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ABSTRACT

The multivariate moment problem is investigated in the general context of

the polynomial algebra R[xi | i ∈ Ω] in an arbitrary number of variables xi,

i ∈ Ω. The results obtained are sharpest when the index set Ω is countable.

Extensions of Haviland’s theorem [17] and Nussbaum’s theorem [34] are

proved. Lasserre’s description of the support of the measure in terms

of the non-negativity of the linear functional on a quadratic module of

R[xi | i ∈ Ω] in [27] is shown to remain valid in this more general situation.

The main tool used in the paper is an extension of the localization method

developed by the third author in [30], [32] and [33]. Various results proved

in [30], [32] and [33] are shown to continue to hold in this more general

setting.
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1. Introduction

The univariate moment problem is an old problem with origins tracing back to

work of Stieltjes [45]. Given a sequence (sk)k≥0 of real numbers one wants to

know when there exists a Radon measure μ on R such that

sk =

∫
xkdμ ∀ k ≥ 0.1

Since the monomials xk, k ≥ 0 form a basis for the polynomial algebra R[x], this

problem is equivalent to the following one: Given a linear functional L :R[x] →R,

when does there exist a Radon measure μ on R such that

L(f) =

∫
fdμ ∀ f ∈ R[x].

One also wants to know to what extent the measure is unique, assuming it

exists; [1] and [43] are standard references.

Work on the multivariate moment problem is more recent. For n ≥ 1,

R[x] := R[x1, . . . , xn]

denotes the polynomial ring in n variables x1, . . . , xn. Given a linear functional

L : R[x] → R one wants to know when there exists a Radon measure μ on Rn

such that L(f) =
∫
fdμ ∀f ∈ R[x]. Again, one also wants to know to what

extent the measure is unique, assuming it exists; [7], [12], [25], [31], [37] are

general references. A major motivation here is the close connection between the

multivariate moment problem and polynomial optimization using semidefinite

programming; see [25], [28], [31] and the references therein.

There are also papers dealing with the moment problem in infinitely many

variables. These deal with cases where the linear functional in question is con-

tinuous for a certain topology: [2] applies Schmüdgen’s solution of the moment

problem in [42] to represent L1-continuous linear functionals on the vector space

of polynomials of Brownian motion as integration with respect to probability

measures on the Wiener space of R; [5, Theorem 2.1], [6], [11], [18], [19], [20] and

[40, Theorem 12.5.2] consider continuous linear functionals on the symmetric

algebra of a nuclear space; [13] deals with linear functionals on the symmetric

algebra of a locally convex space (V, τ) which are continuous with respect to

the finest locally multiplicatively convex topology extending τ ; [10], [14] and

1 All Radon measures considered are assumed to be positive.
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[15] are precursors of [13]. The present paper seems to be the first to deal with

the general case.

The method used in the present paper is an extension of the localization

method in [30], [32] and [33], the latter method being motivated in turn by

results in [24], [29] and [38]. It is worth noting that, although some of the

results in [30], [32] and [33] are similar in nature to those in [38], the arguments

are completely different.

The paper was written with no particular application in mind. At the same

time, it seems reasonable to expect that applications do exist. E.g., there may

be connections to some variant of the semi-infinite polynomial optimization

problem considered in [26], [46].

Section 2 introduces terminology and notation. Two important new concepts,

constructibly Borel sets and constructibly Radon measures, are defined in this

section. In Section 3 we introduce three algebras A = AΩ := R[xi | i ∈ Ω],

B = BΩ := R[xi,
1

1+x2
i
| i ∈ Ω], and C = CΩ := R[ 1

1+x2
i
, xi

1+x2
i
| i ∈ Ω], show how

the moment problem for AΩ reduces to understanding the extensions of a linear

functional L : AΩ → R to a positive linear functional on BΩ, see Corollary 3.4,

and prove that positive linear functionals L : BΩ → R correspond bijectively to

constructibly Radon measures on RΩ, see Theorem 3.8. We also consider the

important question of when the constructibly Radon measures thus obtained

are actually Radon; see Lemma 3.6, Remark 3.7 and Theorem 5.4. In Section 4

we explain how results in [32] and [33] carry over, more-or-less word-for-word, to

the case of infinitely many variables. In particular, we extend results of Fuglede

[12] and Petersen [35], see Corollary 4.3 and Corollary 4.5, and we establish

extensions of Nussbaum’s well-known sufficient condition for a linear functional

L : AΩ → R to correspond to a measure [34]; see Theorem 4.6, Corollary 4.8

and Theorem 4.10. Section 5 deals with the problem of describing supporting

sets for the measure. There are a number of important results in Section 5; see

for example Theorem 5.1, which is an extension of Haviland’s theorem [17], and

Theorem 5.2, which is an extension of a result of Lasserre [27]. In Section 6 we

explain how the cylinder results in [30], [32] and [33] extend to infinitely many

variables.

The reader will notice that everything works more-or-less perfectly in case

Ω is countable. If Ω is uncountable everything still works, but one typically

only knows that the measures obtained are constructibly Radon (as opposed to
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Radon) and the results obtained concerning the support of the measure are a

bit more restrictive than one might like.

2. Terminology and notation

All rings considered are commutative with 1. All ring homomorphisms consid-

ered send 1 to 1. All rings we are interested in are R-algebras. For n ≥ 1,

R[x] := R[x1, . . . , xn]. For a topological space X , C(X) denotes the ring of all

continuous functions from X to R.

Let A be a commutative ring; X(A) denotes the character space of A, i.e.,

the set of all ring homomorphisms α : A → R. For a ∈ A, â = âA : X(A) → R

is defined by âA(α) = α(a); X(A) is given the weakest topology such that

the functions âA, a ∈ A are continuous. The mapping a �→ âA defines a ring

homomorphism from A into C(X(A)). The only ring homomorphism from R to

itself is the identity. Ring homomorphisms from R[x] to R correspond to point

evaluations f �→ f(α), α ∈ Rn; X(R[x]) is identified (as a topological space)

with Rn. By a quadratic module of A we mean a subset M of A satisfying

1 ∈ M, M +M ⊆ M and a2M ⊆ M for each a ∈ A.

A preordering of A is a quadratic module of A which is also closed under

multiplication. For a subset X of X(A),

PosA(X) := {a ∈ A | âA ≥ 0 on X}
is a preordering of A. We denote by

∑
A2 the set of all finite sums

∑
a2i ,

ai ∈ A;
∑

A2 is the unique smallest quadratic module of A;
∑

A2 is closed

under multiplication, so
∑

A2 is also the unique smallest quadratic preordering

of A. For a subset S ⊆ A, the quadratic module of A generated by S consists

of all finite sums s0+ s1g1+ · · ·+ skgk, g1, . . . , gk ∈ S, s0, . . . , sk ∈ ∑
A2. Also,

XS := {α ∈ X(A) | âA(α) ≥ 0 ∀a ∈ S}.
If M =

∑
A2 then XM = X(A). If M is the quadratic module of A generated

by S thenXM := XS . A quadratic moduleM in A is said to be archimedean if

for each a ∈ A there exists an integer k such that k±a ∈ M . If M is a quadratic

module of A which is archimedean, then XM is compact. The converse is false

in general [22].

For simplicity, we assume from now on that A is an R-algebra. We record

the following special case of the representation theorem of T. Jacobi [21].
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Theorem 2.1: Suppose M is an archimedean quadratic module of A. Then,

for any a ∈ A, the following are equivalent:

(1) âA ≥ 0 on XM .

(2) a+ ε ∈ M for all real ε > 0.

Note: The implication (2) ⇒ (1) is trivial. The implication (1) ⇒ (2) is

non-trivial. See [4], [23] and [36] for early versions of Jacobi’s theorem. See [31]

for a simple proof.

The open sets

UA(a) := {α ∈ X(A) | âA(α) > 0}, a ∈ A

form a subbasis for the topology on X(A) (even a basis). Suppose A is gen-

erated as an R-algebra by xi, i ∈ Ω. The embedding X(A) ↪→ RΩ defined by

α �→ (α(xi))i∈Ω identifies X(A) with a subspace of RΩ. Sets of the form

{
b ∈ RΩ |

∑
i∈I

(bi − pi)
2 < r

}
,

where r, pi ∈ Q and I is a finite subset of Ω, form a basis for the product

topology on RΩ. It follows that sets of the form

(2.1) UA

(
r −

∑
i∈I

(xi − pi)
2

)
, r, pi ∈ Q, I a finite subset of Ω,

form a basis for X(A).

A subset E of X(A) is called Borel if E is an element of the σ-algebra of

subsets of X(A) generated by the open sets. A subset E of X(A) is said to be

constructible (resp., constructibly Borel) if E is an element of the algebra

(resp., σ-algebra) of subsets of X(A) generated by the UA(a), a ∈ A.2

Clearly constructible ⇒ constructibly Borel ⇒ Borel.

Proposition 2.2: If A is generated as an R-algebra by a countable set

{xi | i ∈ Ω}, then sets of the form (2.1) form a countable basis for the topology

on X(A) and every Borel set of X(A) is constructibly Borel.

Proof. This is clear.

2 The descriptor ‘constructible’ is borrowed from standard terminology in real algebraic

geometry; e.g., see [3]. Constructible sets in Rn are also called semialgebraic sets.
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Proposition 2.3: A subset E of X(A) is constructibly Borel iff E = π−1(E′)
for some Borel set E′ of X(A′), where A′ is a countably generated subalgebra

of A and π : X(A) → X(A′) is the canonical restriction map, i.e., π(α) = α|A′ .

Proof. Clearly UA(a) = π−1(UA′(a)) for any a ∈ A′. Coupled with Proposition

2.2 this implies that, for each Borel set E′ of X(A′), π−1(E′) is an element of the

σ-algebra of subsets of X(A) generated by the UA(a), a ∈ A′ (and conversely).

Denote this σ-algebra by ΣA′ . It remains now to show that the union of the σ-

algebras ΣA′ , A′ running through the countably generated subalgebras of A, is

itself a σ-algebra. This follows from the well-known fact that a countable union

of countable sets is countable (so the subalgebra of A generated by countably

many countably generated subalgebras of A is itself countably generated).

The support of a measure is not defined in general. For a measure space

(X,Σ, μ) and a subset Y of X , we say μ is supported by Y if

E ∩ Y = ∅ ⇒ μ(E) = 0 ∀ E ∈ Σ.

In this situation, if Σ′ := {E∩Y | E ∈ Σ}, and μ′(E∩Y ) := μ(E) ∀E ∈ Σ, then

Σ′ is a σ-algebra of subsets of Y , μ′ is a well-defined measure on (Y,Σ′), the
inclusion map i : Y → X is a measurable function, and μ is the pushforward of

μ′ to X .

Recall that if (Y,Σ′, μ′) is a measure space, (X,Σ) is a σ-algebra, i : Y → X

is any measurable function, and μ is the pushforward of μ′ to (X,Σ), then for

each measurable function f : X → R,
∫
fdμ =

∫
(f ◦ i)dμ′ [16, Theorem 39C].

This is the well-known change in variables theorem.

ARadon measure onX(A) is a positive measure μ on the σ-algebra of Borel

sets of X(A) which is locally finite and inner regular. Locally finite means that

every point has a neighbourhood of finite measure. Inner regular means each

Borel set can be approximated from within using a compact set.

Definition 2.4: A constructibly Radon measure on X(A) is a positive mea-

sure μ on the σ-algebra of constructibly Borel sets of X(A) such that, for each

countably generated subalgebra A′ of A, the pushforward of μ to X(A′) via the

restriction map α �→ α|A′ is a Radon measure on X(A′).

We are interested here in Radon and constructibly Radon measures having

the additional property that âA is μ-integrable (i.e.,
∫
âAdμ is well-defined and

finite) for all a ∈ A. For a linear functional L : A → R, one can consider the set
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of Radon or constructibly Radon measures μ on X(A) such that L(a) =
∫
âAdμ

∀a ∈ A. The moment problem is to understand this set of measures, for a

given linear functional L : A → R. In particular, one wants to know: (i) When

is this set non-empty? (ii) In case it is non-empty, when is it a singleton set?

A linear functional L : A → R is said to be positive if

L
(∑

A2
)
⊆ [0,∞)

and M-positive, for some quadratic module M of A, if

L(M) ⊆ [0,∞).

3. Three special R-algebras

Let

A = AΩ := R[xi | i ∈ Ω],

the ring of polynomials in the variables xi, i ∈ Ω with coefficients in R,

B = BΩ := R

[
xi,

1

1 + x2
i

| i ∈ Ω
]
,

the localization of A at the multiplicative set generated by the 1 + x2
i , i ∈ Ω,

and

C = CΩ := R

[ 1

1 + x2
i

,
xi

1 + x2
i

| i ∈ Ω
]
,

the R-subalgebra of B generated by the elements 1
1+x2

i
, xi

1+x2
i
, i ∈ Ω. Here, Ω is

an arbitrary index set.

By definition, A (resp., B, resp., C) is the direct limit of the R-algebras AI

(resp., BI , resp., CI), I running through all finite subsets of Ω. Because of this,

many questions about A, B and C reduce immediately to the case where Ω is

finite. Observe also that if Ω is finite, then B is equal to the localization of A

at

p :=
∏
i∈Ω

(1 + x2
i )

considered in [32]. This is clear.

Elements of X(A) and X(B) are naturally identified with point evaluations

f �→ f(α), α ∈ RΩ. Note that X(A) = X(B) = RΩ, not just as sets, but also

as topological spaces, giving RΩ the product topology.
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Theorem 3.1:

(1) For f ∈ B, the following are equivalent:

(i) f ∈ C;

(ii) f is geometrically bounded, i.e., ∃ k ∈ N such that |f(α)| ≤ k

∀α ∈ RΩ;

(iii) f is algebraically bounded, i.e., ∃ k ∈ N such that k±f ∈ ∑
B2.

(2)
∑

B2 ∩ C =
∑

C2. In particular,
∑

C2 is archimedean.

(3) C is naturally identified (via yi ↔ 1
1+x2

i
and zi ↔ xi

1+x2
i
) with the

polynomial algebra R[yi, zi | i ∈ Ω] factored by the ideal generated by

the polynomials y2i + z2i − yi = (yi − 1
2 )

2 + z2i − 1
4 , i ∈ Ω. Consequently,

X(C) is identified naturally with SΩ, where

S :=
{
(y, z) ∈ R2 |

(
y − 1

2

)2

+ z2 =
1

4

}
.

(4) The restriction map α �→ α|C identifies X(B) with a subspace of X(C).

In terms of coordinates, this map is given by

α = (xi)i∈Ω �→ β = (yi, zi)i∈Ω,

where yi :=
1

1+x2
i
, zi :=

xi

1+x2
i
. In particular, the image of X(B) is dense

in X(C).

Proof. See [32, Remark 2.2].

Corollary 3.2:

(1) For f ∈ C, f̂C ≥ 0 on X(C) iff f + ε ∈ ∑
C2 ∀ real ε > 0.

(2) For f ∈ B, f̂B ≥ 0 on X(B) iff ∃ q of the form q =
∏n

k=1(1 + x2
ik
)�k ,

where xi1 , . . . , xin are the variables appearing in f , such that

f + εq ∈
∑

B2,

for all real ε > 0.

Proof. (1) Since
∑

C2 is archimedean, this is immediate from Theorem 2.1. (2)

If f ∈ B, say f ∈ B{i1,...,in}, there exists an element q of the form

q =

n∏
k=1

(1 + x2
ik)

�k

such that f
q ∈ C. Thus, if f ≥ 0 on X(B) then f

q ≥ 0 on X(C) so f
q + ε ∈ ∑

C2

and, consequently, f + εq ∈ ∑
B2, ∀ real ε > 0.
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It follows from Corollary 3.2 that a linear functional L : C → R is positive iff

it is PosC(X(C))-positive, and a linear functional L : B → R is positive iff it is

PosB(X(B))-positive. For linear functionals L : A → R this is never the case,

except when |Ω| ≤ 1; see [9], [39].

Lemma 3.3: Suppose L : A → R is a linear functional and L(PosA(Y )) ⊆ [0,∞)

for some closed set Y ⊆ RΩ. Then L extends to a linear functional L : B → R

such that L(PosB(Y )) ⊆ [0,∞).

Note: The extension is not unique, in general.

Proof. The proof is a simple modification of the Zorn’s lemma argument in

[30, Theorem 3.1]. Denote by C′(Y ) the R-algebra of all continuous functions

f : Y → R which are bounded by some â, a ∈ A in the sense that |f | ≤ |â| on
Y . As in the proof of [30, Theorem 3.1] ∃ a linear functional L : C′(Y ) → R

which is PosC′(Y )(Y )-positive (i.e., ∀f ∈ C′(Y ), f ≥ 0 on Y ⇒ L(f) ≥ 0) such

that L(a) = L(â|Y ) ∀a ∈ A. If b ∈ B then

b =
a

(1 + x2
i1
)�1 · · · (1 + x2

in
)�n

for some a ∈ A, n ≥ 1, ik ∈ Ω, 	k ≥ 0, k = 1, . . . , n. Since 1 + α2 ≥ 1 ∀α ∈ R

it follows that |b̂| ≤ |â| on Y , i.e., b̂|Y ∈ C′(Y ) ∀b ∈ B. Define L : B → R by

L(b) = L(b̂|Y ).
Corollary 3.4: For a linear functional L : A → R the following are equivalent:

(1) L is PosA(X(A))-positive.

(2) L extends to a positive linear functional L : B → R.

(3) ∀f ∈ A and ∀p of the form p =
∏n

k=1(1 + x2
ik
)�k , where xi1 , . . . , xin are

the variables appearing in f and 	k ≥ 0, k = 1, . . . , n,

pf ∈
∑

A2 ⇒ L(f) ≥ 0.

Proof. (1) ⇒ (2). Apply Lemma 3.3 with Y = RΩ.

(2) ⇒ (3). Since pf ∈ ∑
A2, it follows that p2f ∈ ∑

A2, so f ∈ ∑
B2. Since

the extension of L to B is positive this implies L(f) ≥ 0.

(3) ⇒ (1). Suppose f ∈ A, f̂ ≥ 0. By Corollary 3.2 (2) ∃ q =
∏n

k=1(1+x2
ik
)�k ,

where xi1 , . . . , xin are the variables appearing in f , such that f + εq ∈ ∑
B2

∀ε > 0. Clearing denominators, p2(f + εq) ∈ ∑
A2 for some p (depending on ε)



998 M. GHASEMI, S. KUHLMANN AND M. MARSHALL Isr. J. Math.

of the form p =
∏n

k=1(1 + x2
ik
)mk . By (3), L(f) + εL(q) = L(f + εq) ≥ 0. Since

ε > 0 is arbitrary, this implies L(f) ≥ 0.

Positive linear functionals L : B → R restrict to positive linear functionals

on C. Positive linear functionals L : C → R are in natural one-to-one corre-

spondence with Radon measures μ on the compact space X(C) via L ↔ μ iff

L(f) =
∫
f̂Cdμ ∀f ∈ C. This is well-known, e.g., see [30, Corollary 3.3 and

Remark 3.5].

For i ∈ Ω, let Δi := {β ∈ X(C) | β( 1
1+x2

i
) = 0}. Because of the way X(C) is

being identified with SΩ, Δi is identified with the set

{(yj , zj)j∈Ω ∈ SΩ | yi = zi = 0}.
It is clear that X(C)\X(B) is the union of the sets Δi, i ∈ Ω. For each f ∈ B

one can associate a continuous function

f̃ : X(C)\(Δi1 ∪ · · · ∪Δin) → R,

where xi1 , . . . , xin are the variables appearing in f . Observe that f ∈ B{i1,...,in}.
Define

f̃ = f̂B{i1,...,in} ◦ π
where π : X(C) → X(C{i1,...,in}) is the restriction map. Observe that the

inverse image under π of the set X(C{i1,...,in})\X(B{i1,...,in}) is precisely the

set Δi1 ∪ · · · ∪Δin . Note also that f̃ |X(B) = f̂B.

Lemma 3.5: For each positive linear functional L : B → R there exists a unique

Radon measure μ on X(C) such that L(f) =
∫
f̂Cdμ ∀f ∈ C. This satisfies

μ(Δi) = 0 ∀i ∈ Ω and L(f) =
∫
f̃dμ ∀f ∈ B.

Proof. Fix a finite subset I = {i1, . . . , in} of Ω. By [30, Corollary 3.3] there

exists a Radon measure μ on X(C) and a Radon measure μI on X(CI) such

that L(f) =
∫
f̂Cdμ ∀f ∈ C and L(f) =

∫
f̂CIdμI ∀f ∈ CI . Applying [30,

Corollary 3.4] with p = (1 + x2
i1
) · · · (1 + x2

in
), there exists a Radon measure

νI on X(BI) such that L(f) =
∫
f̂BIdνI ∀f ∈ BI . By [30, Remark 3.5] the

measures μ, μI , νI are unique. Denote by μ′
I the pushforward of μ to X(CI) by

the restriction map π : X(C) → X(CI). Since f̂C = f̂CI ◦ π ∀f ∈ CI , it follows

that ∫
f̂CIdμ

′
I =

∫
f̂Cdμ = L(f) ∀ f ∈ CI ,
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so uniqueness of μI implies μ′
I = μI . A similar argument shows that μI is

the pushforward of νI via the natural embedding X(BI) ↪→ X(CI). It follows

that μ(Δi1 ∪ · · · ∪Δin) = μI(X(CI)\X(BI)) = 0. Since I is an arbitrary finite

subset of Ω, this implies μ(Δi) = 0 ∀i ∈ Ω. Suppose now that f ∈ BI . Since

f̃ = f̂BI ◦ π,
∫
f̃dμ =

∫
f̂BIdνI = L(f) as required.

One would like to know when there exists a Radon measure ν on X(B) such

that L(f) =
∫
f̂Bdν ∀f ∈ B.

Lemma 3.6: Let L be a positive linear functional on B and let μ be the Radon

measure on X(C) associated to L. The following are equivalent:

(1) ∃ a Radon measure ν on X(B) such that L(f) =
∫
f̂Bdν ∀f ∈ B.

(2) ∀ Borel sets E of X(C),

μ(E) = sup{μ(K) | K compact, K ⊆ X(B) ∩ E}.

(3) μ(X(C)) = sup{μ(K) | K compact, K ⊆ X(B)}.
(4) μ is supported by a Borel set E of X(C) such that E ⊆ X(B).

Moreover, if this is the case, then ν(E) = sup{μ(K) | K compact, K ⊆ E} for

all Borel sets E of X(B). In particular, ν is uniquely determined by μ.

Proof. Assume (1). Denote by μ′ the pushforward of ν to X(C). Then, ∀f ∈ C,∫
f̂Cdμ

′ =
∫
f̂Bdν = L(f). Uniqueness of μ implies μ′ = μ. Since ν is Radon,

(2) is now clear. (2) ⇒ (3) is obvious. Assume (3). Define E =
⋃

n≥1 Kn

where Kn is a compact subset of X(B) such that μ(X(C)\Kn) ≤ 1
n . Clearly

E ⊆ X(B), E is a Borel set of X(C) and μ is supported by E. This proves

(4). Assume (4). Then ν defined by ν(E′ ∩X(B)) = μ(E′) ∀ Borel sets E′ of
X(C) is a Radon measure on X(B). Since μ is the pushforward of ν to X(C),∫
f̂Bdν =

∫
f̃dμ = L(f), so (1) is clear. The last assertion is clear.

Remark 3.7: If Ω is countable, then X(C)\X(B) =
⋃

i∈ΩΔi is a Borel set of

measure zero, so the equivalent conditions of Lemma 3.6 hold in this case. We

know of no example where the conditions of Lemma 3.6 fail. It would be nice

to have an example.3

3 If we assume Ω is uncountable, then it is easy enough to construct a Radon measure μ

on X(C) so that the equivalent conditions (2) and (3) fail. This is not a problem. The

problem is to choose such a μ so that, in addition,
∫
f̃dμ is well-defined and finite for all

f ∈ B.
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It seems probable that, to handle the most general case, one has to relax the

requirement that ν be Radon, requiring only that ν be constructibly Radon.

Theorem 3.8: There is a canonical one-to-one correspondence L ↔ ν given

by L(f) =
∫
f̂Bdν ∀f ∈ B between positive linear functionals L on B and con-

structibly Radon measures ν on X(B) with the property that f̂B is ν-integrable

∀f ∈ B.

Proof. If ν is a constructibly Radon measure on X(B) and f̂B is ν-integrable

∀f ∈ B, then it is clear that the map f �→ ∫
f̂Bdν, f ∈ B is a positive linear

functional on B. Conversely, suppose L is a positive linear functional on B. Let

μ be the measure defined in Lemma 3.5. For each subset I of Ω, consider the

subalgebra BI of B and the subalgebra CI of C. Denote by μI the pushforward

of μ via the canonical restriction map π : X(C) → X(CI). One checks that μI

is the Radon measure on X(CI) corresponding to the positive linear map L|BI .

In particular, if I is countable then μI(X(CI)\X(BI)) = 0.

Claim 1: If E inX(C) is constructibly Borel andX(B)∩E = ∅, then μ(E) = 0.

Say E = π−1(E′), E′ a Borel set in X(CI), I ⊆ Ω countable. Since the

restriction map X(B) → X(BI) is surjective, our hypothesis implies that

X(BI) ∩ E′ = ∅. It follows that μ(E) = μI(E
′) = 0 as required.

Claim 2: The constructibly Borel sets in X(B) are precisely the sets of the

form X(B) ∩ E where E is constructibly Borel in X(C). This is more or less

clear. If f ∈ C then UB(f) = X(B) ∩ UC(f). If f ∈ B then there exists p of

the form p =
∏n

k=1(1 + x2
ik
)�k where xi1 , . . . , xin are the variables appearing in

f such that f
p ∈ C. Also, UB(f) = UB(

f
p ) for any such p.

Define a measure ν on the σ-algebra of constructibly Borel subsets of X(B)

by ν(X(B)∩E) := μ(E) ∀ constructibly Borel subsets E of X(C). By Claim 1,

ν is well-defined. By construction, μ is the pushforward of ν to X(C). Also,

f̂B = f̃ |X(B) ∀f ∈ B. It follows that
∫
f̂Bdν =

∫
f̃dμ = L(f) ∀f ∈ B. For each

countable I ⊆ Ω, the pushforward of ν to X(BI) is the Radon measure νI on

X(BI) induced by μI using Lemma 3.6 and Remark 3.7. It follows that ν is

constructibly Radon.

It remains to show that ν is unique. Let ν′ be any constructibly Radon

measure on X(B) such that
∫
f̂Bdν

′ = L(f) ∀f ∈ B. For I ⊆ Ω countable,

let ν′I be the pushforward of ν′ to X(BI) and let μ′
I be the pushforward of
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ν′I to X(CI). Then L(f) =
∫
f̂Bdν

′ =
∫
f̂CIdμ

′
I ∀f ∈ CI . Since we also

have L(f) =
∫
f̂Bdν =

∫
f̂CIdμI ∀f ∈ CI , this implies

∫
f̂CIdμ

′
I =

∫
f̂CIdμI

∀f ∈ CI . Thus by uniqueness of μI , μ
′
I = μI ∀ countable I ⊆ Ω. This in turn

implies that ν′I = νI ∀ countable I ⊆ Ω, so ν′ = ν.

Remark 3.9: If μ is supported by a constructibly Borel set K in X(C), then ν is

supported byK∩X(B). This follows from Claim 1. If E is a constructibly Borel

set in X(C) and E ∩K ∩X(B) = ∅, then μ(E ∩K) = 0. Since μ is supported

by K this implies in turn that ν(E ∩X(B)) = μ(E) = 0. Unfortunately, we are

unable to prove this in the more general setting where K is only assumed to be

a Borel set of X(C). Of course, if μ happens to be the pushforward of a Radon

measure ν on X(B) (the case considered in Lemma 3.6), then μ supported by

K ⇒ ν supported by K ∩X(B) for any Borel set K of X(C).

4. Moment problem

We fix an index set Ω and define A = AΩ, B = BΩ and C = CΩ as in the

previous section. We identify X(A) = X(B) = RΩ. The measures ν arising

in Theorem 3.8 have finite moments, i.e.,
∫
x̂αdν is well-defined and finite

for all monomials xα := xα1

i1
· · ·xαn

in
, {i1, . . . , in} ⊆ Ω, αk ≥ 0, k = 1, . . . , n.

Conversely, if ν is a constructibly Borel measure on RΩ having finite moments,

then L : B → R defined by L(f) :=
∫
f̂dν is a well-defined positive linear

functional on B. This is clear.

Much of what was done in [32] and [33] in the finite-dimensional case carries

over, more or less word for word, to the infinite-dimensional case. Recall if

(X,Σ, μ) is a measure space and f : X → C is a measurable function, then

‖f‖s,μ :=

[ ∫
|f |sdμ

]1/s
, s ∈ [1,∞).

The Lebesgue space Ls(μ), by definition, is the C-vector space

Ls(μ) := {f : X → C | f is measurable and ‖f‖s,μ < ∞}
equipped with the norm ‖ · ‖s,μ.
Theorem 4.1: Suppose ν is a constructibly Radon measure on RΩ having finite

moments. Then for any s ∈ [1,∞) the obvious C-linear map B ⊗R C → Ls(ν),

f ⊗ r �→ rf̂ has dense image, equivalently, the image of B under the R-linear

map f �→ f̂ is dense in the real part of Ls(ν).
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Note that

A⊗R C = C[xi | i ∈ Ω], B ⊗R C = C

[
xi,

1

1 + x2
i

| i ∈ Ω
]
,

and

C ⊗R C = C

[ 1

1 + x2
i

,
xi

1 + x2
i

| i ∈ Ω
]
.

Proof. It suffices to show that the step functions
∑m

j=1 rjχEj , rj∈C, Ej⊆X(B)

a constructibly Borel set, belong to the closure of the image of B ⊗R C. Using

the triangle inequality we are reduced further to the case m = 1, r1 = 1. Let

E ⊆ X(B) be a constructibly Borel set. Writing E = π−1(E′) where E′ is a

Borel set in X(BI), for some appropriate countable I ⊆ Ω, and applying the

change of variable theorem, we see that ‖χE−f̂B‖s,ν = ‖χE′−f̂BI‖s,νI ∀f ∈ BI .

In this way we are reduced to the case where Ω is countable. ChooseK compact,

U open in X(C) such that K ⊆ E ⊆ U , μ(U\K) < ε. By Urysohn’s lemma

there exists a continuous function φ : X(C) → R such that 0 ≤ φ ≤ 1 on X(C),

φ = 1 on K, φ = 0 on X(C)\U . Then ‖χE − φ‖s,μ ≤ ε1/s. Use the Stone–

Weierstrass approximation theorem to get f ∈ C such that ‖φ − f̂C‖∞ < ε,

where ‖ · ‖∞ denotes the sup-norm. Then ‖φ− f̂C‖s,μ ≤ εμ(X(C))1/s. Putting

these things together yields

‖χE − f̂B‖s,ν =‖χE − f̂C‖s,μ
≤‖χE − φ‖s,μ + ‖φ− f̂C‖s,μ
≤ε1/s + εμ(X(C))1/s.

From now on, by a constructibly Radon measure on RΩ we will mean a

constructibly Radon measure on RΩ having finite moments.

Corollary 4.2: For any constructibly Radon measure ν on RΩ and any

s ∈ [1,∞), AΩ ⊗R C is dense in Ls(ν) iff AΩ ⊗R C is dense in BΩ ⊗R C in

the ‖ · ‖s,ν-norm.

Proof. Since the density property in question is transitive, this is immediate

from Theorem 4.1.

Corollary 4.3: Suppose ν is a constructibly Radon measure on RΩ and

s∈(1,∞). Suppose for each j ∈ Ω ∃ qjk ∈ AΩ⊗RC such that ‖qjk− 1
xj−i‖s,ν → 0

as k → ∞. Then AΩ ⊗R C is dense in Ls′(ν) for each s′ ∈ [1, s).
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Proof. Denote by AΩ ⊗R C the closure of AΩ ⊗R C with respect to topology

induced by the norm ‖ · ‖s′,ν . It suffices to show that each f ∈ BΩ⊗RC belongs

to AΩ ⊗R C. The proof is by induction on the number of factors of the form xj±i

appearing in the denominator of f . Suppose xj − i appears in the denominator

of f . By induction, fqjk(xj − i) belongs to AΩ ⊗R C, for each k ≥ 1. Applying

Hölder’s inequality

∫
|PQ|dν ≤

[∫
|P |adν

] 1
a

·
[∫

|Q|bdν
] 1

b

,
1

a
+

1

b
= 1

with P = |qjk − 1
xj−i |s

′
, Q = |f(xj − i)|s′ , a = s

s′ , b =
s

s−s′ , we see that

‖fqjk(x− i)− f‖s′,ν =
∥∥∥(qjk − 1

xj − i

)
f(xj − i)

∥∥∥
s′,ν

≤
∥∥∥qjk − 1

xj − i

∥∥∥
s,ν

· ‖f(xj − i)‖ ss′
s−s′ ,ν

.

It follows that f belongs to AΩ ⊗R C. The case where xj + i appears in the

denominator of f is dealt with similarly, replacing qjk by qjk.

Corollary 4.3 extends Petersen’s result in [35, Proposition]. In the one variable

case, i.e., when |Ω| = 1, one can conclude also that AΩ ⊗R C is dense in Ls(ν);

see [32, Corollary 3.3].

Caution: The proof given in [32, Corollary 3.6] is not correct. The proof in

[32, Corollary 3.6] is correct when qjk ∈ C[xj ] for each j and k.

The following result extends [32, Corollary 2.5] to the case where Ω is infinite.

Corollary 4.4: For any linear functional L : AΩ → R, the set of constructibly

Radon measures ν on RΩ satisfying L(f) =
∫
f̂dν ∀f ∈ AΩ is in natural one-

to-one correspondence with the set of positive linear functionals L′ : BΩ → R

extending L.

Proof. If ν is a constructibly Radon measure on RΩ such that L(f) =
∫
f̂dν

∀f ∈ AΩ, the corresponding extension of L to a positive linear functional

L′ : BΩ → R is defined by L′(f) =
∫
f̂dν ∀f ∈ BΩ. The correspondence

ν �→ L′ has the desired properties by Theorem 3.8.

For ν any constructibly Radon measure on RΩ, define Lν : AΩ → R by

Lν(f) =
∫
f̂dν ∀f ∈ AΩ. If ν′ is another constructibly Radon measure on RΩ,

we write ν ∼ ν′ to indicate that ν and ν′ have the same moments, i.e., Lν = Lν′ .
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We say ν is determinate if ν ∼ ν′ ⇒ ν = ν′ and indeterminate if this is not

the case.

Corollary 4.5: Suppose L : AΩ → R is linear and, for each j ∈ Ω,

(4.1) ∃ a sequence {pjk}∞k=1 in AΩ⊗C such that lim
k→∞

L(|1−(xj−i)pjk|2) = 0.

Then there is at most one constructibly Radon measure ν on RΩ such that

L = Lν.

Proof. Argue as in [32, Corollary 2.7].

Corollary 4.5 extends Fuglede’s result in [12, Section 7] and Petersen’s result

in [35, Theorem 3].

Theorem 4.6: Suppose L : AΩ → R is linear and positive and, for each j ∈ Ω,

(4.2)
∃ a sequence {qjk}∞k=1 in AΩ ⊗ C

such that lim
k→∞

L(|1− (1 + x2
j )qjkqjk|2) = 0.

Then there exists a unique constructibly Radon measure ν on RΩ such that

L = Lν.

Proof. Argue as in [32, Corollaries 4.7 and 4.8] and [33, Theorem 0.1].

Remark 4.7:

(i) For each j ∈ Ω, condition (4.1) is implied by condition (4.2). This is

clear. Just take pjk = (xj + i)qjkqjk.

(ii) For each j ∈ Ω, condition (4.2) is implied by the Carleman condition

(4.3)

∞∑
k=1

1

2k

√
L(x2k

j )
= ∞.

See [8, Théorème 3] and [33, Lemma 0.2 and Theorem 0.3] for the proof.

(iii) The example in [44] shows that (4.2) is strictly weaker than (4.3).

Combining Theorem 4.6 and Remark 4.7 (ii) yields the following result, which

is an extension of Nussbaum’s result in [34].

Corollary 4.8: Suppose L : AΩ → R is linear and positive and, for each

j ∈ Ω, the Carleman condition (4.3) holds. Then there exists a unique con-

structibly Radon measure ν on RΩ such that L = Lν .
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Remark 4.9: Condition (4.3) holds in a large number of cases. It holds, for

example, if there exists a constant Cj > 0 such that L(x2k
j ) ≤ Cj(2k)! for all

k ≥ 1. It holds, in particular, if L is continuous with respect to the vector

space norm ρw : AΩ → [0,∞) defined by ρw(
∑

aαx
α) :=

∑
α |aα|wα where

wα := (2�|α|/2�)!, see [27] for the definition of ρw in case |Ω| < ∞, or if L is

continuous with respect to the finest locally multiplicatively convex topology

on AΩ, see [13] and [14].

We mention another result of the same flavour which, in case |Ω| < ∞, is due

to Schmüdgen; see [32, Theorem 4.11], [41, Proposition 1].

Theorem 4.10: Suppose L : AΩ → R is linear and positive. For each j ∈ Ω fix

a Radon measure μj on R such that L|R[xj] = Lμj and suppose, for each j ∈ Ω,

that C[xj ] is dense in L4(μj), i.e.,

(4.4) ∃ a sequence {qjk}∞k=1 in C[xj ] such that lim
k→∞

‖qjk − 1

xj − i
‖4,μj = 0.

Then there exists a unique constructibly Radon measure μ on RΩ such that

L = Lμ.

Proof. Argue as in [32, Theorem 4.11].

One knows that (4.4) is also strictly weaker than (4.3). The exact relationship

between (4.2) and (4.4) remains unclear.

5. The support of the measure

We turn now to the problem of describing the support of the measure. As one

might expect, the results we obtain are sharpest when Ω is countable.

We begin with an extension of Haviland’s theorem [17], [31, Theorem 3.1.2].

Note that for a closed set Y ⊆ RΩ the following are equivalent:

(i) Y is described by countably many inequalities of the form ĝ ≥ 0, g ∈ AΩ,

i.e., ∃ a countable subset S of AΩ such that

Y = XS = {α ∈ RΩ | ĝ(α) ≥ 0 ∀ g ∈ S}.
(ii) ∃ a countable subset I ⊆ Ω and a closed subset Y ′ of RI such that

Y = π−1(Y ′), where π : RΩ → RI is the projection.

The equivalence of (i) and (ii) is a consequence of Proposition 2.2. If Ω is

countable, then any closed subset Y of RΩ satisfies these conditions.
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Theorem 5.1: Suppose L : AΩ → R is linear and L(PosAΩ(Y )) ⊆ [0,∞) where

Y is a closed subset of RΩ satisfying either of the equivalent conditions (i), (ii).

Then there exists a constructibly Radon measure ν on RΩ supported by Y such

that L = Lν .
4

Proof. By Lemma 3.3 there exists an extension of L to a linear functional

L on BΩ such that L(PosBΩ(Y )) ⊆ [0,∞). Denote by ν the constructibly

Radon measure on RΩ corresponding to this extension. Fix a countable set

S in AΩ such that Y = XS . For each g ∈ S, choose g′ ∈ CΩ of the form

g′ = g/pg for some suitably chosen element pg = (1 + x2
j1
)e1 · · · (1 + x2

jk
)ek . Let

S′ = {g′ | g ∈ S}. Let Q′ be the quadratic module of CΩ generated by S′, and Q

the quadratic module of BΩ generated by S. Note that Q is also the quadratic

module in BΩ generated by S′, and Q′ ⊆ Q ⊆ PosBΩ(Y ), so L′(Q′) ⊆ [0,∞)

where L′ := L|CΩ . By [30, Corollary 3.4] there exists a Radon measure μ

on X(CΩ) supported by XQ′ such that L′(f) =
∫
f̂dμ ∀f ∈ CΩ. Uniqueness

implies that μ is the Radon measure on X(CΩ) defined in Lemma 3.5. Remark

3.9 implies that ν is supported by XQ′ ∩X(BΩ) = XQ = XS = Y .

Our next results extend [33, Corollary 0.6] and [33, Remark 0.7].

Theorem 5.2: Suppose L : AΩ → R is a positive linear map, (4.2) holds for

each j ∈ Ω, and L(M) ⊆ [0,∞) for some quadratic module M of AΩ which is

the extension of a quadratic module of AI for some countable I ⊆ Ω. Then the

associated constructibly Radon measure ν on RΩ is supported by XM .

An earlier version of Theorem 5.2 is proved already in [27, Theorem 2.2].

Proof. Denote by L : BΩ → R the positive linear extension of L defined by

L(f) :=

∫
f̂dν ∀f ∈ BΩ.

Arguing as in [33, Theorem 0.5] one sees that L(ghh) ≥ 0 ∀h ∈ BΩ ⊗ C (so, in

particular, L(gh2) ≥ 0 ∀h ∈ BΩ) ∀g ∈ M . Denote by Q the extension of M

to BΩ. It follows that L(Q) ⊆ [0,∞). By hypothesis, Q is the extension of a

quadratic module Q0 of BI , so Q′ := Q∩CΩ is the extension of Q′
0 := Q0 ∩CI ,

4 As was brought to our attention by the referee, for Ω countable this can also be deduced

as a corollary of [11, Theorem 4.2] (using the fact that, if Ω is countable, then the finest

locally convex topology on AΩ is nuclear). See also [18, Remark] and [40, Theorem

12.5.2].
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for some countable I ⊆ Ω. Then XQ′ = π−1(XQ′
0
), where π : X(CΩ) → X(CI)

denotes the restriction, so XQ′ is constructibly Borel. By [30, Corollary 3.4] the

Radon measure μ on X(CΩ) associated to L′ = L|CΩ is supported by XQ′ , so,

by Remark 3.9, ν is supported by XM = XQ = XQ′ ∩X(BΩ).

For a quadratic module of the form M =
∑

A 2
Ω + J , J an ideal of AΩ, one

can weaken the hypothesis a bit.

Theorem 5.3: Suppose L = Lν for some constructibly Radon measure ν on

RΩ and L(J) = {0} for some countably generated ideal J of AΩ. Then ν is

supported by Z(J). Here, Z(J) := {α ∈ RΩ | ĝ(α) = 0 ∀g ∈ J}.
Proof. Let M =

∑
A 2

Ω +J . Since L is positive the hypothesis on J is equivalent

to L(M) ⊆ [0,∞). The extension of M to BΩ is Q =
∑

B2
Ω+JBΩ, where JBΩ

denotes the extension of J to BΩ. Extend L to BΩ in the obvious way, i.e.,

L(f) =
∫
f̂dμ ∀f ∈ BΩ. By the Cauchy–Schwartz inequality, for g ∈ AΩ,

L(gh) = 0 ∀ h ∈ AΩ ⇔ L(g2) = 0 ⇔ L(gh) = 0 ∀ h ∈ BΩ.

This implies L(JBΩ) = {0}, i.e., L(Q) ⊆ [0,∞). At this point everything is

clear.

A special feature of the following result is that the measure ν obtained is

Radon (not just constructibly Radon).

Theorem 5.4: Suppose M is a quadratic module of AΩ and there exists a

countable subset I of Ω such that the quadratic module M ∩ AΩ\I of AΩ\I is

archimedean. Suppose L : AΩ → R is linear, L(M) ⊆ [0,∞), and (4.2) holds

for each j ∈ I. Then there exists a unique Radon measure ν on RΩ such that

L = Lν. Moreover, ν is supported by XM .

Special cases:

(i) If M is an archimedean quadratic module of AΩ then Theorem 5.4

applies, taking I = ∅.
(ii) If Ω is countable then Theorem 5.4 applies to any quadratic module M

of AΩ, taking I = Ω (so M∩AΩ\I = M∩A∅ = M∩R = {r ∈ R | r ≥ 0},
a quadratic module of R which is obviously archimedean).

Proof. By hypothesis, there exists Nj > 0 such that N2
j − x2

j ∈ M for each

j ∈ Ω\I. It follows, e.g., using Theorem 2.1, that L(x2k
j ) ≤ N2k

j L(1), so (4.3)
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holds for each j ∈ Ω\I. By Theorem 4.6 there exists a unique constructibly

Radon measure ν on RΩ such that L = Lν . Extending L to BΩ in the obvious

way and arguing as in Theorem 5.2 we see that L(Q) ⊆ [0,∞) where Q is the

extension of M to BΩ. By [30, Corollary 3.4] there exists a Radon measure

μ on X(CΩ) supported by XQ∩CΩ such that L(f) =
∫
f̂CΩdμ ∀f ∈ CΩ. By

Lemma 3.5, μ is supported by the Borel set E := XQ∩CΩ\
⋃

j∈I Δj . According

to Lemma 3.6 it suffices to show E ⊆ X(BΩ). But this is clear. Let α ∈ E. If

j ∈ Ω\I then N2
j − x2

j ∈ Q, so

1

1 + x2
j

− 1

1 +N2
j

=
N2

j − x2
j

(1 + x2
j )(1 +N2

j )
∈ Q ∩ CΩ.

Thus α( 1
1+x2

j
) ≥ 1

1+N2
j
. If j ∈ I then α /∈ Δj , so α( 1

1+x2
j
) > 0.

6. Cylinder results

Fix i0 ∈ Ω and let Ω′ := Ω\{i0}. Consider the subalgebras AΩ ⊆ BΩ′ [xi0 ] ⊆ BΩ

and CΩ′ [xi0 ] ⊆ CΩ. Observe that X(BΩ′ [xi0 ]) is naturally identified with RΩ

and X(CΩ′ [xi0 ]) is naturally identified with SΩ
′ × R.

The cylinder results in [32, Section 4] and [33] extend in a straightforward

way to the case where Ω is infinite. As a consequence, we are able to strengthen

slightly the statement of Theorem 4.6, Corollary 4.8 and Theorem 4.10.

Theorem 6.1:

(1) For f ∈ CΩ′ [xi0 ], f̂ ≥ 0 on SΩ
′ × R iff ∃ k ≥ 0 such that

f + ε(1 + x2
j0)

k ∈
∑

CΩ′ [xj0 ]
2 ∀ real ε > 0.

(2) For f ∈ BΩ′ [xi0 ], f̂ ≥ 0 on RΩ iff ∃ q of the form q =
∏n

k=1(1 + x2
ik
)�k ,

where xi1 , . . . , xin are the variables appearing in the coefficients of f

and k ≥ 0 such that f + εq(1 + x2
i0 )

k ∈ ∑
BΩ′ [xi0 ]

2 ∀ real ε > 0.

Proof. (1) Since the quadratic module
∑

C2
Ω′ of CΩ′ is archimedean, this is an

immediate consequence of [30, Theorem 5.1]. (2) If f ∈ BΩ′ [xi0 ], say f ∈ BI [xi0 ]

where I ⊆ Ω′ is finite, there exists an element q of the form q =
∏

j∈I(1+ x2
j )

�j

such that f
q ∈ CΩ′ [xi0 ]. Thus, if f ≥ 0 on RΩ then f

q ≥ 0 on SΩ
′ × R, so

f

q
+ ε(1 + x2

i0 )
k ∈

∑
CΩ′ [xi0 ]

2

for some k≥0 and, consequently, f+εq(1+x2
i0)

k∈∑
BΩ′ [xi0 ]

2 ∀ real ε > 0.
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Corollary 6.2: For a linear functional L : AΩ → R the following are equiva-

lent:

(1) L is PosA(X(A))-positive.

(2) L extends to a positive linear functional L : BΩ → R.

(3) L extends to a positive linear functional L : BΩ′ [xi0 ] → R.

(4) ∀f ∈ AΩ and ∀p of the form p =
∏n

j=1(1+x2
ij
)�j , where xi1 , . . . , xin are

the variables appearing in the coefficients of f (viewing f as a polyno-

mial in xi0 with coefficients in AΩ′) and 	j ≥ 0, j = 1, . . . , n,

pf ∈
∑

A2
Ω ⇒ L(f) ≥ 0.

Proof. (1) ⇒ (2). By Corollary 3.4. (2) ⇒ (3). Immediate. (3) ⇒ (4). Since

pf ∈ ∑
A2

Ω, it follows that p2f ∈ ∑
A2

Ω, so f ∈ ∑
BΩ′ [xi0 ]

2. Since the ex-

tension of L to BΩ′ [xi0 ] is positive this implies L(f) ≥ 0. (4) ⇒ (1). Sup-

pose f ∈ AΩ, f̂ ≥ 0 on RΩ. By Theorem 6.1 (2) ∃ q =
∏n

j=1(1 + x2
ij )

�j ,

where xi1 , . . . , xin are the variables appearing in the coefficients of f and k ≥ 0

such that f + εq(1 + x2
i0
)k ∈ ∑

BΩ′ [xi0 ]
2 ∀ε > 0. Clearing denominators,

p2(f + εq(1 + x2
i0
)k) ∈ ∑

A2
Ω for some p (depending on ε) of the form

p =

n∏
j=1

(1 + x2
ij )

mj .

By (4),

L(f) + εL(q(1 + x2
i0)

k) = L(f + εq(1 + x2
i0 )

k) ≥ 0.

Since ε > 0 is arbitrary, this implies L(f) ≥ 0.

Theorem 6.3: Suppose L : AΩ → R is linear and positive and condition (4.2)

holds, for each j ∈ Ω, j �= i0. Then there exists a constructibly Radon measure

ν on RΩ such that L = Lν . If condition (4.2) also holds for j = i0 then ν is

unique.

Proof. Argue as in [32, Corollary 4.7 and 4.8] and [33, Theorem 0.1].

Combining Theorem 6.3 and Remark 4.7 yields the following result which is

due to Nussbaum [34] in case |Ω| < ∞.

Corollary 6.4: Suppose L : AΩ → R is linear and positive and, for each

j ∈ Ω, j �= i0 the Carleman condition (4.3) holds. Then there exists a con-

structibly Radon measure ν on RΩ such that L = Lν . If condition (4.3) also

holds for j = i0 then ν is unique.
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Theorem 4.10 extends in a similar way.

Theorem 6.5: Suppose L : AΩ → R is linear and positive. For each j ∈ Ω fix

a Radon measure μj on R such that L|R[xj] = Lμj and suppose, for each j ∈ Ω,

j �= i0, condition (4.4) holds. Then there exists a constructibly Radon measure

μ on RΩ such that L = Lμ. If condition (4.4) also holds for j = i0 then ν is

unique.
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