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ABSTRACT
The multivariate moment problem is investigated in the general context of
the polynomial algebra R[z; | ¢ € Q] in an arbitrary number of variables z;,
i € 2. The results obtained are sharpest when the index set €2 is countable.
Extensions of Haviland’s theorem [17] and Nussbaum’s theorem [34] are
proved. Lasserre’s description of the support of the measure in terms
of the non-negativity of the linear functional on a quadratic module of
Rz, | i € ] in [27] is shown to remain valid in this more general situation.
The main tool used in the paper is an extension of the localization method
developed by the third author in [30], [32] and [33]. Various results proved
in [30], [32] and [33] are shown to continue to hold in this more general

setting.
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1. Introduction

The univariate moment problem is an old problem with origins tracing back to
work of Stieltjes [45]. Given a sequence (si)r>o of real numbers one wants to
know when there exists a Radon measure p on R such that

sk:/xkd,quZO.l

Since the monomials 2*, k > 0 form a basis for the polynomial algebra R[z], this
problem is equivalent to the following one: Given a linear functional L:R[z] — R,
when does there exist a Radon measure p on R such that

L(f) = [ fdu ¥ f € Rl

One also wants to know to what extent the measure is unique, assuming it
exists; [1] and [43] are standard references.
Work on the multivariate moment problem is more recent. For n > 1,

Rlz] := Rz, ..., z5]

denotes the polynomial ring in n variables z1, ..., z,. Given a linear functional
L : R[z] — R one wants to know when there exists a Radon measure y on R”
such that L(f) = [ fdu Vf € R[z]. Again, one also wants to know to what
extent the measure is unique, assuming it exists; [7], [12], [25], [31], [37] are
general references. A major motivation here is the close connection between the
multivariate moment problem and polynomial optimization using semidefinite
programming; see [25], [28], [31] and the references therein.

There are also papers dealing with the moment problem in infinitely many
variables. These deal with cases where the linear functional in question is con-
tinuous for a certain topology: [2] applies Schmiidgen’s solution of the moment
problem in [42] to represent L!-continuous linear functionals on the vector space
of polynomials of Brownian motion as integration with respect to probability
measures on the Wiener space of R; [5, Theorem 2.1], [6], [11], [18], [19], [20] and
[40, Theorem 12.5.2] consider continuous linear functionals on the symmetric
algebra of a nuclear space; [13] deals with linear functionals on the symmetric
algebra of a locally convex space (V,7) which are continuous with respect to
the finest locally multiplicatively convex topology extending 7; [10], [14] and

1 All Radon measures considered are assumed to be positive.
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[15] are precursors of [13]. The present paper seems to be the first to deal with
the general case.

The method used in the present paper is an extension of the localization
method in [30], [32] and [33], the latter method being motivated in turn by
results in [24], [29] and [38]. It is worth noting that, although some of the
results in [30], [32] and [33] are similar in nature to those in [38], the arguments
are completely different.

The paper was written with no particular application in mind. At the same
time, it seems reasonable to expect that applications do exist. E.g., there may
be connections to some variant of the semi-infinite polynomial optimization
problem considered in [26], [46].

Section 2 introduces terminology and notation. Two important new concepts,
constructibly Borel sets and constructibly Radon measures, are defined in this

section. In Section 3 we introduce three algebras A = Aq := Rlz; | i € O],
B = Bg = R|x;, 1+1:,:2 |ieQ],and C =Cq := R[Hlx?’ I | i € Q, show how

the moment problem for Aq reduces to understanding the extensions of a linear
functional L : Ag — R to a positive linear functional on Bq, see Corollary 3.4,
and prove that positive linear functionals L : By — R correspond bijectively to
constructibly Radon measures on R, see Theorem 3.8. We also consider the
important question of when the constructibly Radon measures thus obtained
are actually Radon; see Lemma 3.6, Remark 3.7 and Theorem 5.4. In Section 4
we explain how results in [32] and [33] carry over, more-or-less word-for-word, to
the case of infinitely many variables. In particular, we extend results of Fuglede
[12] and Petersen [35], see Corollary 4.3 and Corollary 4.5, and we establish
extensions of Nussbaum’s well-known sufficient condition for a linear functional
L : Aq — R to correspond to a measure [34]; see Theorem 4.6, Corollary 4.8
and Theorem 4.10. Section 5 deals with the problem of describing supporting
sets for the measure. There are a number of important results in Section 5; see
for example Theorem 5.1, which is an extension of Haviland’s theorem [17], and
Theorem 5.2, which is an extension of a result of Lasserre [27]. In Section 6 we
explain how the cylinder results in [30], [32] and [33] extend to infinitely many
variables.

The reader will notice that everything works more-or-less perfectly in case
Q) is countable. If € is uncountable everything still works, but one typically
only knows that the measures obtained are constructibly Radon (as opposed to
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Radon) and the results obtained concerning the support of the measure are a
bit more restrictive than one might like.

2. Terminology and notation

All rings considered are commutative with 1. All ring homomorphisms consid-
ered send 1 to 1. All rings we are interested in are R-algebras. For n > 1,
R[z] := R[x1,...,2,]. For a topological space X, C(X) denotes the ring of all
continuous functions from X to R.

Let A be a commutative ring; X (A) denotes the character space of A, i.e.,
the set of all ring homomorphisms a: A - R. Fora € A, a =a4: X(A) - R
is defined by aa(a) = a(a); X(A) is given the weakest topology such that
the functions a4, a € A are continuous. The mapping a +— a4 defines a ring
homomorphism from A into C(X (A)). The only ring homomorphism from R to
itself is the identity. Ring homomorphisms from R[x] to R correspond to point
evaluations f — f(a), « € R"; X (R[z]) is identified (as a topological space)
with R". By a quadratic module of A we mean a subset M of A satisfying

leM, M+MCM and a®?M C M for each a € A.

A preordering of A is a quadratic module of A which is also closed under
multiplication. For a subset X of X (A),

Posa(X):={a€ A]aa>0o0n X}

is a preordering of A. We denote by > A% the set of all finite sums Y a?,
a; € A; Y A% is the unique smallest quadratic module of A; Y A% is closed
under multiplication, so > A? is also the unique smallest quadratic preordering
of A. For a subset S C A, the quadratic module of A generated by S consists
of all finite sums sg + s191 + -+ SkGk, 91, -, gk € S, S0,.-., 5k € Y A% Also,

Xs:={ae X(A)|aa(a) >0Vae S}

If M =3 A% then Xp; = X(A). If M is the quadratic module of A generated
by S then X, := Xg. A quadratic module M in A is said to be archimedean if
for each a € A there exists an integer k such that k+a € M. If M is a quadratic
module of A which is archimedean, then X, is compact. The converse is false
in general [22].

For simplicity, we assume from now on that A is an R-algebra. We record
the following special case of the representation theorem of T. Jacobi [21].
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THEOREM 2.1: Suppose M is an archimedean quadratic module of A. Then,
for any a € A, the following are equivalent:

(1) 44 >0 on Xy
(2) a+e€e € M for all real e > 0.

Note: The implication (2) = (1) is trivial. The implication (1) = (2) is
non-trivial. See [4], [23] and [36] for early versions of Jacobi’s theorem. See [31]
for a simple proof.

The open sets

Ua(a) ={a e X(A) | aa(a) >0}, a€ A

form a subbasis for the topology on X (A) (even a basis). Suppose A is gen-
erated as an R-algebra by x;, i € Q. The embedding X (A4) — R defined by
a > (ax;))icq identifies X (A) with a subspace of R Sets of the form

{per | Sm-pp <o
il
where r,p; € Q and [ is a finite subset of 2, form a basis for the product
topology on R. It follows that sets of the form

(2.1) Ua (r — Z(ml —pi)2>, r,p; € Q, I a finite subset of Q,
icl
form a basis for X (A).

A subset E of X(A) is called Borel if E is an element of the o-algebra of
subsets of X (A) generated by the open sets. A subset E of X(A) is said to be
constructible (resp., constructibly Borel) if E is an element of the algebra
(resp., o-algebra) of subsets of X (A) generated by the Ua(a), a € A.2

Clearly constructible = constructibly Borel = Borel.

PRrROPOSITION 2.2: If A is generated as an R-algebra by a countable set
{z; | i € Q}, then sets of the form (2.1) form a countable basis for the topology
on X (A) and every Borel set of X (A) is constructibly Borel.

Proof. This is clear.

2 The descriptor ‘constructible’ is borrowed from standard terminology in real algebraic
geometry; e.g., see [3]. Constructible sets in R™ are also called semialgebraic sets.
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PROPOSITION 2.3: A subset E of X(A) is constructibly Borel iff E = 7~ 1(E’)
for some Borel set E' of X(A’), where A’ is a countably generated subalgebra
of A and 7 : X(A) — X (A') is the canonical restriction map, i.e., 7(a) = ala.

Proof. Clearly Ua(a) = 71 (Ua/(a)) for any a € A’. Coupled with Proposition
2.2 this implies that, for each Borel set E’ of X (A’), 7=(E’) is an element of the
o-algebra of subsets of X (A) generated by the Ux(a), a € A’ (and conversely).
Denote this o-algebra by ¥ 4/. It remains now to show that the union of the o-
algebras ¥ 4/, A’ running through the countably generated subalgebras of A, is
itself a g-algebra. This follows from the well-known fact that a countable union
of countable sets is countable (so the subalgebra of A generated by countably
many countably generated subalgebras of A is itself countably generated).

The support of a measure is not defined in general. For a measure space
(X,3, ) and a subset Y of X, we say p is supported by Y if

ENY =0=uE)=0 VEcX.

In this situation, if ¥’ := {ENY | E € &}, and ¢/ (ENY) := p(E) VE € X, then
Y/ is a o-algebra of subsets of Y, u' is a well-defined measure on (Y,¥’), the
inclusion map i : Y — X is a measurable function, and p is the pushforward of
w to X.

Recall that if (Y, X', i’) is a measure space, (X, X) is a o-algebra, i : Y — X
is any measurable function, and p is the pushforward of p’ to (X, X), then for
each measurable function f : X — R, [ fdu = [(f o4)dy’ [16, Theorem 39C].
This is the well-known change in variables theorem.

A Radon measure on X (A) is a positive measure p on the o-algebra of Borel
sets of X (A) which is locally finite and inner regular. Locally finite means that
every point has a neighbourhood of finite measure. Inner regular means each
Borel set can be approximated from within using a compact set.

Definition 2.4: A constructibly Radon measure on X (A) is a positive mea-
sure p on the o-algebra of constructibly Borel sets of X (A) such that, for each
countably generated subalgebra A’ of A, the pushforward of u to X (A’) via the
restriction map a — a4 is a Radon measure on X (A’).

We are interested here in Radon and constructibly Radon measures having
the additional property that a4 is p-integrable (ie., [aadp is well-defined and
finite) for all @ € A. For a linear functional L : A — R, one can consider the set
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of Radon or constructibly Radon measures ;1 on X (A) such that L(a) = [aadp

Va € A. The moment problem is to understand this set of measures, for a

given linear functional L : A — R. In particular, one wants to know: (i) When

is this set non-empty? (ii) In case it is non-empty, when is it a singleton set?
A linear functional L : A — R is said to be positive if

L(ZAQ) C [0,00)

and M-positive, for some quadratic module M of A, if

L(M) C [0, 00).

3. Three special R-algebras

Let
A= Aq ::R[l'iliEQ],

the ring of polynomials in the variables x;, i € Q) with coefficients in R,
1 .
B = Bqg ::R{xi, |+ a2 |Z€Q:|,

the localization of A at the multiplicative set generated by the 1 + 22, i € (,

and
1

T4 .
: eql,
1+ a2? 1—}—:1:12|Z

the R-subalgebra of B generated by the elements 1+1x?’ 11&, 1 € . Here, Q is

C = Cq ::R[

an arbitrary index set.

By definition, A (resp., B, resp., C) is the direct limit of the R-algebras A
(resp., By, resp., Cr), I running through all finite subsets of 2. Because of this,
many questions about A, B and C reduce immediately to the case where Q is
finite. Observe also that if Q is finite, then B is equal to the localization of A
at

pi= H(l +x7)
ieQ
considered in [32]. This is clear.

Elements of X (A) and X (B) are naturally identified with point evaluations
f = f(a), a € R®. Note that X(A) = X(B) = R®%, not just as sets, but also
as topological spaces, giving R the product topology.
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THEOREM 3.1:

(1) For f € B, the following are equivalent:
(i) fec;
(ii) f is geometrically bounded, i.e., 3 k € N such that |f(«)| < k
Vo € RY;
(iii) f is algebraically bounded, i.e., 3k € N such that k+f € Y B?.

(2) S2B2NC =Y. C? In particular, Y_ C? is archimedean.

(3) C is naturally identified (via y; <> 1+1x§ and z; < 11;2) with the
polynomial algebra Rly;, z; | i € Q] factored by the ideal generated by
the polynomials y? + 27 —y; = (yi — 3)* + 22 — }, i € Q. Consequently,
X (C) is identified naturally with S, where

S:= {(y,z)€R2 | (y— ;)2—1—22: i}

(4) The restriction map o — ¢ identifies X (B) with a subspace of X (C).
In terms of coordinates, this map is given by

a = (xi)ico = B = (Ui, zi)icq,

where y; :=
in X(C).

1+1:,:2’ zj = ,{'>. In particular, the image of X (B) is dense

Proof. See [32, Remark 2.2].

COROLLARY 3.2:
(1) For f € C, fo >00on X(C)iff f +ee > C?V real e > 0.
(2) For f € B, fp > 0 on X(B) iff 3 q of the form q = [];_; (1 + x% )",
where x;, , ..., x;, are the variables appearing in f, such that

f+eqe ZB2,
for all real € > 0.

Proof. (1) Since " C? is archimedean, this is immediate from Theorem 2.1. (2)

If f € B, say f € By,,...i,}, there exists an element ¢ of the form

ﬁ 1+:c

such that f; € C. Thus, if f > 0 on X(B) then ’ y = 0on X(C)so g—i—e e C?
and, consequently, f +eq € > B2, V real € > 0.

.....



Vol. 212, 2016 INFINITE MOMENT PROBLEM 997

It follows from Corollary 3.2 that a linear functional L : C' — R is positive iff
it is Posc (X (C'))-positive, and a linear functional L : B — R is positive iff it is
Posp (X (B))-positive. For linear functionals L : A — R this is never the case,
except when |Q] < 1; see [9], [39].

LEMMA 3.3: Suppose L : A — R is a linear functional and L(Pos(Y")) C [0, 00)
for some closed set Y C R, Then L extends to a linear functional L : B — R
such that L(Posp(Y)) C [0, c0).

Note: The extension is not unique, in general.

Proof. The proof is a simple modification of the Zorn’s lemma argument in
[30, Theorem 3.1]. Denote by C’(Y') the R-algebra of all continuous functions
f Y — R which are bounded by some d, a € A in the sense that |f| < |a| on
Y. As in the proof of [30, Theorem 3.1] 3 a linear functional L : C'(Y) — R
which is Poscy(yy(Y)-positive (ie., Vf € C'(Y), f >0on Y = L(f) > 0) such
that L(a) = L(aly) Ya € A. If b € B then

a

b:
(L af)f - (1+a? )

forsomea € A, n>1,i, €0 0, >0,k=1,...,n. Sincel +a?> >1Va R
it follows that [b| < || on Y, i.e., bly € C'(Y) Vb € B. Define L : B — R by
L(b) = L(bly).

COROLLARY 3.4: For a linear functional L : A — R the following are equivalent:

(1) L is Posa(X(A))-positive.
(2) L extends to a positive linear functional L : B — R.
(3) Vf € A and Vp of the form p = [],_, (1 + a7 )%, where x;, ..., x;, are

the variables appearing in f and £, >0, k=1,...,n,

pfed A= L(f)>0.

Proof. (1) = (2). Apply Lemma 3.3 with Y = R

(2) = (3). Since pf € > A?, it follows that p>f € 3" A% so f € Y. B2 Since
the extension of L to B is positive this implies L(f) > 0.

(3) = (1). Suppose f € A, f > 0. By Corollary 3.2 (2) 3¢ = szl(l—i—xi)ék,
where x;,,...,;, are the variables appearing in f, such that f +eq € 5. B?
Ve > 0. Clearing denominators, p?(f + eq) € > A? for some p (depending on ¢)
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of the form p = [[_, (L + 27 )™ . By (3), L(f) 4+ €eL(q) = L(f 4+ €q) > 0. Since
€ > 0 is arbitrary, this implies L(f) > 0.

Positive linear functionals L : B — R restrict to positive linear functionals
on C. Positive linear functionals L : C' — R are in natural one-to-one corre-
spondence with Radon measures p on the compact space X (C) via L <> p iff
L(f) = ffcdu Vf € C. This is well-known, e.g., see [30, Corollary 3.3 and
Remark 3.5].

Fori e Q, let A, :={p € X(C) | 6(1:12) = 0}. Because of the way X (C) is
being identified with S, A; is identified v:zith the set

{(yjazj)jEQ S SQ | Yi = 2; = 0}

It is clear that X (C)\X (B) is the union of the sets A;, i € Q. For each f € B

one can associate a continuous function
f:X(O\(A;, U---UA;, ) = R,

where x;,, ..., ;, arethe variables appearing in f. Observe that f € By, . .}
Define

.....

,,,,,,,,,,

LEMMA 3.5: For each positive linear functional L : B — R there exists a unique
Radon measure p on X (C) such that L(f) = ffcdu Vf € C. This satisfies
(D) =0Vi€Qand L(f) = [ fdu Vf € B.

Proof. Fix a finite subset I = {i1,...,i,} of Q. By [30, Corollary 3.3] there
exists a Radon measure p on X(C) and a Radon measure py on X(Cr) such
that L(f) = [ fodu Vf € C and L(f) = [ fe,dur Vf € Cr. Applying [30,
Corollary 3.4] with p = (1 + 7 )--- (1 + 27 ), there exists a Radon measure
vr on X(By) such that L(f) = [ fg,dvi ¥f € B;. By [30, Remark 3.5] the
measures p, (g, vy are unique. Denote by p; the pushforward of i to X (Cr) by
the restriction map 7 : X(C) — X (Cj). Since fo = fo, om Vf € Cy, it follows
that

/fc,du} - /fodu — L(f) VfeCr
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so uniqueness of py implies py = py. A similar argument shows that u is
the pushforward of vy via the natural embedding X (By) «— X (Cy). It follows
that p(A;, U---UA;) = ur(X(Cr)\X(By)) = 0. Since I is an arbitrary finite
subset of 2, this implies u(A;) = 0 Vi € . Suppose now that f € B;. Since
f=fp om, [ fdp = ffBIdI/] = L(f) as required.

One would like to know when there exists a Radon measure v on X (B) such
that L(f) = [ fpdv Vf € B.

LEMMA 3.6: Let L be a positive linear functional on B and let i be the Radon
measure on X (C') associated to L. The following are equivalent:

(1) 3 a Radon measure v on X (B) such that L(f) = [ fgdv Vf € B.
(2) V Borel sets E of X (C),

p(E) =sup{u(K) | K compact, K C X(B)N E}.

(3) u(X(C)) = sup{u(K) | K compact, K C X(B)}.
(4) u is supported by a Borel set E of X (C) such that E C X (B).

Moreover, if this is the case, then v(E) = sup{u(K) | K compact, K C E} for
all Borel sets E of X(B). In particular, v is uniquely determined by p.

Proof. Assume (1). Denote by u the pushforward of v to X (C). Then, Vf € C,
[ fedy' = [ fpdv = L(f). Uniqueness of y implies i/ = p. Since v is Radon,
(2) is now clear. (2) = (3) is obvious. Assume (3). Define E = (J,»; K,
where K, is a compact subset of X (B) such that u(X(C)\K,) < !. Clearly
E C X(B), E is a Borel set of X(C) and p is supported by E. This proves
(4). Assume (4). Then v defined by v(E' N X(B)) = u(E’) V Borel sets E’ of
X (C) is a Radon measure on X (B). Since p is the pushforward of v to X (C),
[ fedv = [ fdu = L(f), so (1) is clear. The last assertion is clear.

Remark 3.7: If Q is countable, then X (C)\X(B) = U,cq
measure zero, so the equivalent conditions of Lemma 3.6 hold in this case. We

A; is a Borel set of

know of no example where the conditions of Lemma 3.6 fail. It would be nice
to have an example.?

3 If we assume € is uncountable, then it is easy enough to construct a Radon measure p
on X (C) so that the equivalent conditions (2) and (3) fail. This is not a problem. The
problem is to choose such a p so that, in addition, | fdu is well-defined and finite for all
feB.
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It seems probable that, to handle the most general case, one has to relax the
requirement that v be Radon, requiring only that v be constructibly Radon.

THEOREM 3.8: There is a canonical one-to-one correspondence L < v given
by L(f) = [ fedv Vf € B between positive linear functionals L on B and con-
structibly Radon measures v on X (B) with the property that fp is v-integrable
Vf e B.

Proof. If v is a constructibly Radon measure on X (B) and fB is v-integrable
Vf € B, then it is clear that the map f — fdeV, f € B is a positive linear
functional on B. Conversely, suppose L is a positive linear functional on B. Let
1 be the measure defined in Lemma 3.5. For each subset I of €2, consider the
subalgebra B; of B and the subalgebra C of C'. Denote by p; the pushforward
of p via the canonical restriction map 7 : X(C) — X (C7). One checks that uy
is the Radon measure on X (C7) corresponding to the positive linear map L|p, .
In particular, if I is countable then p (X (Cr)\X(Br)) = 0.

CrAmM 1: IfE in X (C) is constructibly Borel and X (B)NE = 0, then pu(E) = 0.
Say E = n~Y(E'), E' a Borel set in X(Cr), I C § countable. Since the
restriction map X(B) — X(Bj) is surjective, our hypothesis implies that
X(Br)NE' = (. It follows that u(E) = py(E") = 0 as required.

CLAIM 2: The constructibly Borel sets in X (B) are precisely the sets of the
form X(B) N E where E is constructibly Borel in X (C). This is more or less
clear. If f € C then Up(f) = X(B) NUc(f). If f € B then there exists p of
the formp = [[,_, (1 + xfk )¢ where x;,,...,;, are the variables appearing in
f such that g e C. Also, Up(f) = UB(g) for any such p.

Define a measure v on the o-algebra of constructibly Borel subsets of X (B)
by v(X(B)NE) := pu(E) ¥ constructibly Borel subsets E of X (C). By Claim 1,
v is well-defined. By construction, u is the pushforward of v to X (C). Also,
fz = f|X(B) Vf € B. It follows that fdez/ = [ fdu = L(f) Vf € B. For each
countable I C 2, the pushforward of v to X (Bj) is the Radon measure v; on
X (By) induced by pr using Lemma 3.6 and Remark 3.7. It follows that v is
constructibly Radon.

It remains to show that v is unique. Let v/ be any constructibly Radon
measure on X (B) such that fdeu' = L(f) Vf € B. For I C Q countable,
let v} be the pushforward of v/ to X (By) and let u}; be the pushforward of
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v to X(Cr). Then L(f) = fdeV’ = ffc,d,u’l Vf € Cj. Since we also
have L(f) = [ fpdv = [ fe,dpr Yf € Cy, this implies [ feo,du) = [ fe,dps
Vf € Cr. Thus by uniqueness of p, pf = pr V countable I C Q. This in turn
implies that v; = vy V countable I C §, so v/ = v.

Remark 3.9: If p is supported by a constructibly Borel set K in X (C), then v is
supported by KNX (B). This follows from Claim 1. If F is a constructibly Borel
set in X(C) and ENK N X(B) =0, then u(E N K) = 0. Since y is supported
by K this implies in turn that v(ENX(B)) = u(F) = 0. Unfortunately, we are
unable to prove this in the more general setting where K is only assumed to be
a Borel set of X(C). Of course, if ;1 happens to be the pushforward of a Radon
measure v on X (B) (the case considered in Lemma 3.6), then p supported by
K = v supported by K N X (B) for any Borel set K of X(C).

4. Moment problem

We fix an index set 2 and define A = Ag, B = B and C = Cq as in the
previous section. We identify X(A4) = X (B) = R®%. The measures v arising
in Theorem 3.8 have finite moments, i.e., f xedy is well-defined and finite
for all monomials z® := z3\' -+ 27", {i1,...,in} € Q, ar >0, k =1,...,n.
Conversely, if v is a constructibly Borel measure on R having finite moments,
then L : B — R defined by L(f) = [ fdv is a well-defined positive linear
functional on B. This is clear.

Much of what was done in [32] and [33] in the finite-dimensional case carries
over, more or less word for word, to the infinite-dimensional case. Recall if
(X, 3, p) is a measure space and f : X — C is a measurable function, then

1/s
Il = | [1rPan] " s € 1.00)
The Lebesgue space L£°(u), by definition, is the C-vector space
L(p) :={f: X — C| f is measurable and || f||s,, < oo}

equipped with the norm || - ||5,,-

THEOREM 4.1: Suppose v is a constructibly Radon measure on R having finite
moments. Then for any s € [1,00) the obvious C-linear map B ®g C — L%(v),
fr—r f has dense image, equivalently, the image of B under the R-linear
map f > f is dense in the real part of £° (v).
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Note that
. 1 .
A®rC =Clz; | i€ B@Rc_c[%,Hz?ueQ},
and
1 X .
— Q.
ConC C[l—i—xf’l—i—xfhe }

Proof. It suffices to show that the step functions Z;":l rixe;, 7 €C, E; C X (B)
a constructibly Borel set, belong to the closure of the image of B ®g C. Using
the triangle inequality we are reduced further to the case m =1, r; = 1. Let
E C X(B) be a constructibly Borel set. Writing £ = 7~ }(E’) where E’ is a
Borel set in X (By), for some appropriate countable I C €, and applying the
s = IIxm =By lls.0 ¥f € Br.
In this way we are reduced to the case where 2 is countable. Choose K compact,
U open in X(C) such that K C F C U, u(U\K) < e. By Urysohn’s lemma
there exists a continuous function ¢ : X (C) — R such that 0 < ¢ < 1 on X (C),
¢=1onK,$p=0on X(C)\U. Then |xg — ¢[ls,, < €'/°. Use the Stone-
Weierstrass approximation theorem to get f € C such that ||¢ — chOO < e
where || - || denotes the sup-norm. Then |¢ — fCHs,M < eu(X(C))V*. Putting
these things together yields

change of variable theorem, we see that || xz— /5]

||XE - fB”s,l/ :”XE - fC| ENY)
<lxe = llsp + 116 = fellsp
<eS - ep(X(C))Y5.

From now on, by a constructibly Radon measure on R we will mean a
constructibly Radon measure on R having finite moments.

COROLLARY 4.2: For any constructibly Radon measure v on R® and any
s € [1,00), Aq ®r C is dense in L*(v) iff Aq ®r C is dense in Bq ®g C in

the || - ||s,,-norm.

Proof. Since the density property in question is transitive, this is immediate
from Theorem 4.1.

COROLLARY 4.3: Suppose v is a constructibly Radon measure on R® and
s€(1,00). Suppose for each j € Q 3 ¢ € Aq®rC such that | q;r— ! ls,, — 0O

x;—i
as k — co. Then Aq @g C is dense in L% (v) for each s' € [1, s).
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Proof. Denote by Ag ®r C the closure of Aq ®r C with respect to topology
induced by the norm || - ||s,,. It suffices to show that each f € Bg ®r C belongs
to Aq ®r C. The proof is by induction on the number of factors of the form z;£i
appearing in the denominator of f. Suppose z; —i appears in the denominator
of f. By induction, fg¢;r(z; — 1) belongs to Ag ®@r C, for each k > 1. Applying
Holder’s inequality

/|PQ|du§ [/|P|adyr - {/|Q|bdu} i, i+ 2 =1

with P = |gr — le71|8/’ Q=|f(z; —i)|*, a= S, b= we see that

s
s—s’?

L) )

—1

I Fapla =) = Fllr = (a0~

. !
j s’ v

SHij -

’
ss

v
S*S/ ’

S

s =)

Tj—1

It follows that f belongs to Ag ®r C. The case where z; 4+ i appears in the
denominator of f is dealt with similarly, replacing ¢;i by g;x.

Corollary 4.3 extends Petersen’s result in [35, Proposition]. In the one variable
case, i.e., when || = 1, one can conclude also that Ag ®g C is dense in L°(v);
see [32, Corollary 3.3].

Caution: The proof given in [32, Corollary 3.6] is not correct. The proof in
[32, Corollary 3.6] is correct when g € C[z;] for each j and k.

The following result extends [32, Corollary 2.5] to the case where  is infinite.

COROLLARY 4.4: For any linear functional L : Aq — R, the set of constructibly
Radon measures v on R satisfying L(f) = ffdl/ Vf € Agq is in natural one-
to-one correspondence with the set of positive linear functionals L' : B — R
extending L.

Proof. If v is a constructibly Radon measure on R such that L(f) = i fdu
Vf € Agq, the corresponding extension of L to a positive linear functional
L' : Bq — R is defined by L'(f) = ffdu Vf € Bg. The correspondence
v — L' has the desired properties by Theorem 3.8.

For v any constructibly Radon measure on R, define L, : Aq — R by
L,(f)=] fdu Vf € Aq. If /' is another constructibly Radon measure on R,
we write v ~ v/ to indicate that v and v’ have the same moments, i.e., L, = L,-.
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We say v is determinate if v ~ v/ = v = 1/ and indeterminate if this is not
the case.

COROLLARY 4.5: Suppose L : Aq — R is linear and, for each j € €,
(4.1) 3 a sequence {pji}req in Aq®C such that klim L(1—(z;—1)p;|?) = 0.
— 00

Then there is at most one constructibly Radon measure v on R such that
L=1L,.

Proof. Argue as in [32, Corollary 2.7].

Corollary 4.5 extends Fuglede’s result in [12, Section 7] and Petersen’s result
in [35, Theorem 3].

THEOREM 4.6: Suppose L : Aq — R is linear and positive and, for each j € €,

3 a sequence {q;i}hey in Aqg @ C

4.2
(4.2) such that klim L(1-(1+ x?)qjkqjkﬁ) =0.
—00

Then there exists a unique constructibly Radon measure v on R such that
L=1L,.

Proof. Argue as in [32, Corollaries 4.7 and 4.8] and [33, Theorem 0.1].

Remark 4.7:
(i) For each j € Q, condition (4.1) is implied by condition (4.2). This is
clear. Just take p;r = (z; +1)q;xqjk-
(ii) For each j € 1, condition (4.2) is implied by the Carleman condition
- 1
(4.3) = 00.
=1 2k L(m?k)

See [8, Théoreme 3] and [33, Lemma 0.2 and Theorem 0.3] for the proof.
(iii) The example in [44] shows that (4.2) is strictly weaker than (4.3).

Combining Theorem 4.6 and Remark 4.7 (ii) yields the following result, which
is an extension of Nussbaum’s result in [34].

COROLLARY 4.8: Suppose L : Aq — R is linear and positive and, for each
j € Q, the Carleman condition (4.3) holds. Then there exists a unique con-
structibly Radon measure v on R® such that L = L,,.
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Remark 4.9: Condition (4.3) holds in a large number of cases. It holds, for
example, if there exists a constant C; > 0 such that L(z3*) < C;(2k)! for all
k > 1. It holds, in particular, if L is continuous with respect to the vector
space norm p,, : Ag — [0,00) defined by pu, (> aqx®) = ) |aa|wa where
we = (2[|a|/2])!, see [27] for the definition of p,, in case || < oo, or if L is
continuous with respect to the finest locally multiplicatively convex topology
on Agq, see [13] and [14].

We mention another result of the same flavour which, in case || < oo, is due
to Schmiidgen; see [32, Theorem 4.11], [41, Proposition 1].

THEOREM 4.10: Suppose L : Aq — R is linear and positive. For each j € € fix
a Radon measure p; on R such that L|R[Ij] = L, and suppose, for each j € (,
that Clz;] is dense in L*(u;), i.e.,

1
(4.4) 3 a sequence {q;r}re; in Clz;] such that klim lgje — . Alau,; = 0.
—00 Tj—1

Then there exists a unique constructibly Radon measure pu on R such that
L=1L,.

Proof. Argue as in [32, Theorem 4.11].

One knows that (4.4) is also strictly weaker than (4.3). The exact relationship
between (4.2) and (4.4) remains unclear.

5. The support of the measure

We turn now to the problem of describing the support of the measure. As one
might expect, the results we obtain are sharpest when 2 is countable.

We begin with an extension of Haviland’s theorem [17], [31, Theorem 3.1.2].
Note that for a closed set Y C R® the following are equivalent:

(i) Y is described by countably many inequalities of the form g > 0, g € Aq,
i.e., 3 a countable subset S of Aq such that

Y =Xs={acR?|jla) >0V ge S}

(ii) 3 a countable subset I C 2 and a closed subset Y’ of R? such that
Y =77 1(Y"), where 7 : R — R is the projection.

The equivalence of (i) and (ii) is a consequence of Proposition 2.2. If Q is
countable, then any closed subset Y of R satisfies these conditions.
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THEOREM 5.1: Suppose L : Ag — R is linear and L(Posa,, (Y')) C [0, 00) where
Y is a closed subset of R satisfying either of the equivalent conditions (i), (ii).
Then there exists a constructibly Radon measure v on R supported by Y such
that L = L,.*

Proof. By Lemma 3.3 there exists an extension of L to a linear functional
L on Bq such that L(Posp,(Y)) C [0,00). Denote by v the constructibly
Radon measure on R corresponding to this extension. Fix a countable set
S in Ag such that Y = Xg. For each g € S, choose ¢’ € Cq of the form
¢’ = g/py for some suitably chosen element p, = (1 + :c?l)el (14 xfk)e’“ Let
S"={g' | g € S}. Let Q' be the quadratic module of Cg, generated by S’, and @
the quadratic module of Bq generated by S. Note that @ is also the quadratic
module in Bg generated by S’, and Q' C Q C Posp,(Y), so L'(Q") C [0,00)
where L' := L|¢,. By [30, Corollary 3.4] there exists a Radon measure p
on X (Cq) supported by X¢s such that L'(f) = ffdu Vf € Cq. Uniqueness
implies that u is the Radon measure on X (Cg) defined in Lemma 3.5. Remark
3.9 implies that v is supported by X¢o' N X(Bq) = Xg=Xs =Y.

Our next results extend [33, Corollary 0.6] and [33, Remark 0.7].

THEOREM 5.2: Suppose L : Aqg — R is a positive linear map, (4.2) holds for
each j € Q, and L(M) C [0,00) for some quadratic module M of Aq which is
the extension of a quadratic module of Aj for some countable I C ). Then the
associated constructibly Radon measure v on R is supported by Xy;.

An earlier version of Theorem 5.2 is proved already in [27, Theorem 2.2].

Proof. Denote by L : Bqa — R the positive linear extension of L defined by
L(f) ::/fdl/ Vf € Bq.

Arguing as in [33, Theorem 0.5] one sees that L(ghh) > 0 Vh € Bo ® C (so, in
particular, L(gh?) > 0 Vh € Bq) Yg € M. Denote by @ the extension of M
to Bgq. It follows that L(Q) C [0,00). By hypothesis, @ is the extension of a
quadratic module Qg of By, so Q' := QN Cq is the extension of Qf := QuNCy,

4 As was brought to our attention by the referee, for Q2 countable this can also be deduced
as a corollary of [11, Theorem 4.2] (using the fact that, if 2 is countable, then the finest
locally convex topology on Agq is nuclear). See also [18, Remark] and [40, Theorem
12.5.2].



Vol. 212, 2016 INFINITE MOMENT PROBLEM 1007

for some countable I € Q. Then X =7~ "(X¢y ), where 7 : X(Cqo) — X (Cr)
denotes the restriction, so X is constructibly Borel. By [30, Corollary 3.4] the
Radon measure p on X (Cq) associated to L' = L|¢,, is supported by X¢, so,
by Remark 3.9, v is supported by Xy = Xg = X N X (Bq).

For a quadratic module of the form M = >~ A + J, J an ideal of Aq, one
can weaken the hypothesis a bit.

THEOREM 5.3: Suppose L = L, for some constructibly Radon measure v on
R® and L(J) = {0} for some countably generated ideal J of Aq. Then v is
supported by Z(J). Here, Z(J) := {a € R® | §(a) = 0 Vg € J}.

Proof. Let M =Y Aj+J. Since L is positive the hypothesis on .J is equivalent
to L(M) C [0,00). The extension of M to Bq is Q = > B3 + JBq, where JBg
denotes the extension of J to Bg. Extend L to Bgq in the obvious way, i.e.,
Lif)y=[ fdu Yf € Bg. By the Cauchy-Schwartz inequality, for g € Aq,

L(gh) =0V h € Aq < L(g*) =0 < L(gh) =0V h € Bq.

This implies L(JBq) = {0}, i.e., L(Q) C [0,00). At this point everything is

clear.

A special feature of the following result is that the measure v obtained is
Radon (not just constructibly Radon).

THEOREM 5.4: Suppose M is a quadratic module of Aq and there exists a
countable subset I of () such that the quadratic module M N Aq\; of Aq\s is
archimedean. Suppose L : Aq — R is linear, L(M) C [0,00), and (4.2) holds
for each j € I. Then there exists a unique Radon measure v on R such that
L = L,. Moreover, v is supported by X .

Special cases:

(i) If M is an archimedean quadratic module of Aq then Theorem 5.4
applies, taking I = 0.

(ii) If © is countable then Theorem 5.4 applies to any quadratic module M
of Aq, taking I = Q (so MNAg\; = MNAg = MNR = {r e R | r > 0},
a quadratic module of R which is obviously archimedean).

Proof. By hypothesis, there exists N; > 0 such that sz — :I:? € M for each

j € Q\I. Tt follows, e.g., using Theorem 2.1, that L(:c?k) < szkL(l), so (4.3)
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holds for each j € Q\I. By Theorem 4.6 there exists a unique constructibly
Radon measure v on R such that L = L,. Extending L to Bgq in the obvious
way and arguing as in Theorem 5.2 we see that L(Q) C [0,00) where Q is the
extension of M to Bq. By [30, Corollary 3.4] there exists a Radon measure
1 on X (Cq) supported by Xgne, such that L(f) = [ foodp Vf € Co. By
Lemma 3.5, p1 is supported by the Borel set £ := Xgnc,\ U e Aj. According
to Lemma 3.6 it suffices to show E C X (Bgq). But this is clear. Let « € E. If
Jj € Q\I then N? —z7 € Q, so
1 1 N, 3‘2 - x?

- = €QnCq.
1422 14+N2  (L+22)(1+N2) @NCa

) > e Ifj €1 then a ¢ Ay, so af

Thus af LeN2 -
J

1 1
1+x§ 1+x§) > 0.

6. Cylinder results

Fix ip € Q and let ' := Q\{ip}. Counsider the subalgebras Aq C Bq/|x;,] C B
and Cq/[z;,] € Cq. Observe that X (Bgs[z;,]) is naturally identified with R®
and X (Coy [2;,]) is naturally identified with % x R.

The cylinder results in [32, Section 4] and [33] extend in a straightforward
way to the case where € is infinite. As a consequence, we are able to strengthen
slightly the statement of Theorem 4.6, Corollary 4.8 and Theorem 4.10.

THEOREM 6.1:
(1) For f € Coylziy], f >0 on S x R iff 3 k > 0 such that

f+el+ z?o)k € ZCQ/ [2j,]* V¥ reale> 0.

(2) For f € B[z, f >0 on R? iff 3 g of the form q = []}_, (1 + a2 )%,
where x;,,...,x;, are the variables appearing in the coefficients of f
and k > 0 such that f + eq(1+ 2%)* € 3 Bo[w;,]* V real € > 0.

Proof. (1) Since the quadratic module Y C3, of Cq is archimedean, this is an
immediate consequence of [30, Theorem 5.1]. (2) If f € Bq/[x;,], say f € Brlzs,)
where I C (' is finite, there exists an element ¢ of the form ¢ =[], (1 + x?)éi
such that f; € Ca[zi,]. Thus, if £ >0 on R? then f; >0 on S? x R, so

J; Fel a2 ) e Y Corl,?

for some k>0 and, consequently, f+eq(1+22 )" €>" Ba[;,]? V real € > 0.
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COROLLARY 6.2: For a linear functional L : Ag — R the following are equiva-

lent:
1)
2)

(3) L extends to a positive linear functional L : Bo/[z;,] — R.

(4) Vf € Ag and Vp of the form p = [[}_, (1 +xfj)ef, where x;, , ..., x;, are
the variables appearing in the coefficients of f (viewing f as a polyno-

L is Posa (X (A))-positive.
L extends to a positive linear functional L : B — R.

mial in x;, with coefficients in Agy) and £; >0, j =1,...,n,
pf € Ay = L(f) >0

Proof. (1) = (2). By Corollary 3.4. (2) = (3). Immediate. (3) = (4). Since
pf € Y A%, it follows that p?f € > A2, so f € Y. Ba[z;,]?. Since the ex-
tension of L to Bo[z;,] is positive this implies L(f) > 0. (4) = (1). Sup-
pose f € Aq, f > 0 on R?. By Theorem 6.1 (2) 3 ¢ = [T=, (1 + xfj)ez"
., are the variables appearing in the coefficients of f and k£ > 0
such that f + eq(1 + 22)* € 3 Bo[xi,]? Ve > 0. Clearing denominators,
P?(f +eq(1 + 23 )*) € 3 A} for some p (depending on €) of the form

where z;,,...,T;

. 2 mj
p= I |(1+$ij) .
j=1

By (4),
L(f) + €L(q(1 + a3,)") = L(f + eq(1 + 23)") > 0.
Since € > 0 is arbitrary, this implies L(f) > 0.

THEOREM 6.3: Suppose L : Aqg — R is linear and positive and condition (4.2)
holds, for each j € ), j # ig. Then there exists a constructibly Radon measure
v on R® such that L = L,. If condition (4.2) also holds for j = iy then v is

unique.
Proof. Argue as in [32, Corollary 4.7 and 4.8] and [33, Theorem 0.1].

Combining Theorem 6.3 and Remark 4.7 yields the following result which is
due to Nussbaum [34] in case |Q| < co.

COROLLARY 6.4: Suppose L : Aq — R is linear and positive and, for each
j € Q, j # ip the Carleman condition (4.3) holds. Then there exists a con-
structibly Radon measure v on R such that L = L,. If condition (4.3) also
holds for j = ig then v is unique.
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Theorem 4.10 extends in a similar way.

THEOREM 6.5: Suppose L : Aq — R is linear and positive. For each j € Q fix
a Radon measure p; on R such that L|R[zj] = L, and suppose, for each j € (,
J # 4o, condition (4.4) holds. Then there exists a constructibly Radon measure
w on R such that L = L,. If condition (4.4) also holds for j = iy then v is

unique.
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