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ABSTRACT

We construct a model in which there exists a refining matrix of regular

height λ larger than h; both λ = c and λ < c are possible. A refining

matrix is a refining system of mad families without common refinement.

Of particular interest in our proof is the preservation of B-Canjarness.

1. Introduction

The Boolean algebra P(ω)/fin has attracted a lot of attention in the last

decades. The distributivity of P(ω)/fin, the well-known distributivity num-

ber h, was introduced in [2], where also the famous base matrix theorem is

proved. It is defined as the least number of mad families such that there is no

single mad family refining all of them and as we will see is tightly connected to

many other structural properties of P(ω)/fin. Equivalently, h can be defined as

the least cardinal on which P(ω)/fin adds a new function into the ordinals and

clearly, a system of h many mad families can be always chosen to be refining.

A review of basic definitions will be given in Section 2.

In this paper, we consider refining matrices of arbitrary height:
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Definition 1.1: We say that A = {Aξ | ξ < λ} is a refining matrix of

height λ if

(1) Aξ is a mad family, for each ξ < λ,

(2) Aη refines Aξ whenever η ≥ ξ, and

(3) there is no common refinement, i.e., there is no mad family B which

refines every Aξ.

Note that dropping (2) in the above definition would not yield an interesting

notion, because such objects trivially exist whenever λ ≥ h. It is straightforward

to check that the existence of refining matrices is only a matter of cofinality:

if δ is a singular cardinal with cf(δ) = λ, then there exists a refining matrix of

height δ if and only if there exists one of height λ. While h is the minimal height

of a refining matrix, it is easy to check that there can never be a refining matrix

of regular height larger than c. Refining matrices and similar objects have

been extensively studied, for example, in [2], [11], [13], [23], [10], [1], and [30].

However, to the best of our knowledge, all refining matrices considered in the

above works are of height h. Thus, the very natural question arises, if a refining

matrix is necessarily of height h, which leads to the main result of the current

paper:

Main Theorem 1.2: Let V0 be a model of ZFC which satisfies GCH. In V0,

let ω1 < λ ≤ μ be cardinals such that λ is regular and cf(μ) > ω. Then there

is a c.c.c. (and hence cofinality preserving) extension W of V0 in which there

exists a refining matrix of height λ, and ω1 = h = b < c = μ.

Thus, in particular, the existence of refining matrices of two different regular

heights is consistent. We construct the model W as follows. We start with V0

and pass to the Cohen extension V in which c = μ. In V , we define a forcing

iteration (see Section 3.1) which adds a refining matrix of height λ. Building

on ideas from [21], we use c.c.c. iterands which approximate the refining matrix

by finite conditions. However we have to use an iteration, because after a

single step of the forcing new reals are added, which prevents the generically

added almost disjoint families from being maximal. We show that the generic

object is actually a refining matrix: in particular, the branches are towers (see

Section 4.3) and the levels are mad families (see Section 4.4); for that, we

use complete subforcings (see Section 3.4) to capture new subsets of ω (see

Section 4.2).
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To establish ω1 = h = b in the final model, we show that b = ω1 and use

the fact that h ≤ b holds in ZFC. In fact, we show that the ground model

reals B = ωω ∩ V0 remain unbounded. For that, we represent our iteration as a

finer iteration of Mathias forcings with respect to carefully selected filters (see

Section 6.1) and use a characterization from [20] to show that these filters are

B-Canjar (see Section 5 and Section 6.2), i.e., that the corresponding Mathias

forcings preserve the unboundedness of B.1 One can use a genericity argument

to show that the chosen filters are B-Canjar at the stage where they appear,

however the B-Canjarness of the filters is needed in later stages of the iteration.

Since the notion of B-Canjarness of a filter is not absolute (see Example 5.4),2

we develop a new method allowing us to guarantee that the B-Canjarness of

a filter is preserved by Mathias forcings with respect to certain other filters.

One basic ingredient is the notion of a “sum” F0⊕F1 of two, or finitely many,

filters F0 and F1 for which the following holds true (see Lemma 5.8.(1)):

Proposition 1.3: If B ⊆ ωω is unbounded and F0 ⊕F1 is B-Canjar, then
Mathias forcing with respect to F1 forces “F0 is B-Canjar”.

We conclude the paper with further discussion and some open questions.

In Section 7.2, we consider the nature of maximal branches through refining

matrices. There are two possibilities for such branches: either the branch is

cofinal or not. Consistently, there are refining matrices of height h without

cofinal branches (this was shown in [11] and [13]). In contrast, in the model

of Main Theorem 1.2 all maximal branches of the generic refining matrix of

height λ > h are cofinal. In the Cohen model, however, there are no refining

matrices of this type of height larger than h. In Section 7.3, we conclude the

paper with a discussion of the notion of a spectrum of refining systems of mad

families which our main result gives rise to.

2. Preliminaries

In this section, we recall basic definitions and facts. The reader should feel free

to skip this section and only come back if necessary.

1 In [15], the same is done for Hechler’s original forcings [21] to add a tower or to add a

mad family.
2 We thank Osvaldo Guzmán [19] for providing an example of non-absoluteness.
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Let [ω]ω denote the collection of infinite subsets of ω and let ⊆∗ denote

the pre-order of almost-inclusion: b ⊆∗ a if b \ a is finite. We write a =∗ b

if a ⊆∗ b and b ⊆∗ a. We say that a and b are almost disjoint if a∩ b is finite.
Moreover, we say that A ⊆ [ω]ω is an almost disjoint family if a and a′ are
almost disjoint whenever a, a′ ∈ A with a �= a′. An almost disjoint family A

is maximal (called mad family) if for each b ∈ [ω]ω there exists a ∈ A such

that |b∩a| = ℵ0 (i.e., if A is a maximal antichain in ([ω]ω,⊆∗)). For two almost

disjoint families A and B, we say that B refines A if for each b ∈ B there exists

an a ∈ A with b ⊆∗ a. Let

spec(a) := {μ | μ is an infinite cardinal and there is a mad family of size μ}
be the mad spectrum on ω, and let

a := min(spec(a))

be the almost disjointness number. It is well-known and easy to see that

there are always mad families of size c. For a sequence 〈aξ | ξ < δ〉 ⊆ [ω]ω, we

say that b ∈ [ω]ω is a pseudo-intersection of 〈aξ | ξ < δ〉 if b ⊆∗ aξ for each

ξ < δ. We say that 〈aξ | ξ < δ〉 is a tower of length δ if aη ⊆∗ aξ for any

η > ξ, and it does not have an infinite pseudo-intersection. Let

spec(t) := {δ | δ is regular and there is a tower of length δ}
be the tower spectrum, and let

t := min(spec(t))

be the tower number.

Recall from Definition 1.1 that a refining matrix A = {Aξ | ξ < λ} is a

refining system of mad families without common refinement. Such a system

can be viewed as a tree, which we think of growing downwards: for each ξ < λ,

the elements of the mad family Aξ form the level ξ of the tree, and for b ∈ Aη and

a ∈ Aξ with η > ξ, the element b is below the element a in the tree if and only

if b ⊆∗ a. Due to the refining structure of the refining matrix, each element of Aη

is below exactly one element of Aξ. Note that this tree is necessarily splitting

at some limit levels, because there always appear ⊆∗-decreasing sequences of

limit length which have no weakest lower bound.3 We say that 〈aξ | ξ < δ〉 is a
branch through A if aξ ∈ Aξ for each ξ < δ, and aη ⊆∗ aξ for each ξ ≤ η < δ.

We say that the branch is maximal if there is no branch through A strictly

3 See also the discussion in Section 3.1 about the generic refining matrix of Main Theo-

rem 1.2, whose underlying tree is splitting everywhere.
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extending it. As a matter of fact, a maximal branch through a refining matrix

can be cofinal or not; for a discussion of different types of refining matrices (in

particular ones without cofinal branches), see Section 7.2. We say that b ∈ [ω]ω

intersects A if for each ξ < λ there is an a ∈ Aξ with b ⊆∗ a. Definition 1.1(3)

is in fact equivalent to

(3’) {b ∈ [ω]ω | b intersects A} is not dense in ([ω]ω,⊆∗).

If there is no b intersecting A, we call A normal. Note that a refining matrix

can always be turned into a normal refining matrix of the same height: let ā be

a witness for (3’), and, for each ξ < λ, let Āξ := {a∩ ā | a ∈ Aξ ∧|a∩ ā| = ω}; it
is easy to check that {Āξ | ξ < λ} is a refining matrix of height λ below ā. We

say that A is a base matrix if
⋃
ξ<λAξ is dense in ([ω]ω,⊆∗). This notion goes

back to [2] where the existence of base matrices of height h has been shown. It

is straightforward to check that a base matrix is always normal.

For f, g ∈ ωω, we write f ≤∗ g if f(n) ≤ g(n) for all but finitely many n ∈ ω.

We say that B ⊆ ωω is an unbounded family, if there exists no g ∈ ωω with

f ≤∗ g for all f ∈ B. The (un)bounding number b is the smallest size of

an unbounded family in ωω. The following inequalities between the cardinal

characteristics are well-known and not too hard to prove (see, e.g., [4] for more

details):

(1) ω1 ≤ t ≤ h ≤ b ≤ a ≤ c.

3. Forcing a refining matrix

In this section, we start with the proof of Main Theorem 1.2. In Section 3.1

we define a key forcing notion, study its basic properties, as well as properties

of the generic object (see Sections 3.2 and 3.3) and establish a crucial lemma

about complete subforcings (see Section 3.4). In Section 4, we will complete

the proof that the generic object is indeed a refining matrix. Section 5 and

Section 6 are devoted to the remaining part of our main result, i.e., to showing

that ω1 = h = b in the final model.

3.1. Definition of the forcing iteration. We will define a forcing for

adding a refining matrix. The definition has been motivated by the posets

for adding towers and mad families from Hechler’s paper [21]; see [15] for a

representation of these forcings in a form analogous to our definition of Qα
below.
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We proceed as follows. In V0, let Cμ be the usual forcing for adding μ many

Cohen reals and let V be the extension by Cμ. In V , we perform a finite support

iteration of length λ to add a refining matrix of height λ. The iterands of this

iteration have the countable chain condition (see Lemma 3.3) and are of size

continuum. In particular, the size of the continuum stays the same during the

whole iteration and c = μ in the final model (see Lemma 3.4.(1)). Our generic

refining matrix {Aξ+1 | ξ < λ} will be based on λ<λ: each node σ ∈ λ<λ of

successor length will carry an infinite set aσ ⊆ ω such that for each ξ < λ,

Aξ+1 = {aσ | σ ∈ λξ+1}
is a mad family, and aσ ⊆∗ aτ if σ extends τ . All maximal branches of the

generic matrix will be cofinal. We write τ � σ if τ ⊆ σ (i.e., if σ extends τ);

we write τ � σ if τ � σ and τ �= σ. The length of σ is denoted by |σ|. We

say that σ is below τ if τ � σ; moreover, we say that ρ�j is to the left

of ρ�i whenever j < i, and we call a set of nodes a block if it is of the

form {ρ�i | i < λ} for some ρ ∈ λ<λ. Note that our mad families Aξ+1 are

indexed by successor ordinals only, because there are ⊆∗-decreasing sequences

of limit length which do not have weakest lower bounds, and therefore it is

necessary that the underlying tree “splits” at such limit levels. Before giving

the precise definition of our forcing iteration, let us explain why an iteration is

needed. We generically add a set aσ ⊆ ω for every σ ∈ λ<λ in V of successor

length in such a way that aτ ⊇∗ aσ if τ�σ, and aσ∩aτ =∗ ∅ if |σ| = |τ |, resulting
in a refining system of almost disjoint families. But since new reals and hence

new branches through λ<ω are added, the almost disjoint family Aω+1 is not

maximal, witnessed by any pseudo-intersection of such a new branch.

As usual, we abuse notation and identify aσ ⊆ ω with its characteristic func-

tion in 2ω. Throughout succ denotes sequences τ of ordinals, where τ has

successor length.

Definition 3.1: We define a finite support iteration {Pα, Q̇α | α < λ} of length λ.

Let P0 = {∅}. Let α < λ and assume Pα has been defined. For every β ≤ α,

let Gβ be generic for Pβ , let

T ′
α =

⋃
β<α

(λ<λ ∩ succ)V [Gβ]

and let

Tα = (λ<λ ∩ succ)V [Gα] \ T ′
α.
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In V [Gα], Qα consists of all p, where p is a function with finite domain,

dom(p) ⊆ Tα, such that for each σ ∈ dom(p),

p(σ) = (spσ, f
p
σ , h

p
σ) = (sσ, fσ, hσ)

where4

(1) sσ ∈ 2<ω,

(2) if τ � σ, then |sτ | ≥ |sσ|,
(3) dom(fσ) ⊆ (dom(p) ∪ T ′

α) ∩ {τ ∈ Tα ∪ T ′
α | τ � σ} is finite,

(4) fσ: dom(fσ) → ω,

(5) whenever τ ∈ dom(fσ) ∩ Tα, n ∈ dom(sσ) are such that n ≥ fσ(τ)

(hence n ∈ dom(sτ ) by (2) and (3)), we have

sτ (n) = 0 → sσ(n) = 0,

and whenever τ ∈ dom(fσ)∩ T ′
α, n ∈ dom(sσ) are such that n ≥ fσ(τ),

we have

aτ (n) = 0 → sσ(n) = 0,

(6) dom(hσ) ⊆ dom(p) ∩ {ρ�j | j < i}, where ρ ∈ λ<λ and i ∈ λ are such

that σ = ρ�i,
(7) hσ: dom(hσ) → ω,

(8) whenever τ ∈ dom(hσ), n ∈ dom(sτ )∩dom(sσ) are such that n ≥ hσ(τ),

we have

sτ (n) = 0 ∨ sσ(n) = 0.

The order on Qα is defined as follows: q ≤ p (“q is stronger than p”) if

(i) dom(p) ⊆ dom(q),

(ii) and for each σ ∈ dom(p), we have

(a) spσ � sqσ,

(b) dom(fpσ) ⊆ dom(f qσ) and f
p
σ(τ) ≥ f qσ(τ) for each τ ∈ dom(fpσ),

(c) dom(hpσ) ⊆ dom(hqσ) and h
p
σ(τ) ≥ hqσ(τ) for each τ ∈ dom(hpσ).

Given a generic filter G for Qα, we define for each σ ∈ Tα

aσ =
⋃

{spσ | p ∈ G ∧ σ ∈ dom(p)}.
This completes the definition of the forcing.

4 The paragraph after the definition gives a short intuitive explanation of the roles of sσ ,

fσ , and hσ .
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In the above definition sσ is a finite approximation of the set aσ assigned to σ,

whereas the functions fσ and hσ are promises for guaranteeing that the branches

through the generic matrix are ⊆∗-decreasing and the levels are almost disjoint

families, respectively. More precisely, fσ promises that aσ \ fσ(τ) ⊆ aτ for

each τ ∈ dom(fσ) and hσ promises that aτ ∩ aσ ⊆ hσ(τ) for each τ ∈ dom(hσ)

(see Lemma 3.5.(4)).

Remark 3.2: Note that Qα is not separative. As an example, we can take p

and q as follows: dom(p) = dom(q) = {σ, τ} where σ is to the left of τ ;

p(τ) = q(τ) = (〈1〉, ∅, h) where h(σ) = 0; p(σ) = (〈〉, ∅, ∅) and q(σ) = (〈0〉, ∅, ∅).
It is easy to see that p � q, but any condition stronger than p is compatible

with q. Therefore, we later need to provide certain iteration lemmas for the

general case of non-separative forcings (see Lemma 4.1.(3)).

3.2. Countable chain condition and some implications. We are now

going to show that our iterands Qα have the c.c.c. and so their finite support

iteration Pλ does not change cofinalities or cardinalities.

Lemma 3.3: Qα is precaliber ω1 (hence in particular c.c.c.) for every α < λ.

In fact, Qα is even σ-centered: in Section 6, we are going to show that

each Qα can be represented as a finite support iteration of length strictly less

than c+ of Mathias forcings with respect to certain filters; since filtered Mathias

forcings are σ-centered and σ-centeredness is preserved under finite support

iterations of length strictly less than c+, it follows that Qα is σ-centered (see

also Corollary 6.2.(1)).

Proof of Lemma 3.3. Let {pi | i < ω1} ⊆ Qα. First note that it is possi-

ble to extend all spσ (with σ ∈ dom(p)) of a condition p ∈ Qα to the same

length Np ∈ ω, by just adding 0’s at the end.5 Therefore we can assume that

there exists N such that |spiσ | = N for each i ∈ ω1 and each σ ∈ dom(pi).

Apply the Δ-system lemma to {dom(pi) | i ∈ ω1} to find X ⊆ ω1 of size ω1

such that {dom(pi) | i ∈ X} is a Δ-system with root R ⊆ Tα. Then we re-

peatedly apply the Δ-system lemma to obtain Y ⊆ X of size ω1 such that

{dom(fpiσ ) ∩ T ′
α | i ∈ Y } is a Δ-system with root Aσ for each σ ∈ R. Moreover,

we can assume that for each σ ∈ R, there are s∗σ, f
∗
σ , and h∗σ such that for

5 In Lemma 3.9, we will show a stronger fact.
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all i ∈ Y , we have

spiσ = s∗σ, fpiσ � (R ∪Aσ) = f∗
σ and hpiσ � R = h∗σ.

Now it is straightforward to check that any two conditions from {pi | i ∈ Y } are

compatible; in fact, any finitely many of them have a common lower bound.

Using standard arguments, one can easily show:

Lemma 3.4:

(1) Let α ≤ λ. Then, in V [Pα], we have c = μ.

(2) Every node σ ∈ λ<λ from the final model V [Pλ] already appears in

some V [Pα] with α < λ.

3.3. The generic refining matrix. Let G be a generic filter for the iter-

ation Pλ. In the final model V [G], we derive our intended generic object as

follows. For each σ ∈ λ<λ ∩ succ fix the minimal α < λ such that σ ∈ V [Gα]

(see Lemma 3.4.(2)). Then in V [Gα], the node σ belongs to Tα, and letting

G(α) be the Qα generic filter over V Pα define

aσ =
⋃

{spσ | p ∈ G(α) ∧ σ ∈ dom(p)}.
In V [G], we let for each ξ < λ, Aξ+1 = {aσ | |σ| = ξ + 1}. We are now going to

show that {Aξ+1 | ξ < λ} is a refining system of almost disjoint families.

Lemma 3.5: Let α < λ.

(1) Let σ ∈ Tα, n ∈ ω. Then Dσ,n = {q ∈ Qα | σ ∈ dom(q) and |sqσ| ≥ n}
is dense in Qα.

(2) The set D of conditions q in Qα such that for each σ ∈ dom(q)

(a) if τ ∈ dom(q) and τ � σ, then τ ∈ dom(fqσ),

(b) if σ = ρ�i, then for each j < i such that ρ�j ∈ dom(q), we have

that ρ�j ∈ dom(hqσ)

is dense in Qα. Moreover, for each p ∈ Qα there is q ∈ D, q ≤ p such

that dom(p) = dom(q).

(3) If α > 0, τ ′ ∈ T ′
α, p ∈ Qα and τ ′ � σ for some σ ∈ dom(p), then there

is q ∈ D (here D is from item (2) above) such that q ≤ p, dom(p) =

dom(q) and τ ′ ∈ dom(f qσ).

(4) Let p ∈ Qα and σ ∈ dom(p).

(a) If τ ∈dom(fpσ), then p�aσ\fpσ(τ) ⊆ aτ . In particular, p�aσ⊆∗aτ .
(b) If τ ∈ dom(hpσ), then p� aτ ∩ aσ ⊆ hpσ(τ). In particular,

p�aτ ∩ aσ =∗ ∅.
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Proof. (1) Let p ∈ Qα. Clearly, we can assume that σ ∈ dom(p). It is easy to

see, using (2), (5), and (8) in Definition 3.1, that, by adjoining 0’s, it is possible

to extend all spτ in such a way that the resulting q is a condition and |sqσ| ≥ n.

(2) Let p ∈ Qα, σ ∈ dom(p). For every τ ∈ dom(p) \ dom(fpσ) with τ � σ,

let f qσ(τ)= |spσ |. For every ρ�j∈dom(p)\dom(hpσ) with j < i, let hqσ(ρ
�j) = |spσ|.

(3) Take f qσ(τ
′) = |spσ|.

(4) This is easy to see, using (5) and (8) in Definition 3.1.

Now we can show that in the final model V [Pλ], the sets along branches

of λ<λ are ⊆∗-decreasing and the sets on any level of λ<λ ∩ succ are pairwise

almost disjoint.

Corollary 3.6: In V [Pλ], the following hold:

(1) If τ, σ ∈ λ<λ ∩ succ such that τ � σ, then aσ ⊆∗ aτ .
(2) If ρ ∈ λ<λ and j < i < λ, then aρ�j ∩ aρ�i =∗ ∅. Moreover for

each ξ < λ, σ, σ′ ∈ λξ+1, σ �= σ′, we have aσ ∩ aσ′ =∗ ∅ and so

Aξ+1 = {aσ | σ ∈ λξ+1} is an almost disjoint family.

Proof. To show (1), let η < λ be minimal such that σ ∈ (λ<λ)V [Pη]. Lem-

ma 3.5.(1), Lemma 3.5.(2), and Lemma 3.5.(4a) imply that the set

{q ∈ Qη | q� aσ ⊆∗ aτ}
is dense. Hence already V [Pη+1] |= aσ ⊆∗ aτ , which remains true in V [Pλ].
To show (2), take η < λ minimal such that ρ ∈ (λ<λ)V [Pη]. Lemma 3.5.(1),

Lemma 3.5.(2) and Lemma 3.5.(4b) imply that the set

{q ∈ Qη | q� aρ�j ∩ aρ�i =∗ ∅}
is dense. Given σ, σ′ ∈ λξ+1 such that σ �= σ′, find ρ ∈ λ<λ with ρ � σ, σ′

and i, j < λ, j �= i such that ρ�j � σ and ρ�i � σ′. Apply the preceding

argument and then (1).

Finally, we show that each aσ is infinite. By “s(m) = 1”, we actually

mean “m ∈ dom(s) and s(m) = 1”.

Lemma 3.7: Let α < λ, σ ∈ Tα, n ∈ ω. Then

Dσ,n = {q ∈ Qα | σ ∈ dom(q) and ∃m ≥ n(sqσ(m) = 1)}
is dense in Qα.
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Proof. The proof proceeds by induction on α < λ. Let σ ∈ Tα, n ∈ ω

and p ∈ Qα. By Lemma 3.5.(1), we can assume that σ ∈ dom(p). Let N0 ∈ ω

be bigger than the maximal length of all the spτ with τ ∈ dom(p) and τ � σ,

and bigger than n. Let A =
⋃{dom(fpτ ) ∩ T ′

α | τ ∈ dom(p) ∧ τ � σ}.
If A is empty, let m ∈ ω be arbitrary with m ≥ N0. Otherwise, let N1 ≥ N0

be large enough such that aψ′ \ N1 ⊆ aψ for all ψ, ψ′ ∈ A with ψ � ψ′ (see
Corollary 3.6). Moreover, let ψ∗ be the longest element of the finite set A.

By induction, aψ∗ is infinite, so we can fix m ≥ N1 such that aψ∗(m) = 1.

Therefore aψ(m) = 1 for each ψ ∈ A. Now, for every τ ∈ dom(p) with τ � σ,

extend spτ with 0’s to a node s̄τ of length m and take sqτ = s̄�τ 1. It is easy to

check that q is a condition, q ≤ p and sqσ(m) = 1 as desired.

Altogether, we proved that {Aξ+1 | ξ < λ} is a refining system of almost

disjoint families. To show that it forms a refining matrix requires much more,

the proof of which will be completed in Section 4.

3.4. Upwards closed sets and complete subforcings. The goal of this

section is to show that our forcing Qα has complete subforcings which use only

part of Tα (see Lemma 3.11). In Section 4.2, this will be extended to the whole

iteration (see Lemma 4.8), which will be an important ingredient of the proof

that the generic object is a refining matrix (see Section 4.3 and Section 4.4).

Moreover, Lemma 3.11 will play a crucial role in showing that h = b = ω1 in

the final extension. We now work in V [Pα].

Definition 3.8: A condition p ∈ Qα is called full if there exists an N ∈ ω such

that for all σ ∈ dom(p)

(1) |spσ| = N ,

(2) N > max(rng(fpσ)) and N > max(rng(hpσ)),

(3) τ ∈ dom(fpσ) for each τ ∈ dom(p) with τ � σ, and

(4) if σ = ρ�i then for each j<i with ρ�j∈dom(p), we have ρ�j∈dom(hpσ).

A condition p ∈ Pλ is said to be full, if p(0) is full.

Later, we will use quotients Pλ /Pη and a modification where 0 is replaced

by η. Lemma 3.5 gives:

Lemma 3.9: For every condition p ∈ Qα there exists a full condition q with q≤p
and dom(q) = dom(p). Hence the set of full conditions in Pλ is dense in Pλ.
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Important complete suborders of our forcing are captured by the following

notion:

Definition 3.10: Let C ⊆ λ<λ, α < λ.

(1) QCα = {p ∈ Qα | dom(p) ⊆ C}.
(2) C is said to be α-upwards closed if for each σ ∈ C and each τ � σ

with τ ∈ Tα, we have τ ∈ C.

(3) For p ∈ Qα, let p �� C be the function p′ with dom(p′) = dom(p) ∩ C,
sp

′
σ =spσ, f

p′
σ =fpσ �(C∪T ′

α) and h
p′
σ =hpσ �C for each σ∈dom(p′). Clearly,

p′ is a condition in QCα and if C is α-upwards closed, then fp
′
σ =fpσ .

Recall that P′ is a complete subforcing of P, denoted P′ �P, if for each q, q′

in P′,

q ⊥P
′ q′ → q ⊥P q

′,

and each p ∈ P has a reduction q ∈ P′ (i.e., a condition q such that if r ∈ P′

and r ≤ q then r �⊥P p).

Lemma 3.11: Let C ⊆ λ<λ be α-upwards closed. Then QCα is a complete

subforcing of Qα. Moreover, if p ∈ Qα is a full condition, then p �� C is a

reduction of p to QCα .

The sets

λ1 = {σ ∈ λ<λ | |σ| = 1},
1<λ = {σ ∈ λ<λ | σ(ξ) = 0 for every ξ}

are 0-upwards closed. Thus, Q(λ1)
0 and Q(1<λ)

0 are complete subforcings of Q0.

Note that they are isomorphic to the posets introduced by Hechler [21] to add

a mad family or a tower, respectively (for a further study see [15]).

Proof of Lemma 3.11. We give the proof only for the case α = 0 and leave

the only slightly different general case to the reader. To show that incompat-

ible conditions in QC0 are incompatible in Q0, let p0, p1 ∈ QC0 and q ∈ Q0

with q ≤ p0, p1; then q′ = q �� C is in QC0 and q′ ≤ p0, p1, as desired. Now,

consider any p ∈ Q0 and let p′ ≤ p be a full condition with dom(p′) = dom(p).

We will show that p′ �� C is a reduction of p to QC0 . Let q ≤ p′ �� C with q ∈ QC0 .
Let q′ ≤ q be such that |sq′σ | = |sq′τ | for all σ, τ ∈ dom(q′). Let

dom(r) = dom(q′) ∪ dom(p′).
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For σ ∈ dom(p′) \ dom(q′) let

srσ = sp
′
σ , f rσ = fp

′
σ , hrσ = hp

′
σ .

Similarly for σ ∈ dom(q′) \ dom(p′) let srσ = sq
′
σ , f

r
σ = f q

′
σ , hrσ = hq

′
σ . For

σ ∈ dom(q′) ∩ dom(p) let srσ = sq
′
σ , f

r
σ = f q

′
σ , dom(hrσ) = dom(hq

′
σ ) ∪ dom(hp

′
σ ),

and for σ′ ∈ dom(hq
′
σ ) let h

r
σ(σ

′) = hq
′
σ (σ

′), for σ′ ∈ dom(hp
′
σ ) \ dom(hq

′
σ ) let

hrσ(σ
′) = hp

′
σ (σ

′).

Claim: r is a condition.

Proof. It is very easy to check that srσ, f
r
σ and hrσ are well-defined with the

right domains and ranges for all σ ∈ dom(r). Next, we show that if σ� τ , then

|srσ| ≥ |srτ |: If τ ∈ dom(q′), it follows by the α-upwards closure that σ ∈ dom(q′),
hence by definition srσ = sq

′
σ , s

r
τ = sq

′
τ and |srσ| ≥ |srτ | since q′ is a condition.

If τ /∈ dom(q′), then |srτ | = |sp′τ | = |sp′σ | and regardless if σ ∈ dom(q) or not,

|srσ| ≥ |sp′σ |.
Let σ, τ ∈ dom(r) with τ ∈ dom(f rσ) and m ≥ f rσ(τ) and srσ(m) = 1. We

have to show that srτ (m) = 1 (note that, in case α > 0, one also has to

deal with the case τ ∈ dom(f rσ)\dom(r) which works similarly with aτ (m)

in place of srτ (m)). Case 1: σ and τ are both in dom(q′). In this case

srσ = sq
′
σ , s

r
τ = sq

′
τ , f

r
σ(τ) = f q

′
σ (τ) and srτ (m) = 1 holds since q′ is a condi-

tion. Case 2: σ ∈ dom(q′) and τ /∈ dom(q′). This contradicts the α-upwards

closure of C. Case 3: σ /∈ dom(q′) and τ ∈ dom(q′). So f rσ = fp
′
σ and

srσ = sp
′
σ . Thus m < |sp′σ | and τ ∈ dom(p′) because dom(f rσ) ⊆ dom(p′).

Since p′ is a condition, it follows that sp
′
τ (m) = 1 and clearly srτ (m) = sp

′
τ (m).

Case 4: σ /∈ dom(q′) and τ /∈ dom(q′). In this case srσ = sp
′
σ , s

r
τ = sp

′
τ , f

r
σ = fp

′
σ

and srτ (m) = 1 follows since p′ is a condition.

Assume ρ, ρ′ ∈ dom(r), ρ′ ∈ dom(hrρ), m ≥ hrρ(ρ
′) and srρ(m) = 1; we have

to show that srρ′(m) = 0, if it is defined. Case 1: ρ, ρ′ ∈ dom(q′). In this case

srρ = sq
′
ρ , s

r
ρ′ = sq

′
ρ′ and hrρ(ρ

′) = hq
′
ρ (ρ

′) and srρ′(m) = 0 follows since q′ is a

condition. Case 2: ρ ∈ dom(q′) and ρ′ /∈ dom(q′). Since ρ′ ∈ dom(hrρ) \dom(q′)
it follows that ρ ∈ dom(p′) and ρ′ ∈ dom(hp

′
ρ ). If m ≥ |sp′ρ |, then |srρ′(m)| is

undefined. If m < |sp′ρ | the fact that p′ is a condition implies that sp
′
ρ′(m) = 0

which is the same as srρ′(m). Case 3: ρ /∈ dom(q′) and ρ′ ∈ dom(q′). It follows

that ρ′ ∈ dom(hrρ) = dom(hp
′
ρ ) ⊆ dom(p′) and m < |srρ| = |sp′ρ |. Since p′ is a
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condition sp
′
ρ′(m) = 0 which is the same as srρ′(m). Case 4: ρ, ρ′ /∈ dom(q′). In

this case srρ = sp
′
ρ , s

r
ρ′ = sp

′
ρ′ and hrρ = hp

′
ρ and srρ′(m) = 0 follows since p′ is a

condition.

It is straightforward to check that r extends both q′ and p′ (and therefore q

and p).

4. No refinement, and madness of levels

This section is dedicated to the central part of the proof that the generic ob-

ject added by our forcing iteration is a refining matrix of height λ. In Sec-

tions 4.4 and 4.3 we show that the levels are mad families with no further

refinements. We start with some preliminary lemmas and concepts.

4.1. On forcing iterations and correct systems. Next, we gather some

key properties of forcing iterations and completeness, which will play a crucial

role for our construction later. For further reading, see [18]. Throughout the

subsection P, Q, etc. denote arbitrary forcing posets.

Recall the following:

Lemma 4.1:

(1) Suppose that P0 �P and P1 �P satisfy P0 ⊆ P1.
6 Then P0 �P1. More-

over, if q ∈ P0 is a reduction of p ∈ P1 from P to P0, then q is also a

reduction of p from P1 to P0.

(2) Suppose that P′ �P. Let ϕ be some formula, let ẋ, ẏ, etc. be P′-names,

and let p ∈ P such that p�P ϕ(ẋ, ẏ, . . .). Then for each p′ ∈ P′ which is

a reduction of p, we have p′ �P
′ ϕ(ẋ, ẏ, . . .).

(3) Let {Pα, Q̇α | α < δ} and {P′
α, Q̇

′
α | α < δ} be finite support iterations

such that for each α < δ, �Pα
Q̇′
α�Q̇α. Then P′

δ is a complete subforcing

of Pδ.
Moreover, if red: Q0 → Q′

0 is a map such that red(q) is a reduction

of q for each q ∈ Q0, then for each p ∈ Pδ, there is a p′ ∈ P′
δ such that p′

is a reduction of p, and p′(0) = red(p(0)), and, if α ≥ 1 and p(α) is

a P′
α-name with p � α� p(α) ∈ Q̇′

α, then p
′(α) = p(α).

6 In fact, it is sufficient for the proof to go through that incompatible conditions in P1 are

incompatible in P.
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The first part of item (3) can be found in [9], however we will need the

technical strengthening given by the mapping red. The iterands in (3) need not

be separative, which is essential, as we will apply the Lemma to the Qα’s from
Definition 3.1. The concept below has been introduced by Brendle (see [7, 8]):

Definition 4.2: A system of forcings R0,R1�R with R0∩R1�R0,R1 is correct

if any two conditions p0 ∈ R0 and p1 ∈ R1 which have a common reduction

in R0 ∩ R1 are compatible in R.

Under the assumptions of the lemma below, R = P ∗Q̇, R0 = P and R1=P′∗Q̇′

is a correct system. We do not know, however, whether the conclusion of the

lemma holds for every correct system.

Lemma 4.3: Let P ∗Q̇ and P′ ∗Q̇′ be two-step iterations satisfying P′ �P
and �P Q̇′ � Q̇. Then

V [P′ ∗Q̇′] ∩ V [P] = V [P′].

Proof. We will only show the special case which we will need later (it is straight-

forward to extend the proof to the general case): for any δ, ε ∈ Ord,

δε ∩ V [P′ ∗Q̇′] ∩ V [P] ⊆ V [P′].

Let G be a generic filter for P′, let ḟ0 be a P-name, and let ḟ1 be a P′ ∗Q̇′-
name. Work in V [G]. Assume towards a contradiction that there is a condition

(p, q̇) ∈ P ∗Q̇ with p ∈ P /G such that

(2) (p, q̇)� ḟ0 = ḟ1 ∈ Ord<Ord ∧ ḟ0 /∈ V [G].

Let p′ ∈ G be a reduction of p to P′. By standard arguments, we can fix a

P′-name q̇′ such that p� “q̇′ is a reduction of q̇” and (p′, q̇′) ∈ P′ ∗Q̇′. Since p is

reduction of (p, q̇) to P, it follows from (2) and Lemma 4.1.(2) that

p� ḟ0 /∈ V [G].

Therefore, we can fix γ ∈ ε such that p does not decide ḟ0(γ) in P /G. Let

(p1, q̇1) ≤ (p′, q̇′) and ξ1 ∈ δ such that p1 ∈ G and (p1, q̇1)� ḟ1(γ) = ξ1.

Since p does not decide ḟ0 at γ, we can fix p0 ∈ P /G with p0 ≤ p and ξ0 ∈ δ

with ξ0 �= ξ1 such that p0 � ḟ0(γ) = ξ0. Now we want to find a condi-

tion (p∗, q̇∗) which is stronger than (p, q̇), (p1, q̇1) and (p0,1). First note that p0

and p1 are compatible, because p0 ∈ P /G and p1 ∈ G, and fix p∗ ≤ p0, p1.

Since p∗ ≤ p, p1 it follows that p∗ � “q̇′ is a reduction of q̇ and q̇1 ≤ q̇′”
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hence p∗� q̇1 �⊥ q̇. Let q̇∗ be a P-name such that p∗� q̇∗ ≤ q̇1, q̇. It is easy

to check that (p∗, q̇∗) ≤ (p, q̇), (p1, q̇1), (p0,1). Now

(p∗, q̇∗)� ḟ0 = ḟ1 ∧ ḟ0(γ) = ξ0 ∧ ḟ1(γ) = ξ1,

but ξ0 �= ξ1, a contradiction.

We conclude with an easy observation we will need later on:

Lemma 4.4: Suppose P′ �P, ḃ is a P′-name and p ∈ P is such that p� ḃ ∈ [ω]ω.

Then for each N ∈ ω there are r ∈ P′, m > N such that r�m ∈ ḃ and r is

compatible with p.

4.2. Complete subforcings: hereditarily below γ. In this section, we

give some technical definitions and lemmas as a preparation for the main proofs

in Sections 4.3 and 4.4. More precisely, we define, for each γ < λ, the subforc-

ings of “hereditarily below γ” conditions of our iteration, show that they form

complete subforcings (see Lemma 4.8) and that each condition is hereditarily

below γ for some γ < λ (see Lemma 4.10). For the rest of the section fix η < λ

and a Pη-generic filter Gη.

Definition 4.5: Let γ < λ. In V [Gη] define by recursion on η ≤ α ≤ λ for a

condition p ∈ Pα /Gη to be hereditarily below γ and the poset
<γ

(Pα /Gη):

(1) p ∈ Qη is hereditarily below γ, if dom(p) ⊆ γ<γ .

(2) Let
<γ

(Pα /Gη) = {p ∈ Pα /Gη | p hereditarily below γ}.
(3) Let α > η, p ∈ Pα+1 /Gη is hereditarily below γ, if p � α ∈ <γ

(Pα /Gη),
p(α) is a <γ(Pα /Gη)-name and p � α� dom(p(α)) ⊆ γ<γ .

(4) For α limit, p ∈ Pα /Gη is hereditarily below γ, if p � β ∈ <γ
(Pβ /Gη)

for every β < α.

For α ≤ λ, a Pα /Gη-name ḃ is hereditarily below γ, if for all (ẋ, p) ∈ ḃ,

p ∈ <γ
(Pα /Gη) and ẋ is hereditarily below γ (this is by recursion).

Clearly, if p ∈ Pα /Gη is hereditarily below γ and γ′ > γ, then p is also

hereditarily below γ′. The same holds for a Pα /Gη-name ḃ.
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Definition 4.6: Let γ < λ, τ ∈ λ<λ. In V [Gη] define by recursion on η ≤ α ≤ λ

for a condition p ∈ Pα /Gη to be almost hereditarily below γ except for τ

and the poset
<γ+τ

(Pα /Gη):

(1) p ∈ Qη is almost hereditarily below γ except for τ , if

dom(p) ⊆ γ<γ ∪ {τ}.

(2) Let

<γ+τ
(Pα /Gη) = {p ∈ Pα /Gη | p almost hereditarily below γ except for τ}.

(3) Let α > η, p ∈ Pα+1 /Gη is almost hereditarily below γ except for τ ,

if p � α is almost hereditarily below γ except for τ , p(α) is a
<γ

(Pα /Gη)-
name and p � α�dom(p(α)) ⊆ γ<γ .7

(4) For α limit, p ∈ Pα /Gη is almost hereditarily below γ except for τ ,

if p � β is almost hereditarily below γ except for τ , for every β < α.

For α ≤ λ, a Pα /Gη-name ḃ is almost hereditarily below γ except for τ ,

if for all (ẋ, p) ∈ ḃ, both p and ẋ are almost hereditarily below γ except for τ .

We will write almost hereditarily below γ and omit the τ if it is clear from

the context which τ is meant.

Clearly, if p ∈ Pα /Gη is almost hereditarily below γ and γ′ > γ, then p is

also almost hereditarily below γ′, and if p ∈ Pα /Gη is hereditarily below γ,

then it is almost hereditarily below γ except for τ for every τ . The same holds

for a Pα /Gη-name ḃ. We will make use of the following easy fact:

Lemma 4.7: Assume P′ is a complete subforcing of P and G is P-generic. Then
in V [G], the set (γ<γ)V [G∩P

′] is α-upwards closed for any α < λ.

Proof. Clearly, (γ<γ)V [G∩P
′] is α-upwards closed in V [G ∩ P′]. Since V [G] and

V [G ∩ P′] have the same ordinals, the same holds true in V [G].

We can show now that the suborder of (almost) hereditarily below γ condi-

tions is a complete suborder:

7 This is not a typo: we really require p(α) to be a <γ(Pα /Gη)-name, not just a
<γ+τ (Pα /Gη)-name.



18 V. FISCHER, M. KOELBING AND W. WOHOFSKY Isr. J. Math.

Lemma 4.8: Let γ < λ. Then

<γ
(Pλ /Gη)� Pλ /Gη.

Also, if τ ∈ Tη is such that γ<γ ∪ {τ} is η-upwards closed, then

<γ+τ
(Pλ /Gη)� Pλ /Gη.

Moreover, if p ∈ Pλ /Gη is full and almost hereditarily below γ except for τ ,

then (p(η) � γ<γ , p(η + 1), p(η + 2), . . . ) is a reduction of p to
<γ

(Pλ /Gη).

Proof. Inductively on α we show that
<γ

(Pα /Gη) and
<γ+τ

(Pα /Gη)) are com-

plete subforcings of Pα /Gη, whenever η ≤ α ≤ λ. To simplify notation, we

write Pα, <γPα, <γ+τPα instead of Pα /Gη,
<γ(Pα /Gη),

<γ+τ (Pα /Gη), re-

spectively. We will define <γPα-names Q̇′
α such that <γPλ (or <γ+τPλ respec-

tively) is the finite support iteration of the Q̇′
α’s. The only difference of the two

iterations will be the first iterand Q′
η.

Initial step α = η + 1. By Lemma 3.11, <γPη+1 = Qγ
<γ

η � Pη+1 = Qη.

Similarly, <γ+τPη+1 = Qγ
<γ∪{τ}
η �Qη. Take Q′

η = Qγ
<γ

η in the iteration repre-

senting <γPλ and Q′
η = Qγ

<γ∪{τ}
η in the iteration representing <γ+τPλ.

Successor step α+1. Assume <γPα,
<γ+τPα are complete subforcings of Pα.

We will show that <γPα+1 and <γ+τPα+1 are complete subforcings of Pα+1.

In V [G] for a Pα-generic G, let E = (γ<γ)V [G∩<γ
Pα].8 By Lemma 4.7 the set E

is α-upwards closed and so by Lemma 3.11, in V [G] we haveQEα�Qα. Note that:

Claim 4.9: QEα is an element of V [G ∩ <γPα].

Using the claim, fix a <γPα-name Q̇′
α for QEα . Since

<γPα ⊆ <γ+τPα and both

are complete suborders of Pα, Lemma 4.1.(1) implies that <γPα � <γ+τPα.
Thus, the <γPα-name Q̇′

α is also a <γ+τPα-name. Now, apply Lemma 4.1.(3)

to obtain that <γPα ∗ Q̇′
α and <γ+τPα ∗ Q̇′

α are complete subforcings of Pα+1.

Since by definition, <γPα ∗ Q̇′
α is equivalent to <γPα+1 and <γ+τPα ∗ Q̇′

α is

equivalent to <γ+τPα+1, the successor step is complete.

Limit step α. Lemma 4.1.(3) implies that the limit of the finite support

iteration of the Q̇′
α′ with α′ < α is a complete subforcing of Pα and by definition

<γPα (or <γ+τPα respectively) is equivalent to the limit of this finite support

iteration.

8 Note that E is really defined this way for both cases (see also footnote 7).
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Now, let p be a full condition in <γ+τPλ. By Lemma 3.11,

p(η) � γ<γ = p(η) �� γ<γ

is a reduction of p(η) to <γPη+1 (which isQ′
η in the iteration representing <γPλ).

Since <γ+τPλ is the iteration of the Q̇′
α (note that for α ≥ η + 1 the iterands

of the two iterations coincide), p � α� p(α) ∈ Q′
α for α ≥ η + 1 and so

Lemma 4.1.(3) completes the proof.

Proof of Claim 4.9. We work in V [G]. Let Gβ = G ∩ Pβ . It is straightforward

to check that QEα can be defined in V [G ∩ <γPα] provided that E ∩ T ′
α, and

hence also E ∩ Tα, belongs to V [G ∩ <γPα]. Note that

E ∩ T ′
α =

⋃
β<α

(γ<γ ∩ succ ∩ V [G ∩ <γPα] ∩ V [Gβ ]).

Apply Lemma 4.3 to Pβ ∗Q̇, where Q̇ is the quotient Pα /Pβ , and to <γPβ ∗ Q̇′,
where Q̇′ is the quotient <γPα/<γPβ to obtain

γ<γ ∩ V [G ∩ <γPα] ∩ V [Gβ ] = γ<γ ∩ V [Gβ ∩ <γPα].

This is possible, since <γPβ � Pβ by induction hypothesis and �Pβ
Q̇′ � Q̇ by

Lemma 4.1.(3) for the tail iterations. Therefore,

E ∩ T ′
α =

⋃
β<α

(γ<γ ∩ succ)V [Gβ∩<γ
Pα],

which clearly belongs to V [G ∩ <γPα], as desired.

The next lemma shows that every condition is (essentially) hereditarily be-

low γ for some γ < λ.

Lemma 4.10: For every p ∈ Pλ /Gη, there is γ < λ and p′ ∈ <γ(Pλ /Gη) which
is forcing equivalent to p.

Proof. Proceed by induction on α. We only sketch the successor step.

Let (p, q̇) ∈ (Pα /Gη) ∗ Q̇α. By inductive hypothesis there is γp < λ such

that p ∈ <γp(Pα /Gη). By the c.c.c. of Pα each element of λ<λ in V [Pα] has
a nice Pα /Gη-name σ̇ consisting of less than λ many countable antichains of

conditions r such that r ∈ <γr(Pα /Gη) for some γr. Let γσ̇ be the supremum

of all these less than λ many γr. Then σ̇ is a
<γσ̇(Pα /Gη)-name. Now we can

assume that q̇ is a nice name which is hereditarily countable except for the nice

names σ̇ for the elements of dom(q̇); then, by the above, one can easily find γq̇
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such that q̇ is in fact a <γq̇ (Pα /Gη)-name. Finally, again by the c.c.c., there

exists δ < λ such that p�dom(q̇) ⊆ δ<δ. Let γ = max(γp, γq̇, δ) < λ. Then

(p, q̇) belongs to
<γ

(Pα+1 /Gη), which finishes the argument.

Lemma 4.11: Let G be Pλ /Gη-generic and V [G] |= b ⊆ ω. Then there is γ < λ

and a Pλ /Gη-name ḃ for b which is hereditarily below γ.

Proof. Let ḃ be a nice name for b. By Lemma 4.10, we can assume that for every

condition p in ḃ, there exists γp such that p ∈ <γp(Pλ /Gη). Since b is countable
and Pλ /Gη has the c.c.c., there exists γ < λ such that ḃ is a <γ(Pλ /Gη)-
name.

We conclude with a technical lemma which will be crucial later on:

Lemma 4.12: Let τ ∈ Tη\γ<γ. Let p, r ∈ Pλ /Gη be compatible in Pλ /Gη such
that p is full, almost hereditarily below γ except for τ and r is hereditarily be-

low γ. Then there is p∗∈<γ+τ (Pλ /Gη) such that p∗≤p, r and p∗(η)(τ)=p(η)(τ).
Proof. Without loss of generality we can assume that dom(p(η)) � {τ}. Since

p is full and almost hereditarily below γ except for τ , by Lemma 4.8

pred = (p(η) � γ<γ , p(η + 1), p(η + 2), . . . )

is a reduction of p to <γ(Pλ /Gη). We show that pred and r are compatible in
<γ

(Pλ /Gη). Assume not. Since
<γ

(Pλ /Gη) � Pλ /Gη, it follows

that pred ⊥Pλ /Gη
r. But p ≤ pred, so p ⊥Pλ /Gη

r, which is a contradiction to

the assumption of the lemma. Let q∗ ∈ <γ
(Pλ /Gη) be such that q∗ ≤ pred, r.

Without loss of generality q∗(η) is full. Since q∗(η) ≤ pred(η) = p(η) � γ<γ
and p(η) � γ<γ = p(η) �� γ<γ is a reduction of p(η) by Lemma 3.11, q∗(η) is com-

patible with p(η). Let q̄(η) be a full witness for that. So q̄(η) ≤ p(η), r(η), q∗(η).
Now, let

p∗(η) = q̄(η) � γ<γ ∪ {(τ, p(η)(τ))}
and for α > η, let p∗(α) = q∗(α). Then p∗(η) is a condition and moreover,

p∗(η) ≤ q∗(η), since q̄(η) ≤ q∗(η) and q∗ hereditarily below γ except for τ .

Thus, p∗ is a condition, which is almost hereditarily below γ except for τ

and p∗(η)(τ) = p(η)(τ). Since r(η) is hereditarily below γ, p(η) is almost

hereditarily below γ except for τ and q̄(η) ≤ r(η), p(η), it is clear that p∗(η)
extends r(η) and p(η). Thus p∗ ≤ r, p.
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4.3. No refinement: branches are towers. Next we prove that the generic

matrix has no refinement. More precisely, we show that the sets along any

branch have no pseudo-intersection.

Lemma 4.13: In V [Pλ], the sequence 〈aσ�(ξ+1) | ξ<λ〉 is a tower for each σ∈λλ.
Proof. Let Gλ be Pλ-generic. Work in V [Gλ]. Fix σ ∈ λλ. By Corollary 3.6(1),

〈aσ�(ξ+1) | ξ < λ〉 is ⊆∗-decreasing. Assume towards a contradiction, that

for some infinite b ⊆ ω, b ⊆∗ aσ�(ξ+1) for every ξ < λ. Apply Lemma 4.11 to

get γ < λ and a Pλ-name ḃ for b which is hereditarily below γ. Let ζ be the least

successor ordinal with σ � ζ /∈ γ<γ and η < λ minimal such that σ � ζ ∈ V [Gη].

Work in V [Gη] and consider the tail forcing Pλ /Gη. The Pλ-name ḃ can be un-

derstood as a Pλ /Gη-name for b which is hereditarily below γ. Since b ⊆∗ aσ�ζ
holds in V [Gλ], we can pick n ∈ ω and p ∈ Pλ /Gη such that p� ḃ \ n ⊆ aσ�ζ .
From now on, whenever we say “almost hereditarily below γ”, we shall mean

“almost hereditarily below γ except for σ � ζ”. Note that (the canonical name

for) aσ�ζ is almost hereditarily below γ. Now, by Lemma 4.8 and Lemma 4.1.(2),

we can fix p′ which is almost hereditarily below γ such that p′ � ḃ \ n ⊆ aσ�ζ .
Since η is minimal with σ � ζ ∈ V [Gη], Qη assigns a set aσ�ζ to σ � ζ. Without

loss of generality σ � ζ ∈ dom(p′(η)) and p′ is a full condition.9

By Lemma 4.4 there is r ∈ Pλ /Gη hereditarily below γ and m > n, |sp′(η)σ�ζ |
such that r is compatible with p′, and r�m ∈ ḃ. Apply Lemma 4.12 to ob-

tain p′′ ≤ p′, r such that p′′ is almost hereditarily below γ, and moreover

p′′(η)(σ � ζ) = p′(η)(σ � ζ).

It follows that p′′ �m ∈ ḃ. In particularm > |sp′′(η)σ�ζ |, thus we can strengthen p′′

to a condition q (only strengthening p′′(η)) by extending s
p′′(η)
σ�ζ to length > m

with s
q(η)
σ�ζ (m) = 0. Then q�m ∈ ḃ ∧m /∈ aσ�ζ , which is a contradiction to the

fact that p′ forces ḃ \ n ⊆ aσ�ζ .

4.4. Levels are mad families. Finally, we show that the levels of the generic

matrix form mad families.

Lemma 4.14: In V [Pλ], the family Aξ+1 = {aσ | |σ| = ξ + 1} is mad for

each ξ < λ.

9 Here we use the modification of Definition 3.8, where 0 is replaced by η, i.e., p′(η) is full.
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Proof. Let Gλ be generic for Pλ and work in V [Gλ]. The main work lies in

the following claim, which guarantees “local madness” below branches. We will

prove it after finishing the proof of the lemma.

Claim 4.15: Let ρ ∈ λ<λ and let b ⊆ ω be such that b ∩ aρ�ζ is infinite for

every successor ζ ≤ |ρ|. Then there exists an i < λ such that b∩aρ�i is infinite.
Fix ξ < λ. By Corollary 3.6(2), Aξ+1 is almost disjoint. Using the claim, we

will show that Aξ+1 is actually mad. Let b ⊆ ω be infinite. To find σ ∈ λξ+1 such

that b∩ aσ is infinite, we construct by induction on ζ, a branch 〈ρζ | ζ ≤ ξ +1〉
with |ρζ | = ζ for each ζ and ρζ′ � ρζ for ζ′ ≤ ζ such that b ∩ aρζ is infinite for

every successor ζ ≤ ξ + 1. Let ρ0 = 〈〉. Assume 〈ρζ′ | ζ′ < ζ〉 is constructed. If
ζ is a limit, let

ρζ =
⋃

{ρζ′ | ζ′ < ζ}.
If ζ = ζ′+1 is a successor, ρζ′ fulfills the assumptions of the claim by induction.

Let i < λ be given by the claim and let ρζ = ρζ′
�i. Then b ∩ aρζ is infinite.

Finally take σ = ρξ+1.

Proof of Claim 4.15. Assume towards a contradiction that b ∩ aρ�ζ is infinite

for every successor ζ ≤ |ρ|, but b ∩ aρ�i is finite for every i < λ. Let η be

minimal with ρ ∈ V [Gη]. Thus aρ�i (for any i) is not defined in V [Gη] but

it will be defined in V [Gη+1]. From now on, we work in V [Gη]. Consider

the tail forcing Pλ /Gη and apply Lemma 4.11 to get a Pλ/Gη-name ḃ for b

and γ′ < λ such that ḃ is hereditarily below γ′. Let γ < λ be strictly above

|ρ|+ 1, sup(rng(ρ)), γ′ and pick n ∈ ω, p ∈ Pλ /Gη such that

(1) p� ḃ ∩ aρ�γ ⊆ n,

(2) p� ḃ ∩ aρ�i is finite, for each i < γ, and

(3) p� ḃ ∩ aρ�ζ is infinite, for each successor ζ ≤ |ρ|.
From now on, whenever we say “almost hereditarily below γ”, we shall mean

“almost hereditarily below γ except for ρ�γ”. Clearly, ḃ, aρ�i for i ≤ γ and aρ�ζ
for each successor ζ ≤ |ρ| are almost hereditarily below γ. By Lemma 4.8 and

Lemma 4.1.(2), we can fix p′ which is almost hereditarily below γ such that

items (1), (2), and (3) above hold true for p′ in place of p. Without loss of

generality, p′ is full and ρ�γ ∈ dom(p′(η)). Define

R = dom(p′(η)) ∩ {ρ�i | i < γ} and R′ = dom(f
p′(η)
ρ�γ ).
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Let ẋ be a Pλ/Gη-name such that

� ẋ =
⋂
τ∈R′

(ḃ ∩ aτ ) \
⋃
τ∈R

aτ .

Since
<γ

(Pλ /Gη) � Pλ /Gη by Lemma 4.8 and all names used to define ẋ

are hereditarily below γ, we can assume that ẋ is hereditarily below γ as

well. Since R and R′ are finite, p′ forces ẋ to be infinite. By Lemma 4.4

there is r ∈ <γ(Pλ /Gη) and m > n, |sp′(η)
ρ�γ | such that r is compatible with p′

and r�m ∈ ẋ. Apply Lemma 4.12 to obtain p′′ ≤ p′, r such that p′′ is almost

hereditarily below γ and

p′′(η)(ρ�γ) = p′(η)(ρ�γ).

In particular p′′ �m ∈ ẋ and p′′ �m ∈ ⋂
τ∈R′ aτ\

⋃
τ∈R aτ . Now extend p′′

to a condition q so that the following holds: For α > η, q(α) = p′′(α);
for τ ∈ (R ∪R′) ∩ dom(p′′(η)), sq(η)τ extends s

p′′(η)
τ and |sq(η)τ | > m; s

q(η)

ρ�γ ex-

tends s
p′′(η)
ρ�γ and s

q(η)
ρ�γ(i) = 0 for |sp′′(η)ρ�γ | ≤ i < m, s

q(η)
ρ�γ(m) = 1.

Note that in particular, s
q(η)
τ (m) = 1 for τ ∈ R′ ∩ dom(p′′(η)), aτ (m) = 1

for τ ∈ R′\dom(p′′(η)), and sq(η)τ (m) = 0 for τ ∈ R. But then, q�m ∈ ẋ∩aρ�γ ,
which is a contradiction to p′ � ẋ ∩ aρ�γ ⊆ n.

This finishes the proof that the generic matrix is a refining matrix of height λ.

It remains to prove that b (and hence h) is small in our final model; this is the

subject of Sections 5 and 6.

5. B-Canjar filters

In this section, we give the preliminaries regarding B-Canjar filters and preser-

vation of unboundedness, which are needed in Section 6. Let F ⊆ P(ω) be

a set with the finite intersection property, i.e., the intersection of any finitely

many of its elements is infinite. We write 〈F〉Fr to denote the filter generated

by F together with the Fréchet filter, i.e., B ∈ 〈F〉Fr if B ⊇ ⋂
i<n ai \ m for

some n,m ∈ ω and {ai | i < n} ⊆ F. Recall, that for a filter F ⊆ P(ω) contain-

ing the Fréchet filter, the Mathias forcing with respect to F , denoted M(F),

is the poset of pairs (s, A) with s ∈ 2<ω and A ∈ F , where the extension rela-

tion is defined as follows: (t, B) ≤ (s, A) if t� s, B ⊆ A, and for each n ≥ |s|,
if t(n) = 1, then n ∈ A. The generic real for M(F) is a pseudo-intersection
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of F , M(F) is σ-centered and Mathias forcing with respect to the Fréchet fil-

ter is forcing equivalent to Cohen forcing C. A filter F is said to be Canjar

if M(F) does not add a dominating real over the ground model. We will need

the following generalization of Canjarness: For an unbounded family B ⊆ ωω,

a filter F is said to be B-Canjar if M(F) preserves the unboundedness of B.

5.1. A combinatorial characterization of B-Canjarness. We will make

use of the following combinatorial characterization of B-Canjarness, due to

Guzmán–Hrušák–Mart́ınez [20]. The characterization generalizes an earlier re-

sult of Hrušák–Minami [22]. For a given filter F on ω, a set X ⊆ [ω]<ω is

in (F<ω)+ if and only if for each A ∈ F there is an s ∈ X with s ⊆ A.

Given X̄ = 〈Xn | n ∈ ω〉 with Xn ⊆ [ω]<ω for each n ∈ ω and f ∈ ωω, let

X̄f =
⋃
n∈ω

(Xn ∩ P(f(n))).

Theorem 5.1: Let B ⊆ ωω be an unbounded family. A filter F is B-Canjar if
and only if for each sequence X̄ = 〈Xn | n ∈ ω〉 ⊆ (F<ω)+ there exists an f ∈ B
such that X̄f ∈ (F<ω)+.

Proof. See [20, Proposition 1].

Lemma 5.2: Let B ⊆ ωω be an unbounded family. Then:

(1) The Fréchet filter is B-Canjar.
(2) If F is a B-Canjar filter extending the Fréchet filter and {an | n < ω}

is such that F ∪ {an | n < ω} has the finite intersection property, then

〈F ∪ {an | n < ω}〉Fr is B-Canjar.
(3) Every countably generated filter is B-Canjar.

Proof. For item (1), note that Cohen forcing C preserves the unboundedness of

every unbounded family. To see item (2), let

X̄ = 〈Xn | n ∈ ω〉 ⊆ (〈F ∪ {an | n < ω}〉Fr<ω)+.
Let Yn = {s ∈ Xn | s ⊆ ∩k<nak} and let Ȳ = 〈Yn | n ∈ ω〉. It is easy to see

that Yn ∈ (F<ω)+ for each n. By the assumption and Theorem 5.1 there ex-

ists f ∈B such that Ȳf ∈(F<ω)+. To show that Ȳf ∈(〈F ∪ {an | n < ω}〉Fr<ω)+,
let B ∈ 〈F ∪ {an | n < ω}〉Fr. We have to find s ∈ Ȳf with s ⊆ B. Clearly we

can assume that ∅ /∈ Ȳf . Fix A ∈ F and n ∈ ω with B ⊇ A∩⋂
k<n ak. Since F

contains the Fréchet filter and Ȳf ∈ (F<ω)+, there exist infinitely many s ∈ Ȳf
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with s ⊆ A. So there existsm ≥ n and s ∈ Ym∩Ȳf with s ⊆ A; note that s ∈ Ym

implies s ⊆ ⋂
k<n ak, so s ⊆ B, as desired. Clearly Ȳf ⊆ X̄f , so

X̄f ∈ (〈F ∪ {an | n < ω}〉Fr<ω)+.
Item (3) follows immediately from items (1) and (2) of the Lemma.

5.2. Preservation of unboundedness at limits. We will make use of the

following preservation theorem, a more general version of which can be found

in [24, Theorem 2.2].

Theorem 5.3: Suppose {Pα, Q̇α | α < δ} is a finite support iteration of c.c.c.

partial orders of limit length δ, and B ⊆ ωω is unbounded; also suppose that B
is countably directed, i.e., it satisfies

(3) ∀A ⊆ B (|A| = ℵ0 → ∃f ∈ B ∀g ∈ A g ≤∗ f).

If ∀α < δ �Pα
“B is an unbounded family”, then �Pδ

“B is an unbounded fam-

ily”.

5.3. Preservation of B-Canjarness and finite sums of filters. The

notion of B-Canjarness of a filter is not absolute in general:

Example 5.4 (from [19]): Let B be the ground model reals and U be a B-Canjar
ultrafilter. Let P be Grigorieff forcing with respect to U , which forces that U
cannot be extended to a P-point. It is well-known that P preserves the un-

boundedness of B, and it can be shown that U is not a P+-filter in V [P]; since
any Canjar filter is a P+-filter, it follows that U is no longer B-Canjar.
Grigorieff forcing is proper, but not c.c.c.; however, Grigorieff forcing can

be decomposed into a σ-closed and a c.c.c. forcing (see [26]). Since a σ-closed

forcing does not destroy the B-Canjarness of a filter, the above example also

yields an example of a c.c.c. forcing destroying the B-Canjarness of a filter.

We will now provide a method, which will allow us to guarantee that the

B-Canjarness of a filter is not destroyed by Mathias forcings with respect to

certain other filters. As a tool, we introduce finite sums of filters and consider

Mathias forcings with respect to these sums.



26 V. FISCHER, M. KOELBING AND W. WOHOFSKY Isr. J. Math.

Lemma 5.5: Let F be a filter, B ⊆ ωω and P be a forcing notion. Then the

following are equivalent:

(1) P forces that F is B-Canjar.10
(2) M(F)× P forces that B is unbounded.

Even though we will apply the lemma only in case B is unbounded and F
is B-Canjar in the ground model, this is not necessary for the proof. If one of

these assumptions fails, both (1) and (2) are false.

Proof of Lemma 5.5. Let Q = M(F). Note that (1) holds if and only if P forces

M(〈F̌〉Fr)� “B unbounded”. Further P forces that Q̌ is dense in, and hence forc-

ing equivalent to M(〈F̌〉Fr). So, (1) holds if and only if P ∗Q̌ forces that B is un-

bounded, which is the same as (2) since P ∗Q̌ is equivalent

to P×Q = Q× P.

Definition 5.6: For A,B ⊆ ω, let A⊕B = {2n | n ∈ A}∪{2m+1 | m ∈ B}. For
two filters F0 and F1, let F0 ⊕F1 = {A⊕B | A ∈ F0, B ∈ F1} and inductively,

let
⊕

k<m+1 Fk = (
⊕

k<m Fk)⊕Fm.

Note that F0 ⊕F1 is a filter if F0 and F1 are filters and hence also the

finite sum of filters is a filter. Clearly, reordered sums are isomorphic by an

isomorphism induced by a permutation of ω. This implies that the B-Canjarness
of a finite sum of filters does not depend on the order of the sum.

Lemma 5.7: Let F0 and F1 be two filters. Then M(F0) × M(F1) is forcing

equivalent to M(F0 ⊕F1).

Proof. Let

D× ⊆ M(F0)×M(F1)

be the set of all

((s0, A0), (s1, A1)) ∈ M(F0)×M(F1)

with |s0| = |s1|, and let

D⊕ ⊆ M(F0 ⊕F1)

be the set of all

(s, A) ∈ M(F0 ⊕F1)

with |s| being an even number. Note that D× is a dense subforcing of

M(F0)×M(F1), and D⊕ is a dense subforcing of M(F0 ⊕F1).

10 To be more precise, one should write 〈F̌〉Fr instead of F .
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For s0, s1 ∈ 2<ω with L = |s0| = |s1|, let s0 ⊕ s1 ∈ 2<ω be such that

|s0 ⊕ s1| = 2L and satisfies

(s0 ⊕ s1)(2n) = s0(n) and (s0 ⊕ s1)(2n+ 1) = s1(n).

Define ι: D× → D⊕ as follows:

((s0, A0), (s1, A1)) �→ (s0 ⊕ s1, A0 ⊕A1).

It is easy to see that ι is an isomorphism between D× and D⊕. Consequently,

M(F0)×M(F1) and M(F0 ⊕F1) are forcing equivalent.

The next Lemma provides the main ingredients for the induction in Lem-

ma 6.3:

Lemma 5.8:

(1) If F0 ⊕F1 is B-Canjar, then M(F1) forces that F0 is B-Canjar.
(2) Let B be a countably directed family, α a limit and {Pβ, Q̇β | β < α} a

finite support iteration. If Pβ forces that F is B-Canjar for every β < α,

then Pα forces that F is B-Canjar.
(3) Let F0 be B-Canjar and F1 be countably generated. Then F0 ⊕F1 is

B-Canjar.
Proof. To see (1), note that by assumption and Lemma 5.7, M(F0) × M(F1)

forces that B is unbounded; apply Lemma 5.5 to finish the proof. To see (2) ob-

serve that by assumption and Lemma 5.5, M(F)×Pβ forces that B is unbounded

for every β < α. However, M(F)×Pα is the direct limit of 〈M(F)×Pβ | β < α〉
(and M(F) × Pβ �M(F) × Pα) and so can be written as the limit of a finite

support iteration. Then by Theorem 5.3, also M(F) × Pα forces that B is

unbounded. The conclusion follows by Lemma 5.5.

For (3), note that by Lemma 5.7, M(F0 ⊕F1) is forcing equivalent to

M(F0)×M(F1). Now, in the extension by M(F0), B is unbounded since F0

is B-Canjar. Moreover, the filter generated by F1 in the same extension is

countably generated and so by Lemma 5.2.(3) it is B-Canjar. It remains to

observe that by Lemma 5.5, M(F0)×M(F1) forces that B is unbounded.

Using the fact that sums can be reordered (see the remark after Defini-

tion 5.6), we obtain the following stronger statement: Let F0, . . . ,Fm−1 be

filters such that the sum of the filters which are not countably generated is

B-Canjar; then ⊕
k<m Fk is B-Canjar.
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6. Preserving unboundedness: h = b = ω1

In this section, we complete the proof of Main Theorem 1.2 by showing

that b = ω1 in the final model W . Hence h = ω1 and therefore in W there

are refining matrices of heights h and λ. More specifically, in Section 6.1, we

will show that our iteration Pλ can be represented as a finer iteration whose

iterands are Mathias forcings with respect to filters. In Section 6.2, we show

that these filters are B-Canjar, where B is the set of reals of V0. For a similar,

but less involved argument showing that Hechler’s original forcings [21] to add

a tower or to add a mad family can be represented as an iteration of Mathias

forcings with respect to B-Canjar filters, see [15].

6.1. Finer iteration via filtered Mathias forcings. The notation in

this section refers to our construction in Section 3.1. Fix α < λ. As a prepa-

ration, we introduce a “nice” enumeration of Tα. We go through the nodes

in Tα level by level and blockwise (items (1) and (2) below, respectively). More

precisely, let {σνα | ν < Λα} enumerate Tα (note that |Tα| = c and hence Λα is

an ordinal with c < Λα < c+) so that

(1) |σν̄α| < |σνα| → ν̄ < ν,

(2) if ρ ∈ λ<λ and {ρ�i | i < λ} ⊆ Tα, then there is ν < Λα such

that ρ�i = σν+iα for each i < λ.

For β ≤ Λα let Q<βα = Q{σν
α|ν<β}

α and for β < Λα let Q≤β
α = Q{σν

α|ν≤β}
α . Note

that Q<Λα
α = Qα and that {σνα | ν < β} is α-upwards closed for each β ≤ Λα.

Therefore, by Lemma 3.11, Q<βα � Qα. By Lemma 4.1.(1), Q<βα � Q≤β
α and

so we can form the quotient Q≤β
α /Q<βα . Moreover, because conditions in Qα

have finite domain, Q<βα =
⋃
δ<β Q

<δ
α for each limit ordinal β ≤ Λα. In other

words, Q<βα is the direct limit of the forcings Q<δα for δ < β. So Qα is forcing

equivalent to the finite support iteration of the quotients Q≤β
α /Q<βα for β < Λα.

We will show that Q≤β
α /Q<βα is in fact forcing equivalent to M(Fβ

α ) for some

filter Fβ
α . Work in an extension by Pα ∗Q<βα . Note that for each τ ∈ Tη

with η < α, aτ is added by Pα and for ν < β, aσν
α
is added by Pα ∗Q<βα . These

sets define Fβ
α as follows:11 Let ρ ∈ λ<λ, i < λ be such that σβα = ρ�i and let

Fβα = {aρ�(ξ+1) | ξ + 1 ≤ |ρ|} ∪ {ω \ aρ�j | j < i}.

11 It is possible (see the base step β∗ = 0 of the proof of Lemma 6.3(3)) that only sets aτ

with τ ∈ Tη for some η < α are used. This is the case if ρ is pre-Tα-minimal and i = 0.
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That is, Fβα is the collection of all sets assigned to the nodes above σβα and

the complements of the sets assigned to the nodes to the left of σβα within the

same block. Now Fβα has the finite intersection property, because any finite

intersection of elements of Fβα almost contains aρ�j for some j < λ. Let Fβ
α be

the filter generated by Fβα together with the Fréchet filter, i.e., Fβ
α = 〈Fβα〉Fr.

Note that the quotient Q≤β
α /Q<βα adds aσ where σ = σβα. The lemma below

provides a dense embedding fromQ≤β
α /Q<βα toM(Fβ

α ) with the property that aσ

is the generic real for M(Fβ
α ).

Lemma 6.1: Q≤β
α /Q<βα is densely embeddable into M(Fβ

α ).

Proof. For simplicity of notation, let σ = σβα. Let G be a Q<βα -generic filter.

We work in the extension by G, so

Q≤β
α /Q<βα = {p ∈ Q≤β

α | ∀q ∈ G(p is compatible with q)}.
Define ι: Q≤β

α /Q<βα → M(Fβ
α ) as follows: for p ∈ Q≤β

α /Q<βα , let

p(σ) = (sσ, fσ, hσ)

and let

ι(p) = (sσ, A),

where

A =
⋂

τ∈dom(fσ)

(aτ ∪ fσ(τ)) ∩
⋂

ρ∈dom(hσ)

((ω \ aρ) ∪ hσ(ρ)) \ |sσ|.

To see that ι is a dense embedding, we have to check the following:

(1) (Density) For every condition (s, A) ∈ M(Fβ
α ), there exists a condition p

such that ι(p) ≤ (s, A).

(2) (Incompatibility preserving) If p and p′ are incompatible, then so are ι(p)

and ι(p′).
(3) (Order preserving) If p′ ≤ p, then ι(p′) ≤ ι(p).

To show (1), let (s, A) ∈ M(Fβ
α ). Since A ∈ Fβ

α , there exist finite sets

{ρi | i < m}, {τj | j < l} and N ∈ ω such that
⋂
j<l aτj ∩

⋂
i<m(ω\aρi)\N ⊆ A.

Extend s with 0’s to sσ such that |sσ|=max(|s|, N) and let dom(hσ)={ρi | i<m},
hσ(ρi) = |sσ| for every i, dom(fσ) = {τj | j < l} and fσ(τj) = |sσ| for every j.
Now, let

p = {(σ, (sσ, fσ, hσ))} ∪ {(τ, (〈〉, ∅, ∅)) | τ ∈ (dom(fσ) ∩ Tα) ∪ dom(hσ)}.
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To see that p is in the quotient, consider an arbitrary q ∈ G. It is easy to

check that q ∪ {(τ, (sτ , fτ , hτ )) | τ ∈ dom(p) \ dom(q)} ≤ p, q. By definition,

ι(p) = (sσ, A
′), where

A′ =
⋂

τ∈dom(fσ)

(aτ ∪ fσ(τ)) ∩
⋂

ρ∈dom(hσ)

((ω \ aρ) ∪ hσ(ρ)) \ |sσ|.

It follows that

A′ (∗)
=

⋂
τ∈dom(fσ)

aτ ∩
⋂

ρ∈dom(hσ)

(ω \ aρ) \ |sσ| ⊆
⋂
j<l

aτj ∩
⋂
i<m

(ω \ aρi) \N ⊆ A,

where (∗) holds because |sσ| ≥ fσ(τ), hσ(ρ) for every τ, ρ in the respective

domains. Therefore sσ � s, A′ ⊆ A and sσ(n) = 0 for all n ≥ |s|. So
ι(p) = (sσ, A

′) ≤ (s, A).

We prove (2) by showing the contrapositive. Assume ι(p) and ι(p′) are com-

patible. Define q as follows. Let dom(q) = dom(p) ∪ dom(p′). For every

τ ∈dom(q), let sqτ =s
p
τ ∪ sp

′
τ , dom(f qτ )=dom(fpτ )∪dom(fp

′
τ ) and for ρ∈dom(f qτ )

let f qτ (ρ)=min(fpτ (ρ), f
p′
τ (ρ)), and the same for h: dom(hqτ )=dom(hpτ )∪dom(hp

′
τ )

and for ρ ∈ dom(hqτ ) let hqτ (ρ) = min(hpτ (ρ), h
p′
τ (ρ)). It is easy to check that q

is in the quotient, q ≤ p, p′.
To show (3), let p′ ≤ p. By definition, sp

′
σ � spσ, dom(hp

′
σ ) ⊇ dom(hpσ),

dom(fp
′
σ ) ⊇ dom(fpσ), and fp

′
σ (τ) ≤ fpσ(τ) for τ ∈ dom(fpσ), h

p′
σ (ρ) ≤ hpσ(ρ)

for ρ ∈ dom(hpσ). Then

A′ =
⋂

τ∈dom(fp′
σ )

(aτ ∪ fp′σ (τ)) ∩
⋂

ρ∈dom(hp′
σ )

((ω \ aρ) ∪ hp′σ (ρ)) \ |sp
′
σ |

is a subset of

A :=
⋂

τ∈dom(fp
σ )

(aτ ∪ fpσ(τ)) ∩
⋂

ρ∈dom(hp
σ)

((ω \ aρ) ∪ hpσ(ρ)) \ |spσ|.

By definition, ι(p)=(spσ , A) and ι(p
′)=(sp

′
σ , A

′). To show that (sp
′
σ , A

′)≤(spσ, A),

it remains to show that for n ≥ |spσ| with sp
′
σ (n) = 1, we have n ∈ A. First

fix ρ ∈ dom(hpσ) and show that n ∈ (ω \ aρ) ∪ hpσ(ρ). If n < hpσ(ρ), this is clear.

If n ≥ hpσ(ρ), we know that sp
′
σ respects hpσ, and so n ∈ ω \ aρ. So in both cases,

n ∈ (ω \aρ)∪hpσ(ρ). To show that for τ ∈ dom(fpσ), n ∈ aτ ∪fpσ(τ) argue in the

same way as for h. If n < fpσ(τ), this is clear. If n ≥ fpσ(τ), we know that sp
′
σ

respects fpσ , and so n ∈ aτ . Thus in both cases, n ∈ aτ ∪ fpσ(τ) finishing the

proof.
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The following facts will be used in the proof of Claim 6.4. Item (2) below

generalizes a well-known fact about trees (see [25, Lemma 3.8]); for a proof,

see [14].

Lemma 6.2:

(1) Pα is σ-centered for each α ≤ λ and more generally, the same holds for

Pα /Pη for η < α.

(2) If P× P has the c.c.c. and cf(δ) > ω, then, in V [P], every new function

from δ to the ordinals has an initial segment which is new.

Proof. To see item (1), note that since Mathias forcing with respect to a filter

is σ-centered and Q≤β
α /Q<βα is densely embeddable into such a forcing by the

above lemma, also Q≤β
α /Q<βα is σ-centered. Since Λη < c+ for every η < α,

and α ≤ λ ≤ c, Pα is a finite support iteration of σ-centered forcings of length

strictly less than c+. It is well-known that such iterations are σ-centered (see [31,

proof of Lemma 2] or [5]).

6.2. The filters are B-Canjar. To finish the proof of Main Theorem 1.2,

we still have to show that b = ω1 holds true in the final extension. Recall that

the ground model V0 satisfies CH. Let B = ωω ∩ V0. We add μ many Cohen

reals to obtain V . Thus in V , B is still unbounded. In Section 6.1, we have

defined filters Fβ
α for α < λ and β < Λα and have shown that Qα is equivalent

to the finite support iteration of the Mathias forcings M(Fβ
α ). In particular,

Pα ∗Q<βα ∗M(Fβ
α ) = Pα ∗Q≤β

α and Pα ∗Q<Λα
α = Pα+1 .

As clearly B is countably directed, by Theorem 5.3 it suffices to show that for

each α < λ and β < Λα the unboundedness of B is preserved by M(Fβ
α ). More

precisely, we will make use of the following Lemma.

Lemma 6.3: For all α < λ, β∗ < Λα the following holds:

(1) B is unbounded in V [Pα ∗Q<β∗
α ],

(2) if m ∈ ω, β0, . . . , βm−1 < Λα and Fβk
α ∈ V [Pα ∗Q<β∗

α ] for every k < m,

then
⊕

k<m Fβk
α is B-Canjar in V [Pα ∗Q<β∗

α ]. In particular Fβ∗
α is B-

Canjar in V [Pα ∗Q<β∗
α ].
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Proof. We prove (1) and (2) by simultaneous induction on (α, β∗). Suppose the
Lemma holds for each (α′, β′) <lex (α, β∗).
Proof of (1): For α = β∗ = 0, this is clear since B is unbounded in

V [P0 ∗Q<0
0 ] = V . In case β∗ = β′ + 1 is a successor ordinal, we use the fact

that (1) holds for α and β′ by induction; by Lemma 6.1, Q≤β′
α /Q<β

′
α is forcing

equivalent to M(Fβ′
α ). Since by induction (2) holds for β′, M(Fβ′

α ) preserves

the unboundedness of B, hence the same is true for Pα ∗Q<β∗
α , as desired. In

case (α, β∗) is a limit point of the lexicographic order, use the fact that Pα ∗Q<β∗
α

is the limit of a finite support iteration of c.c.c. forcings and that (1) holds for

each (α′, β′) <lex (α, β∗) to apply Theorem 5.3 and conclude (1) for (α, β∗).
Proof of (2): Fix α. By (1), B is unbounded in V [Pα]. We say that ρ ∈ λ<λ

is pre-Tα-minimal if it is the predecessor of a minimal node of Tα. It is straight-

forward to check that this is the case if and only if

• ρ ∈ V [Pα],
• ρ /∈ V [Pη] for any η < α, and

• for every γ < |ρ|, there exists η < α with ρ � γ ∈ V [Pη].

Note that for α = 0, the only pre-Tα-minimal node is the root 〈〉 and for α > 0

all pre-Tα-minimal nodes have limit length. We proceed by induction on β∗.

Base step: β∗ = 0. Let β0, . . . , βm−1 be such that Fβk
α ∈ V [Pα ∗Q<0

α ] = V [Pα]
for each k < m. Therefore σβk

α = ρ�k 0 for some pre-Tα-minimal node ρk:

Indeed, observe that Fβα contains elements which are only added by Qα (and

hence Fβα /∈ V [Pα]) whenever σβα = ρ�i with ρ not pre-Tα-minimal or i > 0.

If cf(|ρk|) is countable for all k < m, the filter
⊕

k<m Fβk
α is countably generated

and hence by Lemma 5.2.(3) it is B-Canjar. In particular, for α = 0, the only

pre-Tα-minimal node is ρ = 〈〉, which completes the proof for α = β∗ = 0.

So assume α > 0 for the rest of the proof of the base step. If cf(α) ≤ ω all

pre-Tα-minimal nodes ρ have cf(|ρ|) = ω:

Claim 6.4: Let ρ be a pre-Tα-minimal node and cf(|ρ|) > ω. Then

(1) cf(α) > ω, and

(2) there exists no η < α such that ρ � γ ∈ V [Pη] for all γ < |ρ|.
Proof. Let us first show (2). Fix some η < α. Since ρ is pre-Tα-minimal,

ρ ∈ V [Pα] \ V [Pη]. By Lemma 6.2.(1), Pα /Pη is σ-centered, hence in particu-

lar (Pα /Pη) × (Pα /Pη) has the c.c.c. Therefore, by Lemma 6.2.(2), the new

function ρ has an initial segment which is not in V [Pη]. Now let us show (1).
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Assume towards a contradiction that cf(α) ≤ ω and let 〈αn | n ∈ ω〉 be increas-
ing cofinal in α (in case α is a successor, let αn be its predecessor for every n).

For every γ < |ρ|, let n ∈ ω be such that ρ � γ ∈ V [Pαn ]. Since cf(|ρ|) > ω,

there exists n∗ ∈ ω such that ρ � γ ∈ V [Pαn∗ ] for cofinally many γ < |ρ| (and
hence for all γ < |ρ|), contradicting (2).

Thus we can assume cf(α) > ω. We argue that cf(|ρ|) > ω for all pre-Tα-

minimal nodes ρ. Suppose ρ is a counterexample. Let 〈γn | n ∈ ω〉 be increasing
cofinal in |ρ|. For every n < ω, let αn < α be such that ρ � γn ∈ V [Pαn ].

Fix α′ < α such that αn < α′ for every n. As there are no new countable

sequences of elements of V [Pα′ ] in V [Pα], we conclude that ρ ∈ V [Gα′′ ] for

some α′′ < α, a contradiction.

Now we will show that
⊕

k<m Fβk
α is B-Canjar in V [Pα], using the characteri-

zation from Theorem 5.1. Let 〈Xn | n ∈ ω〉 ∈ V [Pα] be positive for
⊕

k<m Fβk
α .

We want to show that there exists f ∈ B such that X̄f is positive for
⊕

k<m Fβk
α .

Clearly there exists η < α with 〈Xn | n ∈ ω〉 ∈ V [Pη]. Moreover, let η be

large enough such that for all j < k < m with ρj �= ρk, there exists a suc-

cessor δ < |ρj |, |ρk| such that ρj � δ �= ρk � δ and aρj�δ, aρk�δ ∈ V [Pη]. For

every k < m, let γk < |ρk| be such that aρk�γk /∈ V [Pη]. Such γk exist, be-

cause the ρk are pre-Tα-minimal, using Claim 6.4.(2). Clearly aρk�γk ∈ V [Pα]
for every k < m. The filter

⊕
k<m 〈aρk�γk〉Fr is countably generated and hence

B-Canjar in V [Pα]. Clearly
⊕

k<m 〈aρk�γk〉Fr ⊆
⊕

k<m Fβk
α , hence 〈Xn | n ∈ ω〉

is positive for
⊕

k<m 〈aρk�γk〉Fr. Therefore we can fix f ∈ B such that X̄f is

positive for
⊕

k<m 〈aρk�γk〉Fr. Note that X̄f ∈ V [Pη]. We will use a gener-

icity argument to show that X̄f is positive for
⊕

k<m Fβk
α . It is enough to

show that for all successors δk < |ρk|, for all lk ∈ ω there exists s ∈ X̄f

with s ⊆ ⊕
k<m(aρk�δk \ lk), because sets of this form are a basis for the filter.

If δk ≤ γk for all k, this holds by the choice of f .

We show by induction on η ≤ η′ < α that for all successors δk < |ρk| and
all lk < ω, if all aρk�δk ∈ V [Pη′ ] then V [Pη′ ] |= “∃s ∈ X̄f s ⊆

⊕
k<m(aρk�δk\lk)”.

Note that this holds for η′ = η by choice of f , and that at limit steps of the

induction no new aρk�δk appear, so we only have to show it for successors.

Assume that it holds for η′ and show it for η′+1. For every k < m, let δk < |ρk|
with aρk�δk ∈ V [Pη′+1] and lk ∈ ω be given. Let p ∈ Qη′ . We will show that

there exists q ≤ p and s ∈ X̄f such that q� s ⊆ ⊕
k<m(aρk�δk \ lk). Without

loss of generality ρk � δk ∈ dom(p) for all k < m with ρk � δk ∈ Tη′ and p is
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a full condition. For every k < m, define Σk as follows: If ρk � δk ∈ Tη′ , let

Σk =
⋃{dom(fpρk�γ) ∩ T ′

η′ | γ ≤ δk ∧ ρk � γ ∈ dom(p)}. If ρk � δk /∈ Tη′ , let

Σk = {ρk � δk}. Let Σ =
⋃
k<m Σk. For every k < m, let σk be the longest initial

segment of ρk which belongs to Σ in case there exists such and let σk = ρk � 1
otherwise.12 Note that σk = σj if ρk = ρj and that aσk

∈ V [Pη′ ] for every

k < m. Now let N ∈ ω be large enough such that

• N ≥ lk for every k < m,

• N ≥ |spσ| for every σ ∈ dom(p),

• aσk
\N ⊆ aτ for all τ ∈ Σk, for all k < m.

By hypothesis, in V [Pη′ ] we can fix s ∈ X̄f with s ⊆ ⊕
k<m(aσk

\N). To get q

extend p as follows. For every k < m and γ ≤ δk with ρk � γ ∈ dom(p),

let sqρk�γ = spρk�γ
�
(0 � [|spρk�γ |, N))�(aσk

� [N,max(s)]). Observe that by

the choice of η and since η′ ≥ η, if ρk �= ρj then there is no τ ∈ dom(p)

with τ � ρk and τ � ρj . Now if ρ0 = ρj then σk = σj and so the above is

well-defined. Note that η was chosen large enough such that for all γk ≤ δk,

γj ≤ δj , if ρj � γj �= ρk � γk then they are not in the same block. In particular,

ρj � γj /∈ dom(hpρk�γk) and ρk � γk /∈ dom(hpρj�γj ). Therefore Definition 3.1.(8)

holds for q. The rest of Definition 3.1 is easy to verify and so q is a condition.

Moreover q forces s ⊆ ⊕
k<m(aρk�δk \ lk).

Successor step: Let us say that a filter Fβ
α and the associated Fβα is new in

V [Pα ∗Q<β∗
α ] if Fβα ∈ V [Pα ∗Q<β∗

α ] and Fβα /∈ V [Pα ∗Q<δ∗α ] for all δ∗ < β∗. Now
assume that we have shown (2) for β∗. We will show it for β∗ + 1.

If Fβk
α ∈ V [Pα ∗Q<β∗

α ] for every k < m, then by induction hypothesis

(
⊕

k<m Fβk
α )⊕Fβ∗

α is B-Canjar in V [Pα ∗Q<β∗
α ]. Hence, by Lemma 5.8.(1),⊕

k<m Fβk
α is B-Canjar in V [Pα ∗Q<β∗

α ∗M(Fβ∗
α )] = V [Pα ∗Q<β∗+1

α ]. It is easy

to check that there are exactly two new filters in V [Pα ∗Q<β∗+1
α ]: Fβ

α where β

is such that σβα = σβ
∗

α

�
0 and Fβ′

α where β′ = β∗ + 1 (i.e., σβ
′

α = ρ�(i + 1)

and σβ
∗

α = ρ�i). Both Fβα and Fβ
′
α are extensions of Fβ

∗
α by one new set.

Therefore the filter
⊕

k<m Fβk
α is an extension of

⊕
k<m F β̃k

α by finitely many

sets, where β̃k = β∗ if βk = β or βk = β′, and β̃k = βk otherwise. By the

above,
⊕

k<m F β̃k
α is B-Canjar in V [Pα ∗Q<β∗+1

α ]. Then by Lemma 5.2.(2),

also
⊕

k<m Fβk
α is B-Canjar in V [Pα ∗Q<β∗+1

α ].

12 We just have to choose any initial segment of ρk which belongs to T ′
η′ and make sure

that σk = σj if ρk = ρj . Alternatively, in such cases, we could replace aσk by ω below.
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Limit step Now assume that β∗ is a limit and that we have shown (2) for

all δ∗ < β∗. Let us prove it for β∗. If for each k < m there exists δ∗k < β∗ such

that Fβk
α ∈ V [Pα ∗Q<δ

∗
k

α ], then there exists δ̄∗ < β∗ such that Fβk
α ∈ V [Pα ∗Q<δ̄∗α ]

for all k < m. By induction hypothesis
⊕

k<m Fβk
α is B-Canjar in V [Pα ∗Q<δ∗α ]

for every δ̄∗ ≤ δ∗ < β∗ and so by Lemma 5.8.(2) it is B-Canjar in V [Pα ∗Q<β∗
α ].

Now we have to consider new filters. There are two cases: either β∗ is such

that σβ
∗

α has 0 as its last entry, or is such that σβ
∗

α has a limit ordinal i as its

last entry.

First case: σβ
∗

α = ρ�0 for some ρ. Let us first argue that there are no new

filters unless |ρ| is a limit and σβ
∗

α is the first node of its level in the enumeration

(i.e., |σδα| < |ρ| for each δ < β∗). If σβ
∗

α is not the first node of its level, then

there are no new filters in V [Pα ∗Q<β∗
α ]: If Fβα ∈ V [Pα ∗Q<β∗

α ], then there

exists δ∗ < β∗ such that Fβα ∈ V [Pα ∗Q<δ∗α ], because Fβα contains—from the

sets of this level—only boundedly many sets within only one block. Similarly,

if |ρ| is a successor and σβ
∗

α is the first node of its level then there are no new

filters in V [Pα ∗Q<β∗
α ] because any Fβα contains only boundedly many sets from

level |ρ|.
So we assume from now on that |ρ| is a limit and σβ

∗
α is the first node of its

level. In this case, there are many new filters Fβ
α in V [Pα ∗Q<β∗

α ]. Moreover, it

is easy to check that Fβ
α is new if and only if the following holds: σβα = ρ̄�0 for

some ρ̄ with |ρ̄| = |ρ| and ρ̄ not pre-Tα-minimal. Observe that

Fβα = {aρ̄�γ | γ < |ρ|}.

Let β0, . . . , βm−1 be such that Fβk
α ∈ V [Pα ∗Q<β∗

α ] for each k < m. We want to

show that
⊕

k<m Fβk
α is B-Canjar in V [Pα ∗Q<β∗

α ].

In case cf(|ρ|) = ω, we can use Lemma 5.8 and the remark thereafter to finish

the proof:
⊕

k<m Fβk
α is a sum of filters, in which the new filters are countably

generated, whereas the sum of the filters which are not new is B-Canjar (see

the first paragraph of the limit step).

Assume from now on that cf(|ρ|) > ω. Let new ⊆ m be the set of k < m such

that Fβk
α is a new filter and old = m \ new. For each k ∈ new, fix ρk such that

σβk
α = ρ�k 0

(with |ρk| = |ρ| and ρk not pre-Tα-minimal). Let

〈Xn | n ∈ ω〉 ∈ V [Pα ∗Q<β∗
α ]
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be positive for
⊕

k<m Fβk
α . Clearly there exists a hereditarily countable name

for 〈Xn | n ∈ ω〉. Let γ < |ρ| be a successor ordinal large enough such that the

following hold:

• 〈Xn | n ∈ ω〉 ∈ V [Pα ∗Qλ≤γ

α ] (this is possible due to cf(|ρ|) > ω).

• For all j, k ∈ new, if ρj �= ρk, then ρj and ρk split before γ.

• For all k ∈ old, either |σβk
α | < γ or |σβk

α | > |ρ|.13
• aρk�γ /∈ V [Pα] for all k ∈ new, i.e., ρk � γ ∈ Tα (possible since ρk is not

pre-Tα-minimal).

For k < m with k ∈ old, Fβk
α ∈ V [Pα ∗Qλ≤γ

α ] by the choice of γ and we de-

fine F̃βk
α =Fβk

α . For k∈new, let F̃βk
α ={aρk�γ}. Now, we can use Lemma 5.8 and

the remark thereafter to show that
⊕

k<m 〈F̃βk
α 〉Fr is B-Canjar in V [Pα ∗Q<β∗

α ].

Indeed,
⊕

k∈old 〈F̃βk
α 〉Fr is B-Canjar in V [Pα ∗Q<β∗

α ] by the first paragraph of

the limit step and for each k ∈ new, 〈F̃βk
α 〉Fr is countably generated. More-

over, 〈Xn | n ∈ ω〉 is positive for
⊕

k<m Fβk
α and

⊕
k<m 〈F̃βk

α 〉Fr ⊆
⊕

k<m Fβk
α ,

hence 〈Xn | n ∈ ω〉 is positive for
⊕

k<m 〈F̃βk
α 〉Fr. So we can fix f ∈ B such

that X̄f is positive for
⊕

k<m 〈F̃βk
α 〉Fr. Since 〈Xn | n ∈ ω〉 and ⊕

k<m 〈F̃βk
α 〉Fr

are in V [Pα ∗Qλ≤γ

α ], and being positive is absolute, this holds in V [Pα ∗Qλ≤γ

α ].

Now we use a genericity argument in Q<β
∗

α /Qλ
≤γ

α to show that X̄f is positive

for
⊕

k<m Fβk
α . We have to show that for all 〈Ak | k < m〉 with Ak ∈ Fβk

α there

is s ∈ X̄f with s ⊆ ⊕
k<m Ak. For k ∈ new, we can assume that Ak = aρk�δk \ lk

with γ < δk < |ρ| and lk ∈ ω, because these sets form filter bases. For k ∈ old

let Bk = Ak and for k ∈ new (in this case |σβk
α | = |ρ|+ 1 > γ) let Bk = aρk�γ .

By the choice of f for all N ∈ ω there is an s ∈ X̄f with s ⊆ ⊕
k<m(Bk \N).

Let p ∈ Q<β
∗

α /Qλ
≤γ

α . Without loss of generality ρk � δk ∈ dom(p) if k ∈ new.

For every k ∈ new, define

Σk =
⋃

{dom(fpρk�δ) ∩ λ≤γ | δ ≤ δk ∧ ρk � δ ∈ dom(p)}.
Now let N ∈ ω be large enough such that

• N ≥ lk for every k ∈ new; N ≥ |spσ| for every σ ∈ dom(p);

• aρk�γ \N ⊆ aτ for all τ ∈ Σk, for all k ∈ new.

By the above, we can fix s ∈ X̄f with s ⊆ ⊕
k<m(Bk \N). To get q, extend p

as follows. For every k ∈ new, for every δ ≤ δk with ρk � δ ∈ dom(p), let

sqρk�δ = spρk�δ
�
(0 � [|spρk�δ|, N))�(aρk�γ � [N,max(s)]).

13 Note that |σβk
α | > |ρ| is only possible if σ

βk
α = ρ̃�0 for a pre-Tα-minimal node ρ̃.
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By the choice of γ, for j, k ∈ new, for each γ < δ < |ρ| either ρk � δ = ρj � δ
or they are not in the same block. In particular ρj � δ /∈ dom(hpρk�δ) and

ρk � δ /∈ dom(hpρj�δ). Therefore Definition 3.1.(8) holds for q. The rest of Defi-

nition 3.1, as well as the fact that q forces s ⊆ ⊕
k<mAk, are easy to check.

Second case: σβ
∗

α = ρ�i with i > 0 limit. In this case, Fβ∗
α is the only new

filter in V [Pα ∗Q<β∗
α ]. Let β0, . . . , βm−1 be such that Fβk

α ∈ V [Pα ∗Q<β∗
α ] for

each k < m. We want to show that
⊕

k<m Fβk
α is B-Canjar in V [Pα ∗Q<β∗

α ].

Let 〈Xn | n ∈ ω〉 ∈ V [Pα ∗Q<β∗
α ] be positive for

⊕
k<m Fβk

α . Let Ẋ be a

hereditarily countable name for 〈Xn | n ∈ ω〉 and let D be countable containing

all the domains of conditions occurring in the name Ẋ. Let β∗∗ < β∗ be such

that ρ�0 = σβ
∗∗

α . Let

D̄ = {τ ∈ D | ∃j < i (τ = ρ�j)}
and let

C = {σνα | ν < β∗∗} ∪ D̄.
Clearly, {σνα | |σνα| ≤ |ρ|} ⊆ C ⊆ {σνα | |σνα| ≤ |ρ| + 1}, hence C is α-upwards

closed. Lemma 3.11 implies that QCα �Qα and QCα ⊆ Q<β
∗

α . Since Q<β
∗

α �Qα,
by Lemma 4.1.(1), QCα �Q<β

∗
α .

Observe that for all k < m either

Fβk
α ∩ V [Pα ∗Q<β∗∗

α ] = Fβk
α

or

Fβk
α ∩ V [Pα ∗Q<β∗∗

α ] = Fβ
∗∗
α .

In particular, for every k < m there exists β′
k such that Fβk

α ∩ V [Pα∗Q<β∗∗
α ]=F

β′
k
α

and F
β′
k
α ∈ V [Pα ∗Q<β∗∗

α ]. Hence
⊕

k<m 〈Fβk
α ∩ V [Pα ∗Q<β∗∗

α ]〉Fr is B-Canjar in
V [Pα ∗Q<β∗

α ]. For every k < m, Fβk
α ∩ V [Pα ∗QCα ] is the set Fβk

α ∩ V [Pα ∗Q<β∗∗
α ]

together with countably many new sets (some of the sets ω \ aτ with τ ∈ D̄),

therefore
⊕

k<m 〈Fβk
α ∩ V [Pα ∗QCα ]〉Fr is a filter generated by⊕

k<m

〈Fβk
α ∩ V [Pα ∗Q<β∗∗

α ]〉Fr

together with countably many new sets. Hence, by Lemma 5.2.(2),⊕
k<m

〈Fβk
α ∩ V [Pα ∗QCα ]〉Fr

is B-Canjar in V [Pα ∗Q<β∗
α ]. Since the sets 〈Xn | n ∈ ω〉 are positive for⊕

k<m Fβk
α and

⊕
k<m 〈Fβk

α ∩V [Pα ∗QCα ]〉Fr ⊆
⊕

k<m Fβk
α , the sets 〈Xn | n ∈ ω〉
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are also positive for
⊕

k<m 〈Fβk
α ∩ V [Pα ∗QCα ]〉Fr. So we can fix f ∈ B such

that X̄f is positive for
⊕

k<m 〈Fβk
α ∩ V [Pα ∗QCα ]〉Fr. Since 〈Xn | n ∈ ω〉 and⊕

k<m 〈Fβk
α ∩ V [Pα ∗QCα ]〉Fr are in V [Pα ∗QCα ], and being positive is absolute,

this holds in V [Pα ∗QCα ].
Now use a genericity argument in Q<β

∗
α /QCα to show that X̄f is positive

for
⊕

k<m Fβk
α . Fix 〈Ak | k < m〉 with Ak ∈ Fβk

α . For simplicity of

notation assume there is m′ ≤ m such that Ak ∈ V [Pα ∗QCα ] if and only

if k < m′. For m′ ≤ k < m there exists Bk ∈ 〈Fβk
α ∩ V [Pα ∗QCα ]〉Fr, �k ∈ ω

and 〈jkr | r < �k〉 ⊆ i such that Ak = Bk ∩
⋂
r<�k

(ω \ aρ�jkr ). So
⊕
k<m

Ak =
⊕
k<m′

Ak ⊕
⊕

m′≤k<m

(
Bk ∩

⋂
r<�k

(ω \ aρ�jkr )
)
.

Let p ∈ Q<β
∗

α /QCα . Without loss of generality assume that ρ�jkr ∈ dom(p)

if ρ�jkr /∈ C. Let N > |spτ | for every τ ∈ dom(p). We can fix s ∈ X̄f with

s ⊆
⊕
k<m′

Ak ⊕
⊕

m′≤k<m
(Bk \N).

To get q, extend each sp
ρ�jkr

with 0’s to have length max(s) + 1. It is easy to

check that q is a condition forcing s ⊆ ⊕
k<m Ak, as desired.

By Lemma 6.3, B is unbounded in V [Pα] for every α < λ, so by Theorem 5.3,

B is unbounded in V [Pλ]. Thus in V [Pλ], b = ω1 and so h = ω1 as well. This

concludes the proof of Main Theorem 1.2.

7. Further discussion and questions

In this section, we discuss the structure of refining matrices, as well as a notion

of spectrum of refining systems of mad families. For basic definitions and facts,

see Section 2.

7.1. Possible variants of the main theorem. It is possible to derive a bit

more from the proof of Main Theorem 1.2 than what is stated in the theorem.

Our forcing construction is based on the tree λ<λ and therefore results in a

specific kind of refining matrix of height λ: first, all its maximal branches are

cofinal, and second, the underlying tree has λ-splitting everywhere; more pre-

cisely, its underlying tree structure is λ<λ ∩ succ. In particular, it immediately

follows that λ ∈ spec(a) and hence a ≤ λ.
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We can modify the construction (by changing the underlying tree) to obtain

different kinds of refining matrices of height λ. In fact, the following general-

ization of Main Theorem 1.2 holds true:

Generalized Main Theorem 7.1: Let V0 be a model of ZFC satisfying GCH.

In V0, let ω1 ≤ λ ≤ cf(θ) and θ ≤ μ be cardinals such that λ is regular and

cf(μ) > ω. Then there is a c.c.c. extension W of V0 in which there exists a

refining matrix whose underlying tree structure is θ<λ ∩ succ and

ω1 = h = b ≤ c = μ.

In this model, clearly θ ∈ spec(a). For the proof of the generalization, the

forcing construction is based on the tree θ<λ instead of λ<λ, and sets aσ are

generically added to its nodes of successor length. In Definition 4.5 and Defini-

tion 4.6, we need a pair of ordinals (ε, δ) in place of γ, where ε < θ and δ < λ,

and γ<γ has to be replaced by ε<δ.

The reason why we have to require λ ≤ cf(θ) is Lemma 4.10: a nice name for

a node in θ<λ contains less than λ many conditions r, and the corresponding εr

have to be bounded in θ. It would even be possible to have different split-

ting at different nodes, provided that all the splitting sizes have cofinality at

least λ. This way, we can get more values into spec(a) (compare with Hechler’s

paper [21]).

Observe that it is always possible to turn a refining matrix with θ-splitting

into a refining matrix with c-splitting (of the same height), by just taking ev-

ery ωth level and deleting all other levels. It is not clear whether it is possible

to do it the other way round, i.e., to get a refining matrix with θ-splitting

(for θ ∈ spec(a)) from a refining matrix with c-splitting.

The Cohen model satisfies spec(a) = {ω1, c} (see, e.g., [6, Proposition 3.1]).

Thus, if ω1 < θ < c, there are no mad families of size θ in the Cohen model, and

hence no refining matrices with θ-splitting. To obtain a model with such a ma-

trix, one can apply Generalized Main Theorem 7.1 for λ = ω1 < θ < μ. On the

other hand, the model of Generalized Main Theorem 7.1 with λ = θ = ω1 < μ

coincides with the Cohen model with c = μ: this can be seen by representing

the iteration as an iteration of Mathias forcings with respect to filters, as de-

scribed in Section 6.1; since λ = θ = ω1, all the filters are countably generated,

therefore the respective Mathias forcings are equivalent to Cohen forcing. Thus

we obtain:
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Observation 7.2: Let μ > ω1. Then, in the Cohen model with c = μ (i.e.,

in the extension of a GCH model by Cμ) there exists a refining matrix whose

underlying tree structure is ω<ω1
1 ∩ succ.

7.2. Branches through refining matrices. We will now discuss the struc-

ture of refining matrices with respect to cofinal branches. It is straightforward

to check that every maximal branch which is not cofinal is a tower. We call a

refining matrix normal if no element of [ω]ω intersects it. Recall from Section 2

that whenever there is a refining matrix of height λ, then there is also a normal

refining matrix of height λ.

In case t = h (so in particular under h = ω1) there are no towers of length

strictly less than h, hence all maximal branches of a refining matrix of height h

are cofinal.

On the other hand, it is possible to have a refining matrix of height h which

has no cofinal branches. In fact, it was shown by Dow that this is the case in

the Mathias model (see [13, Lemma 2.17]):

Theorem 7.3: Assume CH. In the extension by the countable support iteration

of Mathias forcing of length ω2, there is a refining matrix of height h without

cofinal branches (and ω1 = t < h = c = ω2).
14

We do not know whether there is a normal refining matrix of height h with

cofinal branches in the Mathias model;15 this would imply that h = ω2 ∈ spec(t).

We also do not know whether ω2 ∈ spec(t) in the Mathias model.

It is actually consistent that no normal refining matrix of height h has co-

final branches. This was proved by Dordal by constructing a model in which

h /∈ spec(t) (see [11] or [12, Corollary 2.6]):16

Theorem 7.4: It is consistent with ZFC that spec(t) = {ω1} and h = ω2 = c.

Let us now discuss refining matrices of regular height strictly above h. Recall

that ω1= t=h holds true in the model of Main Theorem 1.2; in particular, there

are refining matrices of height ω1 (all of whose maximal branches are cofinal).

14 In fact, there is even a base matrix of this kind.
15 Here and in similar cases, it is necessary to demand that the refining matrix is normal,

due to the fact that there are always trivial examples of refining matrices with constant

cofinal branches.
16 In fact, [12, Corollary 2.6]) also works for getting h = c larger than ω2, and for certain

tower spectra which are more complicated than {ω1}.
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All maximal branches through the generic refining matrix of height λ > ω1 are

cofinal, because the forcing construction is based on the tree λ<λ. Moreover, as

shown in Section 4.3, all these maximal branches are actually towers (i.e., the

matrix is normal). In particular, λ belongs to spec(t).

In the Cohen model, the situation is different. Again, ω1 = t = h holds true,

so there are refining matrices of height ω1 (all of whose maximal branches are

cofinal). We do not know the following:

Question 7.5: Is there a refining matrix of regular height larger than h in the

Cohen model?

In any case, there is a crucial difference to the model of our main theorem: in

the Cohen model, there is no normal refining matrix of regular height λ > ω1

with cofinal branches, due to the following well-known fact.

Proposition 7.6: Assume CH, and let μ be a cardinal with cf(μ) > ω. Then

spec(t) = {ω1} holds true in the extension by Cμ (where Cμ is the forcing for

adding μ many Cohen reals).17

Finally, let us remark that the generic refining matrix from Main Theorem 1.2

cannot be a base matrix. This can be seen by a slight generalization of the

proof of Lemma 3.7 which yields the following. For each infinite ground model

set b ⊆ ω, each aσ has infinitely many 1’s (and also infinitely many 0’s) within b.

If b is infinite and co-infinite, it follows that b splits aσ. In particular, aσ �⊆∗ b,
so b witnesses that the generic matrix is not a base matrix.

7.3. The spectrum of refining systems of mad families. The study of

refining matrices of various heights naturally gives rise to the following notion.

Let

spec(h) := {λ | λ is regular and there is a refining matrix of height λ}

be the spectrum of refining systems of mad families. Recall that the ex-

istence of refining matrices is only a matter of cofinality. Clearly, the minimum

of spec(h) is the distributivity number h.

17 In fact, the following stronger statement holds true in the extension: Let λ > ω1 be

regular, and let 〈aα | α < λ〉 be a ⊆∗-decreasing sequence; then there exists an α0 < λ

such that aα0 =∗ aβ for every β ≥ α0.
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Spectra have been considered for several cardinal characteristics, but not

for h. For example, spectra for the tower number t have been investigated

in [21] and [12], spectra for the almost disjointness number a in [21], [6], and [29],

spectra for the bounding number b in [12], spectra for the ultrafilter number u

in [27], [28], and [17], and spectra for the independence number i in [16]. Fur-

thermore, [3] develops a framework for dealing with several spectra.

Let [h, c]Reg denote the set of regular cardinals δ with h ≤ δ ≤ c. As already

mentioned, it is easy to check that there can never be a refining matrix of regular

height larger than c, hence spec(h) ⊆ [h, c]Reg . Recall that the model of Main

Theorem 1.2 satisfies {ω1, λ} ⊆ spec(h) (where λ > ω1 is the regular cardinal

chosen there). In particular, by choosing λ = μ = ω2, we obtain a model in

which {ω1, ω2} = spec(h) = [h, c]Reg .

Question 7.7: Is it consistent that spec(h) contains more than 2 elements?
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[1] B. Balcar, M. Doucha and M. Hrušák, Base tree property, Order 32 (2015), 69–81.

[2] B. Balcar, J. Pelant and P. Simon, The space of ultrafilters on N covered by nowhere

dense sets, Fundamenta Mathematicae 110 (1980), 11–24.

[3] A. Blass, Simple cardinal characteristics of the continuum, in Set Theory of the Re-

als (Ramat Gan, 1991), Israel Mathematical Conference Proceedings, Vol. 6, Bar-Ilan

University, Ramat Gan, 1993, pp. 63–90.

[4] A. Blass, Combinatorial cardinal characteristics of the continuum, in Handbook of Set

Theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 395–489.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Vol. TBD, 2024 REFINING SYSTEMS OF MAD FAMILIES 43

[5] A. Blass, Finite support iterations of σ-centered forcing notions, MathOverflow,

http://mathoverflow.net/questions/84129.

[6] J. Brendle, Mad families and iteration theory, in Logic and Algebra, Contemporary

Mathematics, Vol. 302, American Mathematical Society, Providence, RI, 2002, pp. 1–31.

[7] J. Brendle, Templates and iterations: Luminy 2002 lecture notes, RIMS Kōkyūroku 1423
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