding how these terms are used is important in research, 
because this issue relates to the design of several studies and to the interpretation of a large number of phenomena, such as 
the well-known phenomenon of students’ suspension of sense making when they solve mathematical problems. In order to 
deepen our understanding of this phenomenon, we describe a large empirical and qualitative study focused on the effects 
of variations in the presentation (text, picture, format) of word problems on students’ approaches to these problems. The 
results of our study show that the phenomenon of suspension of sense making is more precisely a phenomenon of activa-
tion of alternative kinds of sense making: the different kinds of active sense making appear to be strongly affected by the 
presentation of the word problem.

1  Problem solving in mathematics 
education research

Problem solving is one of the main topics in mathematics 
education research, ever since its origin as a relatively young 
field of research. For example, the seminal work of Polya 
(1945) surely had, and still has, a great influence on research 
on problem solving, laying the groundwork for further devel-
opments. On the other hand, the research on mathematical 
problem solving before the 1970s had several limits, being 
a-theoretical, unsystematic and strictly based on a quantita-
tive approach (Kilpatrick 1969).

It is unquestionable that, in line with the development 
of research in mathematics education as a field of research 
in its own right, problem solving research has made much 
progress during the last 50 years, changing perspectives, 
methods and also goals (Liljedahl et al. 2016). Retracing 
its evolution can lead to a better understanding of research 
choices, to identifying the consolidated findings and, ulti-
mately, to making progress.

In order to do that, we can ideally subdivide the 50 years 
under consideration into two 25-year periods. In his detailed 
overview of the first of these two periods (1970–1994), 
Lester (1994) identifies the following main issues:

 i. determinants of problem difficulty;
 ii. distinction between good and poor problem solvers;
 iii. instructions for the teaching of problem solving;
 iv. role of metacognitive factors in problem solving.

In this list, we can recognize the three main protagonists 
of the problem solving activity, namely, the mathematical 
problem, the students, and the mathematics teacher.

According to Lester “there is no doubt that the nature of 
the research on problem solving has matured tremendously” 
(Lester 1994, p. 663). At the same time two significant issues 
are left unresolved, namely, the need for greater clarity in the 
meaning of terms, and the need to improve research meth-
ods. In particular, concerning the latter issue, Lester brings 
forward an interesting and pioneering reflection about the 
need to link the research methods to the research purposes. 
From the current perspective, we can also identify another 
significant limitation: the scarce attention to the role of 
social and affective factors in problem solving.

On the other hand, the general foundations for the recon-
ceptualization of problem solving research were laid in the 
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period between the 1980s and 1990s. In this time frame, 
the gradual affirmation of the interpretive paradigm in the 
social sciences caused a shift of methods and goals, from 
explaining phenomena in terms of cause-effect models to 
making sense of the world (Schoenfeld 1994). In particular, 
the main interest in problem solving research shifted from 
the development of effective programs for talented students 
to the interpretation of students’ difficulties in problem solv-
ing activities.

In this new frame, several studies described “the appar-
ently nonsensical things that students at all grade levels do 
when they attempt to solve mathematical problems” (Cobb 
1986, p. 2), for example, when they respond with a numeri-
cal answer to absurd problems (Baruk 1985) or when they 
ignore realistic considerations in mathematical school prob-
lem solving (Verschaffel and De Corte 1997). To describe 
these phenomena, Schoenfeld (1991) coined the expres-
sion: students’ suspension of sense making in solving word 
problems.

This new strand of studies produced a double awareness. 
First, the students’ difficulties in problem solving could no 
longer be explained solely in terms of cognitive limitations 
(Schoenfeld 1985). The publication of the book “Affect and 
mathematical problem solving” (Adams and McLeod 1989) 
represented a sort of manifesto, based on a strong and, by 
now, consolidated finding: a purely cognitive approach is 
highly limited when interpreting students’ mathematical 
behaviour in problem solving activities. Second, as Cobb 
underlines, often students must “resolve problems that are 
primarily social rather than mathematical in origin” (Cobb 
1986, p. 2). In particular, school problem solving can no 
longer be considered and analysed as a solo activity: it is a 
complex social activity where explicit and implicit social 
rules developed in the mathematics classroom play a crucial 
role (Yackel and Cobb 1996).

Within a socio-constructivist framework, learning, teach-
ing and doing mathematics involve the negotiation of mean-
ings, rules and expectations (Voigt 1994) and the result of 
these negotiations is a crucial key to interpreting students’ 
behaviours in the activity of problem solving. Insightful 
studies on school problem solving have been conducted 
within this framework and, in more recent years, this line of 
research has led to useful knowledge suggesting conditions 
for supporting problem solving in school (Liljedahl et al. 
2016; Liljedahl 2019).

However, after 50 years of research in this area, we still 
need to move forward. Problem solving, and in particular 
word problem solving, is still a source of great difficulties 
for the majority of mathematics learners, irrespective of stu-
dents’ age (Verschaffel, Schukajlow, Star and Van Dooren 
2020). Several recent studies have highlighted the increase 
over time of the students’ suspension of sense making 
as they develop more experience in problem solving and 

modeling in school (Mellone, Verschaffel and Van Dooren 
2017). This evolution also involves the affective side: com-
paring the attitude towards problems of kindergarten and 
primary school students, Di Martino (2019) showed how the 
exposure to mathematical problems in primary school has a 
negative effect on the idea that children have about what a 
problem is and about how they have to deal with it, as well 
as on their self-perception and emotional disposition towards 
mathematical problems.

The phenomenon of students’ suspension of sense making 
appears to be particularly serious with respect to its social 
and educational consequences. Realistic problem solving 
and mathematical modeling are nowadays considered central 
within the educational standards of several countries all over 
the world, and they are seen as crucial elements in the cur-
rent understanding of mathematical competence (Hankeln 
2020) and for the exercise of effective citizenship (Niss et al. 
2016). On the other hand, students’ difficulties in problem 
solving increase over time, sometimes without being evident 
to students and teachers. Often, they become evident during 
(school or tertiary) transitions when a specific approach to 
mathematical problems suddenly no longer works, causing 
a real crisis in students’ mathematical identity (Di Martino 
and Gregorio 2019).

The expression ‘students’ suspension of sense making’ 
draws attention to the student-dimension, however there 
are multiple variables that play a role in this phenomenon. 
In the case of word problems, one of these variables is the 
format—text, picture, general presentation—of the problem 
itself.

In the study on which we report in this paper, we inves-
tigate the effect of different variations in the presentation of 
word problems on students’ answers and approaches to the 
problem. To achieve our research goal, we have designed 
a methodological cycle where new versions of the original 
problems are developed on the basis of the data previously 
collected. Our hypothesis is that even minimal variations in 
the problem presentation can affect students’ approaches to 
the problem itself and, in particular, the emergence of their 
realistic considerations.

In the next section, we discuss the meaning of the main 
terms involved in our research. Despite the extensive lit-
erature, the meanings of key terms involved in the problem 
solving research are still not consensual and, as Schoenfeld 
(2000) underlines, this is a problematic issue. Mathematics 
education research has a cumulative nature: in particular 
new research should build on a critical analysis of previous 
research, and researchers have an intellectual obligation to 
push towards greater clarity.



819Students’ suspension of sense making in problem solving  

1 3

2  Problem, word problems, realism 
and mathematical modeling

What is a ‘problem’? According to Duncker: “A problem 
arises when a living creature has a goal but does not know 
how this goal is to be reached” (Duncker 1945, p. 1). In 
this perspective, a situation is problematic not in an abso-
lute sense: it depends on the characteristics of the living 
creature who faces the problem at that particular moment. 
Moreover, problem and routine are incompatible: a prob-
lem is challenging by its nature, therefore, in general the 
activation of reproductive and automatic thinking in a 
problematic situation is not a good strategy.

Even if it is true that a routine task can be a departure 
point for challenging problem solving, this evolution rarely 
happens in school (Liljedahl et al. 2016). In particular, 
Duncker’s definition induces a characterization of problem 
solving that appears to be far from what is used in the typi-
cal school problem solving session (Pongsakdi et al 2020).

Teachers—in particular, primary school teachers that 
are not usually mathematics specialists—are often afraid 
of the unpredictable outcomes of challenging problem 
solving activities and therefore they mostly promote rou-
tine tasks in their mathematics sessions (Russo and Hop-
kins 2019). It is no coincidence that students’ suspension 
of sense making usually emerges as a result of an external 
intervention (by researchers, standardized assessments, 
etc.). The absurd problems (in the style of ‘the age of the 
captain’ problem) or the non-routine tasks widely used in 
literature (Greer 1993; Verschaffel, De Corte and Lasure 
1994) would hardly be proposed by a teacher in his or her 
classroom.

This phenomenon emerges also in a study on pre-
service teachers conducted by Verschaffel, Da Corte and 
Borghart (1997), in which they investigate pre-service 
teachers’ evaluation of students’ answers to a list of seven 
problematic problems. A problematic problem (P-prob-
lem) is defined as a non-routine task where realistic con-
siderations need to be taken into account in order to give 
a meaningful answer (an example of P-problem is the very 
famous army bus problem: 450 soldiers must be bused to 
their training site. Each army bus can hold 36 soldiers. 
How many buses are needed? quoted the first time by Car-
penter et al. 1983). The researchers found that teachers 
usually consider P-problems as ill-formulated or tricky 
problems: “it was undesiderable or even totally inappro-
priate to confront fifth-grade children with such complex, 
ill-formulated or tricky problems” (Verschaffel, Da Corte 
and Borghart 1997, p. 357).

P-problems are word problems, intended to be realistic 
problems. One of the main reasons for the use of word 
problems in education is to let students experience an 

occasion in which to apply mathematics for solving real 
life problems, without the practical inconvenience of hav-
ing direct contact with real world contexts (Verschaffel 
et al. 2000). In some sense, the phenomenon of students’ 
suspension of sense making indicates that the school activ-
ity with word problems fails to fulfil this modeling goal 
(Mellone et al. 2017).

The relationship between word problems and modeling 
is controversial and highly debated. Some authors conceive 
word problems as a specific type of mathematical modeling 
problems (Verschaffel et al. 2020). Others underline that the 
word problems do not contain questions that are important in 
an authentic context: according to this view, modeling and 
solving word problems are two completely different activi-
ties (Kaiser 2017). Gerofsky, referring to the work of several 
philosophers, even discussed “the constitutional impossibil-
ity of ‘real-life’ word problems according to these theorists” 
(Gerofsky 2010, p. 61). However, all the quoted scholars 
underline some significant differences between word prob-
lems and problems encountered in daily life.

One of these differences concerns the verification of the 
reasonableness of the solution: in classroom simulations, 
once students find a mathematical solution to the problem, 
they do not use this solution and thus, they have no intrinsic 
reason to confront their solution with reality. This difference 
appears to be crucial in the phenomenon of students’ suspen-
sion of sense making on which we are focusing.

De Franco and Curcio (1997) proposed to 20 sixth grad-
ers the following revisited version of the bus problem: 328 
senior citizens are going on a trip. A bus can seat 40 people. 
How many buses are needed so that all the senior citizens 
can go on the trip? They obtained 18 out of 20 incorrect 
responses (12 out of 18 were incorrect interpretation of the 
remainder). One month later, students were asked to order 
minivans to take 6th graders to a class party, really making 
a telephone call to a bus company: We need to transport 
32 children to the restaurant so we need transportation. We 
have to order minivans. Board of Education minivans seat 
5 children. These minivans seat 5 children. These minivans 
have five seats with seatbelts and are prohibited by law to 
seating more than five children. The two problems proposed 
by De Franco and Curcio are not mathematically isomorphic 
(328:40 is not the same as 32:5), however they are isomor-
phic with regard to the interpretation of the remainder. The 
real difference between the two problems is the request of 
the telephone call, the need to have a reality check. Indeed, 
16 out of 20 students gave a correct response to the second 
problem, interpreting the remainder correctly.

Another important difference is that, in the school word 
problems, the person who has to solve the problem (usually 
the student) is not the same person as the one who adminis-
ters it (the teacher, the researcher, etc.). For this reason, the 
students’ beliefs about the implicit purposes of the problem 
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play a crucial role in their approach to the problem itself 
(Franchini, Lemmo and Sbaragli 2017; Zan 2011). For 
example, it is not clear how free students actually are to 
express their considerations about the realism or unrealism 
of the situation and to accept or refuse the implicit assump-
tions often needed to solve a word problem. Let us con-
sider the Planks problem used in several studies: Steve has 
bought four planks each 2.5 m long. How many planks 1 m 
long can be sawn from these planks? (Verschaffel, Da Corte 
and Lasure 1994). In a real situation, the first reaction of an 
external observer would probably be: Why did Steve buy 
2.5 m planks if he needs 1 m planks? It is the worst choice 
one could make.

The overall impression is that, as for the salt in some 
cooking recipes, the implicit indication for students in solv-
ing word problems is ‘realism to taste’: as a consequence, 
it is not so strange that students provide unrealistic answers 
to unrealistic problems with a vague purpose. Students can 
neglect realistic considerations if the word problem is unre-
alistic, but also if the realistic purpose is not explicit or if 
they have difficulties in quantifying the ‘realism to taste’ to 
be applied.

Even if there is a certain agreement among researchers on 
what a non-authentic problem is, there is no agreement about 
what an authentic problem is (Palm 2006). Different mean-
ings of a realistic problem have been used in the literature. 
Cooper and Dunne (2000) defined a problem as ‘realistic’ 
if it contains either people or concrete objects. In our view, 
the reference to a real person or an object in the text of the 
problem definitely does not guarantee a realistic interpreta-
tion of the described situation. In this regard, Nesher (1980) 
reported some interesting reactions of first and second grad-
ers to the task “Tell a story which would correspond to the 
mathematical sentence 3 + 4 = 7”. A paradigmatic example 
of pupils’ answers is: “I ate three cups and four plates”.

Several problems used in literature have been considered 
as realistic according to the above naïve definition, but actu-
ally they are often unrealistic “in the sense that important 
aspects of the ‘real’ situations described in the tasks are not 
well emulated” (Palm 2008, p. 39). If it is evident that a 
word problem only emulates a real-life task situation, how-
ever, it is possible and necessary to take care of its realism. 
Palm (2008) developed a truly fine framework to assess the 
degree of realism of a word problem, identifying five crucial 
aspects, as follows:

• Event (the event has a fair chance of taking place);
• Question (it actually might be posed in the real-life 

event);
• Purpose (the purpose of the task context needs to be clear 

and explicit);
• Language (the linguistic difficulties have to be in line 

with those that can occur in the simulated real situation);

• Information/data (this aspect is subdivided into three 
subaspects: existence of information/data, realism of 
information/data, specificity of information/data).

Even though ‘word problem’ literarily means ‘problem 
expressed through a text’, in mathematics education research 
the term is used with several meanings, some of which are 
less generic:

Word problems are typically defined as verbal descrip-
tions of problem situations, presented within a scho-
lastic setting, wherein one or more questions are raised 
the answer to which can be obtained by the application 
of mathematical operations to numerical data available 
in the problem statement or on numerical data derived 
from them. (Verschaffel et al. 2020, p.1).

This acceptation of ‘word problems’ appears to be ques-
tionable: word problems are limited to the arithmetical 
domain (numerical data) and it is assumed that they always 
have a solution that can be obtained through the application 
of mathematical operations. The idea that arithmetical oper-
ations are needed to solve a word problem is in line with stu-
dents’ stereotypical view of mathematical problems which 
is a possible source of difficulties, recreating the students’ 
calculation orientation towards word problems (Verschaffel, 
Greer & De Corte, 2000).

In our framework, the definition of ‘word problem’ refers 
only to how a problem is expressed rather than to how it can 
be answered. In line with Gerofsky’s idea (1996), we con-
sider word problems as a proper literary genre characterized 
by three recurrent components, as follows:

 i. a narrative component that introduces and describes 
the context and the characters;

 ii. an informational component that gives the information 
needed to address the problem;

 iii. the question component.

Gerofsky also introduces terms from linguistics in order 
to analyse the text of word problems. She underlined the 
potential role of parenthetical elements in the understanding 
of a text and, in relation to the suspension of sense making. 
Gerofsky further introduced the implicature, i.e. the read-
er’s inferences beyond the literal meaning of the linguistic 
expressions uttered in the text. The implicatures in solv-
ing word problems can play a role in determining students’ 
beliefs about the implicit purposes of the problem.

All of the three components described by Gerofsky 
appear to be significant in determining the degree of real-
ism of a word problem. Several studies showed how the 
rewording of the text can change the students’ approach to 
the problem and their understanding of the situation (Greer 
1997; Mellone et al. 2017; Zan 2011).
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Word problems can also be accompanied by illustra-
tions. Elia and Philippou (2004) analyse the different 
functions of word problem illustrations, developing the 
following classification:

 i. decorative—when the illustrations have no link to the 
context described in the word problem;

 ii. representational—when the illustrations represent the 
context (or a detail of the context) of the problem;

 iii. organizational—when the illustrations suggest direc-
tions for the solution procedure;

 iv. informational—when the illustrations impact the 
informational component of the word problem, i.e., if 
they include data not included in the text and needed 
for the solution.

The effects of these different kinds of illustrations on 
students’ approaches to a problem seem to be limited, 
since students tend to pay only superficial attention to 
the illustrations in solving word problems (Dewolf et al. 
2015).

So far we discussed different issues related to word 
problem solving and, in particular, to the suspension 
of sense making. We addressed the intrinsic distinction 
between word problems and problems in daily life, stu-
dents’ beliefs about the implicit purposes of the problem, 
and the degree of realism of the word problems. These 
issues suggest that rather than using the expression ‘sus-
pension of sense making’, we should use the expression 
‘activation of a different sense making’, since students’ 
sense making does not seem to be suspended but addressed 
by other variables.

In our study, we analysed the effects of variations in the 
presentation of word problems on students’ answers in order 
to better understand the suspension of sense making phe-
nomenon. The variations developed involve all the three 
components described in Gerofsky’s framework.

3  The study

3.1  Aims

The main aim of our study is to understand the effects that 
variations in the presentation of word problems have on 
students’ approaches to problems. In particular, we are not 
interested in measuring the change of the students’ success 
rate as in other studies (Vicente, Orrantia and Verschaffel 
2007). In line with an interpretative approach (Crespo 2000), 
our purpose is to overcome the correct or incorrect dual-
istic approach, accessing, rather than assessing, students’ 
approaches to different versions of a word problem.

3.2  Experimentation cycle

The process of variation of an assigned word problem is a 
trial and error method: some changes might not produce any 
recognizable effect on students’ approach to the problem, 
others might highlight significant changes, also providing 
insights for new interpretative hypotheses to be tested with 
new trials and word problem formulations.

We designed an experimentation cycle (see Fig. 1) where 
the production of a new version of the word problem used is 
developed based on the results of a previous experimenta-
tion. Adopting a grounded perspective, this experimental 
cycle is continued until theoretical saturation is achieved 
(Vollstedt and Rezat 2019).

Phase 0 of the experimentation cycle consists of the selec-
tion of the original task. In our research we selected eight 
word problems within the INVALSI (the Italian National 
Evaluation Service) survey database. Even if these problems 
are characterized by multiple choice questions, they usually 
are challenging word problems and they offer significant 
quantitative data (Di Martino and Baccaglini-Frank 2017). 
For the first implementation of the experimentation cycle, 
we always used the problem in its original version, adding 
the request: ‘Explain your reasoning’.

Phase 1—Data collection. Data collection was subdi-
vided into three steps: the collection of the individual stu-
dents’ written answers, the notes of a classroom discussion 
developed in a later session, the audio recording of students’ 
individual interviews.

Students had one hour during a classroom period to try to 
solve one problem. The time allocated for the problem solv-
ing activity is one of the main boundary conditions because 
students need adequate time in order to activate productive 
reasoning. It is interesting to note that in only few research 
studies authors reported on the time given to students for 
solving an array of problematic problems, as if time were 
not crucial in the experimental setting.

The one hour classroom discussion that followed evolved 
around the students’ comments on the realism of the word 
problem, and their description and comparison of the dif-
ferent strategies used to solve the problems. The individual 
interviews with a selection of students were designed to 
deepen some aspects of the students’ answers (written or 

Fig. 1  The experimentation cycle



822 G. Carotenuto et al.

1 3

oral). They lasted on average 20 min and were conducted 
by the third author.

Phase 2—Analysis and interpretation of data. In line 
with recent recommendations for the empirical research 
on problem solving and mathematical modeling (Schuka-
jlow, Kaiser and Stillman 2018), we used a mixed methods 
approach, integrating quantitative data with a qualitative 
approach. We quantitatively compared the students’ results 
in our experimentation with the results in the Italian national 
survey through which the problems were selected. Then, we 
developed a qualitative analysis of the written answers to the 
prompt ‘Explain your reasoning’ in order to reconstruct and 
classify students’ processes. Notes of the classroom discus-
sions and recordings of the individual interviews were used 
to deepen some aspects emerging from the students’ written 
answers.

The analysis was conducted classifying different aspects, 
namely, the students’ numerical answers, the explicit math-
ematical processes reported in the written answers, and the 
students’ comments on the context described in the word 
problem. This latter aspect was enriched by the notes related 
to the class discussions and individual oral interviews.

Phase 3—Production of new versions of the problem. On 
the basis of the results of Phase 2, one or more new ver-
sions of the word problem were developed in order to test an 
interpretative hypothesis, leaving unaltered the mathematical 
structure of the problem itself. These changes were classified 
through Gerofsky’s framework on word problems.

3.3  Original problem and populations

For reasons of space, we discuss the experimentation cycle 
for only one of the eight selected word problems, the car 
transporters problem, mainly focusing on students’ written 
answers. All the names used in the discussion are fictional.

The car transporters problem (CTP). This problem 
(Fig. 2), administered by INVALSI in the 2016 grade 5 

national assessment, has the following explicit aim: to test 
students’ control of division with remainder (INVALSI 
assigns an explicit mathematical aim to each proposed 
task).

On purpose we decided to test a grade 5 problem with 
middle school students, because we wanted it to be math-
ematically accessible to as many students as possible. We 
chose this problem because of the worrying results of fifth 
grade Italian students (Table 1) and for the clear inspira-
tion provided by the already mentioned army buses prob-
lem (Carpenter et al. 1983). Schoenfeld coined the expres-
sion ‘suspension of sense making’ discussing students’ 
answers to the army bus problem; moreover, this problem 
is frequently used in the literature because the realistic 
aspects that need to be considered for a correct solution 
appear rather visibly (Palm 2008).

Population. A total of 480 middle school students (in 
grades 6–8) were involved in the four experimental cycles 
developed for the CTP. The different versions of the prob-
lems were given to four non-overlapping groups of stu-
dents, which varied in their absolute number, maintaining 
the same percentages of students from each school grade.

Fig. 2  The car transporter prob-
lem (translation by the authors) The car transporter in the picture can carry a maximum of 10 cars.

62 cars in the factory are ready to be delivered.
What is the minimum number of car transporters - like the one in the picture – 
needed to deliver them all?   A- 6           B- 7         C- 6.2            D- 10

Table 1  Results of the Italian national sample

Omitted answer (%) A (6) (%) B (7) (%) C (6.2) (%) D (10) (%)

0.8 11.7 35.8 40.5 11.2

Table 2  Quantitative results—N1 version

Omitted answer (%) A (6) (%) B (7) (%) C (6.2) (%) D (10) (%)

3.7 7.5 52.6 32.5 3.7
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4  Results and discussion

4.1  N1 version: the CTP in its original version

A total of 134 students from 13 different classes were 
involved in the first cycle. Although, unlike the INVALSI 
national sample, our sample is not representative, the 
quantitative results (Table 2) confirm the high appeal of 
the unrealistic option C, there is also a significant increase 
in the percentage of correct answers.

Two differences between the national survey and our 
experimentation are evident: our sample is made up of 
middle grade students, while students involved in the 
INVALSI national survey were fifth graders; and there 
was a significant difference in the time limitation because 
the INVALSI national survey asks students to answer 33 
problems in 75 min. The different conditions concerning 
time also have a clear effect: students given sufficient time 
have the time for reflecting on their first answer and, even-
tually, for going beyond this first attempt. The corrections 
we found on the students’ papers confirm that several stu-
dents took advantage of this opportunity (Fig. 3).

Focusing on students who chose B, the analysis of the 
reported mathematical processes identifies four categories 
(Table 3). In contrast to the explicit aim of the problem 
(related to division with remainder), we observed that the 
approach students used the most involves multiplication.

However, our main focus (related to the suspension of 
sense making) is on students who chose option C. Mul-
tiplication is the most commonly used operation also in 
this case, however a peculiarity emerges: the process often 
starts with the numbers given in the four options, as in 
the case of Edo (Fig. 4). The answer options are a crucial 
part in the presentation of multiple choice word problems, 
having a clear impact on the students’ approach. Consid-
ering Gerofsky’s framework, the answer options seem to 
be considered by the students as a sort of appendix to the 
informational component.

Four other significant aspects emerged from the qualita-
tive analysis of the students’ written answers.

(i) The car that disappeared and the role of illustration. As 
often happens in mathematics education research, unex-
pected data may reveal a hidden phenomenon. We found 

that several students used the number 9 in their calcula-
tions (see Fig. 5).

This is very strange because the number 9 is not included 
in the CTP text, however the discussion and individual inter-
views sections allowed us to understand the origin of this 
‘9’. Students explained they did not use the number in the 
text, but they counted the cars in the illustration and many 
of them did not consider the less visible black car behind 
the driver’ seat.

This students’ attention towards the illustration is not 
in line with Dewolf et al.’s results (2015): Why did this 
happen?

The illustration used is hardly classifiable in Elia and 
Philippou’s categories; it seems to be more representational 
than informational, since it does not contain information that 
is not represented in the text, but it has been interpreted 
as informative by several students. On the other hand, if it 
is true that the textual informational component includes 
the number 10 (the maximum load of the trucks), analysing 
the CTP text within Gerofsky’s framework, it also includes 
a parenthetical element (“like the one in the picture”) that 
seems to have led students’ attention towards the illustration. 
We also observe that the INVALSI authors made the choice 
of representing a fully loaded truck.

Fig. 3  Example of changed 
answer

Table 3  The four processes for the choice of the correct option—N1 
version

Explicit process Percentage (%)

Computation of a division and interpretation of the 
numerical results (students in this group usually 
used the exact division 62:10 = 6.2, deducing the 
need for 7 car transporters)

26.9

Computation of a multiplication and interpretation 
of the numerical results (i.e., 6 × 10 = 60, then 6 
car transporters are needed plus another one for 
the transportation of the two remaining cars)

52.5

Elimination of incorrect answers 14.9
No written justifications 5.7

Fig. 4  Edo’s answer (grade 6)—N1 version (“I used the 6, 7 and 10 
times tables and I realized that the number 62 does not belong to any 
of those, then I did the 6 times table again but with also the,2 and I 
realized it is 62”)
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(ii) The different meanings related to the answer 6.2. As 
our quantitative data show, many students seem to ignore 
the realistic consideration, using the words of Verschaffel 
and colleagues (1994), about the indivisibility of a truck, 
choosing the option C (6.2). This trend—recurrent in all 
studies involving the bus problem in the literature—is usu-
ally interpreted as a significant sign of the students’ ten-
dency to ignore real-world considerations in word problem 
solving. The reference to the indivisibility of a truck is 
actually the main difference in the students’ answers dis-
tinguishing between those who choose the correct answer 
and those who choose the option C.

However, the qualitative analysis of the collected data 
offers another interpretation of this phenomenon, related 
to the students’ use and understanding of the decimal 
part of the number 6.2. Some students chose the answer 
6.2 not because they ignored the real-world context, but 
because they gave a personal interpretation to the digit 0.2. 
Some students interpret 0.2 using a sort of proportional 
vocabulary: 1 is the truck represented in the figure, 0.2 
is a smaller truck. Leonardo (grade 6) wrote: “We cannot 
represent 6.2 trucks, unless one of these trucks is one fifth 
smaller than the others”. For other students, the 0.2 means 
a smaller cargo. Lorenzo (grade 6) wrote: “6 trucks trans-
port 60 cars, then the 6.2 means that another truck trans-
ports the last 2 cars”. This phenomenon is also reported in 

Palm’s study: “A few students giving the answer 7.5 buses 
said that they meant 7 buses with students on every seat 
and 1 bus that was only half filled with students” (Palm 
2008, p. 53).

(iii) Uncertainty about purpose. As Gerofsky (1996) 
described, the question component in a word problem is 
often interpreted by the students beyond its literal meaning. 
The students’ beliefs about the implicit purposes of the prob-
lem can play a significant role in their attempts; however, it 
is not simple to collect information about such beliefs with-
out the explicit request ‘Explain your reasoning’ (Di Martino 
and Baccaglini-Frank 2017). Mattia’s written answer (Fig. 6) 
is particularly interesting in this sense.

Mattia marked two different options (7 and 6.2) showing 
awareness of the fact that the answer to the contextualized 
problem is 7. On the other hand, 6.2 appears to be the answer 
he sees as appropriate to show that he controls the division 
algorithm very well. Mattia seems to be undecided about the 
real purpose of the CTP, leaving both answers, as if to say: 
“whatever your goal is, I have the answer”.

(iv) The implicit constraints. Matteo (grade 7) wrote: “I did 
62:10. It is 6.2 but we cannot divide a single trip. For this 
reason, I choose 7”. Matteo calculated the number of trips 
needed rather than the number of car transporters needed as 

Fig. 5  Sara’s answer (grade 
6)—N1 version (“Knowing 
that the cars in the truck are 
9, I made the computation 
(9 × 7 = 63); the minimum 
number of trucks is 7 because in 
each truck there are 9 cars”)

Fig. 6  Mattia’s answer (grade 
6)—N1 version (“At first I did 
62:10 = 6.2, so I find the number 
of trucks, but I realized that one 
half of a truck does not exist. 
Therefore, this problem has two 
answers. They are: 7 trucks or, 
as I did initially, 6.2 trucks”)
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requested. Actually, the correct answer to  N1 is 7 if and only 
if we assume as implicature one of the following constraints: 
each car transporter can be used for a single trip, or all 62 
cars must be transported simultaneously. The assumption of 
one of these implicatures in modeling the situation is forced 
by the possible answer choices because they do not include 
the answer 1 (a unique car transporter making 7 trips). Once 
again, the model of the situation is constrained by aspects 
unrelated to the real-world situation described in the text 
and this seems to be the case for all bus problems used in 
the literature: going beyond the realism ‘to taste’, the correct 
answer to all bus problems could always be 1.

On the basis of this analysis, we developed and experi-
mented with three new versions of the CTP.

4.2  N2 version: removing the answer choices

The presence of answer choices acted as a sort of appendix 
to the informational component. As we described, many stu-
dents choosing the option 6.2 in the  N1 version of CTP based 
their processes on the numbers given in the four options. 
In order to better understand the extent of the effect of this 
extra informational component, we developed and experi-
mented with the  N2 version of the CTP, removing the mul-
tiple choice from the  N1 version.

A total of 139 students from 13 different classes partici-
pated in the experimentation of  N2. The quantitative effect 
of the absence of the answer choices is quite evident: the 
answer 6.2 becomes residual (Table 4).

From a qualitative point of view, the most evident effect 
is the greater variety of approaches to solving the  N2 ver-
sion of the CTP than those reported in Table 3 for the  N1 
version. The absence of the multiple choice has effects not 
only on the students’ answers, but also on the variety and 
quality of their processes. Obviously, it is no longer pos-
sible to proceed with the elimination of the alternatives in 
the  N2 version, while the computation of a multiplication 
or the computation of a division remain the two most com-
monly reported processes. In the case of division, students 
computed the exact division between 62 and 10, developing 
realistic considerations to give the right answer, 7, which is 
in line with the findings of other studies (Palm 2008). How-
ever, two other strategies emerged in the  N2 data, namely, 
the computation of a repeated sum, and the draw a picture 
strategy.

In the f i rst  case ,  the  students  calculated 
10 + 10 + 10 + 10 + 10 + 10 adding a seventh not fully loaded 

truck. In her oral interview Martina (grade 6) explained: “a 
truck can transport up to 10 cars, but it can also transport 
fewer cars. To conclude: a truck can travel with two cars, and 
then we need seven trucks”. Martina’s clarification about 
the load of the seventh truck is common to almost all the 
students using the repeated sum strategy.

This clarification is arithmetically needed because oth-
erwise a seventh ‘plus ten’ would exceed 62. However, it 
is also related to the process of modeling. During different 
classroom discussions, students underlined how it is unusual 
to see a car transporter travelling not fully loaded: they usu-
ally are empty or full. Luigi (grade 6) stated in his individual 
interview: “I have never seen a car transporter with two cars! 
The car transporters are fully loaded or unloaded when they 
come back. For me the right answer is six car transporters: 
the two cars left will be transported later”. Also in this case, 
overcoming the ‘realism to taste’, Luigi’s position can be 
considered a valid argumentation for the answer 6, and his 
explanation is anything but suspension of sense making.

One of the recurrent foci of the classroom discussions 
for  N2 was exactly the best distribution of the 62 cars on 
the 7 trucks needed. Students debated the adequacy of 
the required answer, underlying how the purely numeric 
solution (7) leaves room for different organizations of the 
truck trips. In particular, a general agreement emerged 
about the fact that the solution corresponding to the sum 
10 + 10 + 10 + 10 + 10 + 10 + 2 is not optimal. Several stu-
dents suggested a more balanced car distribution on the 
seven trucks for reasons of symmetry or reasons of savings: 
the balanced solutions guarantee a lower consumption of 
fuel and tires.

The will to balance out the cargo of the seven trucks 
also emerged in the data of the students using the draw a 
picture strategy. As in the case of Martina, the redistribu-
tion of the cars in the seven trucks implies a deep under-
standing of the information “can carry a maximum of ten 
cars”. For example, Camilla (grade 7, Fig. 7) developed 

Table 4  Quantitative results—N2 version

Omitted answer 6 (%) 7 (%) 6.2 (%) Other answers (%)

4.3 13.7 67.6 5.8 8.6

Fig. 7  Camilla’s drawing (grade 6)—N2 version
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several graphic attempts finally coming to the decision 
to equally distribute the last 12 cars on 2 trucks (from an 
arithmetic point of view this corresponds to the sum 10 
+ 10 + 10 + 10 + 10 + 6 + 6). Camilla explained that “Each 
truck can transport a maximum of 10 cars. This does not 
imply that each truck has to transport ten cars. Therefore 
five trucks transport ten cars and the other two trucks 
transport six cars”.

To conclude the analysis of the data from the  N2 ver-
sion, we mention the very interesting answers of Andrea 
(grade 7, Fig. 8): “six trucks and one half”. Andrea’s 
interpretation of a fraction of truck is partly in line with 
Leonardo’s view: he marked a part of the truck in the 

illustration of his A4 paper, handwriting in the margin: 
“this is the half truck”. The truck in the picture is actually 
composed of two parts, namely, the tractor (the one half 
for Andrea) and the trailer.

Fig. 8  Andrea’s answer—N2 
version (“6 trucks and one half 
of a truck. I thought that we 
need 6 trucks in order to trans-
port 60 cars, then the front of 
the truck can transport the other 
two cars”)

Fig. 9  N3 version of the CTP 
(translation by the authors) The car transporter in the picture can carry a maximum of 10 cars.

62 cars in the factory are ready to be delivered. The factory has a unique car 
transporter like the one in the picture.  
What is the minimum number of trips that the car transporter has to make in 
order to deliver all of them?           A- 6         B- 7        C- 6.2          D- 10

Table 5  Quantitative results—N3 version

Omitted answer (%) A (6) (%) B (7) (%) C (6.2) (%) D (10) (%)

1.9 6.9 61.8 26.5 2.9
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4.3  N3 version: from the number of trucks 
to the number of trips

Reflecting on Matteo’s answer to the version  N1 of the CTP, 
we administered a reworded version,  N3 (Fig. 9), modifying 
the question component, replacing the term ‘trucks’ with 
the term ‘trips’.

A total of 102 students from 9 different classes were 
involved in the experimentation of this  N3 version. Unlike 
the data of the  N2 version, the quantitative data of the  N3 
version (Table 5) are similar to those of the  N1 version, with 
a small increase of the percentage of correct answers (61.8% 
vs 52.6%).

The analysis of students’ processes also confirms a sub-
stantial analogy with the data reported in Table 3 for the ver-
sion  N1; however, the rewording of the question component 
has two interesting effects.

The first one is the growth in the number of explicit refer-
ences to the indivisibility of the object (the trip) in the writ-
ten answers of the students who chose the correct option. 
This may sound strange: the indivisibility of a truck should 
be more evident, instead it would seem possible to imagine 
a part of a trip. Nevertheless, several comments in the class-
room discussions underlined that the trucks have to complete 
their trips in order to deliver the cars.

The rewording also caused a debate about the meaning of 
‘trip’. During the classroom discussions the following ques-
tion was discussed: does the trip include the outward and 
the return or does the trip correspond to a single direction? 
As in version  N1, the multiple choice format introduces an 
external constraint, because the option ‘14’ is absent. Fabio 
(grade 6) is the only one that explicitly refers to the conflict 
between these external constraints and his representation 
of the situation: “None of the given options is correct! We 
have also to consider the return trip, therefore the minimum 
number of trips is 14”.

4.4  N4 version: the division with remainder

The results of the versions  N1 and  N3, as well as the 
INVALSI national survey, confirm the appeal of the unre-
alistic option 6.2. As we discussed, this choice is the result 
of two very different reasonings by the students. In some 
cases, the choice follows a purely computational approach, 
thus falling within the well-known phenomenon of students’ 
tendency to ignore realistic considerations in problem solv-
ing. In other cases, there is a use of the mathematical symbol 
0.2 (the decimal part of 6.2) with a non-mathematical mean-
ing: it represents a truck transporting only two cars. These 
two very different approaches produce the same numerical 
choice because ten is the maximum number of cars a truck 
can transport; thus the decimal part of the quotient of the 
division corresponds to the remainder of the integer division.

We developed version  N4 (from the  N1) in order to dif-
ferentiate the numerical answers resulting from these two 
different approaches. In this version, the maximum load of 
the trucks passes from 10 to 8 (the illustration was edited 
accordingly) and the proposed options are as follows:

• A. 7.6 (6 is the remainder of the integer division 62:8);
• B. 7 (the lower integer part of 62:8);
• C. 7.75 (the quotient of the exact division 62:8);
• D. 8 (the correct answer).

A total of 105 students from 9 different classes were 
involved in the experimentation of version  N4. From a 
quantitative point of view, there is a clear reduction in 
the percentage of correct answers, however all the options 
were chosen by at least 10% of the students (Table 6).

From a qualitative point of view, the analysis of stu-
dents’ written comments shows how students answering C 
applied an abstract arithmetic scheme without realistic or 
contextual consideration: having the number of objects (X) 
and the number of objects a container can contain (Y), the 
result of the division of X by Y is the number of contain-
ers needed to contain all the objects. Alessandro wrote as 
follows: “In order to find the number of needed trucks I did 
62 (total number of cars) divided by 8 (maximum number 
of cars for each trucks). It is 7.75”.

Vice versa, students answering A considered the real-
istic context: their numerical answer is not a natural num-
ber, rather it refers to two integral numbers of trucks and 
cars. For example, Giuly (grade 6) justified her choice 
(7.6) with the following words: “I did 62:8 (a fully loaded 
truck). It is 7 and remainder 6. That is, the total number of 
trucks is 7 plus 1 truck with 6 cars”. Despite computing a 
multiplication, Gaia (Fig. 10) used the symbol 7.6 with the 
same meaning as Giuly gave it: “First, I did the times table 
of eight in order to understand which result was closer to 
the number of cars to be delivered. The closer result that 
does not exceed that number was 8 (maximum number 
of cars for each truck) times 7 (car transporters). But, it 
still was not 62, 6 cars were still missing. Therefore, the 
answer is 7.6”.

Students answering A seem to feel the need that the 
answer comes from numbers directly obtained by applying 
some arithmetical operations to the numerical data in the 

Table 6  Quantitative results—N4 version

Omitted answer 
(%)

A (7.6) (%) B (7) (%) C (7.75) (%) D (8) (%)

1.9 12.4 10.5 33.3 41.9
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text. However, are we sure that their behavior is a manifes-
tation of the phenomenon of suspension of sense making? 
We do not think so. These students consider the context of 
the CTP, in particular bearing in mind the indivisibility of 
a truck but adopting an alternative meaning for the decimal 
part of a non-integer number, a meaning that is different 
from the mathematical one. The proposed rewording of 
the CTP gave insight into this last approach, allowing us 
to distinguish it from the purely computational one.

5  Conclusions

The main aim of our study was to investigate the effects of 
variations in the presentation of word problems on students’ 
answers and approaches to the problems.

First, we discussed the differences between realistic word 
problems and daily life problems. In line with Kaiser’s view 
(2017), we consider word problems and modeling as two 
different worlds, with different rules and constraints. In 
this view, the main initial hypothesis was that ‘suspension 
of sense making’ is actually the ‘activation of a different 
kind of sense making’. This hypothesis is confirmed by the 
effects of the variations in CTP presentation on students’ 
approaches. As we discussed, the presentation of the word 
problem is surely not the only variable influencing the phe-
nomenon of suspension of sense making in problem solving. 
However, it is significant that we observed relevant changes 
in students’ processes and answers by experimenting with 
the variations in the presentations of CTP, variations that 
substantially do not modify the context described.

The results of the variations also suggest some refine-
ments to Gerofsky’s framework. In particular, all the three 
components she considers in a realistic word problem seem 
to have an informational role. As we have seen, the options 
in the multiple choice format and the illustration describing 

the type of trucks (see Sara and Andrea’s answers, reported 
in Figs. 5 and 8) can have an informational role, adding 
information to the text of the word problem and strongly 
affecting the students’ processes. Especially what Gerofsky 
identities as the narrative component has a crucial, although 
underestimated, informational role. Goulet-Lyle, Voyer and 
Verschaffel, describing three categories of inferences during 
word problem solving, state: “Inferences deemed unneces-
sary are those which, while providing a richer understanding 
of the story around the problem, are not specifically oriented 
toward its resolution” (Goulet-Lyle et al. 2020, p. 142). This 
kind of inferences is highly necessary, determining the qual-
ity of students’ realistic considerations (Zan 2011).

As our data show, all the elements included in the word 
problem presentation can have a strong informational com-
ponent for the students, because such elements can resolve 
some contextual aspects such as implicit and boundary con-
ditions. Students’ comprehension of this broadly understood 
informational component is rarely investigated. This under-
standing is usually inferred through the students’ numerical 
answers. Our data show that this approach is questionable.

From a methodological point of view, our aim challenged 
us to develop an experimentation cycle to test several inter-
pretative hypotheses related to a fixed context for the word 
problem. We made the choice to collect mainly qualitative 
data because, in our opinion, the focus on the process is 
crucial to developing an interpretative approach to the phe-
nomenon of suspension of sense making. As our data show, 
an a priori and absolute classification of a class of problems 
appears to be questionable, since students’ approaches to the 
same problem can be quite different and sometimes unpre-
dictable. For example, students’ answers to the bus problem 
are often explained in the literature in terms of difficulties 
in interpreting the remainder in a division problem (Greer 
1997). Our results showed a much more complex picture.

Fig. 10  Gaia’s answer (grade 
6)—N4 version



829Students’ suspension of sense making in problem solving  

1 3

If it is true that we have no direct access to students’ 
ideas, we believe that the reflective narratives we collected 
are particularly informative. According to Bruner (1990), 
we are interested in what the individual thinks he has done, 
rather than in an objective report, which is hard to imagine.

In particular, the multiple data collected and analysed in 
the experimental cycle highlight some specific mathematical 
issues: for example, the alternative meanings of the decimal 
part of a number and, at a more general and interesting level, 
the role of the ‘realism to taste’ in the appearance of the 
phenomenon of suspension of sense making. Using terms 
from the field of medical testing, our study seems to confirm 
that there are a lot of false positive students to whom the 
phenomenon of suspension of sense making is attributed, 
i.e., students who actually activate an alternative kind of 
sense making.
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