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1997; Shimizu, Kaur, Huang, & Clarke 2010). In this Spe-
cial Issue, we aim to extend thinking around mathematical 
task design by focusing on a complex, layered relationship 
between task designers, teachers, and students.

Researchers have had increasing interest in investigating 
a student perspective on task design, resulting in a student 
theme at the International Commission on Mathematical 
Instruction (ICMI) study on mathematical task design (Ain-
ley & Margolinas, 2015) and a Research Forum on math-
ematical tasks and the student, at a meeting of the Interna-
tional group for the Psychology of Mathematics Education 
(PME) (Clarke et al., 2014). In the PME Research Forum, 
Clarke et al. (2014, p. 119) brought together a collection of 
research studies to “equip researchers to better situate the 
student within research on instructional task design”. Look-
ing ahead, Ainley and Margolinas (2015) called for research 
using “alternative methods to understand student perspec-
tives more fully, particularly in the context of innovative 
task design” (p. 137). Together, the collection of papers in 
this Special Issue represents a response to this call. Many 
contributors to this Special Issue attended the student theme 
group at the ICMI study on mathematical task design. In this 
Special Issue, contributors have further developed research 
presented at the ICMI study, extending in their thinking and 
practice, enriched by the work of each other. Some contribu-
tors have an explicitly methodological aim and, for others, 
the focus is more on innovative task design, analyzed or 
approached with a student perspective.

We articulate a student perspective on task design in 
mathematics education, foregrounding a dynamic relation-
ship between intentions of task designers, teachers, and stu-
dents. We organize this survey paper into four main sections. 
First, we characterize a student perspective on task design. 
Second, we provide theoretical perspectives that we use as 
tools to account for different facets of task design from a 

Abstract We articulate a student perspective on task 
design in mathematics education, foregrounding a dynamic 
relationship between intentions of task designers, teachers, 
and students. First, we characterize a student perspective 
on task design. Second, we provide theoretical perspectives 
that we use as tools to account for different facets of task 
design from a student perspective. Third, we elaborate on 
“tensions of intentions” between designers, teachers, and 
students when considering the use of tasks to promote stu-
dents’ mathematical learning. Fourth, we address mathemat-
ical tasks and the student: characterizing task context from 
a student perspective, contrasting reflective and emergent 
task design, and discussing theoretical and methodological 
approaches that take into account the student perspective. 
We conclude with implications for research and practice.

1 Introduction

Mathematical task design continues to be an important area 
of research in mathematics education (Margolinas et al., 
2013; Clarke, et al., 2014; Watson & Ohtani, 2015; Jones 
and Pepin, 2016). The mathematical tasks with which stu-
dents engage can shape students’ mathematical learning 
opportunities and their experiences with mathematics as a 
whole (Watson & Mason, 2007). Yet, students’ opportuni-
ties to learn mathematics can vary depending on the kinds 
of tasks with which they engage (Henningsen & Stein, 
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student perspective. Third, we elaborate on “tensions of 
intentions” between designers, teachers, and students when 
considering the use of tasks to promote students’ mathemati-
cal learning. Fourth, we address mathematical tasks and the 
student: characterizing task context from a student perspec-
tive, contrasting reflective and emergent task design, and 
discussing theoretical and methodological approaches that 
take into account the student perspective. We conclude with 
implications for research and practice.

2  A student perspective on task design

By mathematical task, we mean more than a written math-
ematical problem (e.g., Clarke & Mesiti, 2013; Sierpinska, 
2004). From our perspective, a mathematical task includes 
a designer’s intended purpose for the task, a teacher’s inten-
tions in implementing a task, students’ activity in under-
taking a task, and artifacts (problem statement, tools and 
constructed objects, including student written materials) 
employed in and generated by the actions of teachers and 
students during the process of task completion:

Differences between social, cultural and curricular 
settings, together with differences between participat-
ing classroom communities, shape the performative 
realization of a mathematical task. This challenges 
reductionist attempts to characterize instructional tasks 
independent of these considerations. (Clarke & Mesiti, 
2013, p. 175).

In this view, mathematical tasks are a form of social prac-
tice, undertaken by teacher and students as a collective. We 
use designers to refer to those designing the tasks, includ-
ing researchers, teachers, and curriculum developers. We 
use teachers to refer to those enacting the tasks, including 
researchers, university instructors, and elementary and sec-
ondary school teachers. We use students broadly, to include 
elementary students, secondary students, and adult learners. 
By including adult learners, we allow for the possibility of 
teachers and laypersons as students. Similar to a lesson plan, 
a task may include a designer’s anticipation of a variety of 
quite specific student responses. Yet, a task, like a lesson 
plan, may be very different in execution from the forms of 
anticipated practice that constituted a designer’s or teacher’s 
intentions. Teacher and student intentions, actions, and inter-
pretations all contribute to the form ultimately taken by the 
task as a collective social performance.

When addressing a student perspective in task design, 
researchers have used images of “gap filling” (Ainley & 
Margolinas, 2015) or paradox (Brousseau, 1984). From this 
view, there is either a gap to be filled between designers’ and 
teachers’ intentions for tasks and students’ perspectives of 
tasks, or a paradox, that the more explicit a teacher becomes 

about the desired student behaviors from engaging in a task, 
the less likely these behaviors will emanate from the kinds 
of awareness the teacher intends. In this survey paper, we 
argue for a different approach, to more equitably position 
students’ perspectives with designers’ and teachers’ inten-
tions. We follow the recommendation of Clarke et al. (2014, 
p. 119): “research into the design and use of mathematical 
tasks in instructional settings must accommodate student 
intentions, actions and interpretations to at least the same 
extent as those of the teacher”. We use the phrase “a stu-
dent perspective on mathematical task design” to mean task 
design that acknowledges and makes room for a tension of 
intention between a designer’s intentions in developing a 
mathematical task, a teacher’s intentions in implementing 
mathematical tasks, and students’ perspectives when experi-
encing those mathematical tasks. We include both designers’ 
intentions and teachers’ intentions, because we recognize 
that task designers may be different from teachers imple-
menting tasks with students.

We do not want to be taken to be assuming that inten-
tions are easy, or even possible, to know. As humans, we 
are not aware of the motivations for our own actions, let 
alone the actions of others. However, we do assume that 
tasks are designed with some anticipation of what might 
occur through the doing of the task, or a range of possible 
scenarios, and it is this anticipatory thinking that we mean 
by a task designer’s ‘intention’. Similarly, we are not making 
an assumption that we can know how a student experiences a 
task, but we can observe their responses and we can consider 
the extent to which these responses match or otherwise the 
anticipatory work done in planning.

Implicit in the concerns being addressed here is a duality 
of tension. First, it is reasonable to assume that the instruc-
tional use a teacher makes of a task will not necessarily align 
precisely with a task designer’s intentions. In fact, one can 
argue that teachers have a professional obligation to adjust 
“pre-fabricated” tasks to better match the local curriculum 
and the needs and capabilities of their students. Second, it 
is also reasonable to assume that whatever the instructional 
intentions of the teacher, the various responses of individual 
students to the stimulus provided by the task will not be 
perfectly aligned with the teacher’s intentions or with each 
other. This variation in the manner in which the individuals 
in a class engage with (and interpret) a task will reflect the 
natural variation in educational background and mathemati-
cal capability of the various students, but it will also reflect 
the extent to which the task prescribes the form of student 
response, or affords some agency on the part of the student, 
in shaping that response.

The classroom enactment of a mathematical task can be 
thought of as a nexus of such tensions between intentions 
of designers, teachers and students. Each is positioned dif-
ferently in relation to the task as performed in any setting 
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and any attempt to understand (and optimize) the instruc-
tional use of mathematical tasks must consider how the pri-
oritization of the intentions of the three categories of “task 
stakeholder” might adequately accord with the educational 
goals of the situation. These goals might include the use of 
a task to introduce new mathematical content, to consolidate 
a taught procedure, to provide an opportunity for students 
to apply a procedure in a new situation, to assess student 
understanding of a concept or procedure, or even to create 
conditions for student deployment or development of more 
generic problem solving or collaborative skills. Our reflec-
tion on a productive use of a task must be seen in the context 
of the purpose for which that task is being used.

3  Theoretical perspective

In the mathematics classroom, the teacher, the students, and 
the tasks provide key structural elements through which the 
classroom’s social activity is constituted. Task development, 
selection, and sequencing by teachers represents the initia-
tion of an instructional process that includes task perfor-
mance (collaboratively by teacher and student) and the inter-
pretation of the consequences of this enactment (again, by 
teacher and student). For some time, learning theorists have 
viewed cognitive activity as not simply occurring in a social 
context, but as being constituted in and by social interaction 
(e.g., Hutchins, 1995). From such a perspective, the activity 
that arises as a consequence of a student’s completion of a 
task is itself a constituent element of the learning process 
and the artifacts (both conceptual and physical) employed 
in the completion of the task serve simultaneous purposes 
as scaffolds for cognition, repositories of distributed cogni-
tion, cognitive products, as well as having metacognitive 
and affective dimensions. During the process of task com-
pletion, the effectiveness of the task in promoting learning 
will also be contingent on student intention (with respect 
to the task) and teacher interpretation (with respect to the 
students’ activity).

Current attempts to model the complexity of the math-
ematics classroom have generated interest in theories capa-
ble of accommodating consideration of artifacts1 as well as 
individuals. Theories such as Activity Theory (Engeström, 
1987) and Distributed Cognition (Hutchins, 1995) fore-
ground the mediational role of artifacts in facilitating learn-
ing, and locate tasks among those mediating artifacts, which 
also extend to mathematics textbooks, digital technologies 
[and] language (Rezat & Strässer, 2012).

Rezat and Strässer (2012) identify students’ mathematics-
related activity as an example of the Vygotskian conception 
of an instrumental act, where a student’s interaction with 
mathematics is mediated by artifacts such as mathemati-
cal tasks. Most importantly, recognizing the function of 
mathematical tasks as tools for the facilitation of student 
learning leads us to the further recognition that (à la Vygot-
sky) the use of a tool (i.e., a task) fundamentally affects 
the nature of the facilitated activity (i.e., student learning). 
Rezat and Strässer (2012) have re-conceptualized the famil-
iar didactical triangle (teacher–student–mathematics) as a 
socio-didactical tetrahedron, where the vertices are teacher, 
student, mathematics and mediating artifacts (Fig. 1). This 
reconception of didactical relationships recognizes that con-
nections represented by the sides of the original didactical 
triangle require mediation. The vehicles of this mediation 
are artifacts, which include everything from textbooks and 
digital tools to tasks and language. Use of the socio-didacti-
cal tetrahedron provides us with an important tool by which 
to give recognition to the mediational role of tasks in the 
teaching and learning of mathematics.

One virtue of the socio-didactical tetrahedron is that it 
facilitates the separate consideration of triangles forming 
each face of the tetrahedron, as well as the vertices of each of 
those triangles. To describe each face, we paraphrase Rezat 
and Strässer (2012, p. 645): the triangle teacher-task-student 
represents the teacher’s role as an orchestrator of students’ 
task-mediated mathematical activity; the triangle student-
task-mathematics represents a student’s task-mediated 
activity of learning mathematics; the triangle teacher-task-
mathematics represents a teacher’s task-mediated activity 
of doing and teaching mathematics; the original didactical 
triangle (student–teacher–mathematics) constitutes the base 
of the model. The tetrahedral structure offers an important 
representation of the complex relationships involved in the 
social practice of enacting a mathematical task.

When considering any one face, one can do so from a 
perspective of a vertex not included on that face. For exam-
ple, we can consider the teacher-task-student face from the 

Fig. 1  The socio-didactical tetrahedron (Rezat & Strässer, 2012)

1 ‘Artifact’ derives from the Latin “arte factum” meaning something 
made through the use of skill.



816 H. L. Johnson et al.

1 3

perspective of the mathematics vertex. One way to distin-
guish between contributions in this Special Issue is by the 
kind of mathematics students have opportunities to inves-
tigate. The contributors promote students’ development of 
forms of sophisticated mathematical reasoning, which are 
more than procedural expertise. Some contributors fostered 
students’ domain-specific reasoning (Best & Bikner-Ahs-
bahs, 2017; Frieman, Polotskaia, & Savard, 2017; John-
son, McClintock, & Hornbein, 2017; Savard & Poloskaia, 
2017; Strømskag, 2017), while other contributors fostered 
students’ domain-transcendent reasoning (Chan & Clarke, 
2017; Graven & Coles, 2017; Kuntze, Aizikovitsh-Udi, & 
Clarke, 2017; Lithner, 2017; Lozano, 2017). By domain spe-
cific reasoning, we mean reasoning related to mathemati-
cal content (e.g., number, algebra, geometry). By domain 
transcendent reasoning, we mean reasoning that transcends 
conventional mathematical content (e.g., generic actions, 
like the framing and refuting of a hypothesis). The use of 
perspective, from a vertex to nonadjacent triangular face, 
provides a way to purposefully attend to the interconnect-
edness of all four vertices (student, teacher, mathematics, 
and tasks.)

4  Tensions of intentions: designers, teachers, 
and students

The socio-didactical tetrahedron in Fig. 1 helps us to better 
articulate and elaborate possible tensions when consider-
ing the use of tasks for learning mathematics. We take each 
edge of the tetrahedron to indicate a relationship. It is in the 
relationship between these relationships that tensions can 
arise, for example:

• the teacher/designer’s intentions for a task (teacher-task) 
may not map well onto students’ experiences of math-
ematics when engaging in that task (student–mathemat-
ics).

• the mathematics, potentially embedded, in a task (math-
ematics-task) may not map well onto mathematics that 
students actually use (student–mathematics).

• the teacher’s perceptions and awareness of mathematics 
(teacher–mathematics) may not align with those of the 
students’ (student–mathematics) in the doing of a task, 
leading to difficulties in communication.

• the teacher’s relationship with a student (teacher–student) 
may constrain the possible relationships a student can 
have with the mathematics being offered (student–math-
ematics), for example, in the extent to which the subject 
is experienced as a negotiation of “right/wrong”.

The teacher, the student, and tasks are key structural 
elements constituting the social activity of a mathematics 
classroom and the socio-didactical tetrahedron makes clear 
the role of mathematics as the key mediating referent for the 
elements on the student–teacher-task face.

Task designers may hold a tacit assumption that complet-
ing mathematical tasks chosen or designed by the teacher 
will result in students learning the intended mathematics. 
Yet, there is no direct relationship between task comple-
tion and mathematics learning (e.g., Margolinas, 2004). The 
metaphors of “gaps” or “paradox” (Ainley & Margolinas, 
2015; Brousseau, 1984) mentioned in Sect. 2, above, can 
only operate on the assumption that the doing of particular 
actions (by students, in completing a task) should lead to 
specific elements of learning. If we give up this illusion and 
embrace the inevitable uniqueness of each student’s experi-
ence of a task, then different kinds of question arise. Rather 
than thinking about how to “minimize” gaps, a focus can 
shift to different ways of designing tasks in the first place.

By taking into account students’ voice and agency, 
researchers have offered task design constructs and princi-
ples that suggest ways in which task design and implementa-
tion may focus on students’ task experiences (e.g., Ainley, 
Pratt, & Hansen, 2006; Bikner-Ahsbahs & Janßen, 2013; 
Clarke & Mesiti, 2013; Coles & Brown, 2013). Ainley, Pratt, 
and Hansen (2006) introduced the constructs of task purpose 
and utility, defining a task’s purpose and utility from the per-
spective of the student rather than the task designer. Clarke 
and Mesiti (2013) showed how teachers could enact tasks 
that build on students’ real-time responses. Coles and Brown 
(2013) offered design principles through which teachers 
could begin tasks by providing students opportunities to 
make distinctions and then work with those distinctions to 
develop mathematical thinking and fluency. Bikner-Ahsbahs 
and Janßen (2013) used an open-ended task to spark math-
ematical discussion. Defining a task’s purpose from a stu-
dent perspective serves as one way for designers to position 
students’ intentions for a task to at least the same extent as 
teachers’ intentions. When teachers implement tasks in ways 
that acknowledge the viability of students’ interpretations 
of a task, it opens up opportunities for students to have rich 
mathematical experiences.

In a special issue of the Journal of Mathematics Teacher 
Education, Jones and Pepin (2016) raised an initial ques-
tion in relation to the role of task design in the process of 
teaching and learning. Drawing on Brown’s (2009) concep-
tualization of “pedagogical design capacity” to describe a 
teacher’s “capacity to utilize existing curricular resources 
effectively to design instruction” (p. 106), Jones and Pepin 
argued that it is fundamental that teachers and designers be 
partners in task design. Because Jones and Pepin focused 
on the teacher’s role in task design, we would not expect 
the student to be present in their framing of issues. We do 
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wonder, however, what implications arise from viewing 
teachers’ roles in task design in terms of capacities. In par-
ticular, a notion of capacity suggests there are some teachers 
who have it and some who are in deficit, reminding us of 
the conceptualization alluded to by the use of gaps between 
task intentions and student activities. The use of capacity 
perhaps serves to background the partnering relationships 
within which these posited capacities play out, and it is just 
these relationships that we see as helpfully highlighted by 
the socio-didactical tetrahedron.

Jones and Pepin (2016) identified four areas to which 
researchers should attend when engaging in task design: 
objects to design; tools to use (and conditions under which to 
use those tools); care in the use of digital tools; and involve-
ment of teachers in task design. We argue for a fifth area: 
student experience of the task. In a task milieu, students 
bring their own perspectives, and they have viable ways 
of constructing meaning for tasks, even if those ways are 
different from the teacher’s intent in the didactical contract 
(Brousseau, 1997). Depending on the purpose, tasks need to 
be sufficiently open to provide a pretext for the articulation 
of student understandings and sufficiently directive to elicit 
the kinds of responses required for a specific instructional 
purpose. Insofar as the didactical contract is a negotiated co-
construction of obligations and responsibilities between the 
teacher and the students, every task both invokes and con-
tests the terms of this contract. Differences in the students’ 
and teacher’s milieu mean that tasks can be ambiguous from 
the perspective of the student, even if a teacher thinks that 
she has clearly defined the task.

5  Mathematical tasks and the student

Researchers have shown that the setting (e.g., a school set-
ting versus an everyday setting) can impact students’ per-
formance on tasks that from an expert’s perspective entail 
the same mathematical ideas (e.g., Nunes, Schliemann, and 
Carraher, 1993; Saxe, 1988). Individuals do not come to 
school settings free from their out of school lived experience 
(Martin, 2007). In classrooms, students learn (often tacitly) 
what doing school mathematics is like, and it is impossible 
to disentangle the implementation of a task from students’ 
conceived ways of working on tasks (Coles & Brown, 2013). 
The entanglement of teachers’/designers’ intentions and stu-
dents’ perspectives highlights how complex a task becomes 
when researchers take into account the students’ interpreta-
tion of a task (Ainley & Margolinas, 2015).

Ainley and Margolinas (2015) proposed two ways in 
which designers can use a student perspective to inform 
task design: reflective and emergent task design. Reflec-
tive task design occurs separately from a setting in which a 
teacher enacts a task with students. In reflective task design, 

designers develop tasks to take into account student perspec-
tives. In contrast, emergent task design occurs during the 
implementation of a task. In emergent task design, teach-
ers develop in-the-moment tasks to account for student per-
spectives. We make purposeful use of the phrases take into 
account and account for. By take into account, we mean task 
design that anticipates diverse student perspectives, typically 
occurring separately from task enactment. By account for, 
we mean task design that responds to diverse student per-
spectives, typically occurring in the moment. Reflective task 
design takes into account student perspectives, and emergent 
task design accounts for student perspectives. In the next 
four subsections, we build on the notions of reflective and 
emergent task design, providing a characterization of task 
context that takes into account the student perspective, and 
we discuss theoretical and methodological approaches that 
take into account the student perspective.

5.1  Students’ understanding of the meaning 
and purpose of the mathematical activity they 
undertake: task context

Designers may incorporate “real world” contexts when 
designing mathematical tasks. Some tasks that involve 
seemingly real situations are word problems. Yet, imple-
menting tasks including such contexts may not provide all 
students the same kinds of opportunities to learn mathemat-
ics (e.g., Ainley & Margolinas, 2015; Boaler, 1993b; Clarke 
& Helme, 1998; Gerofsky, 1999). Gerofsky (1996, 1999) 
illustrated how mathematical word problems function as 
literary genre, such that “word problems imitate and recall 
other word problems, not our lived lives” (1999, p. 37). 
Furthermore, students can have different interpretations of 
work entailed by tasks involving seemingly real situations, 
and those interpretations may account for differences in 
students’ performance on tasks (Boaler, 1993a; Clarke & 
Helme, 1998). To address students’ differences in opportuni-
ties to learn mathematics and in their interpretation of work 
entailed by a task, it is useful to characterize task context 
such that context takes into account the student perspective.

It is insufficient to define task context as a situation given 
in a problem statement (e.g., Boaler 1993b; Clarke & Helme, 
1998). Boaler (1993b) argued that students’ interaction with 
the context of a mathematical task is an individual, dynamic 
process that can take myriad forms. Problematizing ways in 
which students might “construe” task contexts, Clarke and 
Helme (1998) distinguished students’ interpretations of task 
contexts from situations described in a statement of a task. 
Students’ interaction with tasks is a dynamic process, task 
context should extend beyond just a situation described by a 
task, and also take into account individuals’ interaction with 
mathematical tasks.
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Researchers have characterized task context in ways that 
take into account interpretations of those individuals work-
ing on tasks (e.g., Clarke & Helme, 1998; Johnson, 2014; 
van Oers, 1998). Van Oers (1998) asserted “what counts as 
context depends on how a situation is interpreted in terms of 
activity to be carried out” (p. 481). Johnson (2014) argued 
that task context included students’ conceptions: “context 
involves an individual’s conception of a problem that could 
be solved” (p. 340). Arguing that classroom tasks provide 
an avenue through which teachers and students co-construct 
social situations for learning, Clarke and Helme (1998) 
defined context as “an individual construction in response 
to these socially-enacted situations” (p. 133). To take a stu-
dent perspective on task content means that it is impossible 
to separate a task context from meanings that students make 
from the task.

Meanings students make from tasks go beyond familiar-
ity with a context (e.g., a sporting event). Meanings entail 
students’ experiences in and out of school, their existing 
conceptions of the purpose of mathematics tasks in class-
room settings, students’ conceptions of what problem a task 
is intending for them to solve, their affective response to the 
task, any metacognitive skills they might choose to employ 
and the influence of the meaning making of other students. 
From this perspective, students dynamically construct con-
texts as they engage in goal-oriented activity when solving 
a task. By goal, we mean goals from the perspective of indi-
vidual students (see Simon, Tzur, Heinz, & Kinzel, 2004). 
To restate our central premise: students working on the same 
task may have different goals, and those goals may not be 
the same as the goals of their teacher or of the task designer.

5.2  Using a student perspective to inform task design: 
reflective task design

In reflective task design, designers can incorporate task 
questions that invite a variety of student perspectives. Draw-
ing on an enactivist perspective, Coles and Brown (2013) 
designed a task with a starting question: “what is the same 
and what is different?” to invite a range of perspectives about 
two static images of rectangles. In a similar vein, Johnson 
(2013) used the question “what is changing and what is stay-
ing the same?” to invite a range of interpretations about a 
dynamic animation of a growing rectangle. By posing such 
questions, teachers can explore the mathematical perspec-
tives that students bring to a task situation and build on those 
perspectives to provide opportunities for students to learn.

Task designers can use reflective task design to develop 
principles to guide task design to take into account the 
student perspective. To address a tension between stu-
dents’ intentions to use algorithms and teachers’ inten-
tions to provide students with open-ended problem solving 

opportunities, Savard et al. (2013) developed a design prin-
ciple to promote “holistic reasoning about mathematical 
structures” (Ainley & Margolinas, 2015, p. 129). The design 
principle of Savard et al. (2013) suggests how designers can 
take into account an anticipated student intention: a rush to 
use algorithms, rather than to engage in problem solving.

Teachers can use reflective task design to adapt exist-
ing tasks for their own purposes. Clarke and Mesiti (2013) 
described how a teacher used a seemingly closed task, solve 
a system of linear equations, to provide students opportuni-
ties to draw out key features of a pair of simultaneous equa-
tions. Despite the promises of reflective task design, teachers 
may still experience challenges when enacting tasks. Strøm-
skag (2013) demonstrated how a teacher’s intention for stu-
dents to glean general properties from a single example was 
not transparent to students. Furthermore, when responding 
to a perceived tension, teachers may enact mathematical 
tasks in less productive ways. Lithner et al. (2013) found that 
teachers might respond to students’ potential frustrations, by 
letting “the teaching act collapse”, (Ainley & Margolinas, 
2015, p. 127) and taking responsibility from the students by 
removing ambiguity from the task. When enacting tasks, 
teachers navigate students’ intentions, and this navigation 
may be tacit or explicit on the part of teachers.

Designers have used a student perspective on reflective 
task design to promote students’ domain-specific mathemati-
cal reasoning. To promote elementary students’ additive and 
multiplicative reasoning, Savard and Poloskaia (2017) devel-
oped Mathematically Incoherent Situations (MIS) tasks. 
Best and Bikner-Ahsbahs (2017) designed tasks intended to 
foster secondary students’ flexible rather than fragmented 
interpretation of function. Strømskag (2017) designed a task 
to promote university students’ reasoning about a theorem 
in elementary number theory. Through task design princi-
ples, underlying the development of tasks, researchers can 
make explicit how they take into account the student per-
spective. Savard and Polotskaia (2017) included a specific 
design principle based on their anticipations that students 
might look for particular numbers given in a task, not gen-
eral features.

Other designers have used a student perspective on reflec-
tive task design to promote students’ domain transcend-
ent mathematical reasoning. Synthesizing across research 
programs, Lithner (2017) provided design principles for 
tasks promoting algorithmic reasoning (AR) and creative 
mathematical reasoning (CMR). The challenges associated 
with the CMR task design principles involved the design-
ers taking into account students’ responses to CMR tasks, 
which are more open ended than AR tasks. Using a model-
ling approach to investigate statistical thinking, Kuntze et al. 
(2017) found that hybrid tasks were effective in fostering 
adult learners’ critical and statistical thinking. Furthermore, 
Kuntze et al. (2017) demonstrated how reflective task design 
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can encompass both domain specific and domain transcend-
ent mathematical reasoning.

Designers engaging in reflective task design may lev-
erage digital learning environments to promote students’ 
domain-specific mathematical reasoning. Frieman et al. 
(2017) examined how primary elementary students work-
ing with a digital learning environment might develop sym-
bolic algebraic reasoning. Johnson et al. (2017) used a Ferris 
wheel dynamic computer environment to provide secondary 
students opportunities to engage in covariational reasoning. 
In developing each of the digital learning environments, 
researchers engaged in reflective task design to take into 
account students’ reasoning.

5.3  Using a student perspective to inform task design: 
emergent task design

In emergent task design, teachers make in-the-moment 
design decisions, accounting for students’ responses to tasks. 
From a student perspective on task context, any task can 
have potential ambiguity. By ambiguity, we do not mean 
a lack of clarity. Rather, we mean a possibility for direc-
tions beyond what may have been a task designers’ origi-
nal intent. Emergent tasks (Best & Bikner-Ahsbahs, 2017; 
Bikner-Ahsbahs & Janßen, 2013), which promote students’ 
diverse learning processes and ways of working, are one way 
in which teachers may embrace potential ambiguity in any 
task. Bikner-Ahsbahs & Janßen (2013) used emergent tasks 
to refer to situations such that “the teacher conceives the 
mathematical potential of a learning opportunity and trans-
lates it into a task” (p. 154). Best and Bikner-Ahsbahs (2017) 
describe the central role of the student in emergent tasks: 
“emergent tasks adapt the content to the students; they take 
up ideas a student produces or the regularities the student 
has found and transform them into tasks” (p. 7).

Emergent task design has proven useful for promoting 
students’ algebraic and functional reasoning. After present-
ing an analysis of a student’s thinking, Best and Bikner-
Ahsbahs (2017) provided multiple examples of emergent 
tasks that a teacher might enact in response to the student. 
Johnson et al. (2017) described how Johnson, serving as 
an interviewer in a one-on-one clinical interview setting, 
responded to a students’ conception of a task situation with 
an emergent task. Best and Bikner-Ahsbahs (2017) and 
Johnson et al. (2017) illustrate the crucial role of a teacher 
in enacting emergent tasks. Student responses cannot always 
be predicted and opportunities for learning require teachers 
to respond contingently.

Enacting emergent tasks is a challenging endeavor for 
teachers, because enactment requires teachers “to understand 
a mathematical problem students have encountered within 
the interest-dense situation and to translate it into a task for 
the class” (Ainley & Margolinas, 2015, p. 133). Engaging 

in reflective task design focused on the student perspective 
may promote teacher’s enactment of emergent tasks during 
instruction. Chan and Clarke (2017) investigated secondary 
students’ interactions when working on tasks designed to 
promote students’ collaborative problem solving. Theorizing 
learning as participation in practice, Chan and Clarke (2017) 
found that teachers’ attention to students’ mathematical, 
sociomathematical, and social negotiations serve as a use-
ful entry point for instructional interventions. Furthermore, 
analyzing instruction involving the use of emergent tasks can 
prove valuable for teachers. Using a task involving area and 
perimeter, Coles and Brown (2013) explored how through 
use of principles of task design, teachers began to develop 
the ability to implement emergent tasks. When implement-
ing emergent tasks, teachers make in-the-moment decisions 
to adapt tasks, or even develop new tasks, to account for 
students’ perspectives.

5.4  Using a student perspective to inform theoretical 
and methodological approaches for task design

When using a student perspective to inform theoretical and 
methodological approaches for task design, designers posi-
tion the perspective of a student alongside the perspective 
of designers. In task design, researchers may develop epis-
temic student(s), which Steffe (2010), building from Piaget’s 
theory, describes as researchers’ models of possible con-
ceptions that students may have when beginning work on a 
task. Simon’s (1995) theoretical construct of a hypothetical 
learning trajectory (HLT), places the teacher’s perspective of 
a student’s perspective at its center. In articulating the HLT, 
Simon (1995) described the back and forth process between 
a teacher’s task design decisions and a teacher’s perspec-
tive of student’s thinking: “a reflexive relationship between 
the teacher’s design of activities and consideration of the 
thinking that students might engage in as they participate in 
those activities” (p. 133). When using HLTs to guide reflec-
tive task design, designers acknowledge the inevitability of 
emergent task design. Simon (1995) alluded to emergent 
task design when describing a teacher’s enactment of a les-
son guided by a HLT: “the learning environment evolves as 
a result of interaction among the teacher and students as they 
engage in the mathematical content” (p. 133). Researchers 
may develop epistemic students from different theoretical 
frames. Drawing on the Theory of Didactical Situations, 
Strømskag (2017) posited a methodology for instructional 
design, placing the generic and epistemic student at the 
center. When developing an epistemological model, Strøm-
skag (2017) includes epistemic students’ “opportunities to 
learn the targeted mathematical knowledge” (this issue). By 
developing epistemic students, designers can incorporate at 
student perspective to inform theoretical approaches for task 
design.
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Using enactivist theory, Graven and Coles (2017) 
examined how teachers’ specifications for tasks afforded 
and constrained students’ learning opportunities. Graven 
and Coles investigated teachers’ interpretations of both a 
designer’s task design and then their early elementary stu-
dents’ responses to the same mathematical tasks, embed-
ded in number stories. Graven and Coles suggest that the 
major strands of task design (e.g., design research DBRC, 
2003; the Theory of Didactical Engineering, Artigue and 
Perrin-Glorian 1991; Realistic Mathematics Education; 
Van den Heuvel-Panhuizen, 2003) have all developed 
iterative processes that share an aim of reducing gaps 
between task designer intention, teacher implementation 
and student learning. However, for Graven and Coles, dif-
ferences of intention were not conceptualized as problem-
atic “gaps” but rather as sources for learning. They provide 
evidence that it is precisely those contexts where there 
was space for multiple interpretations, divergent intentions 
and a negotiation of meaning, which were productive, in 
terms of learning. What is required, however, is an atti-
tude of resisting the desire for the unambiguous and an 
acceptance of working with uncertainty (e.g., see Coles 
& Scott, 2015).

Lozano (2017) introduced a methodological approach 
addressing mathematical tasks, mathematics classroom 
cultures, and mathematics learning. Lozano put forward 
a methodological tool comprising seven dyads, against 
which student behavior, and through that, the wider class-
room culture and context, can be analyzed. These dyads 
are: active/passive; attentive/inattentive; working individu-
ally/working with others; freedom/constraint; explaining/
having correct answers; knowing how and knowing why/
remembering. Through the use of this analytical tool, 
Lozano demonstrated how it is possible to approach the 
relationships between tasks, classroom cultures and stu-
dents’ learning of mathematics. Like reflective task design 
that takes into account the student perspective, Lozano’s 
innovative methodology represents reflective research 
design that places the student experience at the center of 
concerns. The focus on relationships within this methodol-
ogy fits well both with the enactivist stance within which 
this research is placed (e.g., see Bateson, 1972) and also 
more recent, materialist, methodological thinking (e.g., 
see de Freitas & Sinclair, 2014).

Researchers can experience logistical challenges when 
collecting data for studies investigating students’ interac-
tions with mathematical tasks in larger group settings, such 
as whole classrooms. For example, a single microphone or 
video camera is insufficient to record numerous student–stu-
dent interactions in a classroom. Technological advances 
can assist in the documentation of student–student and 
student–teacher interactions, while students attempt differ-
ent types of mathematical tasks. The laboratory classroom 

described by Chan and Clarke (2017) offers the possibil-
ity of simultaneous recording of every action (including all 
spoken utterances) undertaken by twelve pairs of students 
all attempting the same task, at the same time, under the 
same conditions. Access to data sets such as those reported 
by Chan and Clarke (2017) can open up opportunities for 
researchers to network different theoretical lenses to inves-
tigate students’ experiences with mathematical tasks.

6  Conclusion

In the negotiation of perspectives (across designer, teach-
ers and students) there is the possibility of expanding par-
ticular viewpoints and a coming to know of alternative 
ways of seeing. To illustrate, we appeal to the notion of 
agile practice, from business literature: a capacity to adapt 
our planned activity to the demands of circumstance and 
situation (Madeyski, 2009). The agility of action can be 
promoted among teachers, who must respond to the antici-
pated unpredictable phenomena of student response, and 
students, for whom contemporary curricula prioritize a 
flexibility of thought, able to accommodate novel problem 
situations. The development of agile practice is one per-
spective on the well-established problem solving agenda, 
dating from the 80s, and motivated by publications such as 
Toffler (1970). The consequent goal of a student equipped 
with maximally adaptive problem solving skills posed (and 
continues to pose) significant challenges for task designers 
and for teachers.

Analogous to agile practice, the idea of horizontal 
expertise as a curricular goal (Engeström, 1987) poses 
challenges for the design and use of mathematical tasks. 
When designers and teachers set horizontal expertise as a 
goal, they problematize a conception of classroom goals 
from not only their perspectives, but also the perspectives 
of students. We contrast a goal of horizontal expertise with 
a goal of vertical expertise, in which designers and teach-
ers may seek to move students through predictable acqui-
sition of hierarchically sequenced skills and concepts. A 
focus on horizontal expertise opens up possibilities for 
different kinds of goals that can transcend conventional 
mathematical content, including goals focusing on student 
agency and interaction.

In a seemingly paradoxical manner, our focus on the 
student perspective has returned our attention to the criti-
cal role of the teacher in the mathematics classroom. When 
viewing the project of task design as minimizing a gap 
between design intention and actual learning, there is the 
possibility of minimizing the influence and importance 
of the teacher—as though tasks might work directly on 
students’ cognitive capacities. Through foregrounding 
the perspective of the student, we have found the studies 



821Mathematical tasks and the student: navigating “tensions of intentions” between designers,…

1 3

above point to the vital and subtle work of the teacher, able 
to anticipate, accommodate, hear, respond to, and build 
upon student ideas. Rather than viewing the different per-
spectives that designers, teachers and students bring to 
the doing of a task as constituting problematic gaps, we 
suggest rather that these multiple perspectives constitute 
a space of possibilities (Davis, 2004). When handled with 
sensitivity, such spaces can enrich all participants, again, 
drawing attention back to the crucial role of the teacher.

Open Access This article is distributed under the terms of the 
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tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to 
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