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Abstract In this paper we focus on an instructional

sequence that aims at supporting students in their learning

of the basic principles of rate of change and velocity. The

conjectured process of teaching and learning is supposed to

ensure that the mathematical and physical concepts will be

rooted in students’ understanding of everyday-life situa-

tions. Students’ inventions are supported by carefully

planned activities and tools that fit their reasoning. The

central design heuristic of the instructional sequence is

emergent modeling. We created an educational setting in

three tenth grade classrooms to investigate students’

learning with this sequence. The design research is carried

out in order to contribute to a local instruction theory on

calculus. Classroom events and computer activities are

video-taped, group work is audio-taped and student mate-

rials are collected. Qualitative analyses show that with the

emergent modeling approach, the basic principles of cal-

culus can be developed from students’ reasoning on

motion, when they are supported by discrete graphs.

1 Introduction

The content of the instructional sequence in this report is

calculus and kinematics. Historically, these two topics

originated from observing and organizing motion phe-

nomena. Historical knowledge of how we might symbolize

motion is used to understand how the related graphs and

concepts were invented, and to obtain clues for an inte-

grated approach of calculus and kinematics. Especially for

mathematics education, we need to apply such knowledge

to prevent students from acquiring an instrumental use of

mathematical symbols without understanding the repre-

sented concepts.

Since the 1970s graphs play an important role in the

teaching of calculus and kinematics. Often, distance–time

graphs are used to give meaning to the rate of change as a

measure of velocity. This presupposes that students

understand the relation between velocity and distance

traveled. However, this relationship is taught in physics

education with the use of graphs and the rate of change. In

the next section we will argue that an overestimation of the

explanatory power of graphs may be the cause of problems

with the learning of these topics for students. We will

suggest an approach of modeling motion which involves

the students developing situation specific reasoning into

reasoning with more formal and general mathematical

ideas.

We designed an instructional sequence and two com-

puter minitools for the teaching and learning of calculus

and kinematics with help of the so-called emergent mod-

eling design heuristic. Next, we created an educational

setting with which we could understand and improve the

intended learning processes and the means to support them.

A research approach that consists of planning and creating

innovative educational settings for analyzing teaching and
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learning processes is design research. The instructional

sequence was investigated according to a design research

approach in two tenth-grade classes. The interpretative

framework for the teaching experiments was primarily an

instructional design perspective inspired by realistic

mathematics education. The conjectured process of teach-

ing and learning guided the design decisions and framed

the data analyses.

We analyzed the role of the teacher and of the computer

tools in the observed teaching and learning processes. The

aim of this research is a specification of the theory of

realistic mathematics education into an instruction theory

for our topic. The main research question is: how can

students develop basic principles of calculus and kine-

matics in a process that evolves from situation specific

reasoning to reasoning with general concepts?

2 The didactical problem

For many years, research shows that students who have

followed calculus and physics classes have problems with

interpreting graphical situations. In an extensive descrip-

tive study, McDermott et al., (1987) identified difficulties

that students have in making connections between kine-

matical concepts, their graphical representations, and the

motion of real objects. A frequently recurring issue with

graphs that describe motion is that they are interpreted as if

they represent the actual trajectory of the moving object

(McDermott et al., 1987; Clement, 1985; Monk, 2003).

Global shapes of the graph are connected with visual

characteristics of the situation (e.g., a bump in a distance–

time graph is associated with a hill in the trajectory), and

local characteristics of the situation are associated with

corresponding characteristics of the graph. An illustrative

example is that students interpret points of intersection in

time–velocity graphs as moments where the one overtakes

the other.

In many calculus and kinematics courses, a lot of

attention is paid to how to perform calculations and alge-

braic manipulations, instead of attention to why they work

(Clement, 1985; Dall’Alba et al., 1993). Students are

usually not involved in the building of the models, their

purposes, conventions, representations and their meanings

in terms of the situations that are represented, and the kind

of problems that can be solved. Education focuses on

seemingly straightforward calculations, while the concepts

are graphical and not trivial. This may be one of the causes

of the above mentioned student problems.

As an alternative we want to involve students in the

construction of the graphical models and the related ways

of reasoning in order to prevent the above mentioned

problems. In the following we will argue that open

modeling activities are important for such an approach,

because they show the students’ reasoning and represen-

tational abilities that you can proceed from (Lesh et al.,

2000).

Next, a learning trajectory is presented, that is used to

investigate how students can participate in a learning pro-

cess, in which the intended models are built. The idea is

that students get opportunities to invent representations and

meanings while they are guided by the teacher and by

carefully introduced models. This process aims at the

development of concepts which are rooted in the students’

common sense reasoning.

3 Theoretical framework

Continuous velocity–time and distance–time graphs are

models of situations that afford mathematical analyses of

these situations. Their appearance and conventions (e.g.,

time-axis horizontal instead of vertical) are the result of a

long history of scientific work on the calculus of change.

During that era—prior to the development of continuous

graphs—other models were developed and used for dif-

ferent purposes. After a period of almost 2000 years the

graphs that we use nowadays were invented (e.g., Clagett,

1959). Continuous time graphs have become models that

are used for reasoning about motion, time, distance trav-

eled, velocity, and acceleration. Our claim is that a

reinvention process of motion graphs will support students

in developing their understanding of and mathematical

reasoning with these graphs.

We investigated an approach that aims at a process in

which the mathematics stays related to the students’

understanding of the physical properties of motion, and

emerges from their modeling activities. This is also in line

with the objective of realistic mathematics education

(RME), where instructional design aims at fostering the

emergence of formal mathematical knowledge. During this

process students can preserve the connection between the

mathematical concepts and what is described by these

concepts. Students’ final understanding of the formal

mathematics should stay connected with their understand-

ing of these experientially real, everyday-life phenomena

(Freudenthal, 1991).

The core mathematical activity of RME is mathematiz-

ing, which stands for organizing from a mathematical

perspective. Freudenthal sees this activity of the students as

a way to reinvent mathematics. However, students are not

expected to reinvent everything by themselves. In relation

to this, Freudenthal (1991) speaks of guided reinvention;

the emphasis is on the characteristics of the learning pro-

cess rather than on the invention as such. The idea is to

allow learners to come to regard the knowledge they
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acquire as their own private knowledge, knowledge for

which they themselves are responsible.

In a reinvention approach, the problem situations play a

key role. Well-chosen context problems offer students

opportunities to develop informal, highly context-specific

models and solving strategies (Doorman et al., 2007).

These informal solving procedures then may become sub-

ject of formalization and generalization to constitute a

process of further abstraction, in RME dubbed as: pro-

gressive mathematization. The instructional designer tries

to construct a set of problems that foster learning processes

that result in the reinvention of the intended mathematics.

Research on the design of primary-school RME

sequences has shown that emergent modeling can function

as a powerful design heuristic (Gravemeijer, 1999). As a

first step, the students are involved in modeling context

problems that allow for situation-specific strategies, which

may be modeled in an informal manner. Next the students

are supported in developing both the model, and the related

mathematical knowledge and understanding. The model

develops in the sense that both the actual representation,

and its meaning change. Even if the model is not actually

invented by the students, great care is taken to approximate

students’ inventions as closely as possible by choosing

models that link up with their current reasoning. Another

important criterion is in the potential of the models to

support mathematization towards the intended concepts.

The idea is to look for models that can develop into entities

of their own, which then can become models for mathe-

matical reasoning (e.g., Gravemeijer & Doorman, 1999;

Gravemeijer, 2004; Rasmussen and Blumenfeld, 2007).

The shift from models of realistic situations to models

for mathematical reasoning concurs with a shift in the way

the student thinks about the model, from models that derive

their meaning from the modeled context situation, to

thinking about mathematical relations. In this context the

term ‘model’ must be understood in a broad sense. It is not

just the physical representation, but everything that comes

with it (e.g., activity and purpose) that constitutes the

model (Cobb, 1999). The underlying idea is that during

students’ activities the model and the situation being

modeled co-evolve. Modeling in this view is a process of

reorganizing both activities and situations. The situation

comes to be structured in terms of mathematical concepts

and relationships.

An additional theoretical foundation of the research we

discuss here concerns the role of computer minitools in

mathematics education. In general, tools influence the

process of students’ mathematical sense making. Cobb

(1999) illustrated this by describing the interplay between

students’ ways of symbolizing and mathematical reason-

ing. In relation to this he analyzed how computer minitools

afforded the students’ reasoning on statistical problems

(Cobb, ibid). However, he argues, affordances are not

properties of tools that exist independently of users, but are

achievements of users in activity. As a consequence,

instructional designers should take into account how stu-

dents might act and reason with the tools as they participate

in a sequence of mathematical practices.

We adopted these ideas for integrating two computer

minitools in the instructional materials for the teaching and

learning of calculus and kinematics. The tools enable stu-

dents to trace subsequent positions of a moving object and

to picture displacements and total distances traveled in

two-dimensional graphs. We conjectured that the tools

would support students in organizing motion with graphs,

in finding patterns, and in developing physical and math-

ematical concepts related to motion and change.

This use of computer tools differs from instructional

approaches in which the software offers dynamic linkages

between simulations and continuous time graphs of motion.

The primary goal of the latter approaches is that students

discover the meaning of the external representations on the

computer screen while exploring these dynamic linkages

(Doerr, 1997). The difference between the two approaches

has many similarities with the distinction between

designing models in co-construction and providing models

for exploration (Van Dijk et al., 2003).

Finally, research into the use of hand-held calculators

and computer tools also points at the importance of the

teacher’s role. The process of tool appropriation and

learning mathematics has both an individual and a collec-

tive aspect, and needs guidance by the teacher (e.g., Doerr

& Zangor, 2000). We used the design heuristic of problem

posing (Klaassen, 1995) to support the teacher in guiding

the students. The problem posing heuristic gives sugges-

tions to the teacher on how to foster content-related

motives for the way to proceed with the lessons by having

the students come up with questions that still have to be

solved. The content-specific motives are supported by an

overarching problem for all consecutive lessons which

relates to the successive activities.

The goal of our research was to investigate how students

can reinvent the basic principles of change and velocity in

a process of teaching and learning from situation specific

reasoning towards general concepts. We conjectured that

the design heuristics of emergent modeling, of tool-use and

of problem posing have the potential for realizing this

process.

4 Methods

The aim of this research is to investigate a learning process

in the domain of calculus and kinematics that progressively

builds on students’ inventions, and the means of supporting
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and organizing that process. To achieve this, we created an

educational setting in which we could investigate to what

extent and how this dialectic process of symbolizing and

meaning making could be fostered. We designed an

instructional sequence for creating this setting and being

able to analyze teaching and learning processes in teaching

experiments. This educational research method is charac-

terized as design research and consists of planning and

creating innovative educational settings for investigating

teaching and learning processes.

This interpretation of design research has proved itself

suitable for developing empirically grounded instruction

theories in the areas of science and mathematics education

(Gravemeijer, 2004; Lijnse, 1995). The approach aims at

generating empirically grounded theories. The main result is

not primarily a design that works, but the rationales of how it

works (Cobb et al., 2003; Edelson, 2002; Gravemeijer &

Cobb, 2006).

A literature review on the history of calculus and on recent

teaching experiments within this domain resulted in initial

conjectures for the learning of calculus and kinematics and

the means to support this learning (Gravemeijer & Doorman,

1999). These means of support consist of a sequence of

activities for the students, computer tools, and actions of the

teacher. In addition to the design of this instructional

sequence (see next section) we formulated testable conjec-

tures and observation criteria. These conjectures concerned

the major shifts in students’ reasoning in relation to the

means of supporting and organizing those shifts. The

sequence and the related conjectures constitute a conjectured

local instruction theory (Gravemeijer, 2004). Such a con-

jectured theory encompasses possible scenarios of the

lessons and a justification of the choices made. It has much in

common with a hypothetical learning trajectory (Simon,

1995), and is used as a guidance for the data analysis.

The first teaching experiment took place in two 10th

grade classes in two secondary schools in provincial towns.

For the first experiment we collected data from various

sources to be able to cross check assumptions that might

emerge from one data source. The student activities, the

guidelines for the teacher, and our intentions, were dis-

cussed beforehand with the teachers of both schools in two

meetings. During the experiments we made field notes and

audio-taped the lessons. The observer participated in the

discussions between the students to ask for clarification of

their reasoning. During the computer lessons, one pair of

students was video-taped, and whole-classroom discussions

were also video-taped. The pair was selected with help

from the teachers using the criteria of clear speech and

average capabilities.

We used the video-tapes to analyze gestures and rea-

soning with graphs on the computer screen and on the

blackboard. After the teaching experiments we collected

the students’ written materials and results on an achieve-

ment test. The data was used to analyze the learning

process, and to investigate to what extent we had reached

content-specific goals.

Initially, the data-analysis aimed at understanding the

learning process of the students. This analysis also pro-

vided information on how to improve the activities with

respect to formulating student texts, contexts used, and

information provided. For example, some students

appeared to have difficulties with interpreting and using the

graphs provided by the tools. This led to adjustments to the

sequence and to a new conjecture for a second experiment.

We conjectured that whole class discussions about the use

of specific graphs would prepare all students for the com-

puter lessons. As a result of this, we looked for ways to

support such whole class discussions for reaching consen-

sus in the classroom about a way to proceed with the

computer tools. The adjustments and the new conjectures

were objects of study in the second teaching experiment.

The second teaching experiment was confined to eight

lessons in one 10th grade classroom. During these lessons

we focused our data collection on the instructional activi-

ties and the computer tools. We assumed that one

classroom experiment would provide us with enough data

for qualitative analyses of the teaching and learning pro-

cesses. This experiment took place in a secondary city

school with a teacher who was experienced in discussing

mathematical problems with students without presenting

them with the intended approach or answer. We discussed

with the teacher the planning of the activities and espe-

cially the scope of the classroom discussions.

For analyzing the development in reasoning with the

computer tools we audio-taped one pair, and video-taped

another pair during the computer activities. Classroom

discussions were video-taped and field notes and student

work were assembled just as in the first teaching experi-

ment. In these experiments we expected to collect enough

information to analyze the classroom process of the

teaching and learning of calculus and kinematics.

The data were organized and elaborated into case studies

of class discussions and of students’ work during the

computer lessons. The interpretative framework for the

teaching experiments was primarily that of socio-con-

structivism and RME theory. We interpreted the case

studies with the conjectured local instruction theory in

terms of what preceded the lessons, the student activities,

the teaching, and the tools provided. In this first round of

analysis, we developed conjectures about the students’

thinking, which we tested on all data in a second round of

analysis. In addition, we tried to assign such meanings to

students’ expressions that they came out as consistent

with their history and the current classroom situation. (For

a more detailed discussion of the methodology and
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the validity of these instruments, see Doorman, 2005.) The

result of this analysis is presented in Sect. 6, in the form of

a report of what happened during the teaching experiments.

5 The instructional design

The literature review on the history of calculus and recent

teaching experiments pointed us towards the importance of

starting with discrete graphs (Boyd & Rubin, 1996; Grave-

meijer & Doorman, 1999). We designed an instructional

sequence in which discrete graphs would start as models of

motion of a hurricane, and develop into models for reasoning

about the relation between displacements in time intervals

and total distance traveled. Weather forecasting, especially

the change of position of hurricanes, seems to be a situation

that lends itself for modeling motion. The question is: when

will the hurricane reach land? This problem is posed as a

leading question throughout the unit as a context for the need

of grasping change (see Fig. 1).

After being introduced to time series, students work with

situations that are described with stroboscopic photo-

graphs. The idea is that students come up with

measurements of displacements as basic structuring

elements of motion that may be displayed graphically in a

natural manner (based upon Boyd & Rubin 1996). The key

issue that should arise in the discussion is how to describe

change (of position) in order to discern patterns and to be

able to make predictions.

The introductory part of the instructional sequence

comprised one lesson. Describing and predicting change

were introduced in the context of weather forecast. The

central question for the students was: how can you describe

change in order to make predictions?

A representation of a time series is a trace graph of

points and connecting lines (see Fig. 1). This representa-

tion in the weather context is the starting point for

understanding the importance of gaining insight into pat-

terns of trace graphs for making predictions. The classroom

discussion based on students’ reasoning should result in a

consensus on proceeding with two-dimensional displace-

ment graphs and total distance-traveled graphs. To achieve

the transition from trace graphs to reasoning with two-

dimensional graphs of motion, we designed an open

modeling activity about a falling ball (given: a stroboscopic

picture of a falling ball; question: design a representation to

predict when it will hit the ground). We expected that the

teacher could use the strategies of the students to reveal

Fig. 1 A tropical storm

approaching the coast
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their current reasoning, and use their graphs to introduce

the graphs in the computer tool. This activity was to be

followed by the computer lesson.

In the computer activities we gave students the oppor-

tunity to investigate various situations with the computer

program Flash. We wanted them to construct relations

between patterns in trace graphs and graphical character-

istics during their investigations. More specifically, the use

of the computer tool should enable the students to construe

properties like the relation between average displacement

and total distance traveled, and to find the relation between

the linearity of a distance traveled graph for a motion with

constant displacements.

For instance, the students could click on successive

positions of an object in a stroboscopic picture. Simulta-

neously, the program shows the distances between these

positions in a table, and displays them in a displacement

graph or in a graph of total distances. The values are dis-

played as vertical bars instead of dots to preserve the link

with the displayed measurements and as a preparation for

reasoning with intervals—as basic structuring elements—

in continuous graphs (see Fig. 2).

The clicking of successive positions signified measuring

displacements in successive time-intervals. Activities for

the students consisted of various situations in which they

could click on successive positions and could reason with

the table, with the two graphs for solving the problem

stated (e.g., ‘‘when will the hurricane hit the coast?’’), and

with a continuation of the last displacement (as in Fig. 2).

Initially, these graphs are used to describe the situations

and are related to measurements in the pictured situation.

Gradually, the attention is shifted towards graphical and

conceptual relations between displacements and distances

traveled (e.g., ‘‘a horizontal line of summit in the dis-

placement graph signifies a constant velocity’’). What used

to be a record of measurements is now used as a tool for

reasoning about time and relations between velocity and

distance. This implies a shift in the way the students think

about the graphical model, from a model that derives its

meaning from the modeled context situation, to a model

that signifies mathematical relations.

Note that a key element of the emergent modeling design

heuristic is that the models first come to the fore as models of

situations that are experientially real for the students. The

underlying idea is that discrete graphs are not introduced as

an arbitrary symbol system, but as consecutive models of

discrete approximations of a motion that link up with prior

activities and students’ current reasoning (see Fig. 3).

We expected that during the computer activities students

would work at a different pace. Therefore, afterwards we

added an activity to review the technical skills for drawing

graphs, and to reflect upon developed language, concepts

and graphs. This reflection is supposed to take place in the

class discussion based on the students’ solutions of

describing the motion of a bungee jumper.

As a next step, the notion of instantaneous speed is

introduced in the context of a narrative about Galileo’s

work. In this context instantaneous velocity is needed to be

Fig. 2 Modeling the motion of

a storm with Flash
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more precise in predicting falling distance and falling

speed when you have formulas of motion at hand. Instan-

taneous velocity is defined in accordance with the medieval

notion, in terms of the distance that would be covered if the

moving object would maintain its instantaneous velocity

for a given period of time. The problem is posed of how to

verify Galileo’s hypothesis on free fall: velocity increases

constantly, and is proportional to time. Figuring this out

demands of the students that they come to grips with the

relationship between the motion, the representations, and

the approximation (Roth & Tobin, 1997). During this

process, the way of modeling motion and the conceptual-

ization of the motion that is being modeled, co-evolve.

Reasoning with the basic structuring elements—horizontal

and vertical intervals—refers to the activities with the

discrete graphs and play a key role in this shift.

Finally the attention shifts from problems cast in terms of

everyday-life contexts to a focus on the mathematical and

physical concepts. In order to enable the students to make

such a shift, they have to develop a mathematical framework

of reference that enables them to look at these types of

problems mathematically (see also Simon 1995). In this

framework students are supposed to understand that change of

a function can be displayed by graphing differences between

successive values (displacements in our example), and that a

specific function value (the total distance traveled) can be

found by adding a series of differences. The relation between

taking differences and adding up frames the main theorem of

calculus. It is exactly the emergence of such a framework of

graphical relationships that this sequence tries to foster. It is

this framework that enables the students to trace the origin of

the mathematical models and to anticipate on what is to come.

6 Teaching experiments

The conjectured instruction theory was elaborated in an

instructional sequence of ten lessons including two

computer lessons. This sequence was investigated in two

teaching experiments.

The first teaching experiment started as planned. As a

result of the character of the introductory class discussion

we noticed that the importance of a graphical description

for making predictions had started to become clear to the

students. Students contributed to the idea that time series

play a key role in this process. With the contributions of the

students, consensus was established about the model of the

time series: the trace graph. In their reasoning, changes in

velocity signified changes in lengths of displacements in

subsequent time intervals.

However, during the whole class discussion about the

introductory activities the teachers did not focus on the

patterns in displacements as a problem for predicting

weather. These patterns should have resulted in a motive

for the two-dimensional graphs. We concluded that during

this lesson the patterns in displacements and the use of two-

dimensional graphs were not successfully addressed. In the

second teaching experiment we improved this lesson. We

could better discuss the purpose of the activities with the

teacher and we added a model eliciting activity about a

stroboscopic picture of a falling ball to focus on the pattern.

As a result of the open-ended activity before the computer

lesson, the students had a means available for modeling

motion with two-dimensional discrete graphs and their

possibilities for predictions. During the activity about a

pattern in the displacements of the falling ball, we saw the

diversity of solutions we had hoped for. Students identified

different variables for their graphs (height, displacement,

distance traveled, time, number of flashes), and most of them

drew a line of summit through the dots (see Fig. 4).

The teacher asked the students to show their solutions

and organized a whole class discussion about differences

and similarities in the solutions. Many students were

involved and the classroom community seemed to reach a

consensus about the possibilities and usefulness of two-

dimensional discrete graphs (with displacements and with

total distance traveled) as tools for describing and pre-

dicting motion. This proved to be a productive preparation

for the computer lesson with the computer program Flash.

The aim of the second lesson, a computer lesson, was

that students should begin to understand the need to display

patterns and to understand the relation between these pat-

terns and the characteristics of displacement graphs and

distance-traveled graphs. The measuring by clicking and

the construction of graphs did focus the students on change

in displacements and reasoning with the Flash-graphs.

At the beginning of the computer activities, the students’

language primarily referred to successive positions in the

stroboscopic photograph. They used thumb and index fin-

ger to visually transfer lengths of bars in the graph to

displacements in the stroboscopic picture. As the lesson

Fig. 3 Consecutive manifestations of a model of motion
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progressed, their discussions increasingly involved char-

acteristics of the graphs of displacements and of total

distances traveled. The students started to grasp the relation

between a graph of constant displacements and the

accompanying ‘linear’ graph of total distance traveled.

During ensuing problems students increasingly used the

change of the displacements in the graph to describe motions

and to make predictions. Through the use of Flash their

attention during the activities became focused on properties

of graphs. Sometimes they still referred to distances between

the dots in the photograph, but more and more they reasoned

with the global shapes and properties of the two discrete

graphs. The following vignette illustrates this reasoning by

the students (J and M). The students work on an exercise

about a zebra which is running at a constant speed and a

cheetah that starts hunting the zebra. In the introduction of

the activity it is said that the students have to disregard some

of the aspects in the situation (both animals are supposed to

follow the same path). The discussion took place as a result

of the question of whether the cheetah would catch the zebra

(see Fig. 5). The observer (O) participates.

M: Yes, the cheetah would still catch up

O: Really? How did you conclude that?

M: Uhm, then you put two here together and then

you can see here that they’re both equal

O: Yes. And which of the two graphs is that?

J ? M: That’s the total distance traveled [they point at

the left graph below]

O: Oh yes. So why did you choose the one for the

total distance?

J: Because it’s the total distance that they cover and

then you can.

M: Then you can see if they catch up with each

other

O: And cannot you see that in the other? There you

can also see that the red catches up with blue?

[He points at measurement 3 in the right graph.]

J: Yes, but …
M: Yes, but that’s at one moment. That only means

that it’s going faster at that moment but not that

it’ll catch up with the zebra.

The vignette illustrates that the two students understood

the difference between the distance traveled and the dis-

placement graph. When both distance traveled graphs are

‘equal’ (i.e., have the same height), both animals have

traveled the same distance. In addition, they could clarify

the different meaning of the crossing of the line of summit

in the displacement graphs.

An important difference between the displacements

graph and the distance-traveled graph is the difference in

interpretation of the horizontal (time) axis. A value in

the distance-traveled graph (i.e., the height of a bar)

represents a distance from the start until the corre-

sponding time, while a value in the displacements graph

represents a distance in the corresponding time interval.

The final observation of the students is an important step

in the process of building the model of a velocity–time

graph (and everything that comes with it).

During the computer lesson, the majority of the students

increasingly reasoned about the characteristics of, and

relation between, the two discrete graphs and their meaning

for the specific situations. After this lesson, the teacher

started a discussion about their experiences based upon an

extra small group activity where they had to describe the

Fig. 4 Three graphs by

students describing free fall
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motion of a bungee jumper without the aid of the computer.

The students’ reasoning created opportunities for the

teacher to frame topics for discussions on general rela-

tionships between graphs of displacements and of total

distances traveled. Many students participated actively in

this discussion. In the next vignette two students (N and M)

present their graph to the class and the teacher (T).

N: Well then, this is the distance traveled and that means

that the bungee jumper goes down here and therefore

he goes faster, because he travels a greater distance in

a shorter time. And here he goes down again: And

then he travels a smaller distance in the same time

and then he goes back up and back down again…
[tracing the distance traveled graph, which doesn’t go

down but has alternating large and small slopes]

T: May I make a very small addition to interpret what

you are saying, because you’re all saying it very well,

only what you’re also saying is that you can see how

fast he’s going by looking at how steep that thing is

[pointing at the distance traveled graph]. Or not?

N: Yes

T: Can you explain that a bit better?

(…)

N: Well, because in this little piece of time [she points

at an accompanying increase in the displacement-

graph], he travels quite a long distance [points finger

up and down along the displacement]. While in this

one here it takes him longer to go the same distance

[she moves her finger along a less steep part of the

distance traveled graph]

M: In the same time….

During all presentations, the teacher acted in a similar

manner as in this vignette, by asking the students to use

characteristics of the motion while talking about the

graphs, by making occasional references to experiences

with Flash. Students pointed to graphical characteristics

during their presentations, and used the displacements as a

measure for velocity in connection with the total distance

traveled. Based on this activity, a class consensus was

achieved about the interpretation of, and the connection

between the discrete graphs. This connection can be seen

as a crude version of the main theorem of calculus that

would be addressed in the final lessons of the sequence.

In the subsequent lessons the displacements were scaled

to a compound dimension for velocity. The attention in the

activities and the whole class discussions shifted to con-

tinuous time-graphs and to reasoning with intervals for

calculating average velocity and approximating instanta-

neous velocity.

On the final achievement test the students successfully

interpreted of the difference quotient as a measure for

change, although there were some difficulties with the use

of dimensions in this process. When asked to determine

an instantaneous velocity with a given distance-time

graph, most students (21 out of 33) used a small interval

to solve the problem and 5 initially drew a tangent. The

remaining students (6) did not answer the question

successfully.

In an item about the growth of a sunflower, the students

had to estimate the average growth speed during three

consecutive specific days. Almost all students interpreted

the difference quotient correctly. A characteristic answer

was: Dy/Dx = 100 cm/3 days = 33.3 cm per day.

One test item had a question about the difference

between instantaneous and average velocity. Most stu-

dents’ answered this adequately. One answer is shown

below; it was more detailed than the answers of the

majority of the students but illustrates their way of

reasoning:

Fig. 5 Graphs of a cheetah

chasing a zebra
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‘‘The average velocity is how fast you go, for

example, during several minutes. If you, for example,

go 1,000 m in 5 min, your average velocity during

this period is 1,000/5 = 200 m/min. But that does not

mean that you are going at a constant velocity of

200 m/min. For example, you might start slowly and

then go faster and faster, or you might begin fast and

then slow down. The instantaneous velocity is the

velocity at a specific instant, for example, that you are

going at 100 m/min after 1 min. So the instantaneous

velocity is exactly how fast you are going at one

instant, which therefore has nothing to do with the

average. An average is your velocity taken over a

certain period.’’

Other students referred to characteristics of the s–t graph

(on a linear distance traveled graph the instantaneous

velocity equals average velocity) or to the accompanying

calculations (Ds/Dt with a very small Dt for an instanta-

neous velocity).

We concluded from these results that most students

showed the ability to reason with change and with graphs

of motion by using horizontal and vertical intervals, their

quotients and their dimensions.

7 The emerging instruction theory

Analysis of the actual process of teaching and learning

provides information that can be used to guide revisions of

the instructional activities and to specify the rationale that

underpins the theory. The cyclic process of thought

experiments and teaching experiments forms the backbone

of the design research method for developing empirically

grounded instruction theories.

The empirical data were interpreted in light of the

hypothetical learning trajectory and the specific design

heuristics. We conjectured that activities with computer

tools need careful preparation beforehand, and reflection

afterwards. The open modeling activity before the Flash

lesson supported the students’ inventions of, and reasoning

with, graphs. The variety in solutions enabled the teacher to

make graphical models of motion a topic of discussion for

the students and to help them to reach consensus about the

way to proceed. Their understanding of the graphs pro-

vided by the tool was an important condition for their

meaningful and flexible reasoning with the tool. We

observed the changing language of the students with

increasing references to characteristics of and relations

between the two discrete graphs while describing motion.

In this paper we focused on the way discrete graphs could

support the development of the basic principles of calculus

and kinematics. The emerging—empirically supported—

instruction theory is a reconstruction of a sequence and its

rationale that underpins it, and that builds on what is seen as

the successful elements of the teaching and learning process.

The relation between the discrete graphs, the intended

activities and conceptual development of the students can be

summarized as a chain of signification in a table (see

Table 1). In previous design research such a table proved

useful for describing a local instruction theory on mea-

surement and flexible arithmetic (Gravemeijer, 2004).

The first column of this table is labeled ‘tool’ to empha-

size the tool-character of the inscriptions. The ‘imagery’

column refers to the history that frames students’ perception.

By providing this column we show how the tool derives its

meaning from situational (predicting the weather with trace

graphs), via referential (discrete two-dimensional graphs of

displacements and distances traveled) to general (reasoning

with difference quotient and slope and area in continuous

graphs of velocity and of distance traveled). The activities

and discussions that address specific concepts should result

in motives to proceed. In our approach we focused especially

on establishing these motives, and we have therefore added

them to the table.

The table gives an overview of (1) how students are

expected to act and reason with the tools, (2) how an

activity relates to preceding activities, and (3) the con-

ceptual development aimed at by that activity.

8 Discussion

In the classroom learning process, we noticed that students

initially reasoned and wrote about mathematical and

kinematical notions with a tentative language and inscrip-

tions that were not as precise as the notions aimed at. This

process from situational and tentative to general reasoning

seems similar to Goldin’s description of three main stages

in the development of representational systems: (1) an

inventive and semiotic stage, (2) structural development

and establishment of relationships, and (3) an autonomous

stage (Goldin, 2003). During the inventive stage, students

tentatively used inscriptions and language to communicate

their developing ideas. In the autonomous stage the system

can function flexibly in new contexts. We observed that the

teacher played an important role during this process. The

teacher guided whole class discussions and alternated

between stimulating students to present their solutions and

focusing to the mathematics needed for what is to come

(Sherin, 2002). Open modeling activities (e.g., the falling

ball and the bungee jumper) created opportunities for the

teacher to guide these whole class discussions.

In RME approaches, the final model is the result of

modeling activities in which students’ constructions play a

central role. The related inscriptions and language are
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progressively developed from situational to general

through these activities. Tool-use and carefully introduced

models support and link up with students’ inventions. It is

difficult—maybe even impossible—to design learning

processes for classroom situations in which all students

experience their learning process as invention. However, a

learning trajectory that supports invention and which

makes it possible to trace meaning through a series of

inscriptions that build progressively on each other provides

the teacher with possibilities for guiding the students’

reasoning. This can be realized when the consecutive

models as well as the tools in the software are part of an

emergent modeling process and are—as much as possi-

ble—compatible with the students’ current reasoning. The

focus on the alignment of the activities sometimes has as a

consequence that not all aspects of the modeling are

critically addressed (e.g., the case of the cheetah hunting

the zebra).

The design heuristic of emergent modeling assigns a

role to models that differs from the traditional didactical

role of models in mathematics education: instead of trying

to concretize abstract mathematical knowledge, the objec-

tive is to try to help students model their own informal

mathematical activity.

The label ‘emergent’ refers both to the character of the

process by which models emerge within realistic mathe-

matics education, and to the process by which these models

support the emergence of formal mathematical ways of

knowing. From this perspective, the process of constructing

discrete graphs is one of progressively reorganizing situa-

tions. The model and the situation being modeled co-

evolve and are mutually constituted in the course of

Table 1 Summary of an emerging instruction theory

Tool Imagery Activity Concepts

Time series (e.g., satellite

photos & stroboscopic

pictures)

Real world

representations signify

real world situations

Predicting motion (e.g., in the context

of weather predictions)

Displacements in equal time

intervals as an aid for

describing and predicting

change

Should result in a feeling that the ability

to predict motion with discrete data is

an important issue

Trace graphs of successive

locations

Signifies a series of

successive

displacements in equal

time intervals

Compare, look for patterns in displacements

and make predictions by extrapolating these

patterns

Displacements as a measure of

speed, of changing positions,

but difficult to extrapolate

Resulting in a willingness to find other ways

to display displacements for viewing

and extrapolating patterns in them

Discrete 2-dim graphs Signifies patterns in

displacements of trace

graphs (and

cumulative)

Compare patterns and use graphs for reasoning

and making predictions about motion (also at

certain moments: interpolate graphs)

refine your measurements for a better prediction:

displacements decrease

Displacements depicting patterns

in motion;

linear line of summit in graph of

displacements or graph of

distances traveled;

problems with predictions of

instantaneous velocity

Should result in the need to know more

about the relation between sums

and differences, and in the need

to know how to determine

and depict velocity
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modeling activity. Instead of thinking in terms of ‘‘cutting

bonds with (everyday-life) reality’’, the construction of the

mathematics of change stays in connection with situational

knowledge (Gravemeijer, 2007). In this approach, model-

ing serves not only as an instructional goal but also as a

means of supporting the reinvention of mathematics.

This research indicated that students’ conceptual prob-

lems in applying mathematical notions in other topics can

be prevented by starting the process of teaching and

learning in the context of applications (e.g., Michelsen,

1998). However, we do not believe that all mathematical

topics can be developed through such an integrated

approach. Some topics are essentially the result of a pro-

cess of organization within or between mathematical

structures. In fact, the trajectory in this research should also

be followed both by a series of lessons where the mathe-

matics of change is developed as a generalizing principle

for many applications, and by elaborating the topic within a

mathematical context.

This study has provided some insight into the con-

straints and possibilities for the integration of physics and

mathematics. We recommend further research for the

understanding of the teaching and learning of science and

mathematics as closely related disciplines, and for imple-

menting real changes in the way these topics are covered in

schools.
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