# CORRIGENDUM TO <br> "BRAUER ALGEBRAS OF SIMPLY LACED TYPE" 

BY<br>Arjeh M. Cohen<br>Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven Postbus 513, 5600 MB Eindhoven, The Netherlands<br>e-mail: arjehmcohen@gmail.com<br>AND<br>David B. Wales<br>Department of Mathematics, Linde Hall, California Institute of Technology Pasadena, CA 91125, USA<br>e-mail:dbw@caltech.edu

Recently, Ivan Marin informed us of an error in the proof of Proposition 5.4 in the paper [2] entitled Brauer algebras of simply laced type. He also mentioned this observation in his preprint [3]. Here we give an improved argument. The result is exactly the same as for our incorrect argument and so other results using the proposition remain valid. We are grateful to Ivan Marin for pointing out the error.

Proposition 5.4 states "The irreducible representations obtained in Proposition 5.3 are not equivalent." For the proof, we adopt the notation of [2] and start by recalling the notions involved in the statement of Proposition 5.3. Let $Q$ be a simply laced Dynkin diagram. We write $W$ for the Weyl group of type $Q$ and $\Phi$ for the corresponding root system. The Brauer algebra of type $Q$, denoted $\operatorname{Br}(Q)$, is an algebra over $\mathbb{Q}(\delta)$, where $\delta$ is an indeterminate, generated by $2 n$ generators which are labelled $r_{i}$ and $e_{i}$ for $1 \leq i \leq n$ subject to relations given in [2] Table 1. The subgroup of the multiplicative group of $\operatorname{Br}(Q)$ generated by $r_{1}, \ldots, r_{n}$ is isomorphic to $W$. We identify $W$ with this subgroup.

We fix a subset $C$ of nodes of $Q$ in the following way: a subset $B$ of $\Phi$ consisting of mutually perpendicular roots is called admissible if, whenever $\alpha$ is a member of $\Phi$ perpendicular to three members of $B$, there is a fourth member of $B$ perpendicular to $\alpha$. In [1] a partial order on admissible sets was defined. Each orbit of an admissible set under the Weyl group has a unique maximal element with respect to this partial order. We fix such a maximal admissible set $B_{0}$. Then $C$ is the set of nodes of $Q$ whose corresponding roots are perpendicular to every root of $B_{0}$.

The subgroup of $W$ generated by all $r_{i}$ for $i$ in $C$ is denoted $W(C)$. Let $U_{1}$ be an irreducible invariant subspace of the regular representation of $W(C)$ over $\mathbb{Q}(\delta)$. According to Propositions 5.2 and 5.3 of [2] there is an irreducible representation $V_{1}$ of $\operatorname{Br}(Q)$ over $\mathbb{Q}(\delta)$ with basis $\xi_{B} u$ for $B$ running over the $W(C)$-orbit of $B_{0}$ and $u$ over a basis of the $\mathbb{Q}(\delta)[W(C)]$-module $U_{1}$.

In order to prove Proposition 5.4 we need to show that two $\operatorname{Br}(Q)$-representations $V_{1}$ and $V_{2}$ constructed in this way from inequivalent $W(C)$-representations $U_{1}$ and $U_{2}$ (where $V_{2}$ is obtained from $U_{2}$ in the same way as $V_{1}$ is obtained from $U_{1}$ ) are inequivalent. We will use the element $e_{0}$ of $\operatorname{Br}(Q)$ which is the product over all $e_{\alpha}$ for $\alpha \in B_{0}$, where $e_{\alpha}=w e_{i} w^{-1}$ whenever $\alpha$ is equal to the image under an element $w$ in $W$ of the fundamental root corresponding to the node $i$ of $Q$. By Corollary 4.6 of [2], for each element $B$ of the $W$-orbit of $B_{0}$, the image $e_{0} \xi_{B}$ under $e_{0}$ of $\xi_{B}$ lies in $\xi_{B_{0}} U_{1}$, while $e_{0} \xi_{B_{0}}$ is nontrivial. This implies that $e_{0} V_{1}=\xi_{B_{0}} U_{1}$. Moreover (for instance by Lemma 4.3(iii)), each element of $W(C)$ commutes with $e_{0}$, so $e_{0} V_{1}$ is invariant under $W(C)$ and, as a $\mathbb{Q}(\delta)[W(C)]$-module, isomorphic to $U_{1}$. In particular, for $V_{1}$ and $V_{2}$ as above, the $W(C)$-invariant subspaces $e_{0} V_{1}$ and $e_{0} V_{2}$ are inequivalent $\mathbb{Q}(\delta)[W(C)]$-modules, so $V_{1}$ and $V_{2}$ are inequivalent $\operatorname{Br}(Q)$-modules. This proves Proposition 5.4.

## References

[1] A. M. Cohen, D. A. H. Gijsbers and D. B. Wales, A poset connected to Artin monoids of simply laced type, Journal of Combinatorial Theory, Series A 113 (2006), 1646-1666.
[2] A. M. Cohen, B. Frenk and D. B. Wales, Brauer algebras of simply laced type, Israel Journal of Mathematics 173 (2009), 335-365.
[3] I. Marin, Truncations and extensions of the Brauer-Chen algebra, https://arxiv.org/abs/1901.06133.

