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ABSTRACT

We obtain upper bounds for the number of monic irreducible polynomials

over Z of a fixed degree n and a growing height H for which the field

generated by one of its roots has a given discriminant. We approach it via

counting square-free parts of polynomial discriminants via two comple-

menting approaches. In turn, this leads to a lower bound on the number

of distinct discriminants of fields generated by roots of polynomials of

degree n and height at most H. We also give an upper bound for the

number of trinomials of bounded height with given square-free part of the

discriminant, improving previous results of I. E. Shparlinski (2010).
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1. Introduction

1.1. Motivation and background. For a positive integer H , we use Pn(H)

to denote the set of polynomials

Pn(H) = {Xn + an−1X
n−1 + · · ·+ a1X + a0 ∈ Z[X ] : |a0|, . . . , |an−1| < H}.

Furthermore, we use In(H) to denote the set of irreducible polynomials

from Pn(H). It is useful to recall that

#In(H) = 2nHn +O(Hn−1),

which follows immediately from much more precise results of Chela [9], Diet-

mann [11, 12] and Zywina [44]. We also note that Bhargava [4] has recently

established the celebrated van der Waerden conjecture about Galois groups of

polynomials from In(H).

For an irreducible monic polynomial f ∈ Z[X ] we use Δ(f) to denote the

discriminant of the algebraic number field Q(α), where α is a root of f (clearly,

for any f ∈ In(H) all such fields Q(α) are isomorphic and thus have the same

discriminant).

For an integer Δ we denote byNn(H,Δ) the number of polynomials f ∈In(H)

with Δ(f) = Δ.

We recall that various counting problems for discriminants of number fields

have been studied in a number of works; see [3,5,13,20,22–24,29] and references

therein. In particular, a remarkable result of Bhargava, Shankar and Wang [5]

gives an asymptotic formula for the density of polynomials with square-free

discriminants, however their model of counting is different from ours. In fact, it

seems that the function Nn(H,Δ), which is our main object of study, has never

been investigated before.

We derive our estimates from some counting results on square-free parts of

discriminants of the polynomials from Pn(H). We recall that the square-free

part u of an integer k is defined by k = uv2 where v2 is the largest perfect

square dividing k. In particular, u has the same sign as k.

We remark that, despite the recent progress in [5], the problem of counting

square-free discriminants of the polynomials from Pn(H) still remains open,

unless one assumes the celebrated ABC-conjecture; see [26, 33]. So, one can

consider our result as a first approximation to the desired goal.
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Furthermore, some counting results about square-free parts of discriminants

(1.1) Δn(a, b) = (n− 1)n−1an + nnbn−1

of trinomials Xn + aX + b with n ≡ 1 (mod 4) have been given in [31] (con-

ditionally under the ABC-conjecture) and in [39] (unconditionally). Here we

obtain a new bound, improving that of [39] for a wide range of parameters.

In fact our our main result (Theorem 1.1 below) is a combination of two

results, which we use depending on the relative sizes of parameters. One result is

obtained via the determinant method of Bombieri and Pila [7], Heath-Brown [17]

and Salberger [37], as in the work of Dietmann [12]. The other one is based on

the square sieve of Heath-Brown [15], see Section 3.2, combined with bounds on

character sums with discriminants, see Lemma 2.8, which are better than those

directly implied by the Weil bound (see, for example, [21, Theorem 11.23]). We

believe such bounds can be of independent interest.

1.2. Notation. We recall that the expressions A � B, B � A and A = O(B)

are each equivalent to the statement that |A| � cB for some positive constant c.

We use o(1) to denote any expression that tends to 0 for a fixed n and H → ∞.

Throughout the paper, the implied constants in these symbols may depend

on the degree n of the polynomials involved, and occasionally, when mentioned

explicitly, on some other parameters.

The letters p and q always denote prime numbers.

1.3. Discriminants of general polynomials. Our main result is the fol-

lowing upper bound onNn(H,Δ), which is obtained by a combination of various

techniques.

Theorem 1.1: LetΔ be a non-zero integer and n � 3. Then, uniformly overΔ,

if for the square-free part u of Δ neither |u|(n − 1)n−1 nor |u|nn is a square,

then

(1.2) Nn(H,Δ) � Hn−2+
√
2+o(1),

otherwise

(1.3) Nn(H,Δ) �

⎧⎨
⎩
Hn−2n/(3n+3)(logH)(5n+1)/(3n+3) if n � 5,

Hn−n/(2n−1)(logH)(3n−2)/(2n−1) if n = 3, 4,

for any Δ.
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We note that the bound (1.2) is better (when it applies) than (1.3) only

for n � 7.

Let

Mn(H,D) =
∑

|Δ|�D

Nn(H,Δ).

Given a real parameter D � 1, using that there are O(D1/2) values of Δ � D

with the square-free part u satisfying |u|(n− 1)n−1 or |u|nn being a square, we

immediately obtain that uniformly over D,

Mn(H,D) � Ho(1)

⎧⎪⎪⎨
⎪⎪⎩
DHn−2n/(3n+3) if n � 8,

DHn−2+
√
2 +D1/2Hn−2n/(3n+3) if n = 5, 6, 7,

DHn−2+
√
2 +D1/2Hn−n/(2n−1) if n = 3, 4.

However, one can get a better result.

Theorem 1.2: Let D � 1 be an integer. Then, for n � 5, uniformly over D,

we have

Mn(H,D) � D(3n+2)/(3n+3)Hn(3n+1)/(3n+3)+o(1).

Clearly, Theorem 1.2 is nontrivial (that is, improves the trivial bound

Mn(H,D) � Hn) provided that D � H2n/(3n+2)−ε for some fixed ε > 0. In

particular, we see that almost all polynomials from In(H) generate fields with

discriminants of size at least H2n/(3n+2)+o(1).

We also note very recent results of Anderson, Gafni, Lemke Oliver, Lowry-

Duda, Shakan, and Zhang [1] about the arithmetic structure of discriminants

of polynomials from Pn(H).

Remark 1.3: We note that the bound of Theorem 1.1 also implies an upper

bound for the number Kn(H, δ) of polynomials f ∈ In(H) such that the dis-

criminant δ(f) of the splitting field Lf of f is δ. Indeed, for a given f ∈ In(H),

we have the divisibility Δ(f) | δ(f). Thus, using δ(f) = HO(1) for f ∈ In(H)

and the classical bound τ(δ) = δo(1) for the divisor function τ , we obtain

Kn(H, δ) �
∑
Δ|δ

Nn(H,Δ) � Ho(1)

⎧⎨
⎩
Hn−2n/(3n+3) if n � 5,

Hn−n/(2n−1) if n = 3, 4.

Similarly, we also have an analogue of Theorem 1.2 for Kn(H, δ).
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1.4. Discriminants of trinomials. Let Tn(A,B,C,D;u) be the number of

pairs of integers (a, b) ∈ [C,C + A] × [D,D + B] such that for the trinomial

discriminant (1.1) we have Δn(a, b) = ur2, for some positive integer r.

For n ≡ 1 (mod 4), A � 1, B � 1, C � 0, D � 0 and square-free u,

Shparlinski [39, Theorem 1] has obtained the bound

Tn(A,B,C,D;u) � (AB)2/3(log(AB))4/3 + (A+B)(log(AB))2

+ (AB)1/3
( log(ABCD) log(AB)

log log(ABCD)

)2

,

using exponential sums and the square sieve. For C � 1 and A � B2−ε with

an arbitrary fixed ε > 0, we can sharpen this as follows.

Theorem 1.4: Let n ≡ 1 (mod 4), n � 2, A � 1, B � 1, C � 1, D � 0, and

let u be square-free. Then

Tn(A,B,C,D;u) � A(A+B + C +D)o(1).

As in [39], from this we obtain the following two results:

Corollary 1.5: In the notation of Theorem 1.4, let Sn(A,B,C,D) be the

number of distinct quadratic fields Q(
√
Δn(a, b)) taken for all pairs of integers

(a, b) ∈ [C,C + A] × [D,D + B] such that Xn + aX + b is irreducible over Q.

Then under the assumptions of Theorem 1.4, we have

Sn(A,B,C,D) � B(A +B + C +D)o(1).

In fact, in Corollary 1.5, the lower bound holds for the number of distinct

square-free parts of discriminants Δn(a, b). Thus, taking C = D = 1 and

A = B = H in Corollary 1.5, by Lemma 2.1 below, we also obtain the following:

Corollary 1.6: For n � 2 with n ≡ 1 (mod 4), the number of distinct dis-

criminants of fields generated by a root of polynomials from

{Xn + aX + b : 1 � a, b � H}

is at least H1+o(1).

Corollary 1.7: Let Qn(Δ) be the number of distinct quadratic fields

Q(
√
Δn(a, b)) taken over all integers a, b � 1 such that Xn + aX + b is ir-

reducible over Q and |Δn(a, b)| � Δ. Then, for n ≡ 1 (mod 4) we have

Qn(Δ) � Δ1/(n−1)+o(1).
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Corollary 1.7 improves the bound

Qn(Δ) � Δκn/3(logΔ)−1

in [39], where

κn =
1

n
+

1

n− 1
,

by asymptotically a factor 3/2 in the exponent.

We conclude the paper with an appendix where we take the opportunity to

correct an error in [12, Lemmas 5 and 6] (and consequently [12, Lemma 8]) which

are not correct as stated if the degree n is of the form n = m2 or n = m2 + 1

for some odd m; see Section 7.

2. Preparations

2.1. Polynomials and discriminants. We recall that for an arbitrary field K

and f = Xn + an−1X
n−1 + · · · + a1X + a0 ∈ K[X ], the discriminant of f is

defined by

(2.1) Disc(f) = (−1)n(n−1)/2 Res(f, f ′),

where Res(g, h) denotes the resultant of g, h ∈ K[X ].

Throughout we treat Disc(f) as a polynomial in formal variables a0, . . . , an−1.

It is well-known, see [28, Section 3.3], that Disc(f) and Δ(f) are related via

an integer square.

Lemma 2.1: Let f ∈ Q[X ] be a monic irreducible polynomial. Then

Disc(f)/Δ(f) = r2

for some integer r � 1.

We also recall that the question about the number of polynomials f ∈ In(H)

with Δ(f) = Disc(f) remains unanswered. Ash, Brakenhoff and Zarrabi [2] give

some heuristic and numerical evidence towards the conjecture, attributed in [2]

to Hendrik Lenstra, that the density of such polynomials is 6/π2. We remark

that this density is higher than the expected density of square-free discriminants

Disc(f) (in which case we immediately obtain Δ(f) = Disc(f) by Lemma 2.1);

see [2] for a discussion of this phenomenon.
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We now need several results about the irreducibility of some polynomials

involving polynomial discriminants. For the rest of the paper the discriminant

Disc(F ) of a polynomial F always means the discriminant with respect to the

variable X , even if the polynomial F may depend on other variables.

Lemma 2.2: Let n � 3, let a2, . . . , an−1 ∈ Z and let c0, c1 ∈ Q. Moreover,

let u ∈ Z be square-free such that neither |u|(n − 1)n−1 nor |u|nn is a square.

Then the polynomial

Z2 − uDisc(Xn + an−1X
n−1 + · · ·+ a2X

2 + (c0A0 + c1)X +A0) ∈ Q[A0, Z]

is irreducible in Q[A0, Z].

Proof. We closely follow the proof of [12, Lemma 5]; see also Section 7. Writing

D(A0) = uDisc(Xn + an−1X
n−1 + · · ·+ a2X

2 + (c0A0 + c1)X +A0),

it is enough to show that D(A0) is no square in Q[A0].

For c0 �= 0, by [12, Lemma 4], we find that the monomial in D(A0) with

biggest degree is

u(−1)(n−1)(n−2)/2(n− 1)n−1cn0A
n
0 ,

which cannot be a square in Q[A0]. Indeed, if n is odd this is obvious. If n is

even this is true since |u|(n− 1)n−1 is not a square but cn0 is.

For c0 = 0, by [12, Lemma 3], one finds that the monomial in D(A0) with

biggest degree is

u(−1)n(n−1)/2nnAn−1
0 .

Again, since |u|nn is no square, this cannot be a square in Q[A0].

In the same way one proves the following analogue of [12, Lemma 6].

Lemma 2.3: Let n � 3, let a2, . . . , an−1 ∈ Z and c ∈ Q. Moreover, let u ∈ Z

be square-free such that |u|(n− 1)n−1 is not a square. Then the polynomial

Z2 − uDisc(Xn + an−1X
n−1 + · · ·+ a2X

2 +A1X + c) ∈ Q[A1, Z]

is irreducible in Q[A1, Z].

The argument below is modelled from that of the proof of [38, Lemma 4].

For a monic polynomial f(X) ∈ K[X ] and (u, v) ∈ K∗ × K, we define the

polynomial

fu,v(X) = unf(u−1(X + v)) ∈ K[X ],
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which we write as

(2.2) fu,v(X) = Xn +

n∑
j=1

Af,j(u, v)X
n−j.

One easily verifies that by the Taylor formula

(2.3) Af,j(u, v) = uj f
(n−j)(u−1v)

(n− j)!
, j = 1, . . . , n.

We need some simple properties of the polynomials fu,v(X). First we relate

Disc(fu,v) to Disc(f). The following statement is shown in the proof of [40,

Theorem 1]; it follows easily via the standard expression of the discriminant via

the roots of the corresponding polynomial and the relation between the roots

of f and fu,v.

Lemma 2.4: For any field K and a monic polynomial f(X) ∈ K[X ] of degree n,

we have

Disc(fu,v) = un(n−1) Disc(f), (u, v) ∈ K∗ ×K.

Let Fp denote the finite field of p elements.

We now show that the map f 	→ fu,v is almost a permutation on the set of

monic polynomials f(X) ∈ Fp[X ] of fixed degree.

Lemma 2.5: For a prime p > n, for all but at most O(p�n/2�+1) monic polyno-

mials f(X) ∈ Fp[X ] of degree n, the polynomials fu,v(X), (u, v) ∈ F∗
p × Fp, are

pairwise distinct.

Proof. Let A be the set of m � n distinct roots of f . Then the non-uniqueness

condition

fs,t(X) = fu,v(X)

with (s, t) �= (u, v) means that for any α ∈ A there is β ∈ A with sα−t = uβ−v.

Hence there is a nontrivial linear transformation A 	→ aA + b, sending each

element α ∈ A to aα+ b, which fixes the set A, that is,

A = aA+ b.

If a = 1 then b �= 0 and examining the orbit

α 	→ α+ b 	→ α+ 2b 	→ · · ·

of any element α ∈ A we see that for some k � n we must have α = α + kb

which is impossible since p > n.
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Assume now that a �= 1. Hence for B = A+ b(a− 1)−1 we have

(2.4) B = aB.

Examining the orbit

β 	→ aβ 	→ a2β 	→ · · ·
of any non-zero element β ∈ B we see that a is of multiplicative order at most m

and thus takes at most m(m+ 1)/2 possible values.

Finally, when a �= 1 is fixed, there are at most O(p�n/2�) possibilities for the

set B. Indeed, we see from (2.4) that B is a union of cosets of the multiplicative

group 〈a〉 ⊆ F∗
p generated by a, and possibly of {0}. Since a �= 1 we see

that #〈a〉 � 2 so each such coset if of size at least 2, and thus there are at

most m/2� such cosets in B. We now observe that, for a fixed a, any such

coset is defined by any of its elements. Hence the number of possibilities for the

set B does not exceed the number of choices of m/2� distinct elements of Fp.

When the set B is fixed, there are p possibilities for b ∈ Fp. Therefore we

conclude that there are O(p�m/2�+1) possibilities for the set of roots A. Since

there are O(1) choices for the multiplicities of these roots, and m � n, the result

follows.

2.2. Character sums with discriminants. We remark that the values of

the quadratic character χ of discriminants are polynomial analogues of the

Möbius functions for integers, since by the Stickelberger theorem [10,42], for a

square-free polynomial f ∈ Fp[X ] of degree n, where p is odd,

(2.5)
(Disc(f)

p

)
= (−1)n−r,

where (u/p) is the Legendre symbol of u modulo p and r is the number of

distinct irreducible factors of f and, of course,(Disc(f)

p

)
= 0

if f is not square-free. In particular, this interpretation has motivated the work

of Carmon and Rudnick [8]. Here we also need some simple estimates.

Let Mn,p be the set of monic polynomials of degree n over Fp.

Lemma 2.6: For a prime p � 3,

∑
f∈Mn,p

(Disc(f)

p

)
= 0.
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Proof. Let J (p) be the set of all monic irreducible polynomials over Fp. We

consider the zeta function ζ(T ) of the affine line over Fp, which is given by the

product

ζ(T ) =
∏

g∈J (p)

( 1

1− T deg g

)
=

1

1− pT
,

that is absolutely converging for |T | < 1; see [36, Equations (1) and (2)]. Taking

the inverse, we derive

(2.6) ζ(T )−1 = (1− pT ) =
∏

g∈J (p)

(1− T deg g) =
∑

f∈S(p)

(−1)ω(f)T deg f ,

where S(p) is the set of all monic square-free polynomials over Fp and ω(f)

denotes the number of distinct irreducible factors of f .

Using (2.5) and comparing the coefficient of T n in the equation (2.6), we

obtain the claimed result.

Now, for a vector

λ = (λ1, . . . , λn) ∈ Fn
p

and a polynomial

f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0 ∈ Mn,p

we define

(2.7) 〈λ ◦ f〉 = λ1an−1 + · · ·+ λna0.

For an integer m � 1, we denote

em(z) = exp(2πiz/m),

and consider certain mixed exponential and character sums with polynomials.

Bounds of these sums underly our approach via the square-sieve method.

We emphasise that our bounds in Lemmas 2.7 and 2.8 below save

max{p(n−1)/4, p} against the trivial bound, while an immediate application of

the classical Weil bound (see, for example, [21, Theorem 11.23]) saves only p1/2.

The existence of such a bound is quite remarkable since the discriminant Disc(f),

as a polynomial in the coefficients of f , is highly singular: its locus of singu-

larity is of co-dimension one, see [40, Section 4]. In particular, this means that

the result of Katz [25] does not apply, while the result of Rojas-León [35] does

not give any advantage over the direct application of the Weil bound [21, The-

orem 11.23], which saves p1/2 over the trivial bound. Instead we recall the
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following bound obtained independently by Bienvenu and Lê [6, Theorem 1]

and Porritt [34, Theorem 1].

Lemma 2.7: Let p � 3 be a prime. Then, for n � 3 and any λ ∈ Fn
p , in the

notation (2.7), we have

∑
f∈Mn,p

(Disc(f)

p

)
ep(〈λ ◦ f〉) � p(3n+1)/4.

We now use a different argument, which stems from [38], to get a larger saving

for small values of n.

Lemma 2.8: Let p � 3 be a prime. Then, for n � 3 and any λ ∈ Fn
p , in the

notation (2.7), we have

∑
f∈Mn,p

(Disc(f)

p

)
ep(〈λ ◦ f〉) � pn−1.

Proof. By Lemma 2.6 we can assume that λ is not identical to zero.

Let En,p be the exceptional set of polynomials which are described in Lem-

ma 2.5, that is, the set of monic polynomials f(X) ∈ Fp[X ] of degree n, such

that the polynomials fu,v(X), (u, v) ∈ F∗
p × Fp, are not pairwise distinct.

Thus, by Lemma 2.5, for n � 3, we have

(2.8) #En,p = O(p�n/2�+1) = O(pn−1).

For f ∈ Mn,p we define the quantity R(f) as the following product of the

resultants of the consecutive derivatives of f :

R(f) =

n−1∏
j=0

Res(f (j), f (j+1)).

Let Fn,p be the set of f ∈ Mn,p with R(f) = 0. Clearly

(2.9) #Fn,p = O(pn−1).

Define

Ln,p = Mn,p \ (En,p ∪ Fn,p).
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We now see from (2.8) and (2.9) that for any (u, v) ∈ F∗
p × Fp we have

(2.10)

∑
f∈Mn,p

(Disc(f)

p

)
ep(〈λ ◦ f〉)

=
∑

f∈Ln,p

(Disc(f)

p

)
ep(〈λ ◦ f〉) +O(pn−1)

=
∑

f∈Ln,p

(Disc(fu,v)

p

)
ep(〈λ ◦ fu,v〉) +O(pn−1).

Since n(n− 1) is even, by Lemma 2.4 we have
(Disc(fu,v)

p

)
=

(Disc(f)

p

)
.

Thus, summing (2.10) over all pairs (u, v) ∈ F∗
p × Fp and changing the order of

summation, we obtain

∑
f∈Mn,p

(Disc(f)

p

)
ep(〈λ ◦ f〉)

=
1

p(p− 1)

∑
f∈Ln,p

(Disc(f)

p

) ∑
(u,v)∈F∗

p×Fp

ep(〈λ ◦ fu,v〉) +O(pn−1).

Extending the summation to all pairs (u, v) ∈ Fp × Fp introduces an error

O(pn−1) which is admissible, so we obtain

(2.11)

∑
f∈Mn,p

(Disc(f)

p

)
ep(〈λ ◦ f〉)

=
1

p(p− 1)

∑
f∈Ln,p

(Disc(f)

p

) ∑
(u,v)∈F2

p

ep(〈λ ◦ fu,v〉) +O(pn−1).

Recalling the notation (2.2) we write

∑
(u,v)∈F2

p

ep(〈λ ◦ fu,v〉) =
∑

(u,v)∈F2
p

ep

( n∑
j=1

λjAf,j(u, v)

)
.

We now see from (2.11) that it is enough to show that for any f ∈ Ln,p the

Deligne bound (see [21, Section 11.11]) applies to the last sum and thus implies

the bound

(2.12)
∑

(u,v)∈F2
p

ep

( n∑
j=1

λjAf,j(u, v)

)
= O(p).
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For this we have to show that the highest form of the polynomial

Ff (U, V ) =
n∑

j=1

λjAf,j(U, V ) ∈ Fp[U, V ]

is nonsingular. Since λ is not identical to zero there is m such that λm �= 0

and λj = 0 for j > m (this condition is void if m = n).

We see from (2.3) that Af,j(U, V ) is a homogeneous polynomial of degree

degAf,j(U, V ) = j, j = 1, . . . , n. Hence the highest form of Ff (U, V )

is λmAf,m(U, V ). Therefore, to establish the bound (2.12), it is sufficient to

show that the polynomial λmAf,m(U, V ) is nonsingular, that is, that the equa-

tions

(2.13)
∂Af,m(U, V )

∂U
= 0

and

(2.14)
∂Af,m(U, V )

∂V
= 0

have no common zero (u0, v0) �= (0, 0) in the algebraic closure of Fp.

Now, if u0 = 0, then from (2.14) we conclude that v0 = 0, which is impossible.

Indeed, from (2.3) we see that

Af,m(U, V ) ≡
(
n

m

)
V m (mod U)

in the ring Fp[U, V ]. Hence

∂Af,m(U, V )

∂V
≡

(
n

m

)
mV m−1 (mod U),

which implies the above claim.

If u0 �= 0, then by the Euler formula for partial derivatives we have

U
∂Af,m(U, V )

∂U
+ V

∂Af,m(U, V )

∂V
= mUm f (n−m)(U−1V )

(n−m)!
.

Therefore, we conclude from the equations (2.13) and (2.14) that v0/u0 is

a zero of f (n−m)(X), and also by (2.3) and (2.14), v0/u0 is also a zero of

f (n−m+1)(X). Hence Res(f (n−m), f (n−m+1)) = 0, which contradicts the con-

dition that f �∈ Fn,p. Thus, we have the bound (2.12) and the desired result

follows.
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We now recall the definition of the Jacobi symbol (u/m) modulo an odd

square-free integer m: ( u

m

)
=

∏
p|m

p prime

(u
p

)
,

where, as before, (u
p ) is the Legendre symbol (that is, the quadratic character)

modulo a prime p, see [21, Section 3.5]).

We now extend the definition of Mn,p to residue rings, and use Mn,m to

denote the set of monic polynomials of degree n over Zm.

Now, using the Chinese Remainder Theorem for character sums, see [21,

Equation (12.21)], we see that Lemma 2.6 implies the following identity.

Lemma 2.9: Let p and q be two sufficiently large distinct primes and letm = pq.

Then, for n � 3 we have

∑
f∈Mn,m

(Disc(f)

m

)
= 0.

Similarly, we see that Lemmas 2.7 and 2.8, together with the Chinese Re-

mainder Theorem for mixed sums of additive and multiplicative characters,

see [21, Equation (12.21)], yield the following bound.

Lemma 2.10: Let p and q be two sufficiently large distinct primes and letm=pq.

Then, for n � 3 and any λ ∈ Zn
m, in the notation (2.7), we have

∑
f∈Mn,m

(Disc(f)

m

)
em(〈λ ◦ f〉) � min{m(3n+1)/4,mn−1}.

We now derive our main tool.

Lemma 2.11: Let p and q be two sufficiently large distinct primes and letm=pq.

Then we have

∑
f∈Pn(H)

(Disc(f)

m

)

� ((H/m)n−1 logm+ (logm)n)

⎧⎨
⎩
m(3n+1)/4 if n � 5,

mn−1 if n = 3, 4.
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Proof. Clearly the above sum can be split into O(Hn/mn) complete sums,

which all vanish by Lemma 2.9, and also, for k = 0, . . . , n−1 into O(Hk/mk+1)

hybrid sums, that are complete with respect to exactly k variables and incom-

plete with respect to the remaining n−k variables. Using the standard reduction

between complete and incomplete sums (see [21, Section 12.2]) and applying

Lemma 2.10 (for incomplete sums), we derive

∑
f∈Pn(H)

(Disc(f)

m

)
�

n−1∑
k=0

(Hk/mk + 1)min{m(3n+1)/4,mn−1}(logm)n−k,

which implies the result.

3. Proof of Theorem 1.1

3.1. The bound (1.2): the determinant method. We need some results

about equations involving discriminants, which could be of independent interest.

Lemma 3.1: Let n � 3, let a2, . . . , an−1 ∈ Z and let d0, d1, d2 ∈ Q such

that (d0, d1) �= (0, 0). Moreover, let u ∈ Z be square-free such that neither

|u|(n − 1)n−1 nor |u|nn is a square. Then, for any c � 1, the system of equa-

tions

z2 = uDisc(Xn + an−1X
n + · · ·+ a1X + a0)

0 = d0a0 + d1a1 + d2

has at most H1/2+o(1) solutions z, a0, a1 ∈ Z such that

|a0|, |a1| � H and |z| � Hc.

Proof. This is a straightforward generalization of [12, Lemma 8], which dealt

with the special case u = 1. Lemmas 2.2 and 2.3 now play the role of [12,

Lemma 5] and [12, Lemma 6], respectively. The proof can then be followed in

a completely analogous way to the proof of [12, Lemma 8].

We also need the following technical result, which generalises [12, Lemma 11].
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Lemma 3.2: Let u ∈ Z\{0}, and let N(H) be the number of coefficients

a2, . . . , an−1 ∈ Z such that |ai| � H (2 � i � n− 1) and the polynomial

(3.1) Z2 − uDisc(Xn + an−1X
n−1 + · · ·+ a2X

2 +A1X +A0) ∈ Z[A0, A1, Z]

as a polynomial in A0, A1, Z is not absolutely irreducible. Then

N(H) � Hn−3.

Proof. The special case u = 1 is just [12, Lemma 11]. However, if the polyno-

mial (3.1) factorises over C[A0, A1, Z], then

(3.2) uDisc(Xn + an−1X
n−1 + · · ·+ a2X

2 +A1X +A0) ∈ C[A0, A1]

is a perfect square in C[A0, A1] whence, as u �= 0, also the polynomial (3.2)

with u = 1 is a square in C[A0, A1]. Hence also the polynomial (3.1) with u = 1

factorises over C[A0, A1, Z]. The result therefore follows immediately from the

special case u = 1.

Given a square-free integer u, we denote by Tn(H,u) the set of f ∈ In(H)

for which the square-free part of Δ(f) is u, that is, Δ(f) = r2u for some

integer r � 1, and by Tn(H,u) the cardinality of this set.

Lemma 3.3: Uniformly over square-free integers u with the condition that nei-

ther |u|(n− 1)n−1 nor |u|nn is a square, we have the following estimate

Tn(H,u) � Hn−2+
√
2+o(1).

Proof. Let us fix some ε > 0. By Lemma 2.1, Disc(f) and Δ(f) have the same

square-free part. So, for square-free u ∈ Z, we see that Tn(H,u) is the number

of solutions a0, . . . , an−1 ∈ Z, r ∈ N of the Diophantine equation

(3.3) r2u = Disc(Xn + an−1X
n−1 + · · ·+ a1X + a0)

such that |ai| � H (0 � i � n − 1). On writing z = |ru| one observes

that Tn(H,u) is at most the number of solutions a0, . . . , an−1 ∈ Z, z ∈ N,

of

(3.4) z2 = uDisc(Xn + an−1X
n−1 + · · ·+ a1X + a0)

such that |ai| � H (0 � i � n− 1), and that (3.3) and the conditions |ai| � H

(0 � i � n − 1) force r � Hc1 , |u| � Hc2 for some constants c1, c2 > 0 only

depending on n, so z � Hc for some c � 1 depending only on n. To bound the

number of these solutions, we can now, in a completely analogous way, follow
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the proof from [12, Section 5], which deals with the special case u = 1: First,

fix a2, . . . , an−1; there are O(Hn−2) choices. By Lemma 3.2, we may assume

that

(3.5) z2 − uDisc(Xn + an−1X
n−1 + · · ·+ a1X + a0)

as a polynomial in z, a1, a0 is absolutely irreducible. We can therefore ap-

ply [12, Lemma 12], and the same calculation as in [12] shows that there exist

J � H
√
2/2+ε polynomials g1, . . . , gJ ∈ Z[Z,A1, A0], such that each gj is co-

prime with the polynomial (3.5) and has degree bounded only in terms of n

and ε, and every solution (z, a1, a0) to (3.4) with

(3.6) |a1|, |a0| � H and z � Hc

in addition satisfies gj(z, a1, a0) = 0 for some j ∈ {1, . . . , J}, apart possibly

from some exceptional set of solutions of cardinality at most H
√
2+o(1). So

we have to consider J systems of two Diophantine equations, each consisting

of (3.4) and the equation gj(z, a1, a0) = 0 for some j ∈ {1, . . . , J}.
Fix any of those systems. Then it is enough to show that there are at

most H
√
2/2+o(1) integer solutions satisfying (3.6) to this system. To this end,

as in [12], we can eliminate z from the system, resulting in one Diophantine

equation fj(a1, a0) = 0, where fj ∈ Z[A1, A0], which is a non-zero rational

polynomial by the coprimality of gj and (3.5). This can be factored over Q,

and as in [12], for each factor that is at least quadratic, the bound of Bombieri

and Pila [7] yields at most H1/2+o(1) integer solutions with |a1|, |a0| � H , which

is more than satisfactory, as from (3.4), for each pair (a1, a0), we get at most two

solutions z. The case of linear factors is covered by Lemma 3.1, again yielding

at most H1/2+o(1) solutions satisfying (3.6).

All together, over all J � H
√
2/2+ε systems, and considering the exceptional

set, we obtain at most

H
√
2+o(1) +H

√
2/2+εH1/2+o(1) = H

√
2+o(1)

integer solutions with (3.6), provided that ε <
√
2 − 1. Taking into account

the O(Hn−2) choices for a2, . . . , an from the beginning, we obtain

Tn(H,u) � Hn−2+
√
2+o(1),

as required.
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By Lemma 2.1 we have

Nn(H,Δ) � Tn(H,u),

where u is the square-free part of Δ, and using Lemma 3.3, we now obtain the

bound (1.2).

3.2. The bound (1.3): the square-sieve method. We recall the definitions

of Tn(H,u) and Tn(H,u) = #Tn(H,u) from Section 3.1.

Lemma 3.4: Uniformly over square-free integers u we have the following esti-

mate:

Tn(H,u) �

⎧⎨
⎩
Hn−2n/(3n+3)(logH)(5n+1)/(3n+3) if n � 5,

Hn−n/(2n−1)(logH)(3n−2)/(2n−1) if n = 3, 4.

Proof. As before, by Lemma 2.1, Disc(f) and Δ(f) have the same square-free

part, and thus Tn(H,u) is the number of polynomials f ∈ In(H) for which the

square-free part of Disc(f) is u.

We now apply the square sieve of Heath-Brown [15] to the discriminants

Disc(f) of polynomials f ∈ In(H).

Take now a real z � 2 and denote by Qz the set of all primes p in the interval

(z, 2z] and by π(z, 2z) the cardinality of this set, that is π(z, 2z) = π(2z)−π(z)

where, as usual, π(x) is the number of primes p � x.

Clearly, for any f ∈ Tn(H,u) the product uDisc(f) is a perfect square, and

thus, for a prime p � 3 we have
(uDisc(f)

p

)
= 1,

unless p | uDisc(f), or equivalently p | Disc(f) (as u | Disc(f)), in which case

we have (uDisc(f)

p

)
= 0.

Note that the condition f ∈ Tn(H,u) ⊆ In(H) automatically implies

that Disc(f) �= 0.

Hence, for any f ∈ Tn(H,u) we have

(3.7)
∑
p∈Qz

(uDisc(f)

p

)
= π(z, 2z) +O(ω(Disc(f))),

where ω(d) is the number of prime divisors of the integer d �= 0.
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Since f ∈ In(H), we trivially have Disc(f) = HO(1). Now, using the trivial

bound ω(d) = O(log d) and imposing the restriction

(3.8) z � (logH)2,

we see from the prime number theorem that

(3.9) π(z, 2z) +O(ω(Disc(f))) � 1

2
π(z, 2z)

provided that H is large enough (certainly (3.8) can be substantially relaxed,

but this does not affect our result).

Hence, from (3.7) and (3.9) we conclude that

2

π(z, 2z)

∑
p∈Qz

(uDisc(f)

p

)
� 1.

Squaring, summing over all f ∈ Tn(H,u) and then expanding the summation

to all f ∈ Pn(H), we obtain

Tn(H,u) � 4

π(z, 2z)2

∑
f∈Tn(H,u)

∣∣∣∣
∑
p∈Qz

(uDisc(f)

p

)∣∣∣∣
2

� 4

π(z, 2z)2

∑
f∈Pn(H)

∣∣∣∣
∑
p∈Qz

(uDisc(f)

p

)∣∣∣∣
2

.

Now, expanding the square and then changing the order of summation and

using the multiplicativity of the Jacobi symbol, we derive

(3.10)

Tn(H,u) � 4

π(z, 2z)2

∑
f∈Pn(H)

∑
p,q∈Qz

(uDisc(f)

pq

)

=
4

π(z, 2z)2

∑
p,q∈Qz

( u

pq

) ∑
f∈Pn(H)

(Disc(f)

pq

)
.

Hence

Tn(H,u) � 1

π(z, 2z)2

∑
p,q∈Qz

∣∣∣∣
∑

f∈Pn(H)

(Disc(f)

pq

)∣∣∣∣.
If n � 5 we apply now the first bound of Lemma 2.11 for the inner sum

for O(π(z, 2z)2) primes p �= q and the trivial bound Hn for π(z, 2z) choices of

primes p = q. Taking also into consideration that

π(z, 2z) � z

log z
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and pq � 4z2, we derive

Tn(H,u) � z−1Hn log z + (H/z2)n−1z(3n+1)/2 log z + z(3n+1)/2(log z)n

� z−1Hn log z +Hn−1z−n/2+5/2 log z + z(3n+1)/2(log z)n.

Choosing z = H2n/(3n+3)(logH)−2(n−1)/(3n+3), thus the condition (3.8) is sat-

isfied, we obtain the desired bound.

For n = 3, 4, we apply now the second bound of Lemma 2.11 for the inner

sum for O(π(z, 2z)2) primes p �= q and the trivial bound Hn for π(z, 2z) choices

of primes p = q. Taking also into consideration that

π(z, 2z) � z

log z

and pq � 4z2, we derive

Tn(H,u) � z−1Hn log z +Hn−1 log z + z2n−2(log z)n.

Choosing z = Hn/(2n−1)(logH)−(n−1)/(2n−1), thus the condition (3.8) is satis-

fied, we conclude the proof.

As before, by Lemma 2.1 we have

(3.11) Nn(H,Δ) � Tn(H,u),

where u is the square-free part of Δ, and using Lemma 3.4, we now obtain the

bound (1.3) and conclude the proof of Theorem 1.1.

4. Proof of Theorem 1.2

4.1. Bounds of mean of sums of Jacobi symbols. We also make use of the

following bounds of character sums “on average” over square-free moduli which

are due to Heath-Brown [16, Corollary 3]. In fact we only need a very special

case of this result (combined with the Cauchy inequality), which we present in

the following form.

Lemma 4.1: For all real positive numbers D � 1 and Z � 1, such that

DZ → ∞,

1

Z

∑
m�Z

m odd square-free

∣∣∣∣
∑

|Δ|�D

(Δ
m

)∣∣∣∣ � (DZ)o(1)
√
D(D/Z + 1).
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4.2. Optimization of power sums. We need the following technical result,

see [14, Lemma 2.4].

Lemma 4.2: For I, J ∈ N let

F (Z) =

I∑
i=1

AiZ
ai +

J∑
j=1

BjZ
−bj ,

where Ai, Bj , ai and bj are positive for 1 � i � I and 1�j�J . Let 0 ≤ Z1 ≤ Z2.

Then there is some z ∈ [Z1, Z2] with

F (z) �
I∑

i=1

J∑
j=1

(A
bj
i Bai

j )1/(ai+bj) +

I∑
i=1

AiZ
ai
1 +

J∑
j=1

BjZ
−bj
2 ,

where the implied constant depends only on I and J .

4.3. Concluding the proof. Using (3.11) and also that( u

pq

)
=

(Δ

pq

)
,

where u is the square-free part of Δ, we can see that the bound (3.10) implies

Mn(H,D) � 4

π(z, 2z)2

∑
p,q∈Qz

∑
|Δ|�D

(Δ

pq

) ∑
f∈Pn(H)

(Disc(f)

pq

)
.

Hence

Mn(H,D) � 1

π(z, 2z)2

∑
p,q∈Qz

∣∣∣∣
∑

|Δ|�D

(Δ

pq

)∣∣∣∣
∣∣∣∣

∑
f∈Pn(H)

(Disc(f)

pq

)∣∣∣∣.
Continuing as in Section 3.2, and separating the contribution from the terms

with p = q, we obtain

Mn(H,D)�z−1DHn log z+
1

π(z, 2z)2

∑
p,q∈Qz

p�=q

∣∣∣∣
∑

|Δ|�D

(Δ

pq

)∣∣∣∣
∣∣∣∣

∑
f∈Pn(H)

(Disc(f)

pq

)∣∣∣∣.

If n � 5 we apply now the first bound of Lemma 2.11 for the inner sum

and then the bound of Lemma 4.1, and thus derive (after replacing all power

logarithms with Ho(1))

Mn(H,D) � z−1DHn+o(1) +Ho(1)((H/z2)n−1 + 1)z(3n+1)/2
√
D(D/z2 + 1).

After some trivial manipulations, we obtain

(4.1) Mn(H,D) � Ho(1)M,
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where

M = z−1DHn + z−(n−3)/2DHn−1 + z−(n−5)/2D1/2Hn−1

+ z(3n−1)/2D + z(3n+1)/2D1/2.

Since we obviously have z−1DHn � z−(n−3)/2DHn−1 we can simplify the

above bound as

M � z−1DHn + z−(n−5)/2D1/2Hn−1 + z(3n−1)/2D + z(3n+1)/2D1/2

= (z−1D1/2Hn + z−(n−5)/2Hn−1 + z(3n−1)/2D1/2 + z(3n+1)/2)D1/2.

We now apply Lemma 4.2 with I=J=2, Z1=(logH)2 (see (3.8)), Z2=(DH)100

and parameters

(A1, a1) = (D1/2, (3n− 1)/2), (A2, a2) = (1, (3n+ 1)/2),

(B1, b1) = (D1/2Hn, 1), (B2, b2) = (Hn−1, (n− 5)/2).

We now compute

(Ab1
1 Ba1

1 )1/(a1+b1) = (D1/2(D1/2Hn)(3n−1)/2)2/(3n+1)

= D1/2Hn(3n−1)/(3n+1),

(Ab2
1 Ba1

2 )1/(a1+b2) = (D(n−5)/4(Hn−1)(3n−1)/2)1/(2n−3)

= D(n−5)/(8n−12)H(n−1)(3n−1)/(4n−6),

(Ab1
2 Ba2

1 )1/(a2+b1) = ((D1/2Hn)(3n+1)/2)2/(3n+3)

= D(3n+1)/(6n+6)Hn(3n+1)/(3n+3),

(Ab2
2 Ba2

2 )1/(a2+b2) = ((Hn−1)(3n+1)/2)1/(2n−2)

= H(3n+1)/4.

Certainly the contribution from the terms involving Z1 and Z2 is negligible. We

also note that for n � 5 we have

D1/2Hn(3n−1)/(3n+1) � Hn(3n−1)/(3n+1) � H(3n+1)/4.

Hence the last term H(3n+1)/4 can be omitted. Furthermore, for n � 5 we also

have
n− 5

8n− 12
� 3n+ 1

6n+ 6
and

(n− 1)(3n− 1)

4n− 6
� n(3n+ 1)

3n+ 3
.
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Hence the second term D(n−5)/(8n−12)H(n−1)(3n−1)/(4n−6) can be omitted too.

Thus we obtain

M � DHn(3n−1)/(3n+1) +D(3n+1)/(6n+6)+1/2Hn(3n+1)/(3n+3).

Recalling (4.1) we obtain

Mn(H,D) � DHn(3n−1)/(3n+1)+o(1) +D(3n+2)/(3n+3)Hn(3n+1)/(3n+3)+o(1).

We now observe that the second term improved the trivial bound

Mn(H,D) � Hn only for D � H2n/(3n+2), in which case the second term

also dominates the first term as

DHn(3n−1)/(3n+1) � D(3n+2)/(3n+3)Hn(3n+1)/(3n+3)

is equivalent to D � H4n/(3n+1). The desired result now follows.

5. Proof of Theorem 1.4

Write H = A + B + C + D. There are O(A) choices for a, so it suffices to

show that for fixed a ∈ [C,C +A] there are at most Ho(1) solutions (b, r) ∈ Z2,

b ∈ [D,D +B] to the equation

ur2 − nnbn−1 = (n− 1)n−1an.

As n ≡ 1 (mod 4), substituting t = b(n−1)/2, it is enough to uniformly in a

bound the number of r, t ∈ Z, |r|, |t| � Hn/2, such that

(5.1) ur2 − nnt2 = (n− 1)n−1an.

Note that (n− 1)n−1an �= 0 as n > 1 and a ∈ [C,C +A] where C � 1. If −unn

is a square in Z, then we can factor the left-hand side of (5.1) and use the

divisor function estimate τ(m) = mo(1) for all m ∈ Z\{0} to see that (5.1) has

at most Ho(1) solutions r, t ∈ Z. If −unn is no square, then the left-hand side

of (5.1) is a Pellian type equation and though (5.1) has possibly infinitely many

solutions r, t ∈ Z, the number of solutions such that |r|, |t| � Hn/2 by a familiar

result can be bounded by Ho(1); see, for example, [27, Lemma 3] for arbitrary

quadratic polynomials.
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6. Concluding Comments

6.1. Discriminants of splitting fields of polynomials. As mentioned

in Remark 1.3, it is certainly interesting to count the discriminants of splitting

fields of polynomials f ∈ In(H). Unfortunately our basic tool, Lemma 2.1,

does not generalise to the discriminants of these fields. Motivated by this and

also by an apparently terminological oversight at the beginning of [2, Section 1]

(where Δ(f) is called the discriminant of the splitting field of f), we give two

examples showing that such a direct analogue of Lemma 2.1 is false.

In particular, for the polynomial f(X) = X4 − 2 it is easy to check that the

splitting field L of f over Q is given by L = Q( 4
√
2, i) and that |L : Q| = 8.

Further, it is not hard to see that 4
√
2(1 + 2i) satisfies the equation

F (
4
√
2(1 + 2i)) = 0,

where F (X) is the degree 8 polynomial F (X) = X8 + 28X4 + 2500 which is

irreducible in Q[X ]. Hence

L = Q(
4
√
2(1 + 2i)).

Using the discriminant formula for trinomials, one finds that

Disc(f) = −211 and Disc(F ) = 262 · 38 · 512.

As Disc(f) < 0 and Disc(F ) > 0, by Lemma 2.1 the ratio of Disc(f) and the

discriminant Δ of L is not a rational square (in fact, using for example Sage,

one can check that Δ = 224, so Δ/Disc(f) = −213; see also Global Number

Field 8.0.16777216.2 in [30]).

A slightly more complicated non-binomial example is given by the polynomial

f(X) = X4 −X − 1. Magma computes the defining polynomial of the splitting

field of f as

F (X) =X24 + 90X21 − 70X20 + 5695X18 − 18690X17 + 34895X16

+ 225900X15 − 1544060X14 + 3867780X13 + 18840027X12

− 62876100X11 + 228621050X10 − 222888810X9

+ 999415025X8+ 9907474500X7− 24575577355X6

+ 34467394920X5+ 232838692457X4− 705674357100X3

+ 2030693398335X2− 2155371295770X+ 1779496656001.
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Since Disc(f) = 283 and

Disc(F ) = 2144 · 324 · 178 · 374 · 732 · 832 · 1012 · 1812 · 2272 · 28312

· 3594 · 88678 · 94732 · 477774 · 12719712 · 16600694

· 9702938592 · 45523944912 · 8570542789348513212

· 15214846801156875612,

the presence of the even power of 283 in the prime number factorisation of

Disc(F ) and Lemma 2.1 show that the ratio of Disc(f) and the discriminant of

the splitting field is not a rational square.

We note that both approaches, via the determinant method and via the square

sieve, are flexible enough to admit several variations in the way we count poly-

nomials. For example, one can fix some of the coefficients, or make them run

in a non-cubic box, [−H0, H0]× · · · × [−Hn−1, Hn−1], or move the boxes away

from the origin, as in Section 1.4.

6.2. Discriminants of polynomials. It is also natural to ask about the

number Dn(H) of distinct discriminants that are generated by all polynomi-

als from In(H). It is reasonable to expect Dn(H) = Hn+o(1), however this

question seems to be open. We briefly note that trinomials immediately im-

ply Dn(H) � H2. Indeed, we consider the discriminants

Disc(Xn + aX − b) = (−1)(n−1)(n+2)/2((n− 1)n−1an + nnbn−1)

of trinomials Xn + aX − b (see for example, [43, Theorem 2]) with

H/2 � a � H and 1 � b � H

3n

with the additional condition

a ≡ 0 (mod 2) and b ≡ 2 (mod 4)

to guarantee the irreducibility by the Eisenstein criterion. We claim all such

pairs (a, b) generate distinct discriminants. Indeed, if

(n− 1)n−1an1 + nnbn−1
1 = (n− 1)n−1an2 + nnbn−1

2
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then for a1 = a2 we also have b1 = b2. So we can now assume that a1 > a2. In

this case we obtain

(n− 1)n−1an1 − (n− 1)n−1an2 � (n− 1)n−1an1 − (n− 1)n−1(a1 − 1)n

� n(n− 1)n−1(H/2)n−1 +O(Hn−2)

= 2−n+1n(n− 1)n−1Hn−1 +O(Hn−2)

while

nnbn−1
2 − nnbn−1

1 � nnbn−1
2 � 3−n+1nHn−1

which is impossible for a sufficiently large H .

Unfortunately, this argument does not give the lower bound H2+o(1) for the

number of distinct discriminants of fields generated by roots of polynomials

in In(f), improving Corollary 1.6, since having distinct discriminants of poly-

nomials does not imply necessarily distinct discriminants of fields.

Finally, we note that our methods can also be used to investigate the dis-

criminants of the fields generated by some other special families of polynomials.

For example, one of such families is given by quadrinomials Xn+ aX2+ bX+ c

for the discriminant of which an explicit formula has been given by Otake and

Shaska [32].

7. Appendix

7.1. Preliminary discussion. We use this opportunity to fix an error in [12].

Namely [12, Lemmas 5 and 6] (and consequently [12, Lemma 8]) are not correct

as stated if the degree n is of the form n = m2 or n = m2 + 1 for some odd m,

and therefore [12, Lemma 8] cannot always be directly applied in these cases

as well. This does not affect the main results [12, Theorems 1 and 2] in these

cases, so let us quickly explain how to amend the proof:

7.2. The case of n = m2
. If n = m2 for odd m, then we can directly handle

the contribution of an such that z2 −Δ(a1, . . . , an) is reducible: [12, Lemma 6]

as well as [12, Lemma 5] in the case of c1 �= 0 are still correct. As a substitute

for [12, Lemma 5] for c1 = 0, we can use [18, Satz 1] (see also [19, Section 1]).

The latter result shows that for fixed a1, . . . , an−2 ∈ Z, there are, uniformly

in a1, . . . , an−2, only finitely many rational specialisations for an−1, for which

the resulting polynomial f(X) = Xn + a1X
n−1 + · · ·+ an, regarded as a poly-

nomial in Q(an)[X ], does not have Galois group Sn over the rational function
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field Q(an). Only in these cases z2−Δ(a1, . . . , an), as a polynomial in z and an,

can be reducible over Q, since otherwise having Galois group Sn over Q(an) ex-

cludes the possibility that the discriminant Δ(a1, . . . , an) is a square in Q(an).

Therefore there can be only O(1) many exceptional ‘bad planes’ given by [12,

Equation (5)], for which the bound in [12, Lemma 8] does not hold true. Just

using the trivial bound O(H) for the number of solutions in these cases instead

of the bound provided by [12, Lemma 8] is acceptable, as the resulting bound

of O(Hn−2) (for fixing a1, . . . , an−2) times O(1) (for the number of exceptional

‘bad planes’) times O(H) (trivially bounding the solutions instead of using the

bound from [12, Lemma 8]) is certainly Hn−2+
√
2+o(1). This fixes the error

for n = m2 and odd m.

7.3. The case of n = m2 + 1. If n = m2 + 1 for odd m � 3, then n cannot

be divisible by 3. In this case, at the outset instead of fixing n− 2 coefficients

a1, . . . , an−2 we fix n − 2 coefficients a1, . . . , an−4, an−2, an−1 instead. As a

substitute for [12, Lemma 5] in the case of c1 �= 0 we prove the following result.

Lemma 7.1: Let m � 3 be an odd integer, and let n = m2 + 1. Further,

let a1, . . . , an−4, an−2, an−1 be fixed integers, and let c1, c2 ∈ Q with c1 �= 0.

Then the polynomial

z2 −Δ(a1, . . . , an−4, c1an + c2, an−2, an−1, an)

is irreducible in Q[z, an].

Proof. We use the observation that for fixed a1, . . . , an−4, an−2, an−1, the dis-

criminant Δ(an−3, an) = Δ(a1, . . . , an) as a polynomial in an−3 and an is of

the form

(7.1) Δ(an−3, an) = (n− 3)n−333ann−3a
2
n +Φ(an−3, an),

where Φ has total degree strictly less than n + 2. The proof is analogous

to that of [12, Lemma 4], using the fact that Δ(a1, . . . , an) is a weighted-

homogeneous polynomial in the ai, each ai having weight i, and the total weight

of Δ(a1, . . . , an) is n(n − 1). Therefore, for fixed a1, . . . , an−4, an−2, an−1 any

monomial aαn−3a
β
n occurring in Δ(a1, . . . , an) satisfies

(7.2) (n− 3)α+ nβ � n(n− 1).

For α = n and β = 2 the left hand side of (7.2) just equals n(n−1), whence the

monomial δna
n
n−3a

2
n occurs in Δ(an−3, an), with a constant δn only depending
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on n; note that we do not yet know whether δn �= 0. To establish (7.1) it is

therefore enough to check that this is the only solution of (7.2) with α+β � n+2,

and then to evaluate δn. If α+ β � n+ 2 and β � 3, then

(n− 3)α+ nβ � (n− 3)(n+ 2− β) + nβ

= (n− 3)(n+ 2) + 3β

= n(n− 1)− 6 + 3β � n(n− 1) + 3.

If β � 1, then α + β � n + 2 gives α > n, which is impossible, because the

maximum power of any ai occurring in any monomial of Δ(a1, . . . , an) is at

most n. The latter is easily checked by writing the discriminant Δ(a1, . . . , an)

in the form

Δ(a1, . . . , an) = (−1)n(n−1)/2 Res(f, f ′)

(see the formula (2.1)), where f = Xn + a1X
n−1 + · · · + an, expressing the

resultant Res(f, f ′) of f and its derivative f ′ by the Sylvester formula as a

certain determinant in a1, . . . , an, and checking that each ai occurs in at most

n columns. Hence

Δ(an−3, an) = δna
n
n−3a

2
n +Φ(an−3, an),

where Φ has total degree less than n+ 2. To determine the value of δn (which

only depends on n as remarked above), we observe that, as n is coprime to 3,

the trinomial Xn + aX3 + b has discriminant

(−1)n(n−1)/2b2(nnbn−3 + (−1)n+1(n− 3)n−333an)

(see, for example, [43, Theorem 2]), which immediately yields

δn = (−1)n(n−1)/2+n+1(n− 3)n−333 = (n− 3)n−333

as n = m2+1 ≡ 2 (mod 4). Having established (7.1), we see that for n coprime

to 3 the number (n− 3)n−333 cannot be a square, whence

z2 −Δ(a1, . . . , an−4, c1an + c2, an−2, an−1, an)

= z2 − (n− 3)n−333cn1a
n+2
n +O(an+1

n )

is irreducible in Q[z, an].

The special cases that an−3 or an are being fixed (substitutes for the analogues

of [12, Lemma 5] where c1 = 0, and [12, Lemma 6], respectively) can be handled

as above by the result of Hering [18], again using that n is coprime to 3. The

argument can then be finished as above, using the main result of [41] instead
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of [12, Lemma 10] to see that for n coprime to 3 the polynomial Xn + aX3 + b

has Galois group Sn over any function field K(a, b) where K is any field of

characteristic zero.
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