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Abstract An in-depth analysis of the major early

numerical aspects (single-digit and multidigit addition and

subtraction) in a representative Chinese textbook series and

a US textbook series (Math Expressions) with major East

Asian components illustrated how linguistic issues create

different teaching and learning tasks for the same mathe-

matical topic and how additional meaning-making supports

may be needed in the US. Analyses of multidigit methods

in several East Asian textbooks revealed a wide range of

written-numeric support of the steps in these operations.

Coherence and learning paths in both programs were

identified. A framework that identifies elements of a

coherent learning path of meaning-making supports is

proposed to facilitate future cross-cultural analyses.

Keywords Addition � Subtraction � Language effects �
Learning supports � Cross-cultural textbook analysis

1 Introduction

East Asian students outperform US students on several

measures of performance. This special issue is focused on

curricular analyses that can increase our understanding of

this phenomenon and also increase our understanding of

social-cultural practices that help develop teacher and

student understanding of mathematics in China (and other

East Asian countries) and in the United States. Analyses of

the mathematics topic content of the intended, imple-

mented, and achieved curriculum are vital as a basis for

understanding national differences (e.g., Cai, 2008; Li,

2007a). But there are also language differences and dif-

ferences in textbook support that affect the clarity of the

mathematical concepts and procedures to be taught and

learned, both for teachers and for students. These classes of

differences are the focus of the present paper.

This article is a collaboration between a western

researcher who has been studying East Asian mathematics

education approaches for over 20 years in collaboration

with graduate students from Korea, Taiwan, and Japan and

a researcher from China who has been living in the United

States for over 15 years and studying mathematics curric-

ulum issues between the East and the West. Two textbook

series are the primary foci of the analysis, but the analysis

is also informed by the authors’ familiarity with other East

Asian and US textbooks over the years. The Chinese books

are those recently published by People’s Education Press

which is under the direct administration of the Ministry of

Education in the Chinese Mainland (Division of Elemen-

tary Mathematics, 2007). This textbook series is currently

the most widely used series with over 60% of the market in

China. The US books are those from the Children’s Math

Worlds Research Project that are now published by

Houghton Mifflin Harcourt as Math Expressions (Fuson,

2006, 2009a). This textbook program is used widely in the

US (in 49 of the 50 states), but has a relatively small

market share at this time. This textbook program was

developed in an extended research project carried out over

12 years to adapt some approaches from East Asia for US

use but also to develop new approaches to meet special US

needs. The recent Chinese books differ from older Chinese

books or from the Korean, Taiwanese, and Japanese books
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examined by the authors in earlier years in important ways.

Such differences will be mentioned during the analysis, but

extensive comparative analyses are beyond the scope of

this article.

This curricular analysis article focuses on the first

four major computational topics that students experience:

single-digit addition, single-digit subtraction, multidigit

addition, and multidigit subtraction. The selection of these

four topics provides an opportunity to understand possible

linguistic influence on students’ early learning of school

mathematics and to ascertain the coherence of this early

numerical experience. This article results from an in-depth

examination of the textbook supports that enable early

mathematical ideas to be built in powerful and connected

ways. Our analysis reveals the kinds of supports that can

extend readily from East Asia to the United States but also

identifies some limits of such extensions and necessary

adaptations (Li, 2007b). Because the Math Expression

program is unusual for the United States in the coherence

and clarity of its learning supports, ways in which it departs

from usual US texts will be identified along the way. The

program’s deep re-working of learning supports from East

Asia also suggests some ideas that might be helpful in

China and other East Asian countries. The authors see this

article as potentially useful for teachers and teacher edu-

cators as well as for researchers because seeing ideas in

somewhat different contexts always enriches and extends

one’s own thinking.

2 A coherent learning path of meaning-making

supports?

Language plays a key role in mathematics learning and

teaching (e.g., Chen & Li, 2008). It is used to express

mathematical ideas and to discuss and explain these ideas

and related solution methods. Languages vary in how

clearly they express mathematical ideas, with East Asian

languages often expressing ideas more clearly than does

English (specific issues are discussed later in the paper).

The clarity of East Asian languages vis a vis numerical

concepts can help speed initial learning of a concept and

increase the understanding that occurs in classroom dis-

course using these clearer words. An examination of

language use in textbooks should thus allow us to

understand possible linguistic supports that may facilitate

students’ mathematics learning, especially when viewed

through a cross-cultural lens that permits us to see how

those terms are expressed in another language. In partic-

ular, we are interested in understanding whether the

Chinese language as used in school textbooks lends dif-

ferent supports to mathematical methods in comparison to

English.

Illustrations of various kinds are widely used in texts,

and relevant research has revealed the potential of illus-

trations in facilitating students’ learning (e.g., Levie &

Lentz, 1982). However, not all illustrations in texts facili-

tate students’ learning (Garner, Brown, Sanders, & Menke,

1992; Woodward, 1987). Mayer, Sims, & Tajika (1995)

documented the inclusion of many instructionally irrele-

vant illustrations in US texts but only the inclusion of

illustrations that clarified the mathematical idea in Japanese

texts. The study of Mayer et al., demonstrated the feasi-

bility and value of examining text illustrations for revealing

potential impact of texts on students’ mathematical

understanding. We therefore include this focus on the

nature and instructional function of text illustrations in the

US and Chinese texts. We call such clarifying text illus-

trations visual-quantitative supports because they show

visually important quantitative aspects of the concepts

involved. These visual-quantitative supports may show a

real-world situation like nine blue pens and six red pens, or

simple mathematical drawings like a rectangle with two

rows of five circles in it, or pictures or drawings of peda-

gogical teaching tools like bundles of ten sticks and single

sticks to show two-digit numbers.

Another variation we found in the textbooks we exam-

ined is the extent to which the written numerical method

supported understanding and notated intermediate steps in

the method. These written-numeric supports make the

written method more accessible to students and easier to

carry out. Our analysis will summarize the range of these

written-numeric supports.

The methodology for this paper was a detailed content

analysis that identified visual-quantitative learning supports

and written-numeric aspects of addition and subtraction

methods given in the Chinese and US books. Every page

was examined and notes were taken. These were summa-

rized and then numeric methods for multidigit addition and

subtraction from Japanese, Korean, and other Chinese

books were added to the analysis. The linguistic analysis

began with the issues already known by the authors (e.g.,

differences in the clarity of the tens and ones in Chinese

and English number words) and were extended by trans-

lating into English the Chinese words on key textbook

pages (those introducing or extending methods).

Previous analyses of East Asian textbooks have

emphasized their coherence in content development and

the power of their meaning-making supports (Li, 2008;

Murata, 2004, 2008; Murata & Fuson, 2001, 2006;

Watanabe, 2006). Fuson and Murata (2007) extended

these points by describing teaching principles drawn from

US National Research Council reports, the NCTM process

standards, and from teaching in Japanese classrooms.

In addition to the importance of the above features of

language and textbook illustrations as meaning-making
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supports, they identify the importance of a coherent

learning path that supports student movement from

primitive to more advanced methods that are mathemati-

cally desirable. Mathematically-desirable methods show

important mathematical features, generalize across num-

bers and situations, and are efficient enough. Fuson and

Murata also discuss how it is possible to teach mathe-

matically-desirable methods but also make them accessi-

ble to students so that students can understand them.

Therefore our analysis in this paper will also focus on the

extent to which the whole range of student methods from

primitive to advanced are shown in the book because this

helps the teacher recognize these methods but also move

students along the learning path to general mathemati-

cally-desirable methods. These focal research issues are

summarized in Table 1 as a framework that future cross-

cultural analyses of textbooks can use and modify. This

framework is a result of the study and was clarified as we

worked on the analysis. Table 1 may better be placed at

the end rather than at the beginning of the paper, but its

placement here allows it to act as an advance organizer

for the issues to be addressed and has enabled us to

introduce and explain here the terminology that will be

used later in the paper.

3 The four computational mathematics topics:

single-digit addition, single-digit subtraction,

multidigit addition, and multidigit subtraction

3.1 Single-digit addition and subtraction methods

First, language differences that make certain methods more

difficult in English than in East Asian languages based on

Chinese are described. Second, levels of experience/em-

beddedness in single-digit methods are outlined. Third, the

visual-quantitative learning supports in Chinese books are

discussed. Finally, how and why the learning supports in

the US program vary from those in the Chinese books is

explained.

3.1.1 Language differences and single-digit strategies

The English teen number words (eleven, twelve, thirteen,

fourteen, fifteen, sixteen, seventeen, eighteen, nineteen) do

not show their quantitative meanings of 11, 12, 13, …, 19

as one ten and some ones (11 = 10 ? 1, 12 = 10 ? 2,

etc). In contrast, the regular Chinese words clearly name

the tens in these teen words; these words in their English

translation are ten one, ten two, ten three, …, ten nine. In

Table 1 A framework for cross-cultural analysis: are there visual-quantitative, written-numeric, and any necessary linguistic meaning-making

supports that culminate in a coherent learning path leading to a mathematically-desirable and accessible method(s)?

Coherent learning path of meaning-making supports

The teacher or math program creates a cognitively-supportive meaning-focused classroom by using a coherent learning path of linguistic,

visual-quantitative, and written-numeric supports to create interest and accessibility of ideas and support students in learning methods that are

mathematically desirable but also accessible (adapted from Fuson & Murata, 2007)

Research questions for the textbook analyses

Part 1.

Does the textbook contain visual-quantitative meaning-making supports that clarify the mathematical concepts?

What are the visual supports and how well do they support the mathematical ideas?

Could students make math drawings to link to mathematical notation to support student explaining their thinking?

Part 2.

Does the textbook contain written-numeric meaning-making supports that clarify the steps in a method and/or help students carry out that

step?

What are the written-numeric supports and how well do they support the mathematical ideas?

Part 3.

Language supports or issues

Does the formal mathematical vocabulary in a given language support or obscure its idea?

Are additional visual-quantitative or linguistic supports used for language that obscures a mathematical idea?

Part 4.

Does the textbook support a coherent student learning path to mathematically-desirable methods that are also made accessible to students?

To what extent is the learning path of student methods shown in the student book?

Does the order of problems support student learning (or at least not interfere with it)?

To what extent are the methods introduced in the student book mathematically desirable, i.e., they are general, show important mathematical

features, and are efficient enough?

To what extent are the mathematically-desirable methods introduced in the student book made accessible to students?
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English this tens-structure is either not present (e.g., eleven,

twelve), has the reference to ten changed phonetically (teen

instead of ten) and is also reversed in order from the

numerals (e.g., 14 has the 4 second but fourteen has the

four first), and/or has the ones word phonetically changed

(thirteen and fifteen instead of threeteen and fiveteen).

This linguistic difference makes it more difficult for

English-speaking children to understand that teen numbers

are composed of a ten and some ones (Ho & Fuson, 1998;

Miura et al. 1988). It also makes it more difficult to learn

the advanced make-a-ten methods of single-digit addition

and subtraction that are taught to first graders in China and

other East Asian countries (Fuson & Kwon, 1992a; Geary

et al., 1993; Murata, 2004; Murata & Fuson, 2001, 2006)

and that depend on this understanding. In these methods,

one addend (when adding, usually the smaller addend, and

when subtracting, the unknown addend) is separated into

the amount to make ten with the other addend and the

amount to make the ones in the teen number. So 8 ? 6 is

8 ? 2 (is ten) ? 4 (the rest of the 6) = 10 ? 4 = 14.

Essentially any problem is changed to a 10 ? n problem by

giving some of one addend to the other addend to make a

ten. This method is facilitated in Chinese and other East

Asian languages because 10 ? 4 is said as ten four. It

requires another step in English, where a child might write

14 thinking (ten and four) but still has to do the extra

translation into English words (Oh yes, ten and four is

fourteen.).

There are three conceptual prerequisites for the make-a-

ten methods (see also Murata, 2004, for a discussion of

how these are taught in a Japanese classroom). The pre-

requisites are easier to discuss if we introduce terminology

used in the US Math Expressions program. Two addends

that compose a number are called partners (e.g., in the

make-a-ten method above for 8 ? 6, 8 and 2 are partners of

10, and 2 and 4 are partners of 6). To carry out the addition

or subtraction make-a-ten methods, children must

(a) know the partners to ten for the numbers 9, 8, 7, and 6

to do the first step,

(b) know all of the partners of a given number to find the

second step, and

(c) know the total 10 ? n composed to be written as 1n

(or know that 1n decomposes to be 10 ? n).

Step (c) is the step that is very easy if you say the written

teen number using ten (e.g., 12 is said as ten two), but more

difficult in English where they are no cues that 12 is ten

and two.

The make-a-ten methods are in the highest of three

levels of single-digit addition and subtraction solutions

found around the world (see Fig. 1). In the first Count All

Level, children cannot conceptualize an addend as

Levels 8 + 6 = 14 14 – 8 = 6 

Level 1: 
Count all 

Count All 

   

Take Away 

Level 2: 
Count on 

Count On To solve 14 – 8 I count on 8 + ? = 14 

8 to 14 is 6 so 14 – 8 = 6 

Level 3:
Recompose 
   Make a ten (general): 

one addend breaks 
apart to make 10 
with the other 
addend

   Make a ten (from 5’s 
   within each addend) 

Recompose: Make a Ten 14 – 8: I make a ten for 8 + ? = 14 

Doubles ± n 6 + 8   =  14 

Note: Many children attempt to count down for subtraction, but counting down is difficult and error-prone.
          Children are much more successful with counting on; it makes subtraction as easy as addition. 

8

8

10 + 4 

2 41 3 5

2 41 3 5

86 7

86 7

10 + 4

= 6 + 6 + 2  
=   12   + 2 = 14 

2 41 3 5

2 431 5

7 96 8 10 

7 16 8 2

11 13 12 14 

3 54 6

I took away 8 
9

10 11 12 
13 

14 

8 + 2 + 4 

6

8     +              6     =     14 

14 

6

14 

10 12 9 13 11 

2 41 3 5

10 12 9 13 11 

cb

a

c

ba

Fig. 1 Levels of children’s addition and subtraction methods
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embedded within a total and must count each part of the

addition or subtraction situation separately (count all or

take away). In the second count on level, children can

conceptualize the first addend as embedded within the

total, begin with it, and count on to the total, keeping track

of how many are counted on to find the total, if adding, or

the unknown addend, if subtracting. In the third recom-

posing level, one or both of the addends are recomposed to

make new addends, the total of which is already known.

The make-a-ten methods are general and apply to all

numbers. Using doubles is not a general method. It is

widely used in the US but not in East Asia. Make-a-ten

methods are taught and widely used in East Asia but not

taught or used widely in the US.

3.1.2 Learning supports in the Chinese books

The Chinese books have several features that make them

attractive to children. They are small (15 cm by 21 cm)

and thin (122 pages in the first volume and 108 pages in the

second volume). The pages are appealing and uncluttered,

with many colored drawings of children or animals doing

or being something mathematical. Unlike many texts in the

US (but not Math Expressions), there is no art that is

extraneous to the mathematical content. All of these fea-

tures are typical for East Asian children’s math books and

not typical for math books in the US.

The third unit in the Grade 1 books is on the numbers

1–5. The translated title for this unit is Knowing the

numbers 1–5, their addition and subtraction, and it covers

pages 14–31. Children see cardinal numbers of things and

associate these with a numeral, find such groups in real-

world pictures, find partners (addends) of a number (see

Fig. 2; such drawings will be called addend drawings from

now on), see and represent addition and subtraction situa-

tions with equations and with addend drawings, and match

visually to find more or less. The addend drawings sum-

marize finding the partners, which is prerequisite (b) for the

make-a-ten methods (see the above list of prerequisites).

This activity is called How many with how many?

. On a later page in the sixth unit, the direction for

finding partners of ten is Find friends. Thus, the idea of the

English word partners is consistent with the Chinese idea

and might even be considered for use in their books. The

word partners is used in Math Expressions because it

engaged children and was powerful conceptually in per-

mitting them to deal with the complex issue of two num-

bers embedded within a third number. Multiple methods

are shown for addition and for subtraction. For an addition

situation and equation (4 ? 1 = 5), pictures of three

children are shown, each doing a different solution:

counting all, counting on from 4, and mentally picturing an

addend drawing of 4 and 1 making an unknown total,

shown as a box. The three methods shown for a subtraction

situation and equation (5 - 2 = 3) are counting what is

left, counting down 2 from 5 (5, 4, 3), and mentally pic-

turing an addend drawing of 2 and an unknown, shown as a

box, making the total 5 on the top.

Children write numerals in very small spaces, smaller

than a square centimeter. This is different from the US

where young children typically write in considerably larger

spaces. Some kindergarten and Grade 1 US teachers

question the relatively small spaces for writing numerals in

Math Expressions even though it is at least double that in

the Chinese books. These relatively smaller spaces were

chosen because some classroom research indicated that

children having difficulty writing numerals could write

small numerals more easily than the typical US larger

numerals. Even though there is no research to support the

use of larger writing spaces in the US, the strength of

teacher beliefs about this did not permit the use in Math

Expressions of spaces as small as typical in East Asian

books. The result is that fewer examples can be used in the

US with the larger font size.

The sixth unit focuses on numbers 6–10. This unit is

translated as Knowing the numbers 6–10, their addition

and subtraction and covers pages 42–83. As in other East

Fig. 2 Finding addends (partners) of a number
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Asian books, these numbers are shown as rows or groups

but also in 5-groups so that 6, 7, 8, 9, and 10 can be easily

seen as 5 ? 1, 5 ? 2, 5 ? 3, 5 ? 4, and 5 ? 5. These

visualizations help with adding and subtracting and espe-

cially with the make-a-ten methods. Children find all of the

pairs of addends for each number and record them in

addend drawings. Addition equations are related to sub-

traction equations, to such addend drawings, and to pic-

tures of totals separated into addends (by color or space or

both). Then without supportive drawings (but possibly/

probably with objects available to children), children fill

numbers into addend drawings (either the total or the

addend is the unknown) and into addition and subtraction

equations (finding the unknown result on the right hand

side of the equations). Children work deeply with each

number. They find and represent relationships among the

addends for that number within addition, subtraction, more/

less than, and addend drawing contexts. Math seems easy

and interesting. Page 66 (see Fig. 3) shows the 5-groups

and how this visual-quantity support can help children find

the addend to make ten, which is prerequisite (a) for the

make-a-ten methods. At the top page 66 also shows the

addend drawings to ten and related addition and subtraction

sentences for each pair of addends.

Chinese children have for a long time in Units 3 and 6

been finding an unknown addend within the addend

drawings (see Fig. 2). On page 70 they continue this focus

on prerequisite (b) for the make-a-ten methods by filling in

the unknown addend in an equation. Visual real-world

contexts such as seven pens in a box that clearly holds ten

pens are paired with equations of the form 7 ? ( ) = 10.

Then six pages lead children through successive addi-

tions or subtractions (or both) involving three numbers.

Children must carry out such successive steps when doing

the make-a-ten methods (but they will also have to generate

the second and third numbers themselves in those meth-

ods). No parentheses are used, and operations are carried

out left to right. For example, 5 ? 2 ? 1 = 8 is solved

as 7 ? 1 = 8, 8 - 2 - 2 is solved as 6 - 2 = 4, and

4 - 2 ? 3 is solved as 2 ? 3 = 5. Six review pages fol-

low that show various activities for reflecting on patterns

across addition and subtraction and for practicing finding

addends of a number, adding, and subtracting.

Unit 7 focuses on the numbers 11–20 as tens and ones (as

a short-cut term, we will call the numbers 11–20 the teen

numbers throughout the paper). This unit is called Knowing

the numbers 11–20 and covers pages 84–90. The ten and

left-over ones are shown in various ways, but especially as a

bundle of ten sticks and some loose sticks (children in some

East Asian countries use such small plastic sticks to make

numbers to 100 as groups of tens and ones). Children write

equations to show the tens and ones in the teen numbers:

10 ? 3 = 13, 3 ? 10 = 13, 13 - 3 = 10, 13 - 10 = 3.

Understanding the ten in teen numbers is prerequisite (c) for

the make-a-ten methods.

On page 88 in this unit the math terms for the parts of

addition and subtraction equations are first introduced.

They are more meaningful than are the English words

addend, addend, sum and minuend, subtrahend, difference

which come from Latin words and thus have little meaning

today for English-speaking children. The first Chinese

character for the first addition or subtraction term

means literally to be ()-ed by (or from) and the two char-

acters for the second term mean addition (or

subtraction) number. So these terms convey a change

action situation that is lost in the English meanings: To be

added to ? adding number or To be subtracted from –

subtracting number. The English words for subtraction

(i.e., minuend, subtrahend) are so meaningless that Math

Expressions typically uses the words for addition in sub-

traction contexts (e.g., in 13 - 9 = 4, 13 is called the total

and 9 and 4 are called the addends). This also helps chil-

dren relate addition to subtraction (difference is taught for

comparison situations, and the formal subtraction terms are

taught but not used all the time in classroom discourse).Fig. 3 Five groups and partners of ten
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Unit 9 supports the learning of addition of single-digit

numbers to make teen totals (11–18). This unit is called

Addition with carrying within 20 and covers pages 96–115.

The first two pages show children in groups doing various

enjoyable outdoor activities. One group is finding out how

many 9 and 4 are. The 9 things are shown as two rows of

five inside a box with one missing on one row. The 4 things

are sitting next to the box. So one can easily visualize

putting one of the 4 things inside the box to make 10 and 3,

which is 13. Three children tell how they find out how

many. They demonstrate the three levels of addition solu-

tions: One counts all from 1 to 13, one counts on from 9 to

13 (9, 10, 11, 12, 13), and one makes the group of ten,

saying, ‘‘Put in one box first to get 10, 10 ? 3 gets 13.’’

The next page (see Fig. 4) shows various 9 ? n problems

with different kinds of objects arranged in 5-groups so that

the one thing that 9 needs to make 10 is clear. A sketch

uses the addend drawing under the number added to 9 and

shows how the 1 goes with the 9 to make 10 (see the top of

Fig. 4). The problems at the top say, ‘‘Try it with such

manipulatives and calculate.’’ The characters on the pencil

say, ‘‘Try it.’’ The directions for #1 say, ‘‘Circle them and

calculate.’’ All of these visual-quantitative and written-

numeric supports help children recompose the 9 ? n

problem to be a 10 ? n-1 problem, which is much easier to

solve.

Thus, this page moves students from working with

objects to working with drawings to understand the make-

a-ten method that is shown numerically at the top using

addend drawings.

The first seven pages of this unit on the make-a-ten

method for teen addition focus on problems with 9 ? n,

where n = 2 to 9. These are the easiest problems for the

make-a-ten strategy because it is simple to see the first

step: 9 needs 1 to make ten, so children only need to find

the addends 1 and something for the number that is added.

Seven more pages focus on the make-a-ten method with

the first number 8, 7, or 6. These require 2, 3, or 4 to make

ten, and consequently the separation of the second number

into that addend plus another is more difficult than for the

problems with 9. The last of these seven pages has

unknown addend problems such as 8 ? ( ) = 12 and

9 ? ( ) = 15. These lead into the make-a-ten strategies for

subtraction (a later unit) if you think of subtraction as

finding an unknown addend. The next two pages of the

unit focus on problems that start with 5, 4, 3, 2 in totals of

11 or more. Problems are written in pairs to emphasize the

use of commutativity, which has been developed several

times in earlier units. The final four pages review various

aspects of the unit.

Unit 2 in the second book for Grade 1 focuses on make-

a-ten strategies for problems with a total from 11 to 18 and

two single-digit addends. This unit is called Subtracting

with decomposing (a higher unit) within 20 and covers

pages 10 to 26. Subtraction is solved in two ways: as an

unknown addend using the make-a-ten strategy or taking

the known addend from the ten in the teen total. So

12 - 9 = ? can be solved by thinking ‘‘9 ? ? = 12, 9 ? 1

is ten and 2 more in the 12, so 9 ? 3 = 12.’’ Or it can be

solved by thinking 12 is 10 and 2, take the 9 from the 10,

leaving 1, which added to the 2 makes 3. These are close to

the same processes, and either may use the visual repre-

sentation of 9 within the whole ten two (10 and 2 things) or

focus on the numerals 12 seen as 10 and 2. The first five

pages focus on problems that subtract 9, but then gener-

alize to all subtractions from teen totals. Pairs or triplets

(e.g., 3 ? 8 =, 11 - 3 =, 11 - 8 =) of related problems

are written to underscore the relationships between addi-

tion and subtraction.

3.1.3 Learning supports in the US math expressions

program

The first author developed and fine-tuned this program over

a period of extensive work in classroom and with teachers

over 14 years; the early years of this work were within the

Fig. 4 Object and drawing supports for the make-a-ten method
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Children’s Math Worlds Research Project. The wide-

spread view of single-digit addition and subtraction learn-

ing during those early years was that such learning started

with concrete solutions, and children used pictures in the

textbooks or manipulatives to do Level 1 count all or take

away methods. However, then they moved directly to

memorized facts. There was little notion in textbooks of the

levels of children’s methods shown in Fig. 1. US children

actually carried these out but often literally under the table

so that teachers could not see their fingers. Now more

programs help children learn the Level 2 and Level 3

methods, but none has as systematic approach as outlined

here for Math Expressions. Some programs explicitly

refuse to teach any strategies to children, though they may

support these informally.

Earlier research had indicated that most US first graders

could learn to do the Level 2 counting on methods by the

same time in the year as Chinese students learn the make-a-

ten methods (e.g., Fuson & Fuson 1992), so counting on

was taught early in Grade 1. Children in Math Expressions

initially made math drawings of circles or used fingers for

Level 1 adding and subtracting small numbers, as shown in

Fig. 1. Advancing to Level 2 counting on then involved:

(1) being able to embed the first addend within the total, (2)

abbreviating the count of the first addend to its last number,

and (3) counting on from there. Children discussed how

they could begin this final count of the total with the first

addend number, as shown in Fig. 1. Most children kept

track of how many counted on with their fingers (see the

right side of Fig. 1). Learning to count on to find an

unknown addend for subtraction was an important advance

in the US where most children invent counting down,

which is slow and prone to errors (Fuson & Willis 1988).

This forward subtraction method was even easier than was

counting on for addition because students just need to

monitor the word they say until they hear the total (e.g., for

8 ? ? = 14, listen for 14) rather than feeling or seeing the

known addend on fingers for addition (e.g., waiting for 6 on

their fingers when adding 8 ? 6).

Finding partners of numbers (e.g., 5 is made of 3 and 2

or of 4 and 1) facilitated the embedding of the addends

within the total that was required to move to counting on.

First graders in the first unit of Math Expressions separated

rows of circles in a rectangle into partners by drawing a

vertical line and recorded these as addends (e.g., as 3 ? 1).

Because we found that many kindergarten and first grade

children had difficulty writing equations (confusing the ?,

-, = symbols), children first only wrote the operational

part of the sentence (e.g., 3 ? 1 or 4 - 3). The teacher

wrote full equations. In both Kindergarten and Grade 1 the

first equation children saw was of the form 4 = 1 ? 3,

which was used to record partners. This was done partly

because extensive data indicate that US students think that

equations have to have only one number (the answer) on

the right side. Early experience finding the partners hiding

inside a number and having the teacher record all of these

with equations having the total on the left allowed students

to feel comfortable with various forms of equations.

Addition was recorded in the usual equations with the total

on the right (e.g., 1 ? 3 = 4).

Partners were shown initially in the CMW program with

a static part-part-whole drawing (Fuson & Willis 1989) like

those commonly used in the US (a rectangle with a hori-

zontal line splitting it in half, and one of these halves

further split by a vertical line). But children viewed these

as static, and many did not understand why there were

twice as many entities as were actually in the problem

situation (because the total and both addends were there at

the same time). The visual equal split for the addends in

this representation was also problematic for some children

because the addends were usually not the same. We began

using a drawing like the addend drawing in the Chinese

books and only later saw it in East Asian books. We called

this a math mountain, with a story about tiny tumblers who

lived at the top of a mountain and some went to play each

day on one side of the mountain. In kindergarten children

drew circles to show how many played on each side and

then wrote these partners of the total at the bottom. These

math mountains were introduced in Grade 1 in the third

unit to represent unknown addends (partners), which were

then related to subtraction situations. So partners/totals,

addition, and subtraction situations and representations

became related in problem solving as children used equa-

tions, or math drawings with circles, or math mountains to

show their situations and solutions. The math mountains

had a sensory-motor component that allowed children to

compose/decompose the number from the total at the top to

addends at the bottom, and children found this to be a

powerful representation.

There was time in kindergarten to develop all three of

the prerequisites for the make-a-ten methods (see

Sect. 3.1.1). The East Asian 5-group patterns were used

throughout the year. Children saw every day in the front of

the room a chart called the Number Parade with the

numbers 1 to 10 and dots above them. The numbers 1 to 5

had that many dots in a row, and the numbers 6 to 10 had

the 5-group patterns (6 was a row of 5 with 1 below, 7 was

a row of 5 with 2 below, etc.). Children later in the year

practiced the partners of ten using this visual representation

and the math mountains. Prerequisite (b) is knowing the

partners to ten for the numbers 9, 8, 7, and 6. This was

developed as outlined above and practiced in various ways.

Prerequisite (c), the concept of the ten in teens, was

developed initially by using penny strips that showed a

column of ten pennies (separated by a space so you could

see two groups of five pennies). Children also rearranged
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groups of pennies into a column of ten pennies (which

looked like the written 1 in the teen numbers) and the left-

over pennies. Later they made successive teen numbers on

a teen board using tens and loose ones. Children also used

Secret Code Cards that showed the teen numbers such as

12 as 10 and 2: The 10 tile was twice as wide as the ones

tiles, and the ones tiles were placed on top of the 0 in the

10. Tiny numbers in the top left corner showed this large

12 as 10 and 2 (see Fig. 5 for 3-digit cards). Children also

saw and wrote teen equations such as 15 = 10 ? 5. As

soon as teen numbers were introduced children used both

English words for numbers and tens and ones words that

were expanded forms of East Asian words in which the

ones were explicitly stated: 12 was said as twelve and as

one ten two ones (the East Asian form is just one ten two).

These experiences enabled even low SES half-day children

to show concepts of tens and ones as do East Asian chil-

dren on the Miura tasks (Fuson, 2009b). The press of the

content of first-grade material did not give sufficient time

to develop all of the prerequisites fully, though some time

was spent on making partners to prepare for counting on, as

discussed above. The make-a-ten methods were discussed

later in the Grade 1 year to help more children use these

methods.

The need for such extensive development of the tens in

teens for US children was underscored for the first author

in some early research on counting on. Most Grade 1

children readily learned to count on to find single-digit

totals over ten, e.g., they found 9 ? 5 to be fourteen. But

they did not know how to write fourteen or how many ones

past ten fourteen was. They would write down the 1 in the

tens place and then count using fingers eleven, twelve,

Fig. 5 Early multiunit

conceptions and learning

supports
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thirteen, fourteen, see four fingers up, and write 4 in the

ones place.

The unitary nature of the count sequence in English

(nothing noticeable happens going past ten ‘‘… nine, ten,

eleven, twelve, …’’ as it does in Chinese where one says

‘‘… nine, ten, ten one, ten two, ten three, …’’) made it so

easy to continue counting on that many children in Math

Expressions did not make the effort to shift to using the

make-a-ten strategy. This strategy is more difficult in

English because of the irregular nature of these teen

words. In some Math Expressions classes the majority of

children did become fluent in the make-a-ten strategy, but

in many other classes this did not happen until Grade 2,

when its use in multidigit addition and subtraction was

helpful because you actually needed to think of the teen

numbers as a ten and some ones in that context. Ma

(1999) reported that Chinese teachers felt that the make-

a-ten method was the first example of multidigit adding

and subtracting, which was then used and generalized to

larger numbers. This is clear in the titles reported above

for these units: Addition with carrying within 20 and

subtraction with decomposing (a higher unit) within 20.

In most programs in the US there is no sense that the

single-digit computations with teen totals have anything

to do with multidigit addition and subtraction. They are

either viewed as stimuli to be memorized rotely or as

problems more difficult for children to solve than totals

to ten because children cannot show the teen totals on

their fingers, which moves many US children to begin to

count on. For US children the lack of a cultural press

toward the make-a-ten methods, and its greater difficulty

in English, meant that beginning to use these methods

was actually a later step within multidigit addition and

subtraction rather than the first step, as for Chinese

children. In the future, as more US teachers come to

understand the learning path of the levels of addition and

subtraction in Fig. 1 and the power of the make-a-ten

methods, enough time might be spent on them for more

students to become fluent with them. However, counting

on is rapid and accurate enough for those students who

cannot handle the multiple mental steps in the make-a-ten

strategies.

3.2 Multidigit addition and subtraction

3.2.1 Language issues in understanding place value

notation

The teen difficulties in English extend to all of the numbers

under 100. English (as well as other European languages)

does not explicitly name the tens for numbers from 20 to

99, though it does name the hundreds and thousands. Thus,

one says 4562 as four thousand five hundred sixty-two

rather than as six ten (60) as in Chinese. This makes it more

difficult for children speaking English to understand the

quantities in 2-digit numbers as tens and ones (Miura et al.

1988; Fuson & Kwon, 1992b) and therefore to understand

computational methods involving 2-digit addition and

subtraction. The fact that ordinarily few US children learn

the ten-structured methods for addition and subtracting

described above also means that many more are dependent

on single-digit methods that do not involve ten when

finding single-digit sums or differences within multi-digit

computations.

Figure 5 shows the aspects of multiunit quantities,

number words, and written number marks that children

in all countries must learn to understand and connect. The

multiunit quantity meanings are the same in all countries,

and the same written number marks are now used in most

countries. But the structure of the number words varies

considerably. English-speaking children must construct a

sequence multiunit conception that creates a quantity by

counting it up (accumulating it) in units of hundreds, tens,

and ones; this conception arises from the counting patterns

in English words, and especially in the decade words for

tens that refer to thirty or sixty or eighty ones, not 3 or 6 or

8 groups of ten. But children from any country can also

see multiunit quantities as in the math drawing on the upper

left: They can see 3 multiunits of a hundred, seven multi-

units of ten, and nine single units. These are easier to see if

the quantities are drawn using 5-groups as in Fig. 5.

The secret-code cards (that show the ‘‘secret code of the

numbers’’) mentioned above for the teens are shown here.

These allow children to understand the written number

marks both as positional referents to the multiunit quanti-

ties and as expanded notation that shows the English

named values of collections of units. In Chinese, the

learning task is simpler because the quantity words are

almost the Chinese counting number words. Children do

need to relate these quantities to the positions in the written

number marks, but marks such as 79 are less likely to be

considered as just the concatenated single digits 7 and 9

when they are said as seven ten nine than when they are

said as seventy nine.

East Asian books all show the meanings of place-value

notation using quantities such as bundled sticks or base-ten

blocks, and they use such pictures to show such quantities

as they relate to the steps of multidigit addition and sub-

traction. Many US texts now also show such pictures,

especially base-ten blocks in which the ones are 1 cm2, the

tens are 10 cm long, and the hundreds are a flat that is 10

by 10 by 1 cm. Many US texts now also show these blocks

or other quantities with multidigit addition and subtraction,

but usually not in separate steps. In the research leading to

Math Expressions, we found that schools seldom had

enough blocks or other multiunit quantities for children to
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use, such manipulatives created management issues, and

they were hard to show to the whole class when explaining

multidigit addition and subtraction. Therefore we moved to

using math drawings like those shown in Fig. 5. Students

first made the 10-sticks and 100-squares on centimeter dot

grids and then moved to making sketches (the math

drawings) using the quick-tens and quick-hundreds using

5-groups so that a viewer could see at a glance how many

there were. This also reduced drawing errors considerably

and increased the use of the separate multiunit conception

that did not require counting by hundreds, tens, and ones.

Each step in a written multidigit addition and subtraction

method could be related to a step in the drawing during

explanations of methods. When explaining their method,

children used the quantity words that named the multiunits

(three hundreds seven tens nine ones) that were like Chi-

nese number words (except for the plurals and the word

ones at the end), and they also became able to use English

number words. They initially made numbers using secret-

code-cards, which had drawings of hundreds, tens, and

ones on the back, and sometimes used these when solving

problems.

3.2.2 Multidigit addition methods

The national context in the US during the Children’s Math

Worlds Research Project was predominantly one of two

extremes. One was that students were taught a mathemati-

cally-desirable method (see New Groups Above in the

middle of Fig. 6), but often with little explanation from the

teacher or the book, which might show one drawing of ten

ones making one ten. So this mathematically-desirable

method was not made accessible to students. In reaction to

this meaningless approach, several projects focused on

children inventing methods for 2-digit addition (e.g., Cobb

1987; the projects summarized in Fuson, Wearne, et al.,

1997). These invented methods were accessible but often

were not mathematically-desirable. They often involved

counting by tens and ones and did not generalize easily to

larger numbers (counting on by hundreds, tens, and ones took

considerably longer than did the 2-digit methods), and these

3-digit methods involved counting over a hundred, which

was a bit challenging. These methods were even more

complex for larger numbers. As discussed in Fuson and

Murata (2007), the classroom research that culminated in

Math Expressions began a search for written-numeric mul-

tidigit methods that were mathematically-desirable (were

general, showed important mathematical features, and were

efficient enough) but were also accessible to children, i.e.,

easier than the abstract and non-helpful methods currently

taught in the US. Two such mathematically-desirable and

accessible methods were identified for addition, and one

method with left-to-right or right-to-left variations was

identified for subtraction. All methods were invented by

second graders using base-ten blocks to add and subtract 4-

digit numbers (Fuson & Burghardt, 2003). We tried these

methods in many different classrooms, and they appealed to

teachers and to students. In many schools, base-ten blocks

were not available and their use created management issues,

so the project changed to using the math drawings in

Fig. 6 Multidigit addition

methods
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Figs. 6 and 7. Math drawings had many advantages over

manipulatives (Fuson, Atler, Roedel, & Zaccariello, 2009).

Some students preferred each one of the mathematically-

desirable and accessible methods we identified, so we

included both of them in Math Expressions. In Math

Expressions children begin multidigit addition and subtrac-

tion by inventing their own methods using the math drawings

in Figs. 6 and 7, but the mathematically-desirable and

accessible methods are quickly introduced in story scenarios

and discussed along with the current common method.

Children are allowed to use any general method they can

explain and relate to a math drawing. Students stop making a

drawing when they can explain their method using quantity

language to refer to the steps in the written numerals.

The two mathematically-desirable and accessible addi-

tion methods are the New Groups Below and the Write All

Totals methods shown in Fig. 6. The math drawings given

in Fig. 6 for each step in the New Groups Below method

show how such drawings support both big ideas of multi-

digit adding: adding like multiunits (ones to ones, tens to

tens, hundreds to hundreds) and what to do when you have

ten or more of a given multiunit (make one or more new

groups of a higher multiunit). One can also see five

advantages of this method over the New Groups Above

method shown in the middle of the page.

(a) When you write the new group below, it is near the

ones of the teen number you made, so you can see the

whole teen number more easily. This clarifies what

you are actually doing when you make the new group

and put it in the next left column. For example, when

adding the 9 ones and 7 ones in Fig. 6, you can see the

16 much more easily in New Groups Below than in

the New Groups Above method where the 1 and the 6

are separated so far.

(b) Having the whole teen number close together also

makes it easier to write because students can write the

16 in order as 1 then 6 rather than writing the 6 ones

below and then writing the 1 above the next-left

column, as is usual.

(c) It is much easier to add the numbers whenever you

have a new group because you add the two numbers

you see in the problem (e.g., 8 tens and 5 tens in

Fig. 6) to get 13 tens and then add the 1 ten waiting

below to get 14 tens. In the New Groups Above

method, you add the 1 to the top number 8, hold that

total 9 in your mind while you add to it the bottom

number 5 (you can’t even see the second number 9

and you can see the old top number 8 that you are no

longer using). Or students may add the two numbers

they see but forget to add the 1 on the top.

(d) It is easier to see multidigit addition as adding two

whole (horizontal) multidigit addends, resulting in a

(horizontal) multidigit total at the bottom.

(e) Some students object to the common US method of

trading the new higher multiunit above the problem

because they say that you are changing the problem.

And in fact, trading the new higher multiunit above

the problem does change the problem, because you

are adding the new multiunit group into the top

number as you go. New Group Below does not have

this issue.

The two Write All Totals methods and the Expanded

Notation Form shown at the top of Fig. 6 are variations of

the second mathematically-desirable and accessible method

Fig. 7 Multidigit subtraction

methods
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used in Math Expressions. This method can be shown by

making both numbers with the secret-code cards and then

taking apart the cards to show the numerical values using

zeroes (see especially the top right example in Fig. 6). After

using the secret-code cards, students become able to see the

zeroes hiding under the tens and ones digits (e.g., they can

see 80 and 50 in the vertical problems). Then they do not

need to see or write out the expanded notation as in the top

right but can do either one of the vertical methods. Many

students prefer to work left to right (they read from left to

right) and so use the left-to-right version, but some students

use the right-to-left method. To keep these numerical

methods meaningful, students connect each step in the

numeric method to steps in the math drawing as they solve

and explain their method to their classmates.

The New Groups Below and Write All Totals methods

arose independently from research in US classrooms and

not from East Asian books. But preparation of this paper

indicated that both methods appear in East Asian books

although the New Groups Below method is shown with the

1s in a somewhat different place (see the right middle of

Fig. 6). The Chinese books show the left variation of New

Groups Below. One Japanese book shows the variation on

the right. In the Math Expressions program we had tried

different variations of where to write the new group and

found that it was easiest for children to understand if it was

written on the line, ready to be added in, and aligned

exactly under the column for the new kind of multiunit it

was. Chinese and Japanese children might also find it easier

to write the new group below on the line ‘‘waiting for the

other numbers to be added first’’. Another Japanese book

showed manipulatives for the New Groups Above method,

but did not record any new group: everything was done

mentally. This was done right to left, but it can be done

from the left to the right if you look ahead to the next-right

column to see if its total will be ten or more, in which case

you increase the total of the left column by one (this is a

common mental method taught in European countries). At

the bottom right is a method invented in our base-ten block

study (Fuson & Burghardt, 2003). This improves the New

Groups Above method by simplifying the addition to the

two given numbers and generalizes easily to larger num-

bers. We did not use this method in Math Expressions

because we found that some children confused it with

subtraction because you cross out a number. Korean books

showed all three variations of the Write All Totals methods

initially (including the Expanded Notation method) but

then moved to the New Groups Above method.

The drawings in Fig. 6 show how the 5-groups in the

drawings can support the make-a-ten method. The top left

drawing shows that 9 needs 1 more to make ten; when that

1 is taken from the 7 it becomes 6, making 1 ten and 6. The

8 tens need 2 more tens to make 10 tens, leaving 3 tens, so

this is ten and 3 of the tens (or thirteen tens) or one hundred

thirty (then plus the one more ten is fourteen tens or one

hundred forty).

3.2.3 Multidigit subtraction methods

Many students in the US make the error of subtracting the

smaller number in a column from the larger number even if

the smaller number is on the top (see the common error in

the middle of Fig. 7 where 346 - 157 = 211). This is the

major reason US national performance on 2-digit subtrac-

tion is only 28% correct in Grade 2, and this error remains

extremely common clear into high school (e.g., literature

reviewed in Fuson, 1990, and Fuson, Wearne, et al., 1997).

The current common method in the US alternates the steps

of ungrouping and subtracting (see the top right of Fig. 7).

This contributes to such errors even for students who

usually ungroup. For example, in the second step students

see a 3 on the top and a 5 below and they have just sub-

tracted the ones, so they are in subtraction mode. Two pops

into their mind as the difference of 3 and 5, and they write

2 in the tens column.

The mathematically-desirable and accessible subtraction

method used in Math Expressions eliminates the alternat-

ing steps by doing all necessary ungrouping first and then

doing all of the subtracting. This approach has other ben-

efits. Ungrouping the top number wherever needed also

helps to emphasize that this number is one whole multidigit

number that is being fixed to get it ready to have the second

whole multidigit number subtracted from it. This concep-

tual point can be emphasized by a further visual support.

We have students draw a magnifying glass around the top

number. They draw an ellipse around the whole top number

that is big enough to hold all of the ungrouping, with a little

stick at the top right for the handle. The magnifying glass is

introduced as something that reminds us to ‘‘look inside the

top number’’ to check in each column to see if there is

enough to subtract. This serves to inhibit the subtract-

smaller-from-larger number error that is often made before

students even think about ungrouping. This also makes a

visual grouping that emphasizes the top multidigit number

as a whole and thus facilitates a discussion about whether

the value of the top number is changed when it is

ungrouped. Because many US students view multidigit

subtraction as successive vertical operations on columns of

single digits, many think that ungrouping does change the

value of the top number (e.g., see literature reviewed in

Fuson, 1990). Students enjoy the metaphor of the looking

glass, but they drop this step when they no longer need it.

This method has the further advantage that both steps can

be done in either direction, allowing the left-to-right

approach preferred by many students (left-to-right

ungrouping is shown in Fig. 7). Learning disabilities
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teachers have reported how well this method works with

their students because it is so much easier for many

learning disabled students to ungroup and subtract from the

left and not to alternate steps. Students also have produc-

tive Math Talk in their classrooms as they discuss whether

and why you can ungroup and subtract in either direction.

As with addition, the math drawings also help with both

big ideas of subtraction: subtract like multiunits and un-

group within the top number when needed to get enough of

the next-right multiunits. They also support the make-a-ten

mental subtraction approaches. In Fig. 7, the 7 ones are

taken from the ungrouped ten ones, leaving 3 ones to put

with the 6 ones in 16. Similarly the 5 tens are taken from

the ungrouped ten tens, leaving 5 tens to add to the 3 tens

left in the top number. Students can then carry out these

methods mentally by looking at the 1 in the 16 ones and the

13 tens and seeing it as 10. Seeing the numeric 1 in the tens

place as a ten (10) is facilitated by the Math Expressions

secret-code cards, in which students can see the 0 hiding

under the 6 ones. Because single-digit subtraction is usu-

ally approached as finding an unknown addend in Math

Expressions, either counting on or the make-a-ten methods

are likely to start with the number written in the second row

(e.g., in the ones place in Fig. 7, go from 7 up to the 16 by

counting on 9 or thinking 7 up to ten is 3 and 6 more is 9.

Some East Asian students might be helped by making math

drawings for addition or for subtraction, though the sup-

ports in the language for the ideas may make this less

necessary than for children speaking English.

The East Asian methods found in books typically are the

alternating method shown at the top right but with differ-

ences in how this is shown. All initially show the steps

paired with the unbundling or ungrouping of objects. In the

Korean books and one Japanese book (see the middle right

of Fig. 7: Writing the Ungrouped Ten), the ungrouped 10 is

written above the column instead of writing the whole teen

number (so 10 is above 6 rather than writing 16). This

visual support facilitates the make-a-ten method because

the bottom number can be taken from the 10 or thought of

as finding the unknown addend: Seven and three make ten

and the 6 ones that are there make 9 one (Fuson & Kwon,

1992b). However, for US students who do not use this

method of subtracting, writing the 10 might be confusing,

so we did not use it. A Japanese book from a different

published than the one described above just shows the left

side of each ungrouping (the decrease by one) and the

make-a-ten subtraction is done mentally (this is easy to do

if one visualizes a 10 written above as in the Korean and

Japanese methods). Fourth graders in the US have invented

this short-cut, saying that they do not need to bother to

write the teen number because they know it is there. The

Chinese text shows even less of this ungrouping step,

simply putting a dot above any column that gave a

multiunit to the next right column. Therefore students must

carry out the make-a-ten subtraction mentally with no

support and also remember to reduce the difference by one

after they find it for a column that has a dot above it.

However, this dot method is introduced in the Chinese text

with drawings of unbundling a group of ten sticks and

writing the new unbundled names (4 and 16) above the 56

as well as showing the dot above the 5.

3.2.4 Three levels in multidigit addition and subtraction

The three levels identified by Ma (1999) for Chinese

teachers seemed to be verified in other East Asian books.

The make-a-ten methods for teen addition and subtraction

were developed in separate units as Level 1. In Level 2,

multiple methods were given for 2-digit problems. In Level

3 for 3-digit and larger problems, the books focused on one

generalizable mathematically-desirable method. However,

not all East Asian students may be able to explain these

larger problems fully. Fuson and Kwon (1992b) found that

all students could explain the ungrouping in two-digit

problems, but that some viewed three-digit problems only

as columns of single digits and did not, for example, say

they were dealing with tens when they explained their

adding or subtracting in the tens column. Drawings and

modeling by the teacher and other students do enable Math

Expressions students to make such quantity explanations

for larger numbers. However, when one is actually carrying

out multidigit addition and subtraction, especially with

larger numbers, it may be useful to ignore the names of the

places and solve as if each column is the same kind of

multiunit. The consistent ten-for-one trades between all

adjacent columns including decimal places enables one to

do this, and a student could add the name of the place if an

explanation is desired.

3.2.5 Organization of problems with and without

regrouping

The US has an issue that does not seem to occur in the East

Asian books. Two-digit addition and subtraction problems

without regrouping are introduced and practiced in Grade 1,

and problems with regrouping are not experienced until

almost a year later, in Grade 2. This sets up students for the

top-from-bottom error in subtraction because they have

already done many problems subtracting within each col-

umn. To a lesser extent, this also creates the error of writing

addition totals with teen numbers in each column (i.e., doing

no grouping). To avoid creating such errors, in Math

Expressions problems with regrouping are introduced as the

first multidigit addition and subtraction problems to stu-

dents. Project first graders begin with two-digit problems

with regrouping, which are accessible to them using math
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drawings (Fuson, Smith, & Lo Cicero 1997). In Grade 2 the

project initially used the common practice of giving two-

digit problems with totals to 100 and then moving to general

three-digit addition. But this step was too large; many stu-

dents struggled with three-digit addition problems that had

two groupings (from the ones and from the tens). However,

they could fairly readily handle 2 regroupings when there

was only 1 hundred (e.g., 89 ? 57). So a couple of days

initially are spent on multidigit addition with 2-digit

totals B100 and then problems with totals B200 are given.

The step to general 3-digit addition with totals to 1,000 is

then very simple for all students. The same approach is taken

with subtraction, where the first problems given have zeroes

in the tens and ones. This sets up students to do all of the

ungroupings first, and avoided the common difficulty in the

US of students finding these problems particularly difficult

when they come last. In East Asian books a problem or

problems with no regroupings are given first and then are

followed by problems with regroupings (grouping in addi-

tion and ungrouping in subtraction).

3.2.6 Language for regrouping

Ma (1999) reports that many Chinese teachers stress the

importance of the language the rate for composing a higher

value unit as explaining the regrouping involved in

multidigit addition and subtraction. We agree that the older

terms borrowing and carrying that were used in the US and

then used in China (Ma reports) are conceptually mis-

leading because they imply that you are changing the

number and borrow also implies that you will return it.

However, in the literal translation for the Chinese charac-

ters this step in multidigit addition is moving up a

place (i.e., composing a higher unit). This is procedural but

also the up at least implicitly has the connotation of a

higher value (i.e., the rate, 10). Multidigit subtraction is

termed on the student page as moving back a place ,

i.e., decomposing a higher unit). The Chinese terms used in

multidigit addition and subtraction are consistent with its

numbering system that highlights the place value in num-

bers and related computations.

Because the term regrouping was also used in the US, in

Math Expressions, the term grouping was used for making a

new multiunit group in multidigit addition, ungrouping for

the reverse process in subtraction, and regrouping to

describe both of these. Discussing how the trades between

adjacent multiunits are the same ten-for-one trades across all

adjacent columns lifts these regrouping processes to the

higher general level intended in the language used by Chi-

nese teachers (the rate for composing a higher value unit). In

the US rate has strong multiplication/division connotations,

so this word is not so appropriate. Regrouping (or compos-

ing/decomposing) fits addition/subtraction better.

4 Conclusions

This in-depth analysis of the major early numerical aspects

in a representative Chinese textbook series and a US text-

book series with major East Asian components illustrates

how linguistic issues create different teaching and learning

tasks for the same mathematical topic. Previous analyses of

East Asian textbooks have emphasized their coherence and

the power of their meaning-making supports. This article

indicates that a program in the US can have a similar

coherence and power, but that additional visual-quantitative

and linguistic supports are needed to compensate for the

linguistic complexities that are not present in China.

We also saw that the final mathematically-desirable

method emphasized in different East Asian books (even

within the same country) varies considerably in the written-

numeric supports within it and thus in its accessibility to

students. Some methods support some steps, while others

support few or no steps. We also saw that the accessibility

of a mathematically-desirable method (the make-a-ten

method) can vary with the language, requiring an extra step

in English. When it is simple to make a method accessible

as well as mathematically desirable, it seems desirable to

choose methods to teach to all students that are both

mathematically-desirable and accessible, or that can be

made accessible with extra learning supports.
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