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ABSTRACT

Radially symmetric global unbounded solutions of the chemotaxis system⎧⎨
⎩
ut = ∇ · (D(u)∇u) −∇ · (uS(u)∇v),

0 = Δv − μ+ u, μ = 1
|Ω|

∫
Ω
u,

are considered in a ball Ω = BR(0) ⊂ Rn, where n ≥ 3 and R > 0.

Under the assumption that D and S suitably generalize the prototypes

given by D(ξ) = (ξ+ι)m−1 and S(ξ) = (ξ+1)−λ−1 for all ξ > 0 and some

m ∈ R, λ > 0 and ι ≥ 0 fulfilling m+λ < 1− 2
n
, a considerably large set of

initial data u0 is found to enforce a complete mass aggregation in infinite

time in the sense that for any such u0, an associated Neumann type initial-

boundary value problem admits a global classical solution (u, v) satisfying

1

C
· (t + 1)

1
λ ≤ ‖u(·, t)‖L∞(Ω) ≤ C · (t + 1)

1
λ for all t > 0

as well as

‖u(·, t)‖L1(Ω\Br0 (0))
→ 0 as t → ∞ for all r0 ∈ (0, R)

with some C > 0.

1. Introduction

Detailed descriptions of taxis-driven singularity formation can rarely be found

in the literature concerned with Keller–Segel systems. In fact, already the mere

detection of blow-up phenomena has been achieved only in a comparatively

small fraction of cases for which they can be conjectured (cf. [19], [26], [33], [34],

[3], [45], [9] for some examples, and [23], [30] as well as [1] for some broader
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surveys addressing this). Qualitative or even quantitative characterizations of

irregular solution behavior, however, seem limited to few and fairly particular

settings.

Even for the simplest representatives of such cross-diffusion systems, such as

the classical parabolic-elliptic Keller–Segel model

(1.1)

⎧⎨
⎩ut = Δu−∇ · (u∇v),

0 = Δv − μ+ u,

and some of its close relatives, the understanding of blow-up mechanisms ap-

pears yet far from complete, although deep analysis has provided some par-

tially quite far-reaching information on, inter alia, mass quantization phenom-

ena and finiteness of blow-up sets in two-dimensional domains ([41], [35], [4]),

on the occurrence or exclusion of boundary blow-up in planar cases ([41], [42];

cf. also [22]), and on the existence of spatial blow-up profiles and two-sided

pointwise estimates therefore in three- and higher-dimensional radial frame-

works ([40], [48]). The knowledge about temporal asymptotics near explosions

so far mainly reduces to findings on particular examples of solutions which ei-

ther exhibit so-called type I blow-up, or undergo a somewhat faster singularity

formation in the sense of type II blow-up (cf. [15], [16], [17], [18], [36], [38]

and [39]), and to a result asserting a certain non-degeneracy feature of singular

points with respect to respective blow-up rates, as actually derived for a fully

parabolic variant of (1.1) in [32]. For solutions corresponding to initial data

from larger sets, a quantitative description of temporal blow-up behavior seems

to have been comprehensively accomplished only for a particular Neumann–

Dirichlet type boundary value problem for (1.1) in which an assumption on

precise mass criticality enforces the occurrence of blow-up in infinite time ([27]).

Yet considerably less is known in this direction for more complex representa-

tives of the model class proposed by Keller and Segel in [28]. The few available

results going beyond basic issues of blow-up detection ([8], [9], [6], [7], [31], [44])

apparently concentrate on variants of (1.1) involving nonlinear diffusion in the

first component, and address one-sided estimates for blow-up profiles ([13], [14],

[12]), rough upper estimates for blow-up rates in the presence of nonlinearities

exhibiting certain types of exponential decay ([46]), and the occurrence of type II

blow-up ([25]).
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Infinite-time blow-up in a quasilinear Keller–Segel system. Tying

in with the latter observation, the present work attempts to give a detailed char-

acterization of singularity formation in the context of a quasilinear generaliza-

tion of (1.1), upon complementation by initial and no-flux boundary conditions

given by

(1.2)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = ∇ · (D(u)∇u)−∇ · (uS(u)∇v), x ∈ Ω, t > 0,

0 = Δv − μ+ u, μ = 1
|Ω|

∫
Ω u,

∫
Ω v = 0, x ∈ Ω, t > 0,

(D(u)∇u− uS(u)∇v) · ν = 0,∇v · ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

with suitably regular functions D and S. The application relevance of such non-

linearly modified diffusion and cross-diffusion operators has been underlined in

prominent places in the modeling literature concerned with refinements of (1.1)

based, inter alia, on the inclusion of volume-filling effects (cf., e.g., [37], [20],

[21]), and as instructive prototypical choices therefore one may think of the

examples determined by

(1.3) D(ξ) = (ξ + ι)m−1 and S(ξ) = (ξ + 1)−λ−1, ξ > 0,

with m ∈ R, λ ∈ R and ι ≥ 0. In this concretized setting, namely, it ap-

pears maximally transparent how the potential to enforce blow-up depends on

the respective system ingredients: When posed in a smoothly bounded do-

main Ω ⊂ R
n with n ≥ 2, under the assumption that ι > 0 and

(1.4) m+ λ > 1− 2

n

this problem is known to possess a global bounded classical solution for any

nonnegative u0 ∈ C1(Ω); see [11] for a proof detailed under the additional

restriction m ≤ 1 but actually carrying over without any substantial change

also to larger m (cf. also [5] and [10] for precedents addressing special cases, as

well as [24] and [43] for an extension to a fully parabolic relative). On the other

hand, if ι > 0, if n ≥ 2 and Ω ⊂ R
n is a ball, and if

(1.5) m+ λ < 1− 2

n
as well as λ < 0,

then it is known that some solutions to (1.2)–(1.3) blow up in finite time ([11]).

Here a strong indication for necessity of the latter assumption on negativity

of λ can be found in [29] and [47], where in the case when m + λ < 1 − 2
n

and λ ≥ 0, global solvability for widely arbitrary initial data but, apart from
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that, the existence of some solutions exploding in infinite time has been asserted

for the two variants of (1.2)-(1.3) containing τvt = Δv−v+u with either τ = 0

or τ = 1 as their second equations.

Main results. Beyond rigorously confirming the occurrence of the latter type

of grow-up phenomenon also for (1.2) and in a framework slightly more general

than the above one, inter alia allowing for singular diffusion operators and

hence for the choice ι = 0 in (1.3), the main objective of this study now consists

in describing such infinite-time blow-up mechanisms in detail, throughout a

considerably large set of trajectories.

Our main result in this direction reveals that in three- or higher-dimensional

radial situations, for any choice of λ > 0 and m ∈ R fulfilling m + λ < 1 − 2
n ,

and under a mild condition on sufficiently strong concentration of the initial

data, the corresponding solution indeed undergoes an infinite-time explosion,

that this singularity formation occurs at an explicitly computable algebraic rate,

and that actually the entire population distribution asymptotically aggregates

in its center of mass; in particular, in this strictly supercritical parameter setting

none of these solutions exhibits any type of mass quantization in the flavor of

those detected in the parameter-critical two-dimensional version of (1.1) ([41]).

More precisely, the most substantial part of this outcome is contained in the

following main result of this manuscript.

Theorem 1.1: Let n ≥ 3, R > 0 and Ω = BR(0) ⊂ R
n, and suppose that

(1.6) D ∈ C2((0,∞)) is positive,

that

(1.7) S ∈ C2([0,∞)) is such that lim sup
ξ→∞

{ξS(ξ)} < ∞,

and that

(1.8) D(ξ) ≤ KD · ξm−1 for all ξ > 0

as well as

(1.9) S(ξ) ≥ KS · (ξ + 1)−λ−1 for all ξ > 0

with some KD > 0, KS > 0, m ∈ R and λ > 0 satisfying

(1.10) m+ λ < 1− 2

n
.
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Then for any choice of μ > 0, one can find a nondecreasingM=M (μ)∈C0([0, R])

such that supr∈(0,R)
M(r)
rn < ∞ and M(R) = μ|Ω|, and such that whenever

(1.11)

u0∈W 1,∞(Ω) is positive in Ω and radially symmetric with

1

|Ω|
∫
Ω

u0dx=μ

and

(1.12)

∫
Br(0)

u0dx ≥ M(r) for all r ∈ (0, R),

the problem (1.2) possesses a global classical solution (u, v), uniquely deter-

mined by the requirements that

(1.13)

⎧⎨
⎩u ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

v ∈ C2,0(Ω× (0,∞))

which is such that u > 0 in Ω × [0,∞), and that (u, v) undergoes an infinite-

time complete mass aggregation at the spatial origin, in the sense that with

some C > 0 we have

(1.14) ‖u(·, t)‖L∞(Ω) ≥ C · (t+ 1)
1
λ for all t > 0,

but that for all r ∈ (0, R),

(1.15) ‖u(·, t)‖L1(Ω\Br(0)) → 0 as t → ∞.

Remark: It can readily be verified that whenever M ∈ C0([0, R]) is nondecreas-

ing and such that M(r)
rn ≤ c1 and M(R) = μ|Ω| with some c1 > 0 and μ > 0,

then any radial u0 = u0(r) ∈ C1(Ω) which is such that beyond the iden-

tity 1
|Ω|

∫
Ω
u0dx = μ we have

u0r(r) ≤ 0 for all r ∈ (0, R)

as well as suppu0 ⊂ Br0(0) with any r0 ∈ (0, R) such that rn0 ≤ μ|B1(0)|Rn

c1
,

necessarily satisfies ∫
Br(0)

u0dx ≥ M(r) for all r ∈ (0, R).

Accordingly, in the situation of Theorem 1.1 the requirement (1.12) on initial

mass concentration indeed is satisfied within a considerably large set of initial

data.
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The second part of our results now makes sure that (1.14) indeed cannot

significantly be improved, actually for arbitrary solutions to (1.2), under a cor-

respondingly complementary hypothesis on decay of S; in particular, together

with Theorem 1.1 the following provides a fairly comprehensive description of

algebraic grow-up rates for (1.2) with system ingredients as in (1.3).

Proposition 1.2: Let n ≥ 3, R > 0 and Ω = BR(0) ⊂ R
n, and assume that

(1.6) and (1.7) are satisfied, and that moreover there exist K̂S > 0 and λ > 0

such that

(1.16) S(ξ) ≤ K̂S · ξ−λ−1 for all ξ > 0.

Then whenever (1.11) holds, one can find C > 0 such that the problem (1.2)

admits a unique global classical solution (u, v) from the class in (1.13), besides

satisfying u > 0 in Ω× [0,∞) having the property that with some C > 0,

(1.17) ‖u(·, t)‖L∞(Ω) ≤ C · (t+ 1)
1
λ for all t > 0.

Conclusion. In summary, the outcomes of Theorem 1.1 and Proposition 1.2

may be interpreted as indicating that the assumptions (1.6)–(1.10) and (1.16)

together with the requirement λ > 0 describe a regime of dominant but mildly

destabilizing chemotaxis: The cross-diffusive action then remains too weak to

enforce any finite-time explosion, but in all respects outweighs diffusion in the

sense that not only all mass is asymptotically transported to the origin, but that

beyond this also the corresponding rate of infinite-time blow-up is exclusively

determined by the taxis-related contribution to (1.2).

Main ideas. While Proposition 1.2 can be verified by an essentially straightfor-

ward maximum principle based argument applied to (1.2) directly, our deriva-

tion of Theorem 1.1 will rather operate at the level of the scalar parabolic

equation

(1.18) wt = n2s2−
2
nD(nws)wss +

(
w − μ

n
s
)
· S(nws) · nws

satisfied by the mass accumulation function w given by

w(s, t) :=
1

n|B1(0)|
∫
B

s
1
n
(0)

u(x, t)dx, s ∈ [0, Rn], t ≥ 0

(Lemma (2.2)); indeed, the essentially well-known fact that the resulting Dirich-

let problem allows for a conveniently handy comparison principle (Lemma 2.3)

has influenced crucial parts of blow-up detections in the literature on closely
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related problems ([26], [10], [11]). In contrast to the latter type of reasonings

which according to their purely contradiction-focused motivation widely dis-

regard quantitative aspects of the actually present finite-time explosion mech-

anisms in the respective situations, in the current context a major challenge

consists in an appropriate design of comparison functions with behavior suffi-

ciently close to that of the unknown solution w.

In fact, it will turn out that the optimal grow-up rate appearing in (1.14)

coincides with that exhibited by all members of a three-parameter family of

subsolutions w = w(μ,a,τ) to the problem in question, besides on the arbitrarily

prescribed mass level μ depending on two free coefficients a and τ . As to be

substantiated in Lemma 3.3, the composite structure of these subsolutions will

firstly reflect expected dominance of the Burgers-type hyperbolic part in (1.18)

near the point s = 0 of diffusion degeneracy in the presence of suitably strong

mass accumulations (see (3.15)); a similarly simple, essentially linear functional

form of w will be relied on to adequately capture solution behavior within an

outer space-time domain suitably far from both the point s = 0 and the region

of large spatial gradient ws (cf. (3.17)). The core of our approach, however, is

found in the construction of w in a corresonding intermediate range of variables,

as determined by the choice

(1.19) w(s, t) :=
γ

γ − 1
A(t)− γ

γ − 1
B(t) · (at+ τ)−

γ−1
λ s1−γ ,

with some suitably fixed parameter γ > 1 (see (3.16)). In fact, it will be seen in

Section 3 that if here the function B, playing the role of a minor correction by

being bounded from above and below by positive constants, as well as the num-

bers a and τ are carefully selected, then through (1.19) indeed a transition be-

tween the aggregation hotspot and regions of small densities can be achieved in

a manner compatible with the asymptotic features claimed in (1.14) and (1.15).

2. Preliminaries

2.1. Global classical solvability. Let us first make sure by means of a

comparison argument that the assumptions on D and S from Theorem 1.1, and

especially the growth hypothesis contained in (1.7), warrant global existence

of classical solutions in (1.2), actually without any restriction on the spatial

dimension n ≥ 1.
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Lemma 2.1: Let n ≥ 1, R > 0 and Ω = BR(0) ⊂ R
n, let μ > 0, and assume

thatD, S and u0 satisfy (1.6), (1.7) and (1.11)with 1
|Ω|

∫
Ω u0dx = μ. Then there

exist uniquely determined functions u and v fulfilling (1.13) and such that u > 0

in Ω × [0,∞), that (u(·, t), v(·, t)) is radially symmetric with respect to x = 0

for all t > 0, and that (u, v) solves (1.2) in the classical sense. Moreover,

(2.1)

∫
Ω

u(x, t)dx =

∫
Ω

u0dx for all t > 0.

Proof. By adapting a well-established reasoning ([11]) to the present situation

of diffusivities possibly exhibiting a degeneracy near points where u is small, one

can readily verify that there exist Tmax ∈ (0,∞] and a classical solution (u, v)

of (1.2) in Ω× (0, Tmax), unique within the class of functions from

(C0(Ω× [0, Tmax)) ∩C2,1(Ω× (0, Tmax))) × C2,0(Ω× (0, Tmax)),

such that u > 0 in Ω × [0, Tmax), that (2.1) holds and (u(·, t), v(·, t)) has the

intended symmetry feature for all t ∈ (0, Tmax), and that

(2.2) if Tmax < ∞, then lim sup
t↗Tmax

{
‖u(·, t)‖L∞(Ω) +

∥∥∥ 1

u(·, t)
∥∥∥
L∞(Ω)

}
= ∞.

To see that actually Tmax = ∞, assuming the opposite we would infer from (1.2)

that if for ϕ ∈ C2,1(Ω× (0, Tmax)) and (x, t) ∈ Ω× (0, Tmax) we let

(Qϕ)(x, t) := ϕt(x, t)−∇ · (b1(x, t)∇ϕ(x, t)) + b2(x, t) · ∇ϕ(x, t) − h(ϕ(x, t)),

with

b1(x, t) := D(u(x, t)) and b2(x, t) := (S(u(x, t)) + u(x, t)S′(u(x, t)))∇v(x, t),

and with

h(ξ) := −μξS(ξ) + ξ2S(ξ), ξ ≥ 0,

then

(2.3) (Qu)(x, t) = 0 for all (x, t) ∈ Ω× (0, Tmax).

To derive a contradiction on the basis of this and (2.2), we note that (1.7) ensures

that h is locally Lipschitz continuous with h(0) = 0 and lim supξ→∞
h(ξ)
ξ < ∞,

from which it especially follows that both⎧⎨
⎩y′(t) = h(y(t)), t > 0,

y(0) = infΩ u0,
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and ⎧⎨
⎩y′(t) = h(y(t)), t > 0,

y(0) = supΩ u0,

admit globally defined solutions y ∈ C1([0,∞)) and y ∈ C1([0,∞)) fulfilling

0 < y(t) ≤ y(t) for all t > 0, because u0 > 0 in Ω by (1.11). Letting

u(x, t) := y(t) and u(x, t) := y(t)

for (x, t) ∈ Ω × [0, Tmax), we thus obtain functions u and u which belong

to C2,1(Ω× [0, Tmax)) and satisfy

(Qu)(x, t) = (Qu)(x, t) = 0 for all (x, t) ∈ Ω× (0, Tmax).

As therefore u ≤ u ≤ u in Ω×(0, Tmax) by a comparison argument, we conclude

that under the current hypothesis we would have

0 < inf
t∈(0,Tmax)

y(t) ≤ u ≤ sup
t∈(0,Tmax)

y(t) < ∞ in Ω× (0, Tmax),

which would evidently contradict (2.2), however.

2.2. The evolution of accumulated densities. A comparison prin-

ciple. The following transformation of the radial version of (1.2) to a one-

dimensional scalar parabolic problem adapts a meanwhile quite classical obser-

vation ([26]) to the present framework.

Lemma 2.2: Suppose that n ≥ 1, R > 0 and Ω = BR(0) ⊂ R
n, that μ > 0, and

that (1.6), (1.7) and (1.11) hold with 1
|Ω|

∫
Ω
u0dx = μ. Then letting

(2.4) w(s, t) :=

∫ s
1
n

0

rn−1u(r, t)dr, s ∈ [0, Rn], t ≥ 0,

defines a nonnegative function w∈C0([0,∞);C1([0,Rn])) ∩ C2,1([0, Rn]×(0,∞))

with

(2.5) ws(s, t) =
1

n
u(s

1
n , t) for all s ∈ [0, Rn] and t > 0

as well as

(2.6) w(0, t) = 0 and w(Rn, t) =
μRn

n
for all t > 0,

and we have

(2.7) (Pw)(s, t) = 0 for all s ∈ (0, Rn) and t > 0,
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where for open sets G ⊂ (0,∞)2 and positive functions ϕ ∈ C2,1(G) fulfill-

ing ϕs(s, t) > 0 for all (s, t) ∈ G, we have set

(2.8)
(Pϕ)(s, t) :=ϕt(s, t)− n2s2−

2
nD(nϕs(s, t))ϕss(s, t)

−
{
ϕ(s, t)− μ

n
s
}
· S(nϕs(s, t)) · nϕs(s, t)

for (s, t) ∈ G.

Proof. While (2.5) and (2.6) directly result from (2.4) and (2.1), the identity

in (2.7) can be verified in a straightforward manner by differentiating in (2.4)

and using (1.2) (cf. also [11]).

The following comparison principle will form an indispensable fundamental

fact for our derivation of Theorem 1.1. Its argument will need to be arranged in

such a way that, on the one hand, a possible degeneracy-induced limitation of

second order regularity of the solution w of (2.7) from (2.4) near the boundary

point s = 0 can adequately be coped with, and that, on the other hand, also

comparison functions exhibiting interior jump discontinuities in their second

order spatial derivatives can be included. For the former reason abstaining from

an integration-based approach, we hence employ a classical pointwise maximum

principle argument which, in view of the latter of these ambitions, however, will

require slight modifications near such discontinuity points; for completeness, we

therefore include a brief proof.

Lemma 2.3: Let n ≥ 1, R > 0 and Ω = BR(0) ⊂ R
n, and suppose

that D ∈ C0((0,∞)) and S ∈ C0([0,∞)), that μ > 0 and T ∈ (0,∞], and

that w and w belong to C0([0, T );C1([0, Rn]) ∩ C1((0, Rn) × (0, T )) and are

such that

(2.9) ws(s, t) > 0 and ws(s, t) > 0 for all s ∈ [0, Rn] and t ∈ [0, T )

as well as

(2.10) w(·, t)∈W 2,∞
loc ((0,Rn)) and w(·, t)∈W 2,∞

loc ((0,Rn)) for all t∈(0, T ).

Then under the assumption that for all t ∈ (0, T ) and each common differen-

tiability point s ∈ (0, Rn) of ws(·, t) and ws(·, t) we have

(2.11) wt ≤ n2s2−
2
nD(nws)wss +

(
w − μ

n
s
)
· S(nws) · nws
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and

(2.12) wt ≥ n2s2−
2
nD(nws)wss +

(
w − μ

n
s
)
· S(nws) · nws,

and that furthermore

(2.13) w(0, t) ≤ w(0, t) and w(Rn, t) ≤ w(Rn, t) for all t ∈ (0, T )

as well as

(2.14) w(s, 0) ≤ w(s, 0) for all s ∈ (0, Rn),

it follows that

(2.15) w(s, t) ≤ w(s, t) for all s ∈ [0, Rn] and t ∈ [0, T ).

Proof. Given T0 ∈ (0, T ), using that

(2.16) c1 := max
(s,t)∈[0,Rn]×[0,T0]

ws(s, t)

is finite by continuity of ws, and that h(ξ) := S(nξ) · nξ, ξ ≥ 0, is continuous,

we can pick β > 0 large enough such that

(2.17) β > max
ξ∈[0,c1]

|h(ξ)| =: m1.

Then for fixed ε > 0, the function z ∈ C0([0, Rn]× [0, T0])∩C1((0, Rn)×(0, T0))

defined by letting

(2.18) z(s, t) := w(s, t)− w(s, t)− εeβt, (s, t) ∈ [0, Rn]× [0, T0],

satisfies z(0, t) < 0 and z(Rn, t) < 0 for all t ∈ [0, T0] as well as z(s, 0) < 0 for

all s ∈ [0, Rn], so that if max(s,t)∈[0,Rn]×[0,T0] z(s, t) were not negative, we could

find s0 ∈ (0, Rn) and t0 ∈ (0, T0] such that

(2.19) z(s0, t0) = max
(s,t)∈[0,Rn]×[0,t0]

z(s, t) = 0

and that hence, necessarily,

(2.20) zt(s0, t0) ≥ 0 and zs(s0, t0) = 0.

Now since w(·, t0) and w(·, t0) both belong to W 2,∞
loc ((0, Rn)) by assumption, we

can choose a null set N ⊂ (0, Rn) such that ws(·, t0) and ws(·, t0) are differen-

tiable in (0, Rn) \N , and since s0 ∈ (0, Rn) and (0, Rn) \N is dense in (0, Rn),

using (2.19) together with (2.20) we can fix (sj)j∈N ⊂ (0, Rn) \ N and c2 > 0

such that sj → s0 as j → ∞, that

(2.21) |wss(sj , t0)| ≤ c2 for all j ∈ N,
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and that

(2.22) zss(sj , t0) ≤ 0 for all j ∈ N,

for if the latter was false, then according to (2.20), zs(s, t0) =
∫ s

s0
zss(σ)dσ would

be positive for all s ∈ (s0, s0 + η) with some η > 0, hence contradicting (2.19).

But evaluating (2.11) and (2.12) at (sj , t0) we obtain that

(2.23)

zt(sj , t0) =wt(sj , t0)− wt(sj , t0)− βεeβt0

≤n2s
2− 2

n
j D(nws(sj , t0))wss(sj , t0)

+
(
w(sj , t0)− μ

n
sj

)
· h(ws(sj , t0))

− n2s
2− 2

n

j D(nws(sj , t0))wss(sj , t0)

−
(
w(sj , t0)− μ

n
sj

)
· h(ws(sj , t0)) − βεeβt0

=n2s
2− 2

n

j D(nws(sj , t0))zss(sj , t0)

+ n2s
2− 2

n

j · {D(nws(sj , t0))−D(nws(sj , t0))} · wss(sj , t0)

+ (w(sj , t0)− μ

n
sj) · {h(ws(sj , t0))− h(ws(sj , t0))}

+ (z(sj , t0) + εeβt0) · h(ws(sj , t0))− βεeβt0 for all j ∈ N,

where thanks to the positivity of ws(·, t0) and ws(·, t0) in [0, Rn], as asserted

by (2.9), we may rely on the continuity of D on (0,∞) to infer that

D(nws(sj , t0))−D(nws(sj , t0))→D(nws(s0, t0))−D(nws(s0, t0))=0 as j→∞
because of (2.20) and (2.18). Likewise,

h(ws(sj , t0))− h(ws(sj , t0)) → h(ws(s0, t0))− h(ws(s0, t0)) = 0 as j → ∞,

whence in line with (2.22), (2.21) and (2.19) we infer from (2.23) on tak-

ing j → ∞ that

zt(s0, t0) ≤ εeβt0 · max
s∈[0,Rn]

|h(ws(s, t0))| − βεeβt0

and that thus, by (2.20) and (2.16),

0 ≤ εeβt0 ·m1 − βεeβt0 ,

which is absurd in view of (2.17). Consequently, z actually must remain negative

throughout [0, Rn] × [0, T0], from which (2.15) results upon letting ε ↘ 0 and

then T0 ↗ T .
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3. Construction of subsolutions

The following lemma selects two parameters which will enter our construction

of comparison functions for (2.7) in decisive places, and which will be kept fixed

hereafter. Their choice crucially relies on our assumptions from Theorem 1.1 not

only with regard to the parameters m and λ, but also on the spatial dimension.

Lemma 3.1: Let n ≥ 3, and suppose that m ∈ R and λ > 0 are such

that m+ λ < 1− 2
n . Then there exist γ > 1 and κ ∈ (0, γ−1

γ ) such that

(3.1) 1− 2

n
− (m+ λ)γ > 0

and

(3.2) (mα+ 1)(γ − 1) + ακ ·
[
1− 2

n
− (m+ λ)γ

]
> 0

as well as

(3.3) (m− 1)(γ − 1) + κ ·
[
1− 2

n
− (m− 1)γ

]
> 0,

where

(3.4) α :=
1

λ
.

Proof. According to our hypothesis,

lim
γ→1

{
1− 2

n
− (m+ λ)γ

}
= 1− 2

n
− (m+ λ)

is positive, so that (3.1) can be achieved upon choosing γ > 1 suitably close to 1.

Keeping this selection fixed, we can then assert (3.2) and (3.3) by observing that

since αλ = 1 by (3.4), we have

(mα+ 1)(γ − 1) + ακ ·
[
1− 2

n
− (m+ λ)γ

]
→ (mα+ 1)(γ − 1) +

α(γ − 1)

γ
·
[
1− 2

n
− (m+ λ)γ

]
=

α(γ − 1)

γ
·
(
1− 2

n

)
and

(m− 1)(γ − 1) + κ ·
[
1− 2

n
− (m− 1)γ

]
→ (m− 1)(γ − 1) +

γ − 1

γ
·
[
1− 2

n
− (m− 1)γ

]
=

γ − 1

γ
·
(
1− 2

n

)
as κ → γ−1

γ , and that both these latter limits are positive due to our assumption

that n ≥ 3.
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As a second preparation for our definition of subsolution candidates, let us

introduce a family of functions A, as announced near (1.19), which will play the

role of correcting factors of asymptotically minor influence that are adjusted in

such a manner that said candidates will enjoy convenient continuity properties.

Lemma 3.2: Let n ≥ 3, R > 0, m ∈ R and λ > 0 be such that (1.10) holds,

and let γ, κ and α be as determined by Lemma 3.1. Then for all μ > 0 there

exists τ0 = τ
(μ)
0 ≥ 1 such that whenever a > 0 and τ > τ0,

(3.5) A(t) :=
μRn

n
γ

γ−1+Rn ·(at+τ)−α[(1−κ)γ−1]− γ
γ−1 ·(at+τ)−α(1−κ)(γ−1)

, t≥0,

defines a positive function A = A(μ,a,τ) ∈ C1([0,∞)) which is such that for

all t > 0,

(3.6)

A′(t) =
μRn

n · a
[ γ
γ−1 +Rn · (at+ τ)−α[(1−κ)γ−1] − γ

γ−1 · (at+ τ)−α(1−κ)(γ−1)]2

× {α[(1 − κ)γ − 1]Rn · (at+ τ)−α[(1−κ)γ−1]−1

− α(1− κ)γ · (at+ τ)−α(1−κ)(γ−1)−1},
that

(3.7) A′(t) ≥ 0 for all t > 0,

and that

(3.8) A ≤ A(t) ≤ A for all t > 0,

where

(3.9) A ≡ A(μ) :=
μRn

n
γ

γ−1 +Rn
and A ≡ A

(μ)
:=

γ − 1

γ
· μR

n

n
.

Proof. Using that (1 − κ)γ > 1 due to the inequality κ < γ−1
γ , we see that the

number

(3.10) τ0 ≡ τ
(μ)
0 := max

{
1,
{ (1− κ)γ

[(1− κ)γ − 1] ·Rn

} 1
ακ

}
is well-defined, and that if a > 0 and τ > τ0, then

(3.11)

γ

γ − 1
+Rn · (at+ τ)−α[(1−κ)γ−1] − γ

γ − 1
· (at+ τ)−α(1−κ)(γ−1)

≥ Rn · (at+ τ)−α[(1−κ)γ−1] > 0
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and

(3.12)

γ

γ − 1
+Rn · (at+ τ)−α[(1−κ)γ−1] − γ

γ − 1
·(at+ τ)−α(1−κ)(γ−1)

≤ γ

γ − 1
+Rn

as well as

(3.13)

α[(1−κ)γ−1]Rn ·(at+τ)−α[(1−κ)γ−1]−1−α(1−κ)γ ·(at+τ)−α(1−κ)(γ−1)−1

= α[(1 − κ)γ − 1]Rn · (at+ τ)−α[(1−κ)γ−1]−1·

×
{
1− (1− κ)γ

[(1− κ)γ − 1]Rn
· (at+ τ)−ακ

}
≥ α[(1 − κ)γ − 1]Rn · (at+ τ)−α[(1−κ)γ−1]−1·

×
{
1− (1− κ)γ

[(1− κ)γ − 1]Rn
· τ−ακ

}
≥ 0

for all t ≥ 0. Here, (3.11) and (3.12) ensure that (3.5) indeed determines

a function A ∈ C1([0,∞)) fulfilling the left inequality in (3.8), while after

verifying (3.6) by straightforward differentiation, from (3.13) we immediately

obtain (3.7). The latter thereupon implies the right inequality in (3.8), because

in view of the positivity of both (1 − κ)γ − 1 and (1 − κ)(γ − 1), according

to (3.5) we have A(t) → A as t → ∞.

We are now prepared to precisely specify our prospective subsolutions

for (2.7).

Lemma 3.3: Suppose that n ≥ 3, R > 0, let m ∈ R and λ > 0 satisfy (1.10),

let γ, κ and α be as in Lemma 3.1, and for μ > 0, let τ1≡τ
(μ)
1 :=max{τ0, , R− n

ακ },
with τ0 = τ

(μ)
0 as introduced in Lemma 3.2. Then for any choice of a > 0

and τ > τ1, letting

(3.14)

w(s, t) ≡ w(μ,a,τ)(s, t)

:=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
w in(s, t), t ≥ 0, s ∈ [0, (at+ τ)−α),

wmid(s, t), t ≥ 0, s ∈ [(at+ τ)−α, (at+ τ)−ακ),

w out(s, t), t ≥ 0, s ∈ [(at+ τ)−ακ, Rn],
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with

(3.15) w in(s, t) ≡ w
(μ,a,τ)
in (s, t) := A(t) · (at+ τ)α s, s ≥ 0, t ≥ 0,

and

(3.16)
wmid(s, t)≡w

(μ,a,τ)
mid (s, t) :=

γ

γ−1
A(t)− 1

γ−1
A(t)·(at+τ)−α(γ−1)s1−γ ,

s>0, t≥0,

as well as

(3.17)
w out(s, t)≡w

(μ,a,τ)
out (s, t) :=

μRn

n
−A(t)·(at+τ)−α[(1−κ)γ−1]·(Rn − s),

s≥0, t≥0,

defines a nonnegative function w ∈ C1([0, Rn]× [0,∞)) such that

w(·, t) ∈ W 2,∞((0, Rn)) for all t > 0,

that w(0, t) = 0 and w(Rn, t) = μRn

n for all t ≥ 0, and that for all s > 0

and t > 0 we have

(3.18)

⎧⎪⎪⎨
⎪⎪⎩
∂tw in(s, t) = A′(t) · (at+ τ)αs+ αaA(t) · (at+ τ)α−1s,

∂sw in(s, t) = A(t) · (at+ τ)α,

∂2
sw in(s, t) = 0

as well as

(3.19)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂twmid(s, t) =
γ

γ − 1
A′(t)− 1

γ − 1
A′(t) · (at+ τ)−α(γ−1)s1−γ

+ αaA(t) · (at+ τ)−α(γ−1)−1s1−γ ,

∂swmid(s, t) = A(t) · (at+ τ)−α(γ−1)s−γ ,

∂2
swmid(s, t) = −γA(t) · (at+ τ)−α(γ−1)s−γ−1,

and also

(3.20)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tw out(s, t)= −A′(t) · (at+ τ)−α[(1−κ)γ−1] · (Rn − s)

+α·[(1−κ)γ−1]·aA(t)·(at+τ)−α[(1−κ)γ−1]−1·(Rn−s),

∂sw out(s, t)= A(t) · (at+ τ)−α[(1−κ)γ−1],

∂2
sw out(s, t)= 0.
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Proof. Since the requirements τ1 ≥ R− n
ακ and τ1 ≥ τ0 ≥ 1 ensure that for any

choice of a > 0 and τ > τ1 we have (at+ τ)−α < (at+ τ)−ακ < Rn for all t ≥ 0,

in view of the definitions in (3.15), (3.16) and (3.17) we only need to observe

that

w in((at+ τ)−α, t)− wmid((at+ τ)−α, t)

= A(t) · (at+ τ)α · (at+ τ)−α

−
{ γ

γ − 1
A(t)− 1

γ − 1
A(t) · (at+ τ)−α(γ−1) · (at+ τ)−α(1−γ)

}

= A(t) − γ

γ − 1
A(t) +

1

γ − 1
A(t)

= 0 for all t > 0,

that thanks to (3.5) we have

wmid((at+τ)−ακ, t)− w out((at+ τ)−ακ, t)

=
{ γ

γ − 1
A(t)− 1

γ − 1
A(t) · (at+ τ)−α(γ−1) · (at+ τ)−ακ(1−γ)

}

−
{μRn

n
−A(t) · (at+ τ)−α[(1−κ)γ−1] · (Rn − (at+ τ)−ακ)

}
=
{ γ

γ − 1
+Rn · (at+ τ)−α[(1−κ)γ−1] − γ

γ − 1
· (at+ τ)−α(1−κ)(γ−1)

}

×A(t) − μRn

n

=0 for all t > 0,

and that according to (3.18), (3.19) and (3.20),

∂sw in((at+ τ)−α, t)− ∂swmid((at+ τ)−α, t)

= A(t) · (at+ τ)α −A(t) · (at+ τ)−α(γ−1) · (at+ τ)αγ

= 0 for all t > 0

and

∂swmid((at+ τ)−ακ, t)− ∂sw out((at+ τ)−ακ, t)

= A(t) · (at+ τ)−α(γ−1) · (at+ τ)ακγ −A(t) · (at+ τ)−α[(1−κ)γ−1]

= 0 for all t > 0
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as well as

∂tw in((at+ τ)−α, t)− ∂twmid((at+ τ)−α, t)

= {A′(t) · (at+ τ)α · (at+ τ)−α+αaA(t) · (at+ τ)α−1 · (at+ τ)−α}

−
{ γ

γ − 1
A′(t)− 1

γ − 1
A′(t) · (at+ τ)−α(γ−1) · (at+ τ)−α(1−γ)

+ αaA(t) · (at+ τ)−α(γ−1)−1 · (at+ τ)−α(1−γ)
}

=
{
A′(t) + αaA(t) · 1

at+ τ

}
−
{
A′(t) + αaA(t) · 1

at+ τ

}
=0 for all t > 0

and

∂twmid((at+ τ)−ακ, t)− ∂tw out((at+ τ)−ακ, t)

=
{ γ

γ − 1
A′(t)− 1

γ − 1
A′(t) · (at+ τ)−α(γ−1) · (at+ τ)−ακ(1−γ)

+ αaA(t) · (at+ τ)−α(γ−1)−1 · (at+ τ)−ακ(1−γ)
}

− {−A′(t) · (at+ τ)−α[(1−κ)γ−1] · (Rn − (at+ τ)−ακ)

+α·[(1−κ)γ−1]·aA(t)·(at+τ)−α[(1−κ)γ−1]−1 · (Rn − (at+ τ)−ακ)}
=A′(t)·

{ γ

γ−1
+Rn ·(at+τ)−α[(1−κ)γ−1]− γ

γ − 1
· (at+ τ)−α(1−κ)(γ−1)

}
− aA(t) · {α · [(1 − κ)γ − 1] ·Rn · (at+ τ)−α[(1−κ)γ−1]−1

− α(1− κ)γ · (at+ τ)−α(1−κ)(γ−1)−1}

=0 for all t > 0,

with the latter identity readily resulting from (3.6) and (3.5).

3.1. Subsolution properties: Inner region. The following identification

of a subsolution property of w in the subregion from (3.14) adjacent to the

spatial origin essentially relies on the choice of α made in (3.4), and hence on

the growth of ‖ws(·, t)‖L∞((0,Rn)) thereby quantified.

Lemma 3.4: Let n ≥ 3 and R > 0, assume (1.6), (1.7), (1.8) and (1.9) with

some m ∈ R and λ > 0 fulfilling (1.10), and let γ, κ, α and (τ
(μ)
1 )μ>0 be as

introduced in Lemma 3.1 and Lemma 3.3. Then for all μ > 0 there exist

ain = a
(μ)
in > 0 and τin = τ

(μ)
in ≥ τ

(μ)
0 such that for any choice of a ∈ (0, ain)
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and τ > τin, the functions A = A(μ,a,τ) and w in = w
(μ,a,τ)
in defined in (3.5)

and (3.15) satisfy

(3.21) (Pw in)(s, t) ≤ 0 for all s > 0 and t > 0,

where P is as in (2.8).

Proof. With A=A(μ) and A=A
(μ)

taken from (3.9), we choose ain=a
(μ)
in ∈(0, 1]

and τin = τ
(μ)
in ≥ τ

(μ)
1 in such a way that

(3.22)
2λ+3nλαA

λ

KS
· ain ≤ 1

and

(3.23)
1

2
A · ταin ≥ μ

n

and

(3.24) nA · ταin ≥ 1

as well as

(3.25)
2λ+3nλ+1α[(1 − κ)γ − 1]A

λ+1

KSμ
· τ−α[(1−κ)γ−1]

in ≤ 1.

Then assuming a ∈ (0, ain) and τ > τin, for A = A(μ,a,τ) and w in = w
(μ,a,τ)
in

as accordingly defined in (3.5) and (3.15) we may use (3.18) to obtain that for

all s > 0 and t > 0,

(3.26)
(Pw in)(s, t) =A′(t) · (at+ τ)αs+ αaA(t) · (at+ τ)α−1s

−
{
A(t)·(at+τ)αs−μ

n
s
}
·S(n∂sw in(s, t))·n∂sw in(s, t).

Here since τ > τ
(μ)
1 , we may utilize (3.8) to see that thanks to (3.23),

(3.27)

A(t)·(at+τ)αs−μ

n
s =

1

2
A(t) · (at+ τ)αs+

{1

2
A(t) · (at+ τ)α−μ

n

}
·s

≥ 1

2
A(t) · (at+ τ)αs+

{1

2
Aτα − μ

n

}
· s

≥ 1

2
A(t) · (at+ τ)αs for all s > 0 and t > 0,

while due to the same token, (3.24) along with (3.18) ensures that

n∂sw in(s, t) = nA(t) · (at+ τ)α ≥ nAτα ≥ 1 for all s > 0 and t > 0.
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As (ξ + 1)−λ−1 ≥ 2−λ−1ξ−λ−1 for all ξ ≥ 1, in light of (1.9) this shows that

S(n∂sw in(s, t)) · n∂sw in(s, t) ≥ 2−λ−1KS · (n∂sw in(s, t))
−λ

= 2−λ−1n−λKSA
−λ(t) · (at+ τ)−αλ

for all s > 0 and t > 0,

whence from (3.26) and (3.27) we infer that

(3.28)

1

A(t) · (at+ τ)α−1s
· (Pw in)(s, t)

≤ A′(t)
A(t)

· (at+ τ) + αa

− 1

2
· (at+ τ) · 2−λ−1n−λKSA

−λ(t) · (at+ τ)−αλ

=
A′(t)
A(t)

· (at+ τ)+αa− 2−λ−2n−λKSA
−λ(t) for all s>0 and t>0,

because αλ = 1 by (3.4). We now recall (3.5) and (3.6) and use the restriction

a ≤ 1 together with (3.8) and (3.25) to estimate

A′(t)
A(t) · (at+ τ)

1
2 · 2−λ−2n−λKSA−λ(t)

=
2λ+3nλAλ+1(t)

KS
· A

′(t)
A2(t)

· (at+ τ)

=
2λ+3nλAλ+1(t)

KS
· a

μRn

n

×{α[(1−κ)γ − 1]Rn · (at+τ)−α[(1−κ)γ−1]−α(1−κ)γ · (at+τ)−α(1−κ)(γ−1)}

≤ 2λ+3nλA
λ+1

KS
· 1

μRn

n

· α[(1− κ)γ − 1]Rn · τ−α[(1−κ)γ−1]

=
2λ+3nλ+1α[(1− κ)γ − 1]A

λ+1

KS μ
· τ−α[(1−κ)γ−1]

≤ 1 for all t>0,

while combining (3.8) with our additional restriction (3.22) on a guarantees

that

αa
1
2 · 2−λ−2n−λKSA−λ(t)

≤ 2λ+3nλ αA
λ

KS
· a ≤ 1 for all t > 0.

Therefore, (3.28) implies (3.21).
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3.2. Subsolution properties: Outer region. Due to the spatially linear

structure of w throughout the subregion in (3.14) which contains the outer

boundary point s = Rn, similar to that in the previous lemma also the following

argument actually ignores the diffusive contribution to the operator P .

Lemma 3.5: Let n ≥ 3 and R > 0, and suppose that (1.6), (1.7), (1.8) and (1.9)

hold with some m ∈ R and λ > 0 fulfilling (1.10). Then letting γ, κ, α

and (τ
(μ)
1 )μ>0 be as in Lemma 3.1 and Lemma 3.3, for all μ > 0 one can

find aout = a
(μ)
out > 0 and τout = τ

(μ)
out ≥ τ

(μ)
0 with the property that if a ∈ (0, aout)

and τ > τout and if A = A(μ,a,τ), w out = w
(μ,a,τ)
out and P are as in (3.5), (3.17)

and (2.8), then

(3.29) (Pw out)(s, t) ≤ 0 for all s > 0 and t > 0.

Proof. Again relying on the inequality (1−κ)γ−1 > 0, we pick τout=τ
(μ)
out ≥τ

(μ)
1

large enough such that with A = A
(μ)

as in (3.9) we have

nAτ
−α[(1−κ)γ−1]
out ≤ 1(3.30)

and

Aτ
−α[(1−κ)γ−1]
out ≤ μ

2n
,(3.31)

and we then choose aout = a
(μ)
out > 0 suitably small fulfilling

(3.32) α · [(1− κ)γ − 1] · aout ≤ 2−λ−2KS μ.

Then letting a ∈ (0, aout) and τ > τout, and taking A = A(μ,a,τ) as well

as w out = w
(μ,a,τ)
out from (3.5) and (3.17), we first observe that according to (3.20)

and (3.8),

n∂sw out(s, t) = nA(t) · (at+ τ)−α[(1−κ)γ−1]

≤ nAτ−α[(1−κ)γ−1]

≤ 1 for all s > 0 and t > 0,

whence using (1.9) and estimating

(ξ + 1)−λ−1 ≥ 2−λ−1 for ξ ∈ [0, 1]
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we see that

S(n∂sw out(s, t)) · n∂sw out(s, t) ≥ 2−λ−1nKS ∂sw out(s, t)

= 2−λ−1nKS A(t) · (at+ τ)−α[(1−κ)γ−1]

for all s > 0 and t > 0.

Since furthermore

w out(s, t)−
μ

n
s =

μRn

n
−A(t) · (at+ τ)−α[(1−κ)γ−1] · (Rn − s)− μ

n
s

=
{μ

n
−A(t) · (at+ τ)−α[(1−κ)γ−1]

}
· (Rn − s)

≥
{μ

n
−Aτ−α[(1−κ)γ−1]

}
· (Rn − s)

≥ μ

2n
· (Rn − s) for all s > 0 and t > 0

because of (3.17), (3.8) and (3.31), thanks to the inequality A′ ≥ 0 asserted

by (3.7) we obtain that according to (2.8) and (3.20) and due to τ ≥ 1,

(Pw out)(s, t) =−A′(t) · (at+ τ)−α[(1−κ)γ−1] · (Rn − s)

+ α · [(1− κ)γ − 1] · aA(t) · (at+ τ)−α[(1−κ)γ−1]−1 · (Rn − s)

−
{
w out(s, t)−

μ

n
s
}
· S(n∂sw out(s, t)) · n∂sw out(s, t)

≤α · [(1− κ)γ − 1] · aA(t) · (at+ τ)−α[(1−κ)γ−1] · (Rn − s)

− μ

2n
· (Rn − s) · 2−λ−1nKS A(t) · (at+ τ)−α[(1−κ)γ−1]

={α · [(1− κ)γ − 1] · a− 2−λ−2KS μ}
×A(t) · (at+ τ)−α[(1−κ)γ−1] · (Rn − s)

for all s > 0 and t > 0. The claim thereby becomes a consequence of (3.32).

3.3. Subsolution properties: Intermediate region. The core of our rea-

soning can now be found in the following argument which takes full advantage

of the choice not only of γ but also of the number κ from Lemma 3.1. Indeed,

all five inequalities (3.1), (3.2), (3.3), γ > 1 and κ < γ−1
γ asserted therein will

be of crucial importance in our verification of the fact that for suitably small a

and appropriately large τ , the transition from steep to essentially flat behavior

in the functional form specified in (3.14) and (3.16) is achieved in such a way

that still some subsolution feature with respect to the operator P is retained,

now to a crucial extent due to the diffusive contribution therein:
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Lemma 3.6: Let n ≥ 3 and R > 0, let (1.6), (1.7), (1.8) and (1.9) be satisfied

with some m ∈ R and λ > 0 fulfilling (1.10), and let γ, κ, α and (τ
(μ)
1 )μ>0

be as provided by Lemma 3.1 and Lemma 3.3. Then for all μ > 0 there ex-

ist amid = a
(μ)
mid > 0 and τmid = τ

(μ)
mid ≥ τ

(μ)
1 such that whenever a ∈ (0, amid)

and τ > τmid, with A = A(μ,a,τ), wmid = w
(μ,a,τ)
mid and P taken from (3.5), (3.16)

and (2.8) we have

(3.33) (Pwmid)(s, t) ≤ 0 for all t > 0 and any s ∈ ((at+ τ)−α, (at+ τ)−ακ).

Proof. We let A=A
(μ)

andA=A(μ) be as in Lemma 3.2, and fix amid=a
(μ)
mid∈(0,1]

as well as τmid = τ
(μ)
mid ≥ τ

(μ)
1 such that

(3.34)
3 · 2λ+2nλαA

λ

KS
· amid ≤ 1

and

(3.35)
μ

n
· τ−ακ

mid ≤ 1

2
A,

and that

(3.36)
3 · 2λ+2nλ+1αγ · [(1− κ)γ − 1] ·Aλ+1

(γ − 1)KS μ
· τ−α[(1−κ)γ−1]

mid ≤ 1

and

(3.37)
3 · 2λ+2nm+λ+1γKDA

m+λ−1

KS
· τ−δ2

mid ≤ 1

as well as

(3.38)
3 · 2λ+2γα · [(1− κ)γ − 1]

(γ − 1)KS μ
· 1

τmid
≤ 1

and

(3.39)
3 · 2λ+2α

nKSA
· τ−ακ−1

mid ≤ 1

and

(3.40)
3 · 2λ+2nmKD γAm−2

KS
· τ−δ1

mid ≤ 1,
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again noting that (1−κ)γ− 1 is positive since κ < γ−1
γ , and observing that the

numbers

(3.41)
δ2 := (mα+ 1)(γ − 1) + ακ ·

[
1− 2

n
− (m+ λ)γ

]
,

δ1 := (m− 1)(γ − 1) + κ ·
[
1− 2

n
− (m− 1)γ

]

are both positive according to Lemma 3.1.

Now if a ∈ (0, amid) and τ > τmid, and if A = A(μ,a,τ) and wmid = w
(μ,a,τ)
mid

are as correspondingly defined in (3.5) and (3.16), then we can first use (3.6)

and the fact that a ≤ 1 to estimate

γ

γ − 1
A′(t) =

γ

γ − 1
· A

′(t)
A2(t)

· A2(t)

=
γ

γ − 1
· a

μRn

n

·
{
α · [(1− κ)γ − 1] · Rn · (at+ τ)−α[(1−κ)γ−1]−1

− α(1 − κ)γ · (at+ τ)−α(1−κ)(γ−1)−1
}
· A2(t)

≤ nγα[(1 − κ)γ − 1]A2(t)

(γ − 1)μ
· (at+ τ)−α[(1−κ)γ−1]−1 for all t > 0,

and rely on (3.16), (3.35) and (3.8) to see that in the considered region we have

wmid(s, t)−
μ

n
s =

γ

γ − 1
A(t)− 1

γ − 1
A(t) · (at+ τ)−α(γ−1)s1−γ − μ

n
s

≥ γ

γ − 1
A(t)− 1

γ − 1
A(t) · (at+ τ)−α(γ−1) · {(at+ τ)−α}1−γ

− μ

n
· (at+ τ)−ακ

=
1

2
A(t) +

1

2
A(t)− μ

n
(at+ τ)−ακ

≥ 1

2
A(t) +

1

2
A− μ

n
τ−ακ

≥ 1

2
A(t) for all t > 0 and s ∈ ((at+ τ)−α, (at+ τ)−ακ).
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In view of (3.19), (1.8) and (2.8), we therefore obtain that since A′(t) ≥ 0 for

all t > 0 by (3.7),

(3.42)

(Pwmid)(s, t) ≤
γ

γ − 1
A′(t)

− 1

γ − 1
A′(t) · (at+ τ)−α(γ−1)s1−γ

+ αaA(t) · (at+ τ)−α(γ−1)−1s1−γ

− n2s2−
2
n ·KD{nA(t) · (at+ τ)−α(γ−1)s−γ}m−1

× {−γA(t) · (at+ τ)−α(γ−1)s−γ−1}
− {wmid(s, t)−

μ

n
s} · S(n∂swmid(s, t)) · n∂swmid(s, t)

≤nγα · [(1 − κ)γ − 1] ·A2(t)

(γ − 1)μ
· (at+ τ)−α[(1−κ)γ−1]−1

+ αaA(t) · (at+ τ)−α(γ−1)−1s1−γ

+ nm+1γKD Am(t) · (at+ τ)−mα(γ−1)s−mγ+1− 2
n

− 1

2
A(t) · S(n∂swmid(s, t)) · n∂swmid(s, t)

for all t > 0 and s ∈ ((at+ τ)−α, (at+ τ)−ακ).

To proceed from this, let us split

Q := {(s, t) ∈ (0, Rn)× (0,∞) | (at+ τ)−α < s < (at+ τ)−ακ}
according to Q = Q1 ∪Q2, where

Q1 := {(s, t) ∈ Q | n∂swmid(s, t) ≤ 1}
and

Q2 := {(s, t) ∈ Q | n∂swmid(s, t) > 1}.
Then using (1.9) and again (3.19), we see that in the latter of these regions,

(3.43)

S(n∂swmid(s, t)) · n∂swmid(s, t)

≥ KS · {n∂swmid(s, t) + 1}−λ−1 · n∂swmid(s, t)

≥ 2−λ−1KS · {n∂swmid(s, t)}−λ

= 2−λ−1n−λKS · A−λ(t) · (at+ τ)αλ(γ−1)sλγ

= 2−λ−1n−λKS · A−λ(t) · (at+ τ)γ−1sλγ for all (s, t) ∈ Q2,
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because αλ = 1 by (3.4). On the other hand, again drawing on (3.8), (3.4)

and the positivity of (1− κ)γ− 1 we may utilize (3.36) to infer that within this

subset of Q we can control the first summand on the right of (3.42) according to

(3.44)

nγα·[(1−κ)γ−1]·A2(t)
(γ−1)μ · (at+ τ)−α[(1−κ)γ−1]−1

1
3 · 1

2A(t) · 2−λ−1n−λKS A−λ(t) · (at+ τ)γ−1sλγ

=
3·2λ+2nλ+1γα·[(1−κ)γ−1]·Aλ+1(t)

(γ − 1)KS μ
·(at+τ)−α[(1−κ)γ−1]−γs−λγ

≤ 3·2λ+2nλ+1γα·[(1−κ)γ−1]·Aλ+1

(γ − 1)KS μ
·(at+τ)−α[(1−κ)γ−1]−γ ·(at+τ)αλγ

=
3 · 2λ+2nλ+1γα · [(1 − κ)γ − 1] ·Aλ+1

(γ − 1)KS μ
· (at+ τ)−α[(1−κ)γ−1]

≤ 3 · 2λ+2nλ+1γα · [(1 − κ)γ − 1] ·Aλ+1

(γ − 1)KS μ
· τ−α[(1−κ)γ−1]

≤1 for all (s, t) ∈ Q2,

while (3.34) together with our smallness assumption on amid in (3.8) as well as

the evident fact that 1− γ − λγ < 0 ensures that

(3.45)

αaA(t) · (at+ τ)−α(γ−1)−1s1−γ

1
3 · 1

2A(t) · 2−λ−1n−λKS A−λ(t) · (at+ τ)γ−1sλγ

=
3 · 2λ+2nλαAλ(t)

KS
· a · (at+ τ)−α(γ−1)−γs1−γ−λγ

≤ 3 · 2λ+2nλαA
λ

KS
· a · (at+ τ)−α(γ−1)−γ · (at+ τ)−α(1−γ−λγ)

=
3 · 2λ+2nλαA

λ

KS
· a

≤ 1 for all (s, t) ∈ Q2.

Furthermore, thanks to the positivity of

1− 2

n
− (m+ λ)γ
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asserted by (3.1), and to the inequality δ2 > 0 satisfied by the number δ2 defined

in (3.40), we may use (3.37) to find that since

Am+λ−1 ≤ Am+λ−1

in (0,∞) by (3.8) and the inequality m+ λ− 1 < 0 clearly implied by (1.10),

(3.46)

nm+1γKD Am(t) · (at+ τ)−mα(γ−1)s−mγ+1− 2
n

1
3 · 1

2A(t) · 2−λ−1n−λKS A−λ(t) · (at+ τ)γ−1sλγ

=
3 · 2λ+2nm+λ+1γKD Am+λ−1(t)

KS

× (at+ τ)−mα(γ−1)−γ+1s1−
2
n−(m+λ)γ

≤ 3 · 2λ+2nm+λ+1γKDAm+λ−1

KS

× (at+ τ)−mα(γ−1)−γ+1 · (at+ τ)−ακ·[1− 2
n−(m+λ)γ]

=
3 · 2λ+2nm+λ+1γKDAm+λ−1

KS
· (at+ τ)−δ2

≤ 3 · 2λ+2nm+λ+1γKDAm+λ−1

KS
· τ−δ2

≤1 for all (s, t) ∈ Q2,

so that combining (3.42)–(3.46) shows that, indeed,

(3.47) (Pwmid)(s, t) ≤ 0 for all (s, t) ∈ Q2.

In the corresponding complementary region, however, (1.9) along with (3.19)

implies that

(3.48)

S(n∂swmid(s, t)) · n∂swmid(s, t)

≥ nKS · {n∂swmid(s, t) + 1}−λ−1∂swmid(s, t)

≥ 2−λ−1nKS · ∂swmid(s, t)

≥ 2−λ−1nKS A(t) · (at+ τ)−α(γ−1)s−γ

for all (s, t) ∈ Q1,
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whereas

(3.49)

nγα·[(1−κ)γ−1]·A2(t)
(γ−1)μ · (at+ τ)−α[(1−κ)γ−1]−1

1
3 · 1

2A(t) · 2−λ−1nKS A(t) · (at+ τ)−α(γ−1)s−γ

=
3 · 2λ+2γα · [(1− κ)γ − 1]

(γ − 1)KS μ
· (at+ τ)−α[(1−κ)γ−1]−1+α(γ−1)sγ

≤ 3 · 2λ+2γα · [(1− κ)γ − 1]

(γ − 1)KS μ

× (at+ τ)−α[(1−κ)γ−1]−1+α(γ−1) · (at+ τ)−ακγ

=
3 · 2λ+2γα · [(1− κ)γ − 1]

(γ − 1)KS μ
· 1

at+ τ

≤ 3 · 2λ+2γα · [(1− κ)γ − 1]

(γ − 1)KS μ
· 1
τ

≤ 1 for all (s, t) ∈ Q1

by (3.38), and

(3.50)

αaA(t) · (at+ τ)−α(γ−1)−1s1−γ

1
3 · 1

2A(t) · 2−λ−1nKS A(t) · (at+ τ)−α(γ−1)s−γ

=
3 · 2λ+2αa

nKSA(t)
· s

at+ τ

≤ 3 · 2λ+2α

nKSA
· (at+ τ)−ακ−1

≤ 3 · 2λ+2α

nKSA
· τ−ακ−1

≤ 1 for all (s, t) ∈ Q1

due to (3.39) and the inequality a ≤ 1. Apart from that, the positivity not only

of the number δ1 from (3.41) but also of

1− 2

n
− (m− 1)γ =

{
1− 2

n
− (m+ λ)γ

}
+ (λ+ 1)γ,

the latter being implied by (3.1), enables us to moreover use (3.41) and (3.8)

along with the inequality m − 2 < 0, as particularly guaranteed by (1.10), in
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estimating Am−2 ≤ Am−2 and therefore

nm+1γKD Am(t) · (at+ τ)−mα(γ−1)s−mγ+1− 2
n

1
3 · 1

2A(t) · 2−λ−1nKS A(t) · (at+ τ)−α(γ−1)s−γ

=
3 · 2λ+2nmγKD Am−2(t)

KS
· (at+ τ)−(m−1)α(γ−1) · s1− 2

n−(m−1)γ

≤ 3 · 2λ+2nmγKDA
m−2

KS
· (at+ τ)−(m−1)α(γ−1) · (at+ τ)−ακ·[1− 2

n−(m−1)γ]

=
3 · 2λ+2nmγKDA

m−2

KS
· (at+ τ)−αδ1

≤ 3 · 2λ+2nmγKDA
m−2

KS
· τ−αδ1

≤ 1 for all (s, t)∈Q1.

From (3.42) and (3.48)-(3.50) we thus infer that

(Pwmid)(s, t) ≤ 0 for all (s, t) ∈ Q1,

and hence obtain (3.33) upon recalling (3.47).

4. Proofs of Theorem 1.1 and Proposition 1.2

The derivation of our main result on complete infinite-time aggregation, oc-

curring at a grow-up rate satisfying (1.14), can now be accomplished by an

application of the comparison principle from Lemma 2.3 to suitable members

of the subsolution family introduced in (3.14).

Proof of Theorem 1.1. Given μ > 0, we let ain = a
(μ)
in , amid = a

(μ)
mid and

aout = a
(μ)
out as well as τin = τ

(μ)
in , τmid = τ

(μ)
mid and τout = τ

(μ)
out be as provided by

Lemma 3.4, Lemma 3.6 and Lemma 3.5, and choosing any

a ∈ (0,min{ain, amid, aout}) and τ > max{τin, τmid, τout}
we let w = w(μ,a,τ) be as defined in (3.14), with A = A(μ,a,τ) as correspondingly

introduced in (3.5), and with γ and κ taken from Lemma 3.1. Then from

Lemma 3.3 it follows that

M(r) ≡ M (μ)(r) := n|B1(0)|w(rn, 0), r ∈ [0, R],
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defines a nondecreasing function M ∈ C0([0, Rn]) about which we know that

M(R) = n|B1(0)| · μR
n

n
= μ|Ω| and

M(r)

rn
≤ n|B1(0)| ·A(0)τα

for all r∈(0, R), because w(·, 0) is concave on [0, Rn] by (3.18), (3.19) and (3.20),

and because ws(0, 0) = A(0)τα by (3.14) and (3.18). Moreover, if u0 is any

function fulfilling (1.11) as well as (1.12), then the function w accordingly given

by (2.4) satisfies

w(s, 0) =
1

n|B1(0)|
∫
B

s
1
n
(0)

u0dx

≥ 1

n|B1(0)| ·M(s
1
n ) = w(s, 0) for all s ∈ [0, Rn],

so that since our choices of a and τ ensure that

(Pw)(s, t) ≤ 0 for all t > 0 and s ∈ (0, Rn) \ {(at+ τ)−α, (at+ τ)−ακ}

thanks to Lemma 3.4, Lemma 3.5 and Lemma 3.6, by means of the comparison

principle from Lemma 2.3 we conclude that

(4.1) w(s, t) ≥ w(s, t) for all s ≥ 0 and t ≥ 0.

Since

(at+ τ)α · w((at + τ)−α, t) =
w((at+ τ)−α, t)− w(0, t)

(at+ τ)−α

≤ sup
s∈(0,Rn)

ws(s, t) for all t > 0

due to the mean value theorem, in view of (2.5) and (3.8) this firstly implies

that

‖u(·, t)‖L∞(Ω) = n‖ws(·, t)‖L∞((0,Rn))

≥ n(at+ τ)α · w((at + τ)−α, t)

≥ n(at+ τ)α · w((at+ τ)−α, t)

= nA(t) · (at+ τ)α

≥ nA · (at+ τ)α for all t > 0

with A = A(μ) as in (3.9), so that recalling (3.4) we obtain (1.14) with some

suitably small C > 0.
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Apart from that, however, (4.1) may also be used to derive (1.15), because

for any fixed r ∈ (0, R) we see that if we let t0(r) := (ar
n
ακ )−1, then

(at+ τ)−ακ ≤ (at)−ακ ≤ rn for all t > t0(r),

whence from (3.14) and (3.8) we obtain that

w(rn, t) =
μRn

n
−A(t) · (at+ τ)−α[(1−κ)γ−1] · (Rn − rn)

≥ μRn

n
−ARn · (at+ τ)−α[(1−κ)γ−1] for all t > t0(r),

where A = A
(μ)

is taken from (3.9). In line with (2.4), when combined with (4.1)

this entails that

‖u(·, t)‖L1(Ω\Br(0)) = n|B1(0)| · {w(Rn, t)− w(rn, t)}

= n|B1(0)| ·
{μRn

n
− w(rn, t)

}
≤ n|B1(0)| ·

{μRn

n
−
{μRn

n
−ARn · (at+ τ)−α[(1−κ)γ−1]

}}
= n|B1(0)| · ARn ·(at+ τ)−α[(1−κ)γ−1] for all t>t0(r),

and thereby establishes (1.15) because of the fact that the inequality κ < γ−1
γ

warrants positivity of (1− κ)γ − 1.

Our verification of the statement on upper grow-up bounds made in (1.17)

can be obtained independently of the above by once again returning to the

original variables, and refining the comparison argument from Lemma 2.1 so as

to appropriately exploit the stronger hypothesis on asymptotics of S in (1.16):

Proof of Proposition 1.2. According to Lemma 2.1, our assumptions ensure

the existence of a unique global classical solution with the regularity features

in (1.13), fulfilling u > 0 in Ω× [0,∞) and being such that (u, v)(·, t) is radially
symmetric for all t > 0, so that we only need to derive (1.17). To this end, we

fix B > 0 large enough such that

(4.2) B ≥ ‖u0‖L∞(Ω)

and

(4.3)
K̂S

Bλ
≤ 1

λ
,

and let

u(x, t) := B · (t+ 1)
1
λ , x ∈ Ω, t ≥ 0,
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so we obtain a function u ∈ C∞(Ω × [0,∞)) fulfilling u(x, 0) ≥ B ≥ u0(x) for

all x ∈ Ω by (4.2). As (4.2) furthermore ensures that

μ− u(x, t) ≤ ‖u0‖L∞(Ω) −B ≤ 0 for all (x, t) ∈ Ω× (0,∞),

we can utilize (1.16) and (4.3) in estimating

ut(x, t)−∇·(D(u(x, t))∇u(x, t))

+ (S(u(x, t)) + u(x, t)S′(u(x, t)))∇v(x, t) · ∇u(x, t)

+ (μ− u(x, t))u(x, t)S(u(x, t))

=
B

λ
· (t+ 1)

1
λ−1 + (μ− u(x, t)) · u(x, t)S(u(x, t))

≥ B

λ
· (t+ 1)

1
λ−1 + (μ− u(x, t)) · K̂Su

−λ(x, t)

≥ B

λ
· (t+ 1)

1
λ−1 − K̂Su

1−λ(x, t)

=B · { 1
λ
− K̂SB

−λ} · (t+ 1)
1
λ−1

≥ 0 for all x ∈ Ω and t > 0.

In view of (1.2), a comparison argument thus shows that u(x, t) ≥ u(x, t) for

all (x, t) ∈ Ω × (0,∞), and that hence (1.17) results if we let C := B, for

instance.
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[7] T. Cieślak and Ph. Laurençot, Finite time blow-up for a one-dimensional quasilinear

parabolic-parabolic chemotaxis system, Annales de l’Institut Henri Poincaré C. Analyse
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[31] Ph. Laurençot and N. Mizoguchi, Finite time blowup for the parabolic-parabolic Keller–

Segel system with critical diffusion, Annales de l’Institut Henri Poincaré C. Analyse Non
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