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Abstract. We study a Dirichlet boundary problem related to the fractional
Laplacian in a manifold. Its variational formulation arises in the study of magni-
tude, an invariant of compact metric spaces given by the reciprocal of the ground
state energy. Using recent techniques developed for pseudodifferential boundary
problems we discuss the structure of the solution operator and resulting properties
of the magnitude. In a semiclassical limit we obtain an asymptotic expansion of
the magnitude in terms of curvature invariants of the manifold and the boundary,
similar to the invariants arising in short-time expansions for heat kernels.

1 Introduction

The analysis of boundary problems for nonlocal operators has attracted much
interest in recent years, including Dirichlet and Neumann problems for fractional
Laplacians. In this article we initiate the semiclassical analysis of related boundary
problems motivated by applications to the Leinster–Willerton conjecture for the
magnitude invariant of compact metric spaces.

To be specific, we consider the integral equation with parameter R > 0

(1)
∫

X
e−Rd(x,y)u(y)dy = f (x).

Here (X, d) is a compact metric space, and we focus on when X is a manifold with
boundary and d is a distance function satisfying additional regularity assumptions.
Already when X ⊆ R2 is the unit disc, close to nothing was known for the solutions
to (1). We shall prove in this paper that for X a compact n-dimensional manifold
with boundary, equation (1) is well posed for f in the Sobolev space H

(n+1)/2
(X)

and admits a unique solution uR ∈ Ḣ−(n+1)/2(X) for sufficiently large R � 0 (for
notation, see page 50). We relate the integral equation (1) to a pseudodifferential
boundary value problem which is elliptic with parameter.
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Our main results concern structural properties of solutions to equation (1)
such as asymptotic behavior as R → ∞ and meromorphic extensions in the
parameter R to sectors � ⊆ C. The methods for pseudodifferential boundary value
problems that we use date far back, see the work of Gregory Eskin [9] and Lars
Hörmander [23], but have in recent years seen much development in work of Gerd
Grubb [17, 18, 19, 20, 21].

The solution to (1) for the right hand side f = 1 enters in the so called magnitude
function of (X, d), studied extensively in, for instance, [2, 11, 12, 27, 28, 30,
33, 34, 44, 46]. The empirical properties of the solution to (1) have recently
found applications in data science, leading to precise conjectures for its structural
properties [6, 7].

The case f = 1 can be considered as a minimizing problem relating to the
ground state energy

E(R;X, d)

:= inf
{∫

X

∫
X

e−Rd(x,y)dμ(x)dμ(y) : μ a signed Borel measure with μ(X) = 1
}

= inf
{ ∑

x,y∈X

e−Rd(x,y)c(x)c(y) : c : X → R has finite support and
∑

x∈X c(x) = 1
}
.

More precisely, if R is such that (X,Rd) is positive definite (i.e., the matrix
(e−Rd(x,y))x,y∈F is positive definite for any finite F ⊆ X), then by [34] a solution uR

to equation (1) with f = 1 satisfies∫
X

uR(x)dx =
1

E(R;X, d)
.

Let us examine the problem of finding E(R;X, d) and studying its semiclassical
limit, as it has been broadly studied in various mathematical communities. The
ground state energy E(R;X, d) is that of a signed distribution of finitely many par-
ticles on X where a particle in x interacts with a particle in y under the potential
e−Rd(x,y). As such, the scaling parameter R > 0 should be thought of as an order
parameter with R → ∞ corresponding to a semiclassical limit. The non-locality
of equation (1) and the ground state energy E(R;X, d) makes the problem of ex-
plicit computation an impossibility, however in the semiclassical limit the problem
localizes and is asymptotically described in terms of geometric invariants. Related
problems concerning ground state energies with nonlocal interaction potentials
arise in the mean field description of interacting particle systems, such as [10].
Specifically for log gases the dependence of the ground state energy on the geom-
etry has been of interest [47]. In complex geometry, Berman has studied similar
minimization problems from which geometric structures emerged [3, 4]. Related
operators also appear in image processing [1].
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The integral equation (1) is, as mentioned above, related to magnitude—an
invariant that has been extensively studied since it was introduced by Tom Leinster
[27]. We presume no prerequisites from the reader on magnitude in this paper,
but for the convenience of the reader we summarize the implications to magnitude
here and expand on this relation in the follow-up paper [13]. From its category-
theoretic origin, magnitude has found unexpected applications from algebraic
topology [15, 29, 41] and applied category theory [8, 36] to data science [6, 7] and
mathematical biology [26].

For a metric space (X, d) this invariant leads to a function

MX : (0,∞) → R ∪ {∞}.

When the metric space (X,Rd) is positive definite, and in particular for compact
sets X ⊂ Rn [33], MX(R) is defined as MX(R) =

∫
X uR(x)dx, where uR satisfies the

magnitude equation

(2)
∫

X
e−Rd(x,y)u(y)dy = 1.

The work [34] provides an abstract Hilbert space framework in which to pose this
equation.

In the case of compact sets X ⊂ Rn, Meckes [34] gives an interpretation of the
magnitude in potential theoretic terms, as a generalized capacity:

(3)
MX(R) =

1
Rn!ωn

× inf{‖(R2 +�)(n+1)/4hR‖2
L2(Rn) : hR ∈ H(n+1)/2(Rn), hR = 1 on X}.

Here ωn denotes the volume of the unit ball in Rn. The minimizer of (3) is attained
at a function hR ∈ H(n+1)/2(Rn) solving the non-local exterior problem

(4)

⎧⎨
⎩(R2 +�)(n+1)/2hR = 0, in Rn \ X,

hR = 1, in X.

If n is odd, this was studied as a boundary value problem for the five-dimensional
unit ball in [2], and extended to odd-dimensional unit balls in [45]. Few explicit
computations of magnitude are known outside the realm of compact domains in
odd-dimensional Euclidean space, and even there the state-of-the art [11, 12] can
only provide asymptotic results in the semiclassical limit and ensure existence
of meromorphic extensions. In particular, nothing was previously known about
magnitude even in such a simple case as the unit disk X = B2 ⊆ R2.
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We provide a framework for a refined analysis and explicit computations for
solutions to equation (1) when X is a smooth, n-dimensional, compact manifold
with boundary, independent of the parity of n. The framework relies on recent
advances for pseudodifferential boundary problems and initiates their semiclassical
analysis. We work under certain regularity assumptions on the distance function d,
firstly that its square is regular at the diagonal (see Definition 2.2) and secondly
that it has property (MR) (see Definition 3.3 and 4.2). Our first assumption
ensures that the distance function behaves to leading term as a Euclidean distance,
and is satisfied by any geodesic distance function or a pullback thereof under an
embedding. The first assumption ensures that the diagonal behavior in equation (1)
is governed by a pseudodifferential operator of order −n − 1 which is elliptic with
parameter. Our second assumption—property (MR)—is a technical condition to
ensure that the off-diagonal behavior in equation (1) is negligible. Property (MR)
is satisfied for subspace distances in manifolds whose distance functions squared
are smooth, but it in fact fails for higher dimensional tori and real projective spaces.

The reader can note that there is an extended arXiv version of this paper [14]
containing more details and overview.

1.1 Main results. Let us summarize the main results of this paper. The
results all circle around the family of integral operators

ZX(R)u(x) :=
1
R

∫
X

e−Rd(x,y)u(y)dy, R ∈ C \ {0}.

Here X is a compact manifold with boundary equipped with a distance function d
and a volume density dy. We assume that d2 is smooth in a small neighborhood
of the diagonal x = y and there in local coordinates admits a Taylor expansion (for
any N > 0)

(5) d(x, y)2 = Hd2,x(v) +
∞∑
j=3

Cj
d2(x; v) + O(|v|N+1).

Here v = x − y, and where Hd2 is a Riemannian metric on X and Cj
d2 in local

coordinates is a symmetric j-form in v. This condition can be summarized in
the terminology that d2 is regular at the diagonal, see Definition 2.2 and for more
details on the Taylor expansion, see equation (9). We fix a function χ ∈ C∞(X×X)
such that χ = 1 on a neighborhood of the diagonal x = y and d2 is smooth on the
support of χ. The localization of Z to near the diagonal is the integral operator

QX(R)u(x) :=
1
R

∫
X
χ(x, y)e−Rd(x,y)u(y)dy, R ∈ C \ {0}.
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We remark that if d2 is smooth on all of X ×X, e.g., for a domain or a submanifold
in Rn with the induced metric, it holds that ZX − QX is smoothing with parameter
on any sector � ⊆ C+ with opening angle < π/2.

Theorem 1.1. Let X be a compact n-dimensional manifold with boundary

and d such that d2 is regular at the diagonal (see Definition 2.2). The family of

integral operators QX is an elliptic pseudodifferential operator with parameter
R ∈ C+ of order −n − 1, and its principal symbol is

σ−n−1(QX)(x, ξ,R) = n!ωn(R
2 + gd2(ξ, ξ))−(n+1)/2,

where gd2 is the dual metric to Hd2 from the Taylor expansion (5). The properties
of QX can be summarized as follows:

(1) In each coordinate chart, the full symbol of QX can be computed by an
iterative scheme as in Theorem 2.9.

(2) There exists an R0 such that

QX(R) : Ḣ− n+1
2 (X) → H̄

n+1
2 (X)

is invertible for Re(R) > R0 and arg(R) < π/(n + 1). Here Ḣ− n+1
2 (X),

respectively H̄
n+1
2 (X), denote the Sobolev spaces of supported, respectively

extendable distributions in X (see Section 4).
(3) If ∂X = ∅, then QX(R)−1 is an elliptic pseudodifferential operator of order

n + 1 whenever it exists. The full symbol of Q−1
X can be computed by an

iterative scheme as in Theorem 2.20.

Moreover, if d2 is smooth then all the properties above hold also for ZX.

Theorem 1.1 is found in the bulk of the text as follows. The first statement
and item (1) is found in Theorem 2.9. Item (2) is proven in Theorem 4.1, see also
Corollary 2.21 of Theorem 2.22 for the simpler case of ∂X = ∅. Item (3) follows
from Theorem 2.20 and Corollary 2.21.

The operator QX is generally more well behaved than ZX; the off-diagonal
singularities of d can create problems in consideringZX as a map between Sobolev
spaces. For examples of such phenomena, see Subsection 3.4. We impose one of
two conditions on d: property (MR) and property (SMR) respectively to ensure
that QX and ZX share common functional analytic features as operators between
Sobolev space. The precise definition of property (MR) and property (SMR) may
be found in Definition 3.3 (for ∂X = ∅) and Definition 4.2 (for ∂X 
= ∅). We note
that property (MR) and property (SMR) hold on any sector � ⊆ C \ {0} as soon
as d2 is smooth on all of X × X, e.g., for a domain in Rn or more generally for a
compact submanifold with boundary in a manifold with d2 smooth.
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Theorem 1.2. Let X be a compact n-dimensional manifold with boundary

and let d be a distance function such that d2 is regular at the diagonal (see
Definition 2.2). The family of operators

QX(R) : Ḣ− n+1
2 (X) → H̄

n+1
2 (X), R ∈ C \ {0},

is a holomorphic family of Fredholm operators that are invertible on a sector. The

inverse QX(R)−1 : H̄
n+1
2 (X) → Ḣ− n+1

2 (X), R ∈ C \ {0}, is a meromorphic family of
Fredholm operators.

If d satisfies property (SMR) on a sector �, then also

ZX(R) : Ḣ− n+1
2 (X) → H̄

n+1
2 (X), R ∈ �,

is a holomorphic family of Fredholm operators whose inverse family

ZX(R)−1 : H̄
n+1
2 (X) → Ḣ− n+1

2 (X), R ∈ �,
is a meromorphic family of Fredholm operators.

For the purposes described above, we are interested in precise asymptotic
information about solutions to ZX(R)u = f . We describe the inverse operator Z−1

X

via Wiener–Hopf factorizations.

Theorem 1.3. Let X be a compact n-dimensional manifold with boundary

and d a distance function whose square is regular at the diagonal. For some
R0 ≥ 0 and any R ∈ �π/(n+1)(R0), we can write

Q−1
X = χ1Aχ

′
1 + χ2(ϕ

−1)∗W+W−ϕ∗χ′
2 + S,

where A is a pseudodifferential parametrix of QX, χ1, χ
′
1 ∈ C∞

c (X◦), and

χ2, χ
′
2 ∈ C∞(X) are functions supported in a collar neighborhood U0 of ∂X in X

such that

χ1 + χ2 = 1 and χ′
j|supp(χj) = 1, j = 1, 2,

ϕ : ∂X × [0, 1) → U0 is a collar identification, and the operators S, W− and W+

satisfying the following as R → ∞:

(1) S : H
μ
(X) → Ḣ−μ(X) is a continuous operator with

‖S‖H
μ
(X)→Ḣ−μ(X) = O(R−∞).

(2) W+ : L2(∂X × [0,∞)) → Ḣ−μ(∂X × [0,∞)) is the properly supported
pseudodifferential operator of mixed-regularity (μ, 0) from Definition 5.18

which is invertible for large R > 0 and in local coordinates has an asymp-
totic expansion modulo Sμ,−∞ as in Lemma 5.21 and preserves support

in ∂X × [0,∞) ⊆ ∂X × R. Moreover, for χ, χ′ ∈ C + C∞
c (∂X × [0,∞))

with χχ′ = 0, it holds that ‖χW+χ
′‖L2(∂X×[0,∞))→H−μ (∂X×R) = O(R−∞).
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(3) W− : H
μ
(∂X × [0,∞)) → L2(∂X × [0,∞)) is the properly supported

pseudodifferential operator of mixed-regularity (μ, 0) from Definition 5.18
which is invertible for large R > 0 and in local coordinates has an asymp-

totic expansion modulo Sμ,−∞ as in Lemma 5.21 and preserves support in
∂X×(−∞, 0] ⊆ ∂X×R. Moreover, for χ, χ′ ∈ C+C∞

c (∂X×R) with χχ′ = 0,

it holds that ‖χW−χ′‖Hμ(∂X×R)→L2(∂X×R) = O(R−∞).

Theorem 1.3 is stated as Theorem 5.22 in the body of the text. A key feature
of the construction in Theorem 1.3 is that it provides us with a method to compute
the symbolic structure of the inverse Q−1

X .

Theorem 1.4. Let X be a compact n-dimensional manifold with boundary

and d a distance function whose square is regular at the diagonal. In the sector
Re(R) > R0 and arg(R) < π/(n + 1), we have a complete asymptotic expansion

〈Q(R)−11X, 1X〉 ∼
∞∑
k=0

ck(X, d)Rn−k + O(Re(R)−∞), as Re(R) → ∞ in �,

where the coefficients ck(X, d) are given as

ck(X, d) =
∫

X
ak,0(x, 1)dx +

∫
∂X

Bd2,k(x)dx′,

where

(1) ak,0(·, 1) ∈ C∞(X) is an invariant polynomial in the entries of the Taylor

expansion (5) as described in Theorem 2.26 and can be computed inductively
using Lemma 2.24, with ak,0 = 0 if k is odd; and

(2) Bd2,k ∈ C∞(∂X) is an invariant polynomial in the entries of the Taylor coeffi-
cients of d2 at the diagonal in X near ∂X as described in Proposition 6.9 and

can be inductively computed using Lemma 5.19.

In particular, we have that

c0(X, d) =
vol(X)
n!ωn

,

c1(X, d) =
(n + 1)vol(∂X)

2n!ωn
,

c2(X, d) =
n + 1

6 · n!ωn

∫
X

sd2dx +
(n − 1)(n + 1)2

8 · n!ωn

∫
∂X

Hd2dx′,

where the scalar curvature sd2 is defined as in Theorem 6.1 and the mean curva-
ture Hd2 of the distance function is defined as in Theorem 6.13.

Theorem 1.4 is stated as Theorem 6.13 in the body of the text.
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Corollary 1.5. Let X be a compact n-dimensional manifold with boundary

and d a distance function whose square is regular at the diagonal. Write E(R;X, d)
for the ground state energy.

(1) If d has property (MR) on a sector �, the ground state energy function
E(R;X, d) is a well defined meromorphic function of R ∈ �.

(2) If d has property (SMR) on a sector �, the ground state energy function
E(R;X, d) has the complete semiclassical asymptotic expansion

E(R;X, d) ∼
∞∑
k=0

εk(X, d)R−n−k + O(Re(R)−∞), as Re(R) → ∞ in �,

where

ε0(X, d) =
n!ωn

voln(X)
,

ε1(X, d) = − (n + 1)voln−1(X)
2voln(X)

,

ε2(X, d) =
(n + 1)2voln−1(X)2

4voln(X)2
− n!ωnc2(X, d)

voln(X)
,

and more generally

εk(X, d) = pk,n

(c1(X, d)
voln(X)

, . . . ,
ck(X, d)
voln(X)

)
,

for a universal polynomial pk,n of total degree k (where each cj(X, d) is

declared to be of degree j).

1.2 Notational conventions. To avoid confusion, we will use the terms
Riemannian metrics and distance function to separate the notions of metrics that
appear in Riemannian geometry and metric geometry, respectively.

The Fourier transform on Rn is denoted by F, where we use the convention

Ff (ξ) =
∫
Rn

e−ix·ξ f (x)dx

for f ∈ S(Rn). We further write

Dx = −i
∂

∂x
.

For α = (α1, . . . , αn) ∈ Nn, we write

|α| =
∑

j

αj, Dα
x = Dα1

x1
· · ·Dαn

xn
and xα = xα1

1 · · · xαn
n ,
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In this convention, for f ∈ S(Rn),

F(Dα
x f )(ξ) = ξαFf (ξ) and F(xαf )(ξ) = (−Dξ)

αFf (ξ),

and the product of pseudodifferential symbols is up to smoothing operators defined
from a symbol of the form

p#q ∼∑
α

1
α!
∂αξ pDα

x q =
∑
α

1
α!

Dα
ξp∂

α
x q,

where α! =
∏n

j=1 αj!.

We write M for a manifold and X for a compact manifold with boundary, or
occasionally a general compact metric space. We let n denote the dimension of M

or X and use the notation

μ := n+1
2 .

We write DiagM := {(x, x) : x ∈ M} for the diagonal in M × M. If (X, d) is a
compact metric space such that the matrix (e−Rd(x,y))x,y∈F is positive definite for
any finite subset F ⊆ X, we say that (X, d) is positive definite. If (X,Rd) is positive
definite for all R > 0, we say that (X, d) is stably positive definite. This terminology
follows [33].

For amanifoldM,wewriteC∞
c (M) for the Fréchet space of compactly supported

smooth functions and D′(M) for its topological dual—the distributions on M. A
domain X ⊆ M is a subset which coincides with the closure of its interior points.
If X is a compact manifold with boundary, it can always be embedded as a domain
in a manifold M and we write C∞(X) ⊆ C(X) for the restrictions to X of elements
in C∞(M).

A sector � ⊆ C is a conical subset, i.e., λ� ⊂ � for all λ > 1. Standard
examples we use throughout the paper are C+ = {z ∈ C : Re(z) > 0} and

�α(R0) := {z ∈ C : |Arg(z)| < α,Re(z) > R0}.

If we make a claim concerning R → +∞, it is implicitly assumed to be a limit
along the real line. We also note that for sectors� ⊆ C+ of opening angle α < π/2,
there is a Cα > 0 with C−1

α |R| ≤ Re(R) ≤ Cα|R|.
For two Banach spaces V1 and V2, we write B(V1,V2) for the space of bounded

operators V1 → V2 and K(V1,V2) for the space of compact operators V1 → V2.
Both form Banach spaces in the norm topology.

WewriteN = {0, 1, 2, 3, . . .} for the set of natural numbers. The closed positive,
respectively negative half-spaces are denoted by Rn± = {x ∈ Rn : ±xn ≥ 0}.
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2 The symbolic structure near the diagonal

To better understand the operator Z we first consider the case of a manifold M.
This analysis describes compact manifolds (see Subsection 2.4 and Section 3) and
we carry it over to the interior of a compact manifold with boundary below in
Sections 4 and 5. We formulate our results in terms of the operator

(6) Z(R)f (x) :=
1
R

∫
M

e−Rd(x,y)f (y)dy,

whose dependence on R 
= 0 is holomorphic under suitable assumptions studied
in Section 3 below. Here we are implicitly using a volume density on M, and the
operator depends on this choice. We shall later fix a certain choice adapted to
the distance function. We shall specify the domain and codomain of this operator
more precisely later on. For now, we can consider Z an operator C∞

c (M) → D′(M)
by setting

〈Zϕ,ψ〉 =
1
R

∫
M×M

e−Rd(x,y)ϕ(y)ψ(x)dxdy, for ϕ,ψ ∈ C∞
c (M).

2.1 On a class of pseudodifferential operators with parameter. We
pick a function χ ∈ C∞(M × M) such that χ = 1 near DiagM and is supported
in a small neighborhood of DiagM . The precise choice of χ will not play an
important role, but we shall later specify conditions on its support. The operator Z
decomposes as

(7) Z = Q + L, where Q(R)f (x) :=
1
R

∫
M
χ(x, y)e−Rd(x,y)f (y)dy.

We call the operator Q the localization of Z near the diagonal. In this section
we focus our attention toQ. Distance functionsmight be non-smooth away from the
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diagonal despite being quite regular at the diagonal and this off-diagonal behavior
of the distance function dictates whether or not L is negligible. The remainder L
will be studied further in Section 3.

This subsection is devoted to proving that the localized part Q of Z is a
parameter-dependent pseudodifferential operator, see Appendix Appendix A. We
will treat a slightly more general class of operators than Q. Consider a family of
operators that take the form

(8) QG,χ(R)f (x) :=
1

|R|Mc

∫
M
χ(x, y)e−|R|Mc

√
G(x,y)f (y)dV(y).

Here we have written

|R|Mc :=

⎧⎨
⎩R, Re(R) > 0,

−R, Re(R) < 0,

for the McIntosh modulus which extends the absolute value to a holomorphic
function in C\ iR. We shall mainly be concerned with the cases R ∈ R and R ∈ C+.
The cut-off function χ is as above with the additional constraint that G is smooth
on supp(χ). The function G : M × M → [0,∞) should be regular at the diagonal
as made precise in Definition 2.2 below: to define this notion we first introduce
further terminology. Note that T(M×M) = p∗

1TM⊕p∗
2TM where pj : M×M → M,

j = 1, 2, denotes the projection onto the jth factor. Over the diagonal DiagM , the
map Dp1 ⊕ Dp2 : T(M × M)|DiagM

→ TM ⊕ TM is an isomorphism. We define the
transversal tangent bundle to the diagonal to be

TtraDiagM := ker(Dp1 + Dp2 : T(M × M)|DiagM
→ TM) ⊆ T(M × M)|DiagM

.

The restriction Dp1| : TtraDiagM → TM is an isomorphism.

Definition 2.1. For a smooth function G defined in a neighborhood of DiagM ,
we define the transversal Hessian HG as the quadratic form on TtraDiagM obtained
from restricting the Hessian of G over the diagonal to the transversal tangent
bundle.

Definition 2.2. A function G : M × M → [0,∞) is said to be regular at
the diagonal if there is a tubular neighborhood U of the diagonal DiagM such
that G|U ∈ C∞(U) is a smooth function satisfying that

• G|U and dG|U vanish on DiagM ⊆ U;
• G(x) > 0 for x ∈ U \ DiagM; and
• the transversal Hessian HG is positive definite in all points of DiagM.
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Remark 2.3. The prototypical example of a function G regular at the diagonal
is G = d2 for suitable distance functions d. The function d2 is regular at the diagonal
for the Euclidean distance, or when d is the geodesic distance on a Riemannian
manifold (see Example 2.17 below) or more generally a distance function induced
from pulling back a geodesic distance along an embedding of M (see Example
2.16 below for an example).

To show that QG,χ(R) is an elliptic pseudodifferential operator with parameter,
and to describe its full symbol, we shall use a slight detour. The basic idea used in
computing the full symbol of QG,χ(R) is to do an inverse Fourier transform in R, and
then Fourier transform all conormal variables. When we Fourier transform in the
R-variable the Schwartz kernel—depending on (x, y,R)—transforms to a conormal
distribution on U × R (conormal to DiagM × {0})—depending on (x, y, η)—that
we then Fourier transform in all the transversal directions (v, η) where v = x − y,
thus producing the full symbol depending on (x, ξ,R). To compute the Fourier
transform in the R-direction, we use the following elementary lemma.

Proposition 2.4. For a parameter a ≥ 0, and Fa(R) := F.P. e
−a|R|
|R| , we have

that

FFa(η) = − log(η2 + a2) + log(2) − 2γ,

where γ is the Euler–Mascheroni constant.

Proof. By taking a derivative in the parameter a and using that the Fourier
transform of R �→ e−a|R| is 2a(η2 + a2)−1, we see that

∂

∂a
FFa(η) = −2a(η2 + a2)−1.

As such, FFa(η) = − log(η2 +a2)+c0(η) for some tempered distribution c0. Setting
a = 0 and using Proposition A.1, we see that c0 is a constant. By Proposition A.1
we have that

c0 = β0,1 = 2 log(2) +
1
2
ψ(1/2) − γ = log(2) − 2γ.

�

Proposition 2.5. Let G : M × M → [0,∞) be a function which is regular at
the diagonal, see Definition 2.2. For a neighborhood U of DiagM on which G is

smooth, define G̃ ∈ C∞(U × R) by

G̃(x, y, η) := η2 + G(x, y),
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and the conormal distribution log(G̃) ∈ I−n−1(U × R; DiagM × {0}) as in Propo-

sition A.2. Then there exists a canonical metric gG on T∗M such that

σ−n−1(log(G̃))(x, ξ,R) = −2πn!ωn(R
2 + gG(ξ, ξ))−(n+1)/2.

The canonical metric gG is dual to the transversal Hessian of G under the isomor-

phism Dp1| : TtraDiagM → TM.

In the following, unless specified otherwise we shall consider M endowed with
the Riemannian metric gG. This allows, in particular, to define a Laplace operator
on M.

Proof. Since G is regular at the diagonal, the function G̃ satisfies the assump-
tions of Proposition A.2 and the result follows therefrom. �

To compute the full symbol of QG,χ we use a Taylor expansion in the direction
transversal to the diagonal. Consider a function G : M × M → [0,∞) which is
regular at the diagonal, see Definition 2.2. Consider a coordinate chart U0 ⊆ M.
The coordinates on U0 induce coordinates (x, y) on U0 × U0 and we can identify
a neighborhood of DiagM ∩ (U0 × U0) with a neighborhood of the zero section
in TtraDiagM|U0 via the map (x, y) �→ (x, x − y). If the coordinate chart U0 on M

satisfies that G is smooth on U0 ×U0, Taylor’s theorem implies that for any N ∈ N

we can on U0 × U0 write

(9) G(x, y) = HG,x(x − y) +
N∑
j=3

C(j)
G (x; x − y) + rN(x, x − y),

for |x − y| small enough, where rN is a smooth function with

rN(x, v) = O(|v|N+1) as v → 0,

HG is the transversal Hessian of G, and C(j)
G : U0 → Symj(TtraDiagM|U0 ) takes

values in the symmetric j-forms on the transversal tangent bundle TtraDiagM|U0 . A
short computation shows that HG indeed is a Riemannian metric on M under the
isomorphism Dp1| : TtraDiagM → TM. However, each C(j)

G depends on the choice
of coordinates, we nevertheless suppress this dependence in the notation.

Since there is a canonical isomorphism TtraDiagM|U0
∼= TM|U0 , the symmetric

j-form C(j)
G : U0 → Symj(TtraDiagM|U0 ) appearing in the Taylor expansion (9) of G

defines a j:th order differential operator

C(j)
G (x,−Dξ) : C∞(T∗M|U0 ) → C∞(T∗M|U0 ),

obtained by quantizing the coordinate functions, i.e., C(j)
G (x,−Dξ) acts as mul-

tiplication operators by C(j)
G (x, v) under the fiberwise inverse Fourier transform
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(in the v-direction). For a k ∈ N+ and a multiindex γ ∈ Nk≥3, we can define a
differential operator C(γ)

G (x,−Dξ) on T∗M|U0 by

C(γ)
G (x,−Dξ) :=

k∏
l=1

C(γl)
G (x,−Dξ).

Since each C(γl)
G (x,−Dξ) acts as multiplication operators under the inverse Fourier

transform, the differential operators C(γl)
G (x,−Dξ), l = 1, . . . , k, commute. The

order of C(γ)
G (x,−Dξ) is |γ| :=

∑k
l=1 γl. For j ∈ N, define the finite set

Ij :=
{
γ ∈

∞⋃
k=1

Nk
≥3 : |γ| = j + 2k

}
.

For instance, we have that

I1 = {3}, I2 = {(3, 3), 4}, and I3 = {(3, 3, 3), (4, 3), (3, 4), 5}.
The role of Ij will become clear in Theorem 2.9 below describing the full symbol
of QG,χ from equation (8) in a coordinate chart. For γ ∈ Nk, we set rk(γ) := k. In
other words, γ ∈ ⋃∞

k=1 N
k≥3 belongs to Ij if and only if j = |γ| − 2rk(γ). We remark

that |γ| ≥ 3 and rk(γ) > 0 is implicit for γ ∈ Ij since Ij ⊆ ⋃∞
k=1 N

k≥3. The number
of elements in Ij ∩ Nk≥3 is the same as the number of ways to write j − k as a sum
of k natural numbers, and so

#(Ij ∩ Nk
≥3) =

(
j − 1
k − 1

)
.

The following properties of Ij follow.

Proposition 2.6. Let j > 0. The set Ij ⊆ ⋃
k>0 N

k≥3 satisfies the following
• max{|γ| : γ ∈ Ij} = 3j and is attained at γ = �3 ∈ Nj.

• max{γi : γ ∈ Ij} = j + 2 and is attained at γ = j + 2 ∈ N1.
• #Ij = 2j−1.

For notational purposes, we introduce the following notation.

Definition 2.7. For an integer n ∈ N ∪ −2N − 1, we introduce the notation

ωn :=
πn/2

�( n
2 + 1)

.

If n > 0, then ωn is the volume of the unit ball in n-dimensions.

To simplify the computations in the subsequent theorem, we note the following
relations for the �-function.
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Proposition 2.8. For natural numbers n, k ∈ N such that n > 2k+1, we have

that

�
(n + 1

2
− k
)
�
(n − 2k

2
+ 1
)

=
√
π
�(n − 2k + 1)

2n−2k
=
√
π

(n − 2k)!
2n−2k

.

Moreover, we have the identities

(−1)k+1

k!
π(n−1)/22n−2k�

(n + 1
2

− k
)

= (−1)k+1(n − 2k)!ωn−2kω2k,

for 2k < n

(−1)k+1

k!
π(n−1)/22n−2k�

(n + 1
2

− k
)

=
(−1)n/2+1ω2k

(2k − n)!ω2k−n

=
(−1)n/2+1(2k − n + 1)

2(2π)2k−n
ω2k−n+1ω2k,

for 2k − n ∈ 2N

(−1)
n+1
2 π(n−1)/2

22k−n
(
k − n+1

2

)
!k!

=
(−1)

n+1
2

(2π)2k−n
ω2kω2k−n−1,

for 2k − n ∈ 2N + 1.

Proof. The Legendre duplication formula �(ζ)�(ζ + 1/2) = 21−2ζ√π�(2ζ)
applied to ζ = n−2k+1 implies the first stated identity, and the second one follows
from the identity �(1/2 − m) = (−4)mm!/(2m)!. Combining these identities with
the definition of ωn produces the first and second identities. The third identity
follows from the definition of ωn. �

We now arrive at the main result of this subsection, describing the full symbol
of QG,χ. The reader should keep in mind that we are primarily interested in the
function G(x, y) := d(x, y)2 for a distance function d such that d2 is regular at the
diagonal. In this case QG,χ(R) = Q(R) is the localization of Z at the diagonal for
Re(R) > 0. We therefore formulate our results on the sector C+, albeit for QG,χ

they hold in the sector C \ iR.

Theorem 2.9. Let M be an n-dimensional manifold and G : M×M → [0,∞)
a function which is regular at the diagonal. We denote the Riemannian metric
on T∗M dual to the transversal Hessian HG by gG, as in Proposition 2.5. Consider

the operator

QG,χ(R)f :=
1

|R|Mc

∫
M
χ(x, y)e−|R|Mc

√
G(x,y)f (y)dy,

where χ ∈ C∞(M × M) a function with χ = 1 near DiagM and supported only
where G is smooth, and we use the Riemannian volume density defined from gG.
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We have that QG,χ ∈ �−n−1
cl (M;C+) is a classical elliptic pseudodifferential

operator with parameter of order −n − 1 with principal symbol

σ−n−1(QG,χ)(x, ξ,R) = n!ωn(R
2 + gG(ξ, ξ))−(n+1)/2.

In a coordinate chart U0 on M, the full symbol q of QG,χ has a classical asymptotic
expansion q ∼ ∑∞

j=0 qj computed from the Taylor expansion (9) and each qj is the

homogeneous symbol of degree −n − 1 − j which for j > 0 and for n odd is given
by

qj(x, ξ,R) =
∑

γ∈Ij,rk(γ)<(n+1)/2

crk(γ),nC
(γ)
G (x,−Dξ)(R

2 + gG(ξ, ξ))−(n+1)/2+rk(γ)

− ∑
γ∈Ij,rk(γ)≥(n+1)/2

crk(γ),nC
(γ)
G (x,−Dξ)

× [(R2 + gG(ξ, ξ))−(n+1)/2+rk(γ) log(R2 + gG(ξ, ξ))],

and for n even given as

qj(x, ξ,R) =
∑
γ∈Ij

crk(γ),nC
(γ)
G (x,−Dξ)(R

2 + gG(ξ, ξ))−(n+1)/2+rk(γ).

Here the coefficients are computed as

ck,n :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)k(n − 2k)!ωn−2kω2k, for 2k < n,
(−1)1−n/2ω2k
(2k−n)!ω2k−n

, for 2k − n ∈ 2N,
(−1)

n+1
2

(2π)2k−nω2kω2k−n−1, for 2k − n ∈ 2N + 1.

Remark 2.10. Exact expressions for q1 and q2 are given below in Proposi-
tions 2.13 and 2.14, respectively.

Remark 2.11. From the expression for qj in Theorem 2.9, it is not clear that qj

is homogeneous of degree −n−1− j when n is odd. We shall see in the proof that
this is in fact the case.

Proof of Theorem 2.9. By Proposition 2.4, the Schwartz kernel

1
|R|χ(x, y)e−|R|√G(x,y)

of QG,χ is the Fourier transform in the η-direction of

K(x, y, η) = − 1
2π
χ(x, y) log(η2 + G(x, y)).

The extra 2π is coming from Fourier inversion in one dimension.
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Let U denote a neighborhood of the diagonal DiagM on which G is smooth. It
follows from Proposition 2.5 (cf. Proposition A.2) that

K ∈ I−n−1(U × R; DiagM × {0})

with principal symbol

σ−n−1(K)(x, ξ,R) = n!ωn(R
2 + gG(ξ, ξ))−(n+1)/2.

Define

K0(x, y, η) := log(η2 + G(x, y)) ∈ I−n−1(U × R; DiagM × {0}).

We compute in a coordinate chart U0 that K0 ∈ CI−n−1(U × R; DiagM × {0}) and
using a uniform asymptotic expansion we use Proposition A.5 to show that the
Fourier transform in the η-direction of K is the Schwartz kernel of a pseudodiffer-
ential operator with parameter.

In a coordinate chart U0, we introduce the coordinates (x, v) = (x, x − y)
on U0 × U0. Using equation (9), we can write

K0(x, y, η) = − log(η2 + HG(v, v)) − log
(
1 +

∑N
j=3 C(j)

G (v, v) + rN(x, v)

η2 + HG(v, v)

)
.

For small v, we can Taylor expand

K0(x, y, η) = − log(η2+HG(v, v))−
N∑
j=1

∑
γ∈Ij

(−1)rk(γ)

rk(γ)
C(γ)

G (v)
(η2 + HG(v, v))rk(γ)

+ r̃N(x, v, η).

We note that, by the definition of Ij, each term in the second sum∑
γ∈Ij

(−1)rk(γ)

rk(γ)
C(γ)

G (v)
(η2+HG(v,v))rk(γ) is homogeneous of degree j. We also note that

r̃N(x, v, η) = O((|η| + |v|)N+1)

and a short computation gives that

∂αx ∂
β
v ∂

k
ηr̃N = O((|η| + |v|)N+1−|β|−k)

for any multiindices α, β and k. As such, we have a uniform asymptotic expansion
K ∼∑∞

j=0 Kj (cf. Definition A.4) where

(10) Kj(x, v, η) =

⎧⎨
⎩− 1

2π log(η2 + HG(v, v)), j = 0,
1
2π

∑
γ∈Ij

(−1)rk(γ)+1

rk(γ)
C(γ)

G (v)
(η2+HG(v,v))rk(γ) , j > 0.
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We conclude fromPropositionA.5 that QG,χ ∈ �−n−1
cl (M;R) is a pseudodifferential

operator with parameter. Proposition A.5 implies that

σ−n−1(QG,χ)(x, ξ,R) = σ−n−1(K)(x, ξ,R) = n!ωn(R
2 + gG(ξ, ξ))−(n+1)/2.

This is invertible in C∞(S(T∗M⊕R)) so QG,χ is elliptic with parameter. It is readily
seen that σ−n−1(QG,χ)(x, ξ,R) 
= 0 also for R ∈ C+, and the following symbol
computation shows that QG,χ ∈ �−n−1

cl (M;C+) is an elliptic pseudodifferential
operator with parameter.

Let us turn to the full symbol of QG,χ. We will compute it from equation (10)
and the Fourier transform computations of Section Appendix A of the appendix.
For k > 0, denote the Fourier transform of (η2 + HG(v, v))−k in the (v, η)-direction
by Fk(x, ξ,R), that is

Fk(x, ξ,R) :=
∫

TxM⊕R

e−iξ.v −iRη

(η2 + HG(v, v))k
dv dη.

Using homogeneity and rotational symmetries, Fk can be computed as in Proposi-
tion A.1 to be

π(n+1)/22−2k+n+1�( n+1
2 − k)

(k − 1)!
(R2 + gG(ξ, ξ))−(n+1)/2+k,

for 2k − n − 1 /∈ 2N, and

(11)

(−1)k− n+1
2 π(n+1)/2

22k−n−1(k − n+1
2 )!(k − 1)!

× [(R2 + gG(ξ, ξ))−(n+1)/2+k(− log(R2 + gG(ξ, ξ)) + βk−(n+1)/2,n+1)],

for 2k − n − 1 ∈ 2N. It follows that for γ ∈ Ij, the symbol of the term

C(γ)
G (v)(η2 + HG(v, v))−rk(γ)

is given by C(γ)
G (x,−Dξ)Frk(γ)(x, ξ,R) which is computed to be

π(n+1)/22−2rk(γ)+n+1�( n+1
2 − rk(γ))

(rk(γ) − 1)!
C(γ)

G (x,−Dξ)(R
2 + gG(ξ, ξ))−(n+1)/2+rk(γ),

for 2rk(γ) − n − 1 /∈ 2N, and

(12)

(−1)rk(γ)− n+1
2 π(n+1)/2

22rk(γ)−n−1

(
rk(γ) − n + 1

2

)
!(rk(γ) − 1)!

× C(γ)
G (x,−Dξ)

× [(R2 + gG(ξ, ξ))−(n+1)/2+rk(γ)(− log(R2 + gG(ξ, ξ)) + βrk(γ)−(n+1)/2,n+1)],
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for 2rk(γ) − n − 1 ∈ 2N. We conclude that the symbol qj of Kj, for j > 0, is (up
to the term βrk(γ),n+1) given by the formula in the statement of the theorem for the
pre-factors ck,n:

ck,n =

⎧⎨
⎩

(−1)k+1

k! π(n−1)/22n−2k�( n+1
2 − k), for 2k − n − 1 /∈ 2N,

(−1)
n+1
2 π(n−1)/2

22k−n(k− n+1
2 )!k!

, for 2k − n − 1 ∈ 2N.

Therefore ck,n takes the form prescribed in the theorem by Proposition 2.8.
We finish the proof by showing that βrk(γ)−(n+1)/2,n+1 does not contribute in

equation (12) and that there is no logarithmic termwhen expanding the ξ-derivatives
in equation (12). If 2rk(γ) − n − 1 ∈ 2N, then −(n + 1)/2 + rk(γ) ∈ N and
so (R2 + gd(ξ, ξ))−(n+1)/2+rk(γ) is a polynomial of degree 2rk(γ) − n − 1 ∈ 2N
in ξ. For γ ∈ Ij ⊆ ⋃

k N
k≥3, we have that j + 2rk(γ) = |γ| ≥ 3rk(γ). Therefore,

if 2rk(γ) − n − 1 ∈ 2N then C(γ)
d2 (x,Dξ)(R2 + gd(ξ, ξ))−(n+1)/2+rk(γ) is a polynomial

of degree
2rk(γ) − n − 1 − |γ| ≤ −rk(γ) − n − 1 < 0

and therefore it must be identically zero. In other words, we have

C(γ)
G (x,−Dξ)(R

2 + gG(ξ, ξ))−(n+1)/2+rk(γ) = 0

for 2rk(γ) − n − 1 ∈ 2N. This equality proves that qj can not contain a term with
a logarithmic factor, and as such qj is homogeneous of degree −n − 1 − j for all j,
and

C(γ)
G (x,−Dξ)

× [(R2 + gG(ξ, ξ))−(n+1)/2+rk(γ)(− log(R2 + gG(ξ, ξ)) + βrk(γ)−(n+1)/2,n+1)]

= −C(γ)
G (x,−Dξ)[(R

2 + gG(ξ, ξ))−(n+1)/2+rk(γ) log(R2 + gG(ξ, ξ))]. �

Remark 2.12. The computation that q0(x, ξ,R) = n!ωn(R2 + gG(ξ, ξ))−(n+1)/2

is compatible with known symbol computations in Rn for G(x, y) = |x − y|2 in
which case q = q0 is the full symbol expansion when using Euclidean coordinates.
Indeed, this statement follows from the fact that e−R|v| is the Fourier transform
of n!ωn(R2 + |ξ|2)−(n+1)/2, see for instance [2, equation (3)]. We remark that the
coordinate dependent symbol computations of Theorem2.9 will be used also inRn.
The reason for using Theorem 2.9 in Rn is that to describe the operator near the
boundary of a domain with the Wiener–Hopf factorization techniques of Section 5
below we need to “straighten out the boundary”, i.e., choose coordinates in which
the boundary locally looks like a half-space. We make such computations more
precise in Subsection 2.2 below.
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Let us give some further details in computing the symbols q1 and q2. The
precise information contained in q1 and q2 will be used later to compute the first
terms in the inverse of Q and the asymptotics of its expectation values in Section 6.
Before entering into the symbol computations of q1 and q2, let us introduce some
notation. Since g is a metric on T∗M, it can be viewed as a symmetric tensor in
TM ⊗ TM and for a covector ξ, the contraction ιξgG takes values in TM. In the
coordinate chart, eachCj

G takes values in the symmetric j-forms on TM|U0 . As such,
expressions such as C3

G(x, gG ⊗ ιξgG) or C4
G(x, gG ⊗ gG), for instance, make sense.

The reader should be aware that such expressions are individually not coordinate
invariant, the transformation rules for these expressions can be deduced either from
the Taylor expansion (9) or from the transformation rules for pseudodifferential
operators. For computational purposes, we also note that

dξgG(ξ, ξ) = 2ιξgG.

Here dξ denotes the fiberwise exterior differential and we are implicitly using the
canonical identification T∗(T∗M) = π∗TM ⊕ π∗T∗M and that the TM-summand is
where dξ maps to. Auseful tool in formulating the computations is the Pochhammer
k-symbol. For x ∈ R, n ∈ N and k ∈ Z, we write

(x)n,k := x(x + k)(x + 2k) · · · (x + (n − 1)k)︸ ︷︷ ︸
n factors

,

with the convention that (x)0,k = 1 for any k and (0)n,k = 1 for any n and k.

Proposition 2.13. Let M and QG,χ be as in Theorem 2.9. In a coordinate
chart on M, the term q1 of degree −n − 2 appearing in the full symbol q of QG,χ is

given by

q1(x, ξ,R) = −i(6C3
G(x, gG ⊗ ιξgG)(R2 + gG(ξ, ξ))−2

− 8C3
G(x, ιξgG ⊗ ιξgG ⊗ ιξgG)(R2 + gG(ξ, ξ))−3),

if n = 1, and if n > 1 we have that

q1(x, ξ,R) = − i(n2 − 1)c1,n(3C3
G(x, gG ⊗ ιξgG)(R2 + gG(ξ, ξ))−(n+1)/2−1

− (n + 3)C3
G(x, ιξgG ⊗ ιξgG ⊗ ιξgG)(R2 + gG(ξ, ξ))−(n+1)/2−2),

where ιξgG denotes the contraction of the metric gG on T∗M along the covector ξ.
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Proof. We note that I1 = {γ ∈ ∪∞
k=1N

k≥3 : |γ| = 1 + 2rk(γ)} = {3}. For n = 1,
we have c1,1 = −1/2 and since we are in the critical case we compute as follows:

q1(x, ξ,R) = − ic1,1C
3(x, 1)∂3

ξ log(R2 + gG(ξ, ξ)) = iC3(x, 1)∂2
ξ

ιξgG

R2 + gG(ξ, ξ)

= iC3
G(x, 1)

(
− 6gGιξgG

(R2 + gG(ξ, ξ))2
+

8(ιξgG)3

(R2 + gG(ξ, ξ))3

)
,

which proves the case n = 1.
For n > 1, we compute that

q1(x, ξ,R) = i(n + 1)(n − 1)c1,n(−3C3
G(x, gG ⊗ ιξgG)(R2 + gG(ξ, ξ))−(n+1)/2−1

+ (n + 3)C3
G(x, ιξgG ⊗ ιξgG ⊗ ιξgG)(R2 + gG(ξ, ξ))−(n+1)/2−2). �

The next proposition follows from a similar computation.

Proposition 2.14. Let M and QG,χ be as in Theorem 2.9. In a coordinate

chart on M, the term q2 of degree −n − 3 appearing in the full symbol q of QG,χ is
given as follows: for n = 1 we have that

q2(x, ξ,R) = c2,1C
3(x, 1)2∂6

ξ ((R
2 + gG(ξ, ξ)) log(R2 + gG(ξ, ξ)))

+ c1,1C
4(x, 1)∂4

ξ log(R2 + gG(ξ, ξ))

= − C3(x, 1)2

16

(
− 23 · 15g3

G

(R2 + gG)2
+

24 · 90(ιξgG)2g2
G

(R2 + gG)3

− 24 · 80(ιξgG)4gG

(R2 + gG)4
+

26 · 24(ιξgG)6

(R2 + gG)5

)
− C4(x, 1)

2

(
− 22 · 3g2

G

(R2 + gG)2
+

23 · 12(ιξgG)2gG

(R2 + gG)3
− 24 · 6(ιξgG)4

(R2 + gG)4

)
,

and for n = 3, we have that

q2(x, ξ,R) = c2,3C
3(x, ∂ξ)

2(log(R2 + gG(ξ, ξ))) + c1,3C
4(x, ∂ξ)(R

2 + gG(ξ, ξ))−1

= c2,3240(C3
G ⊗ C3

G)(gG ⊗ gG ⊗ gG)(R2 + gG(ξ, ξ))−3

−c2,345·96C3
G(x, gG ⊗ ιξgG)2(R2 + gG(ξ, ξ))−4

+c2,3120·96C3
G(x, ιξgG⊗ιξgG⊗ιξgG)C3

G(x, gG⊗ιξgG)(R2+gG(ξ, ξ))−5

−c2,380·96C3
G(x, gG ⊗ ιξgG)2(R2 + gG(ξ, ξ))−6

+c1,324C4(x, gG ⊗ gG)(R2 + gG(ξ, ξ))−3

−c1,3288C4(x, gG ⊗ ιξgG ⊗ ιξgG)(R2 + gG(ξ, ξ))−4

+c1,3192C4(x, ιξgG ⊗ ιξgG ⊗ ιξgG ⊗ ιξgG)(R2 + gG(ξ, ξ))−5
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and finally for n 
= 1, 3, we have that

q2(x, ξ,R)

= − c2,nC
3(x, ∂ξ)

2(R2 + gG(ξ, ξ))−(n−3)/2 + c1,nC
4(x, ∂ξ)(R

2 + gG(ξ, ξ))−(n−1)/2

= −24c2,n(n + 3)4,−2C
3(x, gG ⊗ ιξgG)2(R2 + gG(ξ, ξ))−(n+1)/2−2

+ 6c2,n(n + 5)5,−2

× C3(x, ιξgG ⊗ ιξgG ⊗ ιξgG)C3(x, gG ⊗ ιξgG)(R2 + gG(ξ, ξ))−(n+1)/2−3

−c2,n(n + 7)6,−2C
3(x, ιξgG ⊗ ιξgG ⊗ ιξgG)2(R2 + gG(ξ, ξ))−(n+1)/2−4

+ 3c2,n(n + 5)5,−2(C
3 ⊗ C3)(x, gG ⊗ gG ⊗ gG)(R2 + gG(ξ, ξ))−(n+1)/2−1

+ 3c1,n(n
2 − 1)C4(x, gG ⊗ gG)(R2 + gG(ξ, ξ))−(n+1)/2−1−

− 6c1,n(n + 3)3,−2C
4(x, gG ⊗ ιξgG ⊗ ιξgG)(R2 + gG(ξ, ξ))−(n+1)/2−2

+ c1,n(n + 5)4,−2C
4(x, ιξgG ⊗ ιξgG ⊗ ιξgG ⊗ ιξgG)(R2 + gG(ξ, ξ))−(n+1)/2−3,

where ιξgG denotes the contraction of the metric gG on T∗M along the covector ξ.

2.2 Examples and further structure in the symbol computations.
In the preceding subsection we saw a detailed computation of the full symbol
of Qχ,G in terms of the Taylor expansion. Let us consider a few important special
cases where further structures can be visible in the symbol expansion, and proceed
with a structural statement for the entries in the full symbol in the general case.

Example 2.15 (Symbol computations near a boundary in Euclidean space).
We consider the manifold M = Rn and the function

G(x, y) = |x − y|2

which is regular at the diagonal. This example fits into the bigger picture of
the paper seeing that G(x, y) = d(x, y)2. It will later in the paper be crucial to
describe the symbol of Q = QG,χ near the boundary of a domain X ⊆ Rn with
smooth boundary. Fix a point x0 ∈ ∂X. Up to a rigid motion, we can assume that
x0 = 0 and that the normal vector of ∂X in x0 is orthogonal to the plane xn = 0,
where we write x = (x′, xn) for x′ ∈ Rn−1 and xn ∈ R. There is a neighborhood
U0 = U00 × (−ε, ε) of 0 ∈ Rn and a smooth function ϕ ∈ C∞(U00) such that

X ∩ U0 = {x = (x′, xn) ∈ U0 : ϕ(x′) ≤ xn}.
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Since the normal vector of ∂X in x0 is orthogonal to the plane xn = 0, ∇x′ϕ(0) = 0.
Near x0 = 0, we use the coordinates

(x′, xn) �→ (x′, xn − ϕ(x′)).

In these new coordinates, the domain X looks like the half-space {(x′, xn) : xn ≥ 0}
locally near x0 = 0. We compute that in these coordinates G = G(x, y) can be
written as

|(x′, xn − ϕ(x′)) − (y′, yn − ϕ(y′))|2
= |x′ − y′|2 + (xn − yn − (ϕ(x′) − ϕ(y′)))2

= |x − y|2 − 2(xn − yn)(ϕ(x
′) − ϕ(y′)) + (ϕ(x′) − ϕ(y′))2

= |v|2 +
N∑
j=2

∑
|α′|=j−1

−2∂α
′

x′ ϕ(x′)
α′!

vn(v
′)α

′

+
N∑
j=2

∑
|α′|+|β′ |=j,
|α′ |,|β′ |>0

∂α
′

x′ ϕ(x′)∂β
′

x′ ϕ(x′)
α′!β′!

(v ′)α
′+β′

+ O(|v|N+1),

where the sum over α′ and β′ ranges over α′, β′ ∈ Nn−1 and we have written
v = x − y, v ′ = x′ − y′ and vn = xn − yn. Introducing the notation

∇jϕ(x′; v ′) :=
∑
|α′|=j

∂α
′

x′ ϕ(x′)
α′!

(v ′)α
′
,

we have in these coordinates that

G(x, y) = |v|2 − 2vn∇ϕ(x′) · v ′ + (∇ϕ(x′) · v ′)2 +
N∑
j=3

−2vn∇j−1ϕ(x′; v ′)

+
N∑
j=3

∑
k+l=j,
k,l>0

∇kϕ(x′; v ′)∇lϕ(x′; v ′) + O(|v|N+1).

In particular, we can conclude that

HG(v) = |v|2 − 2vn∇ϕ(x′) · v ′ + (∇ϕ(x′) · v ′)2,

so HG is represented by the n × n-matrix

HG =

(
1n−1 + ∇ϕ(x′)∇ϕ(x′)T −∇ϕ(x′)

−∇ϕ(x′)T 1

)
.
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Therefore, in the same basis we have that

gG = H−1
G =

(
1n−1 ∇ϕ(x′)

∇ϕ(x′)T 1 + |∇ϕ(x′)|2
)
.

We note that HG|T∂X is the Riemannian metric on ∂X induced from the Euclidean
metric on Rn and the inclusion ∂X ↪→ Rn. We also conclude that

(13) Cj
G(x; v) = vnC

j,1
G (x; v ′) + Cj,0

G (x; v ′)

where

Cj,1
G (x; v ′) := −2∇j−1ϕ(x′; v ′)

and

Cj,0
G (x; v ′) :=

∑
k+l=j,k,l>0

∇kϕ(x′; v)∇lϕ(x′; v).

Therefore, in these coordinates near the boundary of a domain in Rn, we have for
γ ∈ Ij that

C(γ)
G (x,−Dξ)

= (−1)|γ|
rk(γ)∏
l=1

[ ∑
|α′|=|γl|−1

−2∂α
′

x′ ϕ(x′)
α′!

Dα′
ξ′ Dξn +

∑
|α′|+|β′ |=|γl|,
|α′|,|β′ |>0

∂α
′

x′ ϕ(x′)∂β
′

x′ ϕ(x′)
α′!β′!

Dα′+β′
ξ′

]
.

This gives a method for computing the homogeneous symbol qj of degree−n−1−j

for any j following Theorem 2.9.

The principal symbol is computed as in Theorem 2.9. By Proposition 2.13 we
compute for n > 1 that

q1(x, ξ,R)

= − i(n2 − 1)c1,n

× (6gG(∇2ϕ)gG(ξ,∇ϕ− en)(R
2 + gG(ξ, ξ))−(n+1)/2−1

− 2(n + 3)∇2ϕ(ιξgG, ιξgG)gG(ξ,∇ϕ− en)(R
2 + gG(ξ, ξ))−(n+1)/2−2)

= i(n2 − 1)c1,n

× (6ξngG(∇2ϕ)(R2 + gG(ξ, ξ))−(n+1)/2−1

− 2(n + 3)ξn∇2ϕ((ξ′ + ξn∇ϕ)⊗2)(R2 + gG(ξ, ξ))−(n+1)/2−2).
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By Proposition 2.14 we compute for n 
= 1, 3 that

q2(x, ξ,R)

= − 24c2,n(n + 3)4,−24(gG(∇2ϕ))2(gG(ξ,∇ϕ− en))
2(R2 + gG(ξ, ξ))−(n+1)/2−2

+ 6c2,n(n + 5)5,−24gG(∇2ϕ)(gG(ξ,∇ϕ− en))
2∇2ϕ(ιξgG, ιξgG)

× (R2 + gG(ξ, ξ))−(n+1)/2−3

− c2,n(n + 7)6,−24(∇2ϕ(ιξgG, ιξgG))2(gG(ξ,∇ϕ− en))
2(R2 + gG(ξ, ξ))−(n+1)/2−4

+ 3c2,n(n + 5)5,−2 · 4(gG(∇2ϕ))2gG(∇ϕ− en,∇ϕ− en)(R
2 + gG(ξ, ξ))−(n+1)/2−1

+ 3c1,n(n
2 − 1)(2(gG ⊗ gG)(∇3ϕ⊗ (∇ϕ− en)) + (gG(∇2ϕ))2)

× (R2 + gG(ξ, ξ))−(n+1)/2−1

− 6c1,n(n + 3)3,−2(2(gG ⊗ ιξgG)(∇3ϕ)gG(ξ,∇ϕ− en)

+ (gG(∇2ϕ))(∇2ϕ(ιξgG, ιξgG)))(R2 + gG(ξ, ξ))−(n+1)/2−2

+ c1,n(n + 5)4,−2(2(ιξgG)⊗3(∇3ϕ)gG(ξ,∇ϕ− en)

+ (∇2ϕ(ιξgG, ιξgG))2)(R2 + gG(ξ, ξ))−(n+1)/2−3

= − 48c2,n(n + 3)4,−2(gG(∇2ϕ))2ξ2
n(R

2 + gG(ξ, ξ))−(n+1)/2−2

+ 24c2,n(n + 5)5,−2gG(∇2ϕ)ξ2
n∇2ϕ((ξ′ + ξn∇ϕ)⊗2)(R2 + gG(ξ, ξ))−(n+1)/2−3

− 4c2,n(n + 7)6,−2(∇2ϕ((ξ′ + ξn∇ϕ)⊗2))2ξ2
n(R

2 + gG(ξ, ξ))−(n+1)/2−4

+ (12c2,n(n + 5)5,−2 + 3c1,n(n
2 − 1))(gG(∇2ϕ))2(R2 + gG(ξ, ξ))−(n+1)/2−1

− 6c1,n(n + 3)3,−2(−2ξn∇3ϕ(1n−1 ⊗ (ξ′ + ξn∇ϕ))
+ (gG(∇2ϕ))(∇2ϕ((ξ′ + ξn∇ϕ)⊗2))(R2 + gG(ξ, ξ))−(n+1)/2−2

+ c1,n(n + 5)4,−2(−2ξn(∇3ϕ)((ξ′ + ξn∇ϕ)⊗3)

+ (∇2ϕ((ξ′ + ξn∇ϕ)⊗2)2)(R2 + gG(ξ, ξ))−(n+1)/2−3,

and for n = 3 that

q2(x, ξ,R) = (c2,3240 · 4 + c1,324)(gG(∇2ϕ))2(R2 + gG(ξ, ξ))−3

− c2,345 · 96 · 4(gG(∇2ϕ))2ξ2
n(R

2 + gG(ξ, ξ))−4

+ c2,3120 · 96 · 4gG(∇2ϕ)ξ2
n∇2ϕ((ξ′ + ξn∇ϕ)⊗2)(R2 + gG(ξ, ξ))−5

− c2,380 · 96 · 4(gG(∇2ϕ))2ξ2
n(R

2 + gG(ξ, ξ))−6

− c1,3288(−2ξn(∇3ϕ)(1n−1 ⊗ (ξ′ + ξn∇ϕ))
+ (gG(∇2ϕ))(∇2ϕ((ξ′ + ξn∇ϕ)⊗2)))(R2 + gG(ξ, ξ))−4

+ c1,3192(−2ξn(∇3ϕ)((ξ′ + ξn∇ϕ)⊗3) + (∇2ϕ((ξ′ + ξn∇ϕ)⊗2))2)

× (R2 + gG(ξ, ξ))−5.

We note that gG(∇2ϕ)(x0) is (n − 1)/2 times the mean curvature in x0.
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Example 2.16 (Symbol computations for a submanifold of Euclidean space).
We consider a submanifold M ⊆ RN and the function G(x, y) = |x − y|2 which is
regular at the diagonal. This example fits into the bigger picture of the paper seeing
that G(x, y) = d(x, y)2 where d is the distance function on M making the inclusion
M ⊆ RN isometric. To Taylor expand G as in (9), we take coordinates around a
point x0 ∈ M such that M near x0 is parametrized by⎧⎨

⎩xl = xl, l = 1, . . . , n,

xl = ϕl(x1, . . . , xn), l = n + 1, . . . ,N,

for some functions ϕn+1, . . . , ϕN . Write x = (x1, . . . , xn). In these coordinates,

G(x, y) = |x − y|2 +
N∑

l=n+1

|ϕl(x) − ϕl(y)|2

= |v|2 +
N0∑
j=2

N∑
l=n+1

∑
|α|+|β|=j,
|α|,|β|>0

∂αxϕl(x)∂βxϕl(x)
α!β!

v α+β + O(|v|N0+1),

where v = x − y. Therefore, we conclude that

HG(v) = |v|2 +
N∑

l=n+1

(∇ϕl(x) · v)2,

and for j > 2,

Cj
G(x, v) =

N∑
l=n+1

∑
|α|+|β|=j,
|α|,|β|>0

∂αxϕl(x)∂βxϕl(x)
α!β!

v α+β =
N∑

l=n+1

∑
i+k=j,
i,k>0

(∇iϕl ⊗ ∇kϕl)(v).

Computations similar to those in Example 2.15 can be carried out also for subman-
ifolds. To preserve the reader’s sanity, we spare the details.

Example 2.17 (Symbol computations for geodesic distances). Consider a
manifold M equipped with a Riemannian metric gM. To avoid having to prescribe
the distance between different components, we assume that M is connected. The
geodesic distance dgeo : M × M → [0,∞) is defined by

dgeo(x, y) := inf{L(c) : c is a smooth path from x to y},
where the length L(c) of a path c : [0, 1] → M is defined by

L(c) :=
∫ 1

0

√
gM,c(t)(ċ(t), ċ(t))dt.
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Here we write ċ : [0, 1] → TM for the derivative of the path, so ċ(t) ∈ Tc(t)M.
For a suitable neighborhood U ⊆ TM of the zero section, the Riemannian met-
ric defines an exponential map exp : UUU → M. More precisely, for a small
enough v ∈ TxM, expx(v) = exp(x, v) ∈ M is defined in local coordinates as
expx(v) = wx(v; 1) wherewx(v; ·) : [0, 1] → TM is the solution to the second order
ordinary differential equation

(14)

⎧⎪⎪⎨
⎪⎪⎩
ẅx(v, t) + �wx(v;t)(ẇx(v, t), ẇx(v, t)) = 0,

w(v; 0) = x,

ẇ(v, 0) = −v,
where � is the affine connection defined from g, which in local coordinates is
a vector valued symmetric bilinear form on the tangent bundle. In these local
coordinates, for x and y close enough we have that

dgeo(x, y) = | exp−1
x (y)|2g.

In particular, d2
geo is smooth in a neighborhood of the diagonal.

Let us compute the Taylor expansion of d2
geo as in equation (9) and prove

that d2
geo is regular at the diagonal. We use a coordinate neighborhood as above,

and write v = x− y. We are looking for the Taylor expansion in v of the coordinate
function Xx(v) = exp−1

x (x − v). We Taylor expand

wx(v, t) = x − vt +
N∑

k=2

w(k)
x (v; 0)

k!
tk + O(|tv|N+1).

We note that v �→ w(k)
x (v; 0) is a homogeneous polynomial of degree k, we denote

this by Wk(x; v). It follows from equation (14) that

(15)

⎧⎪⎪⎨
⎪⎪⎩

W1(v) = −v,
W2(v) = −�(v, v),

W3(v) = −d�(v, v, v) − 2�(v, �(v, v)).

The higher order terms W4,W5, . . . can be computed inductively from equa-
tion (14). Write the Taylor expansion of the unknown function Xx in v as

Xx(v) =
N∑

k=1

X(k)(x; v) + O(|v|N+1),

where X(k)(x; ·) is a homogeneous polynomial of degree k in v. The identity
Xx(v) = exp−1

x (x − v) is equivalent to expx(Xx(v)) = x − v which implies that

(16) −
N∑

k=1

X(k)(x; v) +
N∑

k=2

Wk(x,
∑N

l=1 X(l)(x; v))
k!

= −v + O(|v|N+1).
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Considering the first order term, we see that X(1)(v) = v. The higher order terms
can be inductively determined by considering each homogeneous term separately:

(17) X(k)(v) =
[ k∑

j=2

Wj(x,
∑k−1

l=1 X(l)(x; v))
j!

]
(k)
,

where [·](k) denotes the homogeneous term of degree k. Using equations (15)
and (16), we compute the first terms to be⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X(1)(v) = v,

X(2)(v) = 1
2W2(x; v) = − 1

2�(v, v),

X(3)(v) = 1
6W3(x; v) + 1

2 [W2(x; v − 1
2�(v, v))](3)

= − 1
6d�(v, v, v) + 1

6�(v, �(v, v)).

We summarize these computations in a proposition.

Proposition 2.18. Let M be a manifold equipped with a Riemannian met-

ric gM and let dgeo denote the geodesic distance. Then d2
geo is regular at the di-

agonal and in a coordinate neighborhood the Taylor expansion as in equation (9)
takes the form

d2
geo(x, y) = |v|2gM

+ C3
d2

geo
(x; v) + C4

d2
geo

(x; v) + O(|v|5gm
),

where

C3
d2

geo
(x; v) = − gM(v, �(v, v)),

C4
d2

geo
(x; v) =

1
4
|�(v, v)|2gM

+
1
3

(g(v, d�(v, v, v)) − g(v, �(v, �(v, v)))) .

The higher order terms Cj
d2

geo
can be computed inductively from equation (17).

Let us return to the general case and describe the overall structure of the terms
appearing in the full symbol expansion of QG,χ.

Lemma 2.19. Let M and G be as in Theorem 2.9. The entries in the full

symbol expansion q ∼∑∞
j=0 qj of QG,χ ∈ �−n−1

cl (M;C+) take the form

qj(x, ξ,R) =
3j∑

k=0

Pk,j(x, ξ)(R
2 + gG(ξ, ξ))−

n+1+j+k
2 ,

where Pk,j are of the form:
(1) Pk,j is a homogeneous polynomial of degree k in ξ and

Pk,j ≡ 0 if j − k /∈ 2Z.
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(2) If j − k ∈ 2Z, the polynomial Pk,j takes the form

Pk,j(x, ξ) =
∑
γ∈Ij

ργ,k,jC
(γ)
G (x, ιξgG ⊗ ιξgG︸ ︷︷ ︸

k times

⊗ gG ⊗ · · · ⊗ gG︸ ︷︷ ︸
|γ|−k

2 times

),

for some coefficients ργ,k,j ∈ Qπn/2 + Qπ(n+1)/2 + Qπ(n−1)/2.

In the last item, we note that if j − k ∈ 2Z, then |γ| − k ∈ 2Z for all γ ∈ Ij.

Proof. It follows from the computations in Theorem 2.9 that qj can be written
as a finite sum

qj(x, ξ,R) =
∑
k≥0

Pk,j(x, ξ)(R
2 + gG(ξ, ξ))−

n+1+j+k
2 ,

where Pk,j is a polynomial in ξ whose coefficients (as a polynomial in ξ) are
all polynomials in the Taylor coefficients of G at the diagonal. For the degrees
to match, Pk,j must be of degree k. Since the powers R2 + gG(ξ, ξ) must differ
from −(n + 1)/2 by an integer, Pk,j = 0 unless j − k /∈ 2Z. Finally, the largest
possible degree k for which

ξα(R2 + gG(ξ, ξ))−
n+1+j+k

2

(with |α| = k) can be a summand in qj is if the derivative C(γ)
G (x,Dξ) acts

only on (R2 + gG(ξ, ξ))−(n+1)/2+rk(γ) (or (R2 + gG(ξ, ξ))−(n+1)/2+rk(γ) log(R2 + gG(ξ, ξ))
if 2rk(γ) − n − 1 ∈ 2N) and in that case α = γ, so the maximal degree of Pk,j is the
size of the largest index in Ij, i.e. 3j. This proves item (1). To prove item (2), one
notices that by Theorem 2.9, all possible entries in qj consist of terms of the form

C(γ)
G (x, ιξgG ⊗ ιξgG︸ ︷︷ ︸

k times

⊗ gG ⊗ · · · ⊗ gG︸ ︷︷ ︸
|γ|−k

2 times

)(R2 + gG(ξ, ξ))−
n+1+j+k

2 ,

with a coefficient being a rational number times either πn/2, π(n+1)/2 or π(n−1)/2. �

2.3 The symbol structure of the parametrix. The operator

QG,χ ∈ �−n−1
cl (M;C+)

considered in the previous subsection is elliptic with parameter by Theorem 2.9.
In particular, it admits a parametrix AG,χ ∈ �n+1

cl (M;C+), that is an operator with
parameter so that AG,χQG,χ − 1,QG,χAG,χ − 1 ∈ �−∞

cl (M;C+).
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Theorem2.20. LetM be an n-dimensionalmanifold andG : M×M→ [0,∞)
a function which is regular at the diagonal. The full symbol a in local coordinates
of the parametrix AG,χ ∈ �n+1

cl (M;C+) of QG,χ ∈ �−n−1
cl (M;C+) has an asymp-

totic expansion a ∼ ∑∞
j=0 aj where aj is constructed inductively from the symbol

expansion q ∼∑
j qj of Theorem 2.9 by

aj = −a0

∑
k+l+|α|=j, l<j

1
α!
∂αξ qkD

α
x al.

Here a0(x, ξ,R) = 1
n!ωn

(R2 + gG(ξ, ξ))(n+1)/2. The next term is given by

n = 1 : a1(x, ξ,R)

= − i
2
(∂ξgG)(∂xgG)(R2 + gG(ξ, ξ))−1 +

3i
2

C3
G(x, gG ⊗ ιξgG)

− 2iC3
G(x, ιξgG ⊗ ιξgG ⊗ ιξgG)(R2 + gG(ξ, ξ))−1

n > 1 : a1(x, ξ,R)

= − (n + 1)2i
n!ωn

gG(dxgG(ξ, ξ), ξ)(R2 + gG(ξ, ξ))(n+1)/2−2

+
3ic1,n(n2 − 1)

(n!)2ω2
n

C3
G(x, gG ⊗ ιξgG)(R2 + gG(ξ, ξ))(n+1)/2−1

− ic1,n(n + 3)3,−2

(n!)2ω2
n

C3
G(x, ιξgG ⊗ ιξgG ⊗ ιξgG)(R2 + gG(ξ, ξ))(n+1)/2−2.

The homogeneous terms aj each take the form

aj(x, ξ,R) =
3j∑

k=0

P̃k,j(x, ξ)(R
2 + gG(ξ, ξ))

n+1−j−k
2 ,

where P̃k,j are homogeneous polynomials of degree k in ξ and

P̃k,j ≡ 0 if j − k /∈ 2Z.

The coefficients of P̃k,j as a polynomial in ξ are all polynomials in derivatives of
the Taylor coefficients (C(γ)

G )γ∈∪k≤jIk of G at the diagonal (from equation (9)) of total

degree j.

In the structural statement at the end of the proposition, the total degree refers
to the degree of the polynomial when counting an order i derivative of a Taylor
coefficient C(γ)

G for γ ∈ Ik to have degree k + i.
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Proof. It follows from the parametrix construction for elliptic operators (see,
e.g., [39, Chapter I.5]) that a ∼∑∞

j=0 aj where a0 = q−1
0 and

aj := −a0

∑
k+l+|α|=j, l<j

1
α!
∂αξ qkD

α
x al

for j > 0.

Let us prove the structural statement about aj by induction on j. It is clear for
j = 0. Assume that the structural statement holds for l < j + 1. We have that

q0aj+1 = − ∑
k+l+|α|=j+1, l<j+1

1
α!
∂αξ qkD

α
x al

= − ∑
k+l+|α|=j+1, l<j+1

N(k)∑
i1=0

Ñ(l)∑
i2=0

1
α!
∂αξ [Pi1,k(x, ξ)(R

2 + gG(ξ, ξ))−
n+1+k+i1

2 ]

× Dα
x [P̃i2,l(x, ξ)(R

2 + gG(ξ, ξ))
n+1−l−i2

2 ],

which proves that aj+1 has the claimed structure.

What remains is to compute a1. We write

a1(x, ξ,R)

= − a0

∑
|α|=1

∂αξ q0D
α
x a0 − a2

0q1

= − 1
n!ωn

(R2 + gG(ξ, ξ))(n+1)/2

∑
|α|=1

∂αξ (R
2 + gG(ξ, ξ))−(n+1)/2Dα

x (R
2 + gG(ξ, ξ))(n+1)/2

+
i(n2 − 1)c1,n

(n!)2ω2
n

(R2 + gG(ξ, ξ))n+1

× (3C3
G(x, gG ⊗ ιξgG)(R2 + gG(ξ, ξ))−(n+1)/2−1

− (n + 3)C3
G(x, ιξgG ⊗ ιξgG ⊗ ιξgG)(R2 + gG(ξ, ξ))−(n+1)/2−2)

= − (n + 1)2i
n!ωn

gG(dxgG(ξ, ξ), ξ)(R2 + gG(ξ, ξ))(n+1)/2−2

+
3ic1,n(n2 − 1)

(n!)2ω2
n

C3
G(x, gG ⊗ ιξgG)(R2 + gG(ξ, ξ))(n+1)/2−1

− ic1,n(n + 3)3,−2

(n!)2ω2
n

C3
G(x, ιξgG ⊗ ιξgG ⊗ ιξgG)(R2 + gG(ξ, ξ))(n+1)/2−2.

�

We use the notation �α(R0) := {z ∈ C : |Arg(z)| < α,Re(z) > R0}.
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Corollary 2.21. Let M be a compact n-dimensional manifold and

G : M × M → [0,∞)

a function which is regular at the diagonal. For some R0 > 0, the operator

QG,χ(R) ∈ �−n−1
cl (M) is invertible as an operator H−(n+1)/2(M) → H(n+1)/2(M) for

any R ∈ �π/(n+1)(R0) and

Q−1
G,χ − AG,χ ∈ �−∞

cl (M;�π/(n+1)(R0)).

In particular, Q−1
G,χ is a pseudodifferential operator with parameter in �π/(n+1)(R0)

whose full symbol a in local coordinates has an asymptotic expansion a ∼∑∞
j=0 aj

where aj is as in Theorem 2.20.

Corollary 2.21 follows from Theorems 2.9 and 2.20 using standard techniques
for pseudodifferential operator with parameter. For the convenience of the reader,
we include its proof.

Proof. Let� denote a positive Laplace operator on M whose principal symbol
coincides with the metric gG dual to the transversal Hessian of G. It follows
from Theorem 2.9 that σ−n−1((R2 + �)−μ) = σ−n−1(Q). Hence, the operator
r(R) := 1 − (R2 +�)μ/2Q(R2 +�)μ/2 is a parameter-dependent pseudodifferential
operator of order −1. We write

QG,χ = (R2 +�)−μ/2(1 − r)(R2 +�)−μ/2.

The order of r is −1, so by [39, Theorem 9.1] we have that

‖r(R)‖L2(M)→L2(M) = O(Re(R)−1) as Re(R) → ∞.

We conclude that there exists an R0 > 1 such that ‖r(R)‖L2(M)→L2(M) ≤ 1
2 for

R ∈ �π/(n+1)(R0). Since (R2 + �)−μ/2 : Hs(M) → Hs+μ(M) is invertible for
R ∈ �π/(n+1)(0) and any s ∈ R, we can for R ∈ �π/(n+1)(R0) invert QG,χ as the
absolutely convergent series of operators Hμ(M) → H−μ(M) given by

Q−1
G,χ =

∞∑
k=0

(R2 +�)μ/2r(R)k(R2 +�)μ/2.

It remains to prove that Q−1
G,χ−AG,χ∈�−∞

cl (M;�π/(n+1)(R0)). By the construction
above, Q−1

G,χ ∈ �n+1
cl (M;�π/(n+1)(R0)). Therefore the classes [Q−1

G,χ] and [AG,χ] in
the formal symbol algebra �n+1

cl (M;�)/�−∞
cl (M;�π/(n+1)(R0)) are both inverses to

[QG,χ] ∈ ⋃
k∈Z
�k

cl(M;�π/(n+1)(R0))/�
−∞
cl (M;�π/(n+1)(R0)).

By the uniqueness of inverses,

[Q−1
G,χ] = [AG,χ] ∈ �n+1

cl (M;�π/(n+1)(R0))/�
−∞
cl (M;�π/(n+1)(R0)). �
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2.4 Analytic results for Q on compact manifolds. The results of the
previous subsections have analytic implications in the case that M is a compact
manifold. We consider the scale of Hilbert spaces Hs

R(M) := (R2 + �)−s/2L2(M)
defined for R ∈ R \ {0} and s ∈ R with the Hilbert space structure making

(R2 +�)−s/2 : L2(M) → Hs
R(M)

unitary. Here� could be any choice of Laplacian, but for the sake of simplicity we
fix the Laplacian associated with the Riemannian metric associated with a function
regular at the diagonal. By elliptic regularity, Hs(M) = Hs

R(M) as vector spaces
with equivalent norms independently of the choice of Laplacian, but the Hilbert
space structure differs in a non-uniform way as R varies. At this stage, we shall
start to concern ourselves with extensions of Q to the complex numbers, so we
phrase our results in terms of the operator

(18) Q(R)f (x) :=
1
R

∫
M
χ(x, y)e−Rd(x,y)f (y)dy,

where d is a distance function whose square is regular at the diagonal and χ a
function being 1 near the diagonal such that d2 is smooth on the support of χ. We
note that Q(R) = Qd2,χ(R) for Re(R) > 0.

Theorem 2.22. Let M be a compact n-dimensional manifold and

d : M × M → [0,∞)

a distance function whose square is regular at the diagonal. Set μ := (n + 1)/2.

The operator
Q(R) : H−μ(M) → Hμ(M),

defined from the expression (18) is a well defined Fredholm operator for all

R ∈ C \ {0} and there is an R0 such that Q(R) is invertible for all R ∈ �π/(n+1)(R0).
Moreover, the following holds:

(a) For each R ∈ C \ {0}, Q(R) ∈ �−n−1
cl (M) is an elliptic pseudodifferential

operator and the family of operators

(Q(R) : H−μ(M) → Hμ(M))R∈C\{0}

depends holomorphically on R ∈ C \ {0}. Moreover, we can extend the holo-
morphic family (Q(R)−1 : Hμ(M) → H−μ(M))R∈�π/(n+1)(R0) meromorphically

to R ∈ C \ {0}.
(b) There is a C > 0 such that

C−1‖f‖2
H−μ

|R| (M) ≤ Re〈f,Q(R)f 〉L2 ≤ C‖f‖2
H−μ

|R| (M),

for R ∈ �π/(n+1)(R0) and f ∈ H−μ(M). In particular, for R ∈ �π/(n+1)(R0), the
norm Re〈·,Q(R)·〉 is uniformly equivalent to the norm on H−μ

|R| (M).
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Proof. The first statements of the theorem follow from Corollary 2.21.
Part (a) follows from the meromorphic Fredholm theorem (see [31, Proposi-

tion 1.1.8]) upon proving that R �→ Q(R) ∈ B(H−μ(M),Hμ(M)) is holomorphic
with values in the set of Fredholm operators. We can write Q(R) as the integral
operator with Schwartz kernel

(19)
1
R
χ(x, y)e−Rd(x,y) =

χ(x, y)
R

+
∞∑
k=0

Rk

(k + 1)!
χ(x, y)d(x, y)k+1.

Using the fact that d2 is regular at the diagonal, an argument as in the proof of
Theorem 2.9 shows that Q(R) is an elliptic pseudodifferential operator of order
−n−1. By Proposition A.1, the principal symbol of Q(R) (for fixed R) is given by

σ−n−1(Q(R))(x, ξ) = π(n−1)/22n�
(n + 1

2

)
|ξ|−n−1

gG
= n!ωn|ξ|−n−1

gd2
.

Therefore R �→ Q(R) ∈ B(H−μ(M),Hμ(M)) takes values in the set of Fredholm
operators. The expression (19), and again an argument as in the proof of Theo-
rem 2.9, shows that R �→ Q(R) ∈ B(H−μ(M),Hμ(M)) depends holomorphically
on R ∈ C \ {0}.

Part (b) follows from the Gårding inequality (see Theorem A.3 on page 82)
using that Re(Q) has positive principal symbol as a pseudodifferential operator
with parameter by Theorem 2.9 on page 15). �

2.5 Evaluation at ξ = 0 of some symbols. For later purposes, we will
be interested in knowing the value of the homogeneous component of the full
symbol of the parametrix of Q at ξ = 0, constructed as in Theorem 2.20. The
following lemma shows that the evaluations of symbols of operatorswith parameter
provides coordinate invariant expressions, therefore containing invariants of a
pseudodifferential operator with parameter.

Lemma 2.23. Assume that M is a manifold and that A ∈ �m
cl(M;�) is a

properly supported pseudodifferential operator with parameter. Then there exists

a sequence (aj,0)j∈N ⊆ C∞(M × �) such that
(i) Each aj,0 = aj,0(x,R) is homogeneous of degree m − j in R.

(ii) In each local coordinate chart, aj,0(x,R) = aj(x, 0,R) where a ∼ ∑
j aj is a

homogeneous expansion of the full symbol of A in that chart.

Moreover, for any N ∈ N, we have that

(20) [A(R)1](x) =
N∑
j=0

aj(x,R) + rN(x,R) =
N∑
j=0

aj(x, 1)Rm−j + rN(x,R),
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where rN ∈ C∞(M × �) is a function such that for any compact K ⊆ M it holds

that

sup
x∈K

|∂αx ∂k
RrN(x,R)| = O(Re(R)m−N+|α|+k), as Re(R) → +∞.

Proof. Choose a partition of unity (χj)j ⊆C∞
c (M) subordinate to a locally finite

covering by coordinate charts, and choose (χ̃j)j ⊆ C∞
c (M) such that χ̃j is supported

in a coordinate chart and χ̃j = 1 on supp(χj). We have that
∑

j χjAχ̃j converges
in weak sense to a properly supported operator, and A −∑j χjAχ̃j ∈ �−∞

cl (M;�).
Therefore, we can assume that A is supported in a coordinate chart. In a coordinate
chart, and a homogeneous expansion a ∼∑

j aj of the full symbol of A, the method
of stationary phase (see for instance [24, Chapter VII.7]) implies that

[A(R)1](x) =
N∑
j=1

aj(x, 0,R) + rN(x,R)

as in equation (20). It is clear that the function A(R)1 ∈ C∞(M) and its asymptotic
expansion is independent of choice of coordinates, and the lemma follows. �

Lemma 2.24. Let M be an n-dimensional manifold, G : M × M → [0,∞)
be a function regular at the diagonal, and (aj,0)j∈N ⊆ C∞(M × C+) the sequence
defined as in Lemma 2.23 from AG,χ ∈ �n+1

cl (M;C+) (cf. Theorem 2.20). The

functions aj,0 are determined in local coordinates by the properties that

aj,0(x,R) = 0, for all j odd,

and for even j, aj,0(x,R) is determined inductively from a0,0(x,R) = 1
n!ωn

Rn+1 and
for j > 0,

(21) aj,0(x,R) = − 1
n!ωn

Rn+1
∑

k+2l+p=j
2l<j, 2|k+p

ipqk,p(x,R).∇p
xaj−2k,0(x,R),

where qk,p(x,R) denotes the p-linear form

qk,p(x,R).v :=
∑
|α|=p

∂αξ qk(x, ξ,R)v α|ξ=0 = ∂p
t qk(x, tv,R)|t=0.

Proof. By Lemma 2.23, we can perform all computations in a coordinate
chart. The structural description of aj from Lemma 2.20 implies that for any
(x, ξ,R) and j ∈ N it holds that

aj(x,−ξ,R) = (−1)jaj(x, ξ,R).
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We conclude that aj(x, 0,R) = 0, and even that ∇p
xaj,0(x,R) = 0 for any p, when j

is odd. To compute aj for even j, we note that since

aj = −a0

∑
k+l+|α|=j, l<j

1
α!
∂αξ qkD

α
x al,

the formula (21) follows using that the only contributions are for even l, and
evenness of j implies that 2|k + p. �

Remark 2.25. The formulas in Theorem 2.9 show that for n odd, and j even,

qj,0(x,R) = R−n−1−j
∑

γ∈Ij,rk(γ)<(n+1)/2

crk(γ),n(−1)rk(γ)−1(|γ|/2)!

× (n + 1 − 2rk(γ))|γ|/2,−2C
(γ)
G (x, g⊗|γ|/2

G )

− R−n−1−j
∑

γ∈Ij,rk(γ)≥(n+1)/2

crk(γ),n(−1)rk(γ)−1(|γ|/2)!

× (n + 1 − 2rk(γ))|γ|/2−1,−2C
(γ)
G (x, g⊗|γ|/2

G ),

and for n even, and j even,

qj,0(x,R)

= R−n−1−j
∑
γ∈Ij

crk(γ),n(−1)rk(γ)−1(|γ|/2)!(n + 1 − 2rk(γ))|γ|/2,−2C
(γ)
G (x, g⊗|γ|/2

G ),

and crk(γ),n is as in Theorem 2.9. Note that by definition of the set Ij, γ ∈ Ij satisfies
that |γ| is even if and only if j is even.

Theorem 2.26. Let M be an n-dimensional manifold, G : M × M → [0,∞)
be a function regular at the diagonal, and (aj,0)j∈N ⊆ C∞(M × C+) the restriction

to 0 of the full symbol of AG,χ. Then for each j > 0, aj,0 is a polynomial in
(C(γ)

G )γ∈⋃k≤j Ik and its derivatives contracted by the metric gG and its derivatives of

total degree j where each C(γ)
G , γ ∈ Ik, has degree k, the metric has degree zero and

x-derivatives increase the order by 1.

In the special case j = 0 we have

a0,0(x,R) =
1

n!ωn
Rn+1,

and for j = 2 and n = 3, we have that

a2,0(x,R) = − 24R2

(3!ω3)2
(10c1,3C

4
G(x, gG ⊗ gG) − c2,3(C

3
G ⊗ C3

G)(x, gG ⊗ gG ⊗ gG)),
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while for j = 2 and n 
= 1, 3, we have that

(22)
a2,0(x,R) = − 3Rn−1

(n!ωn)2
(c1,n(n

2 − 1)C4
G(x, gG ⊗ gG)

− c2,n(n + 5)5,−2(C
3
G ⊗ C3

G)(x, gG ⊗ gG ⊗ gG)),

and for j = 4 we have the identity

(23)

a4,0(x,R) = − R2n+2

(n!ωn)2
q4,0(x,R) − n + 1

R2 gG(∇2
xa2,0(x,R))

− c1,n(n2 − 1)
R2n!ωn

(C3
G ⊗ ∇xa2,0)(gG ⊗ gG)

− Rn+1

n!ωn
q2,0(x,R)a2,0(x,R).

Proof. The structural statement about aj,0(x,R) is readily deduced from Lem-
ma 2.24 and induction by using the property that if γ∈ Ij and γ′ ∈ Ij′ then (γ, γ′)∈ Ij+j′.

The equation for a0,0 is immediate from Lemma 2.20. Using Lemma 2.24, we
have that a2,0(x,R) = −a2

0,0q2,0 and the formula (22) follows from

q2,0(x,R) = 3c1,n(n
2 − 1)C4

G(x, gG ⊗ gG)R−n−3

+ 3c2,n(n + 5)5,−2(C
3
G ⊗ C3

G)(x, gG ⊗ gG ⊗ gG)R−n−3,

for n 
= 1, 3 and a similar expression for n = 3.

Let us compute a4,0(x,R). By Lemma 2.24 we have that

a4,0(x,R)

= − Rn+1

n!ωn

( 4∑
k=0

i−kqk,4−k(x,R).∇4−k
x

Rn+1

n!ωn
−

2∑
k=0

i−kqk,2−k(x,R).∇2−k
x a2,0(x,R)

)

=
Rn+1

n!ωn
(q0,2(x,R).∇2

xa2,0(x,R) − iq1,1(x,R).∇xa2,0(x,R) − q2,0(x,R)a2,0(x,R))

− R2n+2

(n!ωn)2
q4,0(x,R),

and the computation is complete upon using Proposition 2.13. �

Remark 2.27. The full expression for a4,0 can be computed from equa-
tion (23). We omit the full details, but let us note an expression for q4,0. Since

I4 = {6, (3, 5), (4, 4), (5, 3), (3, 3, 4), (3,4, 3), (4, 3, 3), (3, 3, 3, 3)},
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we have that

q4,0(x,R)

= R−n−5c1,n3!(n − 1)3,−2C
6
G(x, g⊗3

G ) − R−n−5c2,n4!(n − 3)4,−2C
(3,5)
G (x, g⊗4

G )

− R−n−5c2,n4!(n − 3)4,−2C
(4,4)
G (x, g⊗4

G ) − R−n−5c2,n4!(n − 3)4,−2C
(5,3)
G (x, g⊗4

G )

+ R−n−5c3,n5!(n − 5)5,−2C
(3,3,4)
G (x, g⊗5

G ) + R−n−5c3,n5!(n − 5)5,−2C
(3,4,3)
G (x, g⊗5

G )

+ R−n−5c3,n5!(n − 5)5,−2C
(4,3,3)
G (x, g⊗5

G )

− R−n−5c4,n6!(n − 7)6,−2C
(3,3,3,3)
G (x, g⊗6

G ).

Example 2.28 (Evaluations of symbols for domains in Euclidean space). Let
us return to the computations on Euclidean space from Example 2.15. We consider
G(x, y) = |x − y|2—the square of the Euclidean distance. Since

q(x, ξ,R) = n!ωn(R
2 + |ξ|2)−(n+1)/2

is a full symbol of QG,χ in Euclidean coordinates, a(x, ξ,R) = 1
n!ωn

(R2 + |ξ|2)(n+1)/2

is a full symbol of AG,χ. Therefore

(24) aj,0(x,R) =

⎧⎨
⎩

1
n!ωn

Rn+1, j = 0,

0, j > 0.

ByLemma 2.24 this holds in any coordinate systemonEuclidean space. We remark
that the bulk of computations carried out in Example 2.15 will mainly be of interest
when inverting Q near the boundary of a domain, while the computation (24) relates
to interior terms.

Example 2.29 (Evaluations of symbols for submanifolds of Euclidean space).
We return to submanifolds M ⊆ RN and the function G(x, y) = |x − y|2 which is
regular at the diagonal as in Example 2.16 above. We take coordinates as in
Example 2.16. By Theorem 2.26 we have that a0,0(x,R) = 1

n!ωn
Rn+1 and

a2,0(x,R) = − 3c1,n(n2 − 1)
(n!ωn)2

N∑
l=n+1

∑
i+k=4,
i,k>0

(∇iϕl ⊗ ∇kϕl)(g
⊗2
G )Rn−1

− 3c2,n(n + 5)3,−2

(n!ωn)2

×
N∑

l1,l2=n+1

∑
i1+k1=i2+k2=3,
i1,i2,k1,k2>0

(∇i1ϕl1 ⊗ ∇k1ϕl1 ⊗ ∇i2ϕl2 ⊗ ∇k2ϕl2)(x, g
⊗3
G )Rn−1,
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where gG is the dual metric to the transversal Hessian:

HG(v) = |v|2 +
N∑

l=n+1

(∇ϕl(x) · v)2.

Example 2.30 (Evaluations of symbols for geodesic distances). Consider
the geodesic distance on a Riemannian manifold M as in Example 2.17. Let gM

denote the Riemannian metric, and recall from Example 2.17 that gM coincides
with the transversal Hessian of d2

geo at the diagonal. We can compute a2,0 in this
case by means of known Riemannian curvatures. We fix a point x and choose
coordinates so that � vanishes in that point (normal coordinates). In these coordi-
nates, C3

d2
geo

(x, v) = 0 and C4
d2

geo
(x, ·) is a third of the Riemannian curvature in x by

Proposition 2.18. By Theorem 2.26 we conclude that for n = 3, we have

a2,0(x,R) = − 80R2

(3!ω3)2
sg(x),

while for n 
= 1, 3, we have that

a2,0(x,R) = − Rn−1

(n!ωn)2
c1,n(n

2 − 1)sg(x),

where sg denotes the scalar curvature.

3 Global behavior of Z on compact manifolds

In the previous section we studied the localization Q ofZ near the diagonal. HereZ
is the operator with parameter R defined from a distance function as in equation (6).
We now turn to study Z by considering distance functions for which L := Z− Q in
a certain sense is negligible so that Q dominates.

3.1 Controlling the off-diagonal part of Z. In this subsection we shall
study the remainder L = Z − Q. We note that

L(R)f (x) =
1
R

∫
M

(1 − χ(x, y))e−Rd(x,y)f (y)dy.

We start making two initial observations concerning the remainder term L. The
first observation concerns the behavior of the remainder term in L2.

Proposition 3.1. Let M be a compact manifold and d : M × M → [0,∞)
a distance function on M. Then C \ {0} � R �→ L(R) ∈ L2(L2(M)) defines a
holomorphic Hilbert–Schmidt valued function. Moreover, L satisfies that

‖L(R)‖L2(L2(M)) = O(Re(R)−∞) as Re(R) → +∞.



40 H. GIMPERLEIN, M. GOFFENG AND N. LOUCA

By the standard norm estimate ‖K‖B ≤ ‖K‖L2 , the statement in the proposition
also holds in the operator norm. We remark that by Theorem 2.9 and [39, Theo-
rem9.1], the localization to the diagonal satisfies ‖Q(R)‖Lp(L2(M)) = O(Re(R)

n
p −n−1)

as Re(R) → +∞, for any p > 1 + 1/n (the bound is not uniform in p).

Proof. The function C \ {0} � R �→ 1
R (1 − χ(·, ·))e−Rd(·,·) ∈ C(M × M) is

clearly holomorphic in the norm on C(M × M). Since χ = 1 in a neighborhood of
the diagonal, compactness of M implies that∥∥∥ 1

R
(1 − χ(·, ·))e−Rd(·,·)

∥∥∥
C(M×M)

= O(Re(R)−∞) as Re(R) → +∞.

Since M is compact, an integral operator K with kernel k ∈ C(M × M) satisfies
the estimate for the Hilbert–Schmidt norm ‖K‖L2(L2(M)) ≤ vol(M)‖k‖C(M×M). The
proposition follows. �

The second observation concerns how an a priori estimate with respect to the
off-diagonal remainder L affects distributional solutions to the magnitude equa-
tion Zu = 1.

Proposition 3.2. Let M be a compact manifold and d : M × M → [0,∞) a
distance function on M such that d2 is regular at the diagonal. Let N ∈ N and �

be a sector. Assume that f ∈ C∞(M) and that (uR)R∈� ⊆ D′(M) is a family of
solutions to

Z(R)uR = f

satisfying that

〈L(R)uR, ψ〉 = O(Re(R)−N)

as Re(R) → +∞ in � for all ψ ∈ C∞(M). Then for large enough Re(R),

uR = Q(R)−1f + vR,

where (vR)R∈� ⊆ D′(M) is a family satisfying that 〈vR, ψ〉 = O(Re(R)−N+n+1)
as Re(R) → +∞ in � for all ψ ∈ C∞(M). In particular, for any ψ ∈ C∞(M),

〈uR, ψ〉 = 〈Q(R)−1f, ψ〉 + O(Re(R)−N+n+1), as Re(R) → +∞ in �.

Proof. The equation Z(R)uR = f implies that uR = Q(R)−1f − Q(R)−1L(R)uR.
Consider the distribution

vR := −Q(R)−1L(R)uR ≡ uR − Q(R)−1f.

For ψ ∈ C∞(M), we have that

〈vR, ψ〉 = 〈L(R)uR,Q(R)−1ψ〉 = O(R−N+n+1),
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because of the assumption on L(R)uR = O(Re(R)−N) in a weak sense and the fact
that Q(R)−1 is a pseudodifferential operatorwith parameter of order n+1 preserving
C∞(M) with uniform norm estimates ‖Q(R)−1f‖Ck ≤ Ck(1 + Re(R))n+1‖f‖Cn+k+1 . �

Proposition 3.1 implies that L is small as an operator on L2, and Proposition 3.2
implies that the resulting remainder term will not alter the asymptotic properties
of solutions given an a priori estimate. However, as Q is of negative order and acts
compactly on L2, well-posedness of the problem in L2 is not assured. We shall cir-
cumvent this problem by imposing a regularity assumption on the distance function
that forces the magnitude equation naturally into a Sobolev space framework. We
discuss examples satisfying this assumption, as well as counterexamples, below in
the Subsections 3.2 and 3.4, respectively.

Definition 3.3 (Property (MR) of distance functions). Let M be an n-dimen-
sional compact manifold and d : M × M → [0,∞) a distance function on M such
that d2 is regular at the diagonal. Set μ := (n+1)/2. For a sector [1,∞) ⊆ � ⊆ C,
we say that d has property (MR) on � if for any R ∈ �, L(R) extends to a
continuous mapping H−μ(M) → Hμ(M) with

‖L(R)‖H−μ(M)→Hμ(M) = O(Re(R)−∞), as Re(R) → +∞ in �.

If
L(R) : H−μ(M) → Hμ(M)

is a compact operator for R ∈ � and � � R �→ L(R) ∈ K(H−μ(M),Hμ(M)) is
holomorphic in norm sense, we say that d has property (SMR) on �.

The acronyms MR and SMR stand for magnitude regularity and strong mag-
nitude regularity, respectively. Assuming these properties, the operator Z inherits
relevant analytic and geometric properties from Q. Property (MR) will be used to
compute asymptotic solutions to the magnitude equation RZu = 1, while property
(SMR) will be used for constructing meromorphic extensions of Z−1. If � is a
sector on which a distance function has property (MR), it is clear that 0 /∈ �. We
consider such results for compact manifolds below in Subsection 3.3.

3.2 Examples of distance functions satisfying property (MR)
and (SMR). Let us give a method to produce distance functions with property
(SMR):

Proposition 3.4. Let M be a compact manifold embedded into a Riemannian

manifold i : M → W such that the square of its geodesic distance d2
geo,W is smooth,

for instance W = RN, W = HN,R or W = HN,C, for some N ∈ N.
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The distance function d : M ×M → [0,∞), d(x, y) := dgeo,W (i(x), i(y)) satisfies

(i) d2 is smooth on M × M and regular at the diagonal.
(ii) L ∈ �−∞(M;C+) and L(R) ∈ �−∞(M) for any R ∈ C \ {0}.
(iii) d has property (SMR) on C \ {0}.

Proof. Since d2
geo,W is smooth, it is clear that d2 is smooth on M × M. It

follows from Proposition 2.18 that d2 is regular at the diagonal, and in fact gd2

is the pullback metric i∗gW from the Riemannian metric gW on W. Therefore
the singular support support of d is the diagonal, and the integral kernel of L(R)
is smooth so L(R) extends to a continuous mapping L(R) : Hs(M) → Ht(M) for
any s, t ∈ R. Moreover, for any vector fields X1, . . . ,Xm on M×M we can estimate

|X1 · · ·Xm((1 − χ)e−Rd)| ≤ Cm|R|m−1e−εRe(R).

Again, we write ε := inf{d(x, y) : (x, y) ∈ χ−1(1)} > 0. In particular, we readily
can deduce that L ∈ �−∞(M;C+), and for any s, t ∈ R,

‖L(R)‖Hs(M)→Ht(M) = O(Re(R)−∞), as Re(R) → +∞.

Therefore d has property (SMR) on C \ {0}. �
In light of Proposition 3.4, we note the following corollary of Theorem 2.22.

Corollary 3.5. Let M be a compact manifold equipped with a distance func-

tion d : M × M → [0,∞) such that d2 is smooth, e.g., a subspace distance as in
Proposition 3.4. Then Z(R) ∈ �−n−1

cl (M) is an elliptic pseudodifferential operator

for any R ∈ C \ {0}. Furthermore, Z ∈ �−n−1
cl (M;C+) is elliptic with parameter

and its full symbol coincides with that of Q as given in Theorem 2.9.

Another example of distance functions with property (MR) arises on spheres.

Proposition 3.6. Let d denote the geodesic distance on a sphere Sn in its
round metric. The distance function d has property (MR) on C \ {0} but fails to

satisfy property (SMR) on any sector.

Proof. The square of the geodesic distance is regular at the diagonal by Propo-
sition 2.18. We note that d is smooth on {(x, y) ∈ Sn × Sn : x 
= ±y}. Consider
the operator Uf (x) := f (−x). The operator U acts via pullback along the antipodal
mapping ϕ(x) := −x which acts isometrically due to O(n)-invariance of the Rie-
mannian metric on Sn. The operator U extends to a unitary on all Sobolev spaces
Hs(Sn), s ∈ R. Since it holds that d(x, y) = π− d(x, ϕ(y)) we can conclude that the
integral kernel of L(R)U is given by χϕe−Rde−πR, where χϕ(x, y) := 1 − χ(x, ϕ(y)).
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In particular, since χϕ satisfies that χϕ = 1 on the diagonal and χϕ = 0 on a neigh-
borhood of the off-diagonal singularities of d, the operator L(R)UeπR is an elliptic
pseudodifferential operator with parameter of order −n − 1 by the same argument
as in Theorem 2.9. It follows that property (SMR) fails on any sector. Using that U
is unitary, L(R) extends to a continuous operator H−μ(Sn) → Hμ(Sn) with

‖L(R)UeπR‖H−μ(Sn)→Hμ(Sn) = O(1) as Re(R) → ∞.

Since U is unitary, we deduce that

‖L(R)‖H−μ(Sn)→Hμ(Sn) = O(e−πRe(R)) = O(Re(R)−∞) as Re(R) → ∞.
�

3.3 Analytic results for the operator Z. We are now ready to extend
the results of Section 2 for Q to results on the operator Z for compact manifolds
with a distance function satisfying property (MR) as defined in Definition 3.3.

Theorem 3.7. Let M be a compact n-dimensional manifold and

d : M × M → [0,∞)

a distance function on M with property (MR) on the sector �. Set μ := (n + 1)/2.

Then there is an R0 ≥ 0 such that

Z(R) : H−μ(M) → Hμ(M)

is invertible for all R ∈ � ∩ �π/(n+1)(R0). Moreover, for R ∈ � ∩ �π/(n+1)(R0)

Z−1 = Q−1 + R,

where Q−1 ∈ �n+1
cl (M;�π/(n+1)(R0)) is the elliptic pseudodifferential operator with

parameter constructed in Corollary 2.21 and R : Hμ(M) → H−μ(M) is a family
of operators parametrized by R ∈ � ∩ �π/(n+1)(R0) such that

‖R‖Hμ(M)→H−μ(M) = O(Re(R)−∞), as Re(R) → +∞ in � ∩ �π/(n+1)(R0).

Moreover, there is a constant C > 0 such that

(25) C−1‖f‖2
H−μ

|R| (M) ≤ Re〈f,Z(R)f 〉L2 ≤ C‖f‖2
H−μ

|R| (M),

for R ∈ � ∩ �π/(n+1)(R0) and f ∈ H−μ(M). In particular, for R ∈ � ∩ �π/(n+1)(R0),
Z(R) is coercive in form sense on L2(M) for the H−μ-norm.
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Proof. The operator Q is invertible by Corollary 2.21. We can therefore write

Q−1Z = 1 + Q−1L

as operators onH−μ(M). SinceQ−1 is a pseudodifferential operatorwith parameter,
we have that

‖Q(R)−1L(R)‖
H− n+1

2 (M)→H− n+1
2 (M)

= O(Re(R)−∞),

as Re(R) → +∞ in � ∩ �π/(n+1)(R0).

Therefore, for Re(R) � 0 the operator (1 +Q−1L)−1Q−1 exists and is a left inverse
to Z. By an analogous argument,

‖L(R)Q(R)−1‖
H

n+1
2 (M)→H

n+1
2 (M)

= O(Re(R)−∞),(26)

as Re(R) → +∞ in � ∩ �π/(n+1)(R0), and Z has the right inverse Q−1(1 + LQ−1)−1

for Re(R) � 0. Therefore (1 + Q−1L)−1Q−1 = Q−1(1 + LQ−1)−1 and this operator
is an inverse to Z. By the estimates (26) and (26), it follows that

R = Z−1 − Q−1 = Q−1
(
(1 + LQ−1)−1 − 1

)
=

∞∑
k=0

(−1)kQ−1(LQ−1)k

as a norm convergent sum and has the required decay property as Re(R) → +∞.

The estimate (25) follows from the decay property of R and Theorem 2.22. �
The following result is immediate from Lemma 2.23 and Theorem 3.7.

Corollary 3.8. Let M be a compact n-dimensional manifold and

d : M × M → [0,∞)

a distance function on M with property (MR) on the sector �. Take the sequence
of homogeneous functions (aj,0)j∈N ⊆ C∞(M × � ∩ C+) as in Lemma 2.24. Then,

for any N ∈ N, we have that

[Z(R)−11](x) =
N∑
j=0

aj(x,R) + rN(x,R),

where rN ∈ C(� ∩ C+,H−μ(M)), for μ = (n + 1)/2, is a function such that

‖rN(·,R)‖H−μ(M) = O(Re(R)n+1−N), as Re(R) → +∞ in �.
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Remark 3.9. We remark that the role that property (MR) plays in Corol-
lary 3.8 is to ensure existence of a distributional solution to Z(R)uR = 1. For com-
puting the integrated asymptotics 〈1,Z(R)−11〉, property (MR) is not necessary. In-
deed, with no assumptions of property (MR), but assuming that d : M×M→ [0,∞)
is a distance function on M such that d2 is regular at the diagonal and that
(uR)R>R0 ⊆ D′(M) is a family of solutions to

Z(R)uR = 1

satisfying that 〈L(R)uR, ψ〉 = O(Re(R)−N) as Re(R) → +∞ for all ψ ∈ C∞(M),
we have that

〈uR, 1〉 =
N∑
j=1

∫
M

aj(x,R)dx + O(Re(R)n+1−N),

for any N. This follows from Lemma 2.23 and Proposition 3.2.
One instance where solutions to Z(R)uR = 1 exist, yet the distance function

need not satisfy property (MR), is the geodesic distance on a compact symmetric
space M = G/H. See Proposition 3.17 below for examples of symmetric spaces
failing to satisfy property (MR). The problem Z(R)uR = 1 was studied for compact
symmetric spaces in [44]. For a compact symmetric space M = G/H, we use the
normalized G-invariant measure induced by the Haar measure. By symmetry, the
function

uR(x) =
1∫

G/H e−Rd(x,y)dy

is constant and therefore solves Z(R)uR = 1. It is readily verified that
L(R)uR = O(R−∞) in distributional sense. We conclude that each aj(x,R) is
constant and that

uR(x) = uR(eH) =
N∑
j=0

aj(eH,R) + O(Re(R)n+1−N),

for any N. For examples of computations of uR for compact symmetric spaces;
see [44].

The next result poses an obstruction to property (MR) for distance functions
and should be viewed as complementary to Theorem 3.16. Recall the following
terminology from [33]: a compact metric space (X, d) is said to be positive definite
if for any finite subsetF ⊆ X, the matrix (e−d(x,y))x,y∈F is positive definite. If (X,Rd)
is positive definite for all R > 0, we say that (X, d) is stably positive definite.

Corollary 3.10. Assume that d is a distance function on a compactmanifoldM

with property (MR) on [1,∞). Then there exists an R0 ≥ 0 such that (M,Rd) is
positive definite for all R > R0.
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Proof. Consider the quadratic form qR(u) = 〈u,Z(R)u〉L2 , u ∈ H−μ(M). By
Theorem 3.7, qR is positive definite for R > R0, for some R0 ≥ 0. In particular,
for any subspace V ⊆ H−μ(M) the restriction of qR to V is also positive definite
for R > R0. For a finite subset F ⊆ M, consider the subspace VF ⊆ H−(μ(M)
spanned by {δx : x ∈ F}. In the basis (δx)x∈F , the quadratic form qR|V is represented
by the |F| × |F|-matrix (e−Rd(x,y))x,y∈F and so it is positive definite for R > R0. �

Remark 3.11. It was proven in [33, Subsection 3.2] that if M is a compact
Riemannian manifold with π1(M) 
= 0, the geodesic distance is not stably pos-
itive definite, i.e., there exists an R > 0 and a finite subset F ⊆ M such that
(e−Rdgeo(x,y))x,y∈F fails to be positive definite. The manifold M = S1 is not sim-
ply connected, and therefore fails to be stably positive definite. but nevertheless
Proposition 3.6 implies that M = S1 with its geodesic distance has property (MR).
Therefore, property (MR) does not imply stably positive definiteness of the metric
space but only an asymptotic version thereof.

Theorem 3.12. Let M be an n-dimensional compact manifold with a distance

function d having property (SMR) on � and set μ = (n + 1)/2. Then the operator

Z(R) : H−μ(M) → Hμ(M)

is a well-defined Fredholm operator for all R∈� invertible for R∈�∩ �π/(n+1)(R0).
Moreover, the operator

Z(R) : H−μ(M) → Hμ(M)

depends holomorphically on R in � and Z(R)−1 : Hμ(M) → H−μ(M) depends
holomorphically on R ∈ � ∩ �π/(n+1)(R0) and admits a meromorphic extension

to �.

Proof. By Theorem 2.22, Q is a holomorphic function on � with values in the
Fredholm operators and by property (SMR), L is a compact valued holomorphic
function on �. Therefore Z defines a holomorphic function on � with values in
the Fredholm operators. Since Z is invertible for a large enough R, see Theo-
rem 3.7, the theorem follows from the meromorphic Fredholm theorem, see [31,
Proposition 1.1.8]. �

Remark 3.13. To ensure holomorphicity of Z and Z−1 on sectors, the full
property (SMR) is not needed. Indeed, if d has property (MR) on a sector � and
� � R �→ L(R) ∈ B(H−μ(M),Hμ(M)) is additionally holomorphic (in norm sense)
then by Theorem 3.7, for some R0 ≥ 0, the mapping

� ∩ �π/(n+1)(R0) � R �→ Z(R) ∈ B(H−μ(M),Hμ(M))
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is a holomorphic family of invertible operators. These properties are inherited by
its inverse,

� ∩ �π/(n+1)(R0) � R �→ Z(R)−1 ∈ B(Hμ(M),H−μ(M)).

By the proof of Proposition 3.6, this discussion applies to Sn showing that for
some R0, Z(R)−1 is holomorphic for R ∈ � ∩ �π/(n+1)(R0) in this case.

The following result follows from Corollary 3.5 and Theorem 3.12.

Theorem 3.14. Let M be a compact manifold with a distance function d such
that d2 is smooth on M × M and regular at the diagonal (cf. Proposition 3.4).

Then Z̃(R) : H−μ(M) → Hμ(M) depends holomorphically on R ∈ C \ {0} and the
operator Z(R)−1 : Hμ(M) → H−μ(M) extends meromorphically to C \ {0}.

3.4 Examples of distance functions that fail to satisfy property
(MR). Property (MR) of a distance function, as defined in Definition 3.3, is
a notable restriction on the singular support and singularity structure of the dis-
tance function. We remark here that by a singular point, we mean any point in the
singular support, i.e., one in which the function is not C∞. To better understand
how these singularities affect the operator theoretic properties of L, the reader is
encouraged to review the proof of Proposition 3.6 where a crucial feature used in
the proof is that the geodesic distance on spheres near an off-diagonal singularity
has the same singular features as it has near the antipode of the singularity. An im-
portant property used there can be stated as having control of the dimension of the
off-diagonal singular support of the metric. We make an elementary observation
that follows from the smoothness of the function (0,∞) � t �→ √

t ∈ (0,∞).

Proposition 3.15. Let d be a distance function on a manifold M. Then it

holds that

singsupp(d) \ DiagM = singsupp(d2) \ DiagM.

Let us give a sufficient condition for a distance function (regular at the diagonal)
not to satisfy property (MR). We note that an additional obstruction was provided
above in Proposition 3.10.

Theorem 3.16. Let M be a compact manifold and d a distance function

such that d2 is regular at the diagonal. Assume that there exists a submanifold
N ⊆ M × M with N ⊆ singsupp(d2) \ DiagM such that any point z0 ∈ N admits a

neighborhood U0 in M × M and a coordinate chart

ϕ : Rdim(N)
t × Rdim(M)−dim(N)

s → U0,
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with ϕ(0) = x0, ϕ−1(U0 ∩ N) = R
dim(N)
t × {0} and (t, s) �→ ϕ∗d(t, s) − |s| being

smooth in a neighborhood of 0. Then L(R) does not extend to a continuous operator

H−μ(M) → Hs(M),

for any s > (3 dim(M) + 1)/2 − dim(N) where μ = (dim(M) + 1)/2. In particular,

if dim(N) > dim(M) then d does not have property (MR) (see Definition 3.3) on
any sector containing a half-ray [R0,∞).

Proof. We pick a point (x0, y0) ∈ N and neighborhoods U1 and U2 of x0

and y0 respectively, such that there exists a coordinate chart ϕ as in item ii)
above on U0 = U1 × U2. Pick functions χ1 ∈ C∞

c (U1) and χ2 ∈ C∞
c (U2) such

that χ1 = 1 near x0, χ2 = 1 near y0 and such that (t, s) �→ ϕ∗d(t, s) − |s| is smooth
on ϕ−1(supp(χ1) × supp(χ2)). Clearly, it suffices to prove that for any R > 0, the
operator χ1L(R)χ2 does not extend to a continuous operator H−μ(M) → Hs(M)
for any s > (3 dim(M) + 1)/2 − dim(N).

Set k = dim(N) and n = dim(M). The Schwartz kernel of χ1L(R)χ2 is a
distribution on M × M supported in U0 = U1 × U2 and pulling this kernel back
along ϕ, we arrive at the distribution

K(t, s) = χ0(s, t)e
−R|s|,

where χ0 = ϕ∗[(χ1 ⊗ χ2)(1 − χ)]e−Rψ ∈ C∞
c (R2n) for ψ(t, s) = ϕ∗d(t, s) − |s|.

It follows from Proposition A.1 and combining a Taylor expansion with asymp-
totic completeness, that K ∈ CIk−2n−1(R2n,Rk). We conclude that χ1L(R)χ2 is
a Fourier integral operator of order k − 2n − 1 and this operator is elliptic in a
neighborhood of (x0, y0). Therefore, since χ1L(R)χ2 is elliptic near (x0, y0) of order
k − 2n − 1 it does not extend to a continuous operator H−(n+1)/2(M) → Hs(M) for
any s > −(n + 1)/2 − (k − 2n − 1) = (3n + 1)/2 − k. �

Proposition 3.17. Let n > 1. The geodesic distance on the n-dimensional
torus M = Tn or the real projective space M = RPn fails to satisfy property (MR)

(see Definition 3.3) on any sector containing a half-ray [R0,∞). In fact, L(R) does

not extend to a continuous map H−μ(M) → Hs(M) for s > −n/2 + 3/2.

Proof. The proofs for both cases follow the same lines and rely on Theo-
rem 3.16. For RPn we give a more geometric argument, and for Tn we give a
coordinate oriented argument.

We first prove the result for real projective space. The projective space RPn is
the quotient of Sn by the antipodal map x �→ −x. This quotient map is a covering
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map, and it is locally isometric with respect to the geodesic distance. For x ∈ RPn,
the equator Ẽ(x) ⊆ Sn is defined by

Ẽ(x) = {v ∈ Sn : v · x = 0}.
The condition v · x = 0 being invariant under the antipodal map, Ẽ(x) only depends
on x ∈ RPn and not on a choice of pre-image of x in Sn. We let E(x) ⊆ RPn

denote the image under the quotient map. The off-diagonal singular support of the
geodesic distance on RPn is the set

{(x, y) ∈ RPn × RPn : y ∈ E(x)}.
Indeed, any geodesic in RPn from a point x lifts uniquely up to a geodesic on Sn up
until the point it crosses E(x) where the geodesic distance dgeo(x, ·) has a kink. The
projection mapping p1 : singsupp(dgeo)\DiagRPn → RPn is a locally trivialRPn−1-
bundle on RPn. Therefore, N = singsupp(dgeo) \ DiagRPn → RPn is a manifold of
dimension 2n − 1 > n and suitable local trivializations of p1 : N → RPn satisfy
the assumptions of item ii) in Theorem 3.16. We conclude from Theorem 3.16
that L(R) has no bounded extension to an operator H−μ(RPn) → Hs(RPn) for
any s > −n/2 + 3/2.

We now prove the result for the n-dimensional torus Tn. Write Tn = Rn/Zn.
WhileTn is a symmetric space, i.e.,Tn = G/H forG = Tn andH = 1, it is instructive
to consider d(x, y) for x = 0. We have that d(0, y) = |y| where we represent y by as
an element of the fundamental domain [−1/2, 1/2)n, and Tn � y �→ d(0, y) as a
function on Tn is the Zn-periodic extension of [−1/2, 1/2)n � y �→ |y|. Therefore
y �→ d(0, y) has kinks on the image of ∂([−1/2, 1/2)n) in Tn. In particular, we see
that the off-diagonal singular support of d is the set

{(x, y) ∈ Tn × Tn : x − y ∈ ∂([−1/2, 1/2)n) + Zn}.
Consider the submanifold N0 := {1/2} × (−1/4, 1/4)n−1 ⊆ Rn and define the
2n − 1-dimensional submanifold

N := {(x, y) ∈ Tn × Tn : x − y ∈ N0 + Zn} ⊆ singsupp(d2) \ DiagTn .

Consider a point
x0 = (x, 1/2, y′) ∈ N.

On the open ball of radius 1/4 centered at x0, we introduce the coordinates
u = x1 − y1 − 1/2 and t = (t′, y) where t′ = x′ − y′ in terms of standard coordi-
nates x = (x1, x′) and y = (y1, y′). In these coordinates, we have that

d(x, y) =

√(1
2

− |u|
)2

+ |t′|2 =

√
−|u| + |t′|2 +

1
4

+ |u|2.
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By shrinking the neighborhood of x0, we can Taylor expand√
−|u| + |t′|2 +

1
4

+ |u|2

=

√
|t′|2 +

1
4

+ |u|2
√

1 − |u|
|t′|2 + 1

4 + |u|2 =
∞∑
k=0

αααk
|u|k

(|t′|2 + 1
4 + |u|2)k−1

= |u|
∞∑
k=0

ααα2k+1
|u|2k

(|t′|2 + 1
4 + |u|2)2k︸ ︷︷ ︸

g(u,t′)

+
∞∑
k=0

ααα2k
|u|2k

(|t′|2 + 1
4 + |u|2)2k−1︸ ︷︷ ︸

g̃(u,t′)

.

The functions g and g̃ are smooth near 0. Since g(0, 0) 
= 0, we can define the
new coordinate s := ug̃(u, t′). We conclude that in these coordinates d(x, y)− |s| is
smooth. We conclude from Theorem 3.16 that L(R) has no bounded extension to
an operator H−μ(Tn) → Hs(Tn) for any s > −n/2 + 3/2. �

Remark 3.18. The analytical issues arising from the remainder term L reflect
fundamental problems in Riemannian geometry. The singular support of the
geodesic distance is akin to the conjugate locus of the Riemannian metric, which in
general is hard to describe; see [5, 43], and for related technical issues arising in the
X-ray transform on a Riemannian manifold see [22]. Furthermore, Theorem 3.16
shows that even when the singular support is a tractable set, i.e., when it looks like
a submanifold near some point, dimensional obstructions to property (MR) appear.
This gives rise to the analytic problem that the operator L in the decomposition
Z = Q + L is in general of order higher than −n − 1 in the Sobolev order, while it
is infinitely decaying in the parameter R. In this case L is of higher order than Q,
which is elliptic with parameter of order −n−1 and which determines the analytic
and geometric properties of Z in this article.

4 The operator Z on Sobolev spaces for a manifold with
boundary

We now turn to compact manifolds with boundary. For simplicity, we tacitly
assume that X is a compact domain in a manifold M and, for the purposes of
this section, it suffices to assume that X has a C0-boundary. We say that X ⊆ M
is a domain if it coincides with the closure of its interior points. Recall that a
domain is said to have C0-boundary if its boundary can be realized locally as the
graph of a continuous function. We call such spaces X a compact manifold with
C0-boundary. We may then study the operators Z and Q in M and deduce results
in X by restriction to distributions supported in X. In this section we study analytic
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properties and meromorphic extensions. Asymptotic properties are studied in the
following section under additional regularity assumptions on the boundary. For
notational clarity, we indicate the manifold on which an operator is defined by a
subscript, e.g., ZX and ZM for the corresponding operator on X and M, respectively.

We shall make use of the following scales of Sobolev spaces. For s ∈ R

and R > 0, write

Ḣs
R(X) := {u ∈ Hs

R(M) : supp(u) ⊆ X} and H
s
R(X) := Hs

R(M)/Ḣs
R(M \ X).

An approximation argument shows that C∞
c (X◦) ⊆ Ḣs

R(X) is dense for any s ∈ R,
see [32, Theorem 3.29]. We equip these Sobolev spaces with Hilbert space struc-
ture induced from Hs

R(M), i.e., Ḣs
R(X) ⊆ Hs

R(M) as a subspace and H
s
R(X) as a

quotient. We call the quotient mapping Hs
R(M) → H

s
R(X) the restriction mapping

because, by duality, it identifies H
s
R(X) with a space of distributions in X◦. In-

deed, the continuous inclusion map Hs
R(M) ↪→ D′(M) induces a continuous map

H
s
R(X) → D′(X◦) by mapping the equivalence class u + Ḣs

R(M \ X◦) ∈ H
s
R(X) to

the distribution u|X◦ ∈ D′(X◦). The map H
s
R(X) → D′(X◦) is a continuous em-

bedding by the following argument. If u ∈ Hs
R(M) satisfies that u|X◦ = 0 then

supp(u) ⊆ M \ X◦ and u + Ḣs
R(M \ X◦) = 0 + Ḣs

R(M \ X◦) defines the zero class
in H

s
R(X).

We note that for s = 0,

Ḣ0
R(X) = H

0
R(X) = L2(X).

The L2-pairing between Ḣs
R(X) and H

−s
R (X) is a perfect pairing and induces an

isomorphism Ḣs
R(X)∗ ∼= H

−s
R (X) (uniformly in R). By an abuse of notation, we

write 〈·, ·〉L2 : Ḣs(X) × H
−s

(X) → C for the L2-pairing. For R = 1, we omit R

from the notation. We remark that any pseudodifferential operator with parameter
A ∈ �m

cl(M;�) induces a continuous operator

AX : Ḣs(X) → H
s−m

(X),

defined by the composition

Ḣs(X) ↪→ Hs
c(M)

A−→ Hs−m
loc (M) → H

s−m
(X).

Here the last map is the quotient map, Hs
c(M) denotes the space of compactly

supported distributions that are s-Sobolev regular and Hs−m
loc (M) denotes the space

of distributions that are locally s − m-Sobolev regular. We use the notation AX

but remark that this operator maps distributions supported in X to distributions
restricted to X◦.
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Let us make two remarks regarding the operator AX : Ḣs(X) → H
s−m

(X).
Firstly, for any s ∈ R density ensures that AX : Ḣs(X) → H

s−m
(X) is determined

by continuity and the restriction AX : C∞
c (X◦) → C∞(X). Secondly, if s = −m/2

and A is formally self-adjoint, then AX is determined from the polarization identity
by the continuous quadratic form

qAX (u) := 〈u,Au〉L2, u ∈ Ḣ−m/2(X),

defined from A and the perfect L2-pairing Ḣm/2(X) × H
−m/2

(X) → C.

The analogue of Theorem 2.22 for QX is the following theorem.

Theorem 4.1. Let X be a compact n-dimensional manifold with C0-boundary
and d a distance function on X such that d2 is regular at the diagonal. Set

μ = (n + 1)/2. Then the family of operators

QX := QM|X◦ : Ḣ−μ(X) → H
μ
(X)

is a well defined family of Fredholm operators for all R ∈ C \ {0}. For some
R0 ≥ 0, QX(R) is invertible for all R ∈ �π/(n+1)(R0). Moreover, the following holds:

(a) The family of operators

(QX(R) : Ḣ−μ(X) → H
μ
(X))R∈C\{0}

depends holomorphically on R ∈ C \ {0}. Moreover, we can extend the holo-

morphic family (QX(R)−1 : H
μ
(X) → Ḣ−μ(X))R∈�π/(n+1)(R0) meromorphically

to R ∈ C \ {0}.
(b) There are C,R0 > 0 such that

C−1‖f‖2
Ḣ−μ

|R| (X) ≤ Re〈f,QX(R)f 〉L2 ≤ C‖f‖2
Ḣ−μ

|R| (X),

for R ∈ �π/(n+1)(R0) and f ∈ Ḣ−μ(X). In particular, for R ∈ �π/(n+1)(R0), the

norm Re〈·,QX(R)·〉L2 is uniformly equivalent to the norm on Ḣ−μ
R (X).

Proof. We first prove part (b). This is a direct consequence of adapting
Theorem 2.22, part (b), to compactly supported distributions that are −μ-Sobolev
regular and using that Ḣs|R|(X) ⊆ Hs|R|(M) is an isometric inclusion.

To prove part (a), we note that for R ∈ C \ {0}, QM(R) is a lower-order
perturbation of QM(R0) for any R0 � 0. Therefore, the Rellich lemma implies that
the quadratic form

qQ,R(u) := 〈u,Q(R)u〉L2 ≡ 〈u,QX(R)u〉L2, u ∈ H−μ(X),
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is a compact perturbation of qQ,R0 . Therefore, the difference

QX(R) − QX(R0) : Ḣ−μ(X) → H
μ
(X),

is a compact operator. Since part b) implies that QX(R0) is invertible for a large
enough R0 � 0, we conclude that (QX(R) : Ḣ−μ(X) → H

μ
(X))R∈C\{0} is a Fred-

holm family.
It remains to prove the assertion for the inverse of QX(R). The family of

operators (QX(R) : Ḣ−μ(X) → H
μ
(X))R∈C\{0} is obtained from the holomorphic

family of operators (QM(R) : H−μ
c (M) → Hμ

loc(M))R∈C\{0} (see Theorem 2.22,
part a) via inclusions and projections, so it is also holomorphic. As such,
(QX(R)−1 : H

μ
(X) → Ḣ−μ(X))R∈�π/(n+1)(R0) extends meromorphically to C \ {0}

by the meromorphic Fredholm theorem (see [31, Proposition 1.1.8]). �
Similarly to the ideas in Section 3, we shall transfer the results of Theorem 4.1

to the operator ZX using property (MR). For a domain, let us make the notion of
property (MR) more precise.

Definition 4.2. Let X be a compact manifold with C0-boundary and d a
distance function on X such that d2 is regular at the diagonal. For a sector
[1,∞) ⊆ � ⊆ C, we say that d has property (MR) on � if (X, d) is isomet-
rically embedded as a domain with smooth boundary in a manifold M equipped
with a distance function dM, such that d2

M is regular at the diagonal and for any
R ∈ �, L(R) extends to a continuous mapping H−μ

c (M) → Hμ
loc(M) with

‖L(R)‖Ḣ−μ(K)→H̄μ(K ′) = O(Re(R)−∞), as Re(R) → +∞ in �,

for any compact subsets K,K′ ⊆ M.
If, for any compact subsets K,K′ ⊆ M, the operator L(R) : Ḣ−μ(K) → H

μ
(K′)

is compact for R ∈ � and � � R �→ L(R) ∈ K(Ḣ−μ(K),H
μ
(K)) is holomorphic in

norm sense, we say that d has property (SMR) on �.

In the absence of a boundary, the definition of property (MR) for a manifold
with boundary (Definition 4.2) is readily seen to be equivalent to property (MR)
for a compact manifold (Definition 3.3). The reader is encouraged to think of the
definition of property (MR) for a manifold with boundary as the distance function
having “property (MR) on a neighborhood of the manifold with boundary”. Let us
consider two examples of distance functions with property (SMR).

Example 4.3 (Domains in Riemannian manifolds with small diameter). As-
sume that X ⊆ M is a compact domain with C0-boundary in a Riemannian manifold
with geodesic distance dgeo,M. If the diameter of X is strictly smaller than the injec-
tivity radius of M, d2

geo,M is smooth on a neighborhood of X. The same argument as
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in Proposition 3.4 shows that the distance function dgeo := dgeo,M|X on X has prop-
erty (SMR) on C \ {0}. In fact, in this case, L ∈ �−∞(X;C+) and L(R) ∈ �−∞(X)
for any R ∈ C \ {0}.

Example 4.4 (Submanifolds with boundary). Assume that X is a compact
manifold with C0-boundary embedded in a manifold i : X → W and dW is a
distance function on W such that the square d2

W is smooth on W × W and regular
at the diagonal. This arises for instance for W = RN , W = HN,R or W = HN,C, for
some N ∈ N, with their geodesic distance.

The subspace distance function d : X × X → [0,∞), d(x, y) := dW(i(x), i(y))
will then satisfy

(i) d2 is smooth on X × X and regular at the diagonal,
(ii) L ∈ �−∞(X;C+) and L(R) ∈ �−∞(X) for any R ∈ C \ {0},
(iii) d has property (SMR) on C \ {0}.
This follows by the same arguments as in Proposition 3.4 by choosing a submani-
fold M ⊆ W in which i(X) is a compact domain (with C0-boundary).

For a distance function with property (MR), we tacitly assume that the manifold
with C0-boundary is embedded into the manifold M implementing property (MR).
The next result is proven exactly as Theorem 3.7 but using Theorem 4.1 instead of
Corollary 2.21.

Theorem 4.5. Let X be a compact n-dimensional manifold with C0-boundary
and d a distance function on X with property (MR) on the sector �. Then there is

an R0 ≥ 0 such that
ZX(R) : Ḣ−μ(X) → H

μ
(X)

is invertible for all R ∈ � ∩ �π/(n+1)(R0). Moreover,

Z−1
X = Q−1

X + RX,

where Q−1
X is the inverse of QX (existing by Theorem 4.1) and

RX : H
μ
(X) → Ḣ−μ(X)

is a family of operators such that

‖R‖H
μ
(X)→Ḣ−μ(X) = O(Re(R)−∞), as Re(R) → +∞ in � ∩ �π/(n+1)(R0).

Moreover, there is a C > 0 such that

(27) C−1‖f‖2
Ḣ−μ

|R| (X) ≤ Re〈f,ZX(R)f 〉L2 ≤ C‖f‖2
Ḣ−μ

|R| (X),

for R ∈ � ∩ �π/(n+1)(R0) and f ∈ Ḣ−μ(X). In particular, for R ∈ � ∩ �π/(n+1)(R0),
ReZX(R) is positive in form sense on L2(X) for the H−μ-norm.
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The next result poses an obstruction to property (MR) for distance functions on
manifolds with boundary. It is proven in the same way as Corollary 3.10 but using
Theorem 4.5 instead of Theorem 3.7.

Corollary 4.6. Assume that d is a distance function on a manifold with C0-
boundary X with property (MR) on [1,∞). Then there exists an R0 ≥ 0 such that

for all finite subsets F ⊆ X the |F| × |F|-matrix (e−Rd(x,y))x,y∈F is positive definite
for all R > R0.

Using Theorem4.1 instead of Theorem3.7, the next result is proven ad verbatim
as Theorem 3.12.

Theorem4.7. LetX be an n-dimensional compactmanifoldwithC0-boundary
and assume that distance function d has property (SMR) on �. There is an R0 ≥ 0
such that the operator

ZX(R) : Ḣ−μ(X) → H
μ
(X)

is a well-defined Fredholm operator for all R ∈ � and invertible for

R ∈ � ∩ �π/(n+1)(R0). Moreover, the operator ZX(R) : Ḣ−μ(X) → H
μ
(X) de-

pends holomorphically on R in � and ZX(R)−1 : H
μ
(X) → Ḣ−μ(X) depends

meromorphically on R ∈ �.

Similarly to Corollary 3.5, we deduce the following special case of Theorem4.7.

Corollary 4.8. LetX be an n-dimensional compactmanifoldwithC0-boundary

and assume that d is a distance function satisfying that d2 is smooth on X × X and
regular at the diagonal (e.g., as in Example 4.3 or 4.4). Then the family of operators

(ZX(R) : Ḣ−μ(X) → H
μ
(X))R∈C\{0}

depends holomorphically on R ∈ C \ {0}. Moreover, for some R0, we have a
holomorphic family (ZX(R)−1 : H

μ
(X) → Ḣ−μ(X))R∈�π/(n+1)(R0) that extends mero-

morphically to R ∈ C \ {0}.

5 Structure of the inverse operator in the presence of a
boundary

Consider a compact manifold with boundary X equipped with a distance function d
whose square is regular at the diagonal. As above, we set μ := (n + 1)/2 where
n := dim(X). If d has property (MR), Theorem 4.5 ensures that computations
for QX relate to computations for ZX up to a term of infinitely low order in R
(as Re(R) → ∞), so we focus on the operator QX. As proved in Theorem 4.1
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above, the localized operator QX : Ḣ−μ(X) → H
μ
(X) is an isomorphism for large

enough R in the sector �π/(n+1). We shall now describe the inverse of QX in more
precise terms under the assumption that the boundary is smooth. The inverse
Q−1

X : H
μ
(X) → Ḣ−μ(X) will be computed as a sum of

• a pseudodifferential operator (with parameter) in the interior;
• a composition of two mixed-regularity pseudodifferential operator near the

boundary, where the two factors are obtained from inverting a Wiener–Hopf
factorization of the magnitude operator at the boundary; as well as

• an error term that acts as order 2μ, mapping H
μ
(X) → Ḣ−μ+1(X), whose

norm is O(|R|−∞) as R → ∞.

Asymptotically, only the two first terms play a role, and in the next section we
compute the asymptotics of conditional expectations from the symbols of these
first two terms. To describe the decomposition, we shall need further terminology.

5.1 Mixed-regularity symbols and Sobolev spaces.

Definition 5.1. Let s, t ∈ R and n ∈ N>0. Write coordinates in Rn as
ξ = (ξ′, ξn) ∈ Rn−1 × R. We define the Sobolev space of mixed-regularity (s, t) as

Hs,t(Rn) :=
{

f ∈ S′(Rn) :
∫
Rn
〈ξ〉s〈ξ′〉t|f̂ (ξ)|2dξ <∞

}
.

If � ⊆ Rn is a domain (so � = �◦), we define

Ḣs,t(�) := {f ∈ Hs,t(Rn) : supp(f ) ⊆ �}, and H
s,t

(�) := Hs,t(Rn)/Ḣs,t(�c).

We also define Ḣs,t
c (�) and H

s,t
c (�) as the elements with compact support. The

local Sobolev spaces of mixed-regularity are defined as

Ḣs,t
loc(�) := {f ∈ S′(Rn) : χf ∈ Ḣs,t(�)∀χ ∈ C∞

c (Rn)},
H

s,t
loc(�) := Hs,t

loc(R
n)/Ḣs,t

loc(�
c).

We note that Ḣs,t(�) ⊆ Hs,t(Rn) is a closed subspace. We call the quotient
mapping Hs,t(Rn) → H

s,t
(�) the restriction mapping. For large enough s > 0,

we can identify Ḣs,t(�) with a subspace of H
s,t

(�) (but not for small s < 0). A
standard computation with Fourier transforms shows that the the identity operator
induces continuous mappings H

s,t
(�) → H

s′,t′
(�) and Ḣs,t(�) → Ḣs′,t′(�) if and

only if s ≥ s′ and s + t ≥ s′ + t′ (which is locally compact if and only if s > s′

and s + t > s′ + t′).
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Definition 5.2. Let u,m ∈ R and n ∈ N>0. Let� ⊆ C be a sector and U ⊆ Rn

an open subset. Write coordinates in Rn as ξ = (ξ′, ξn) ∈ Rn−1 × R. We say that
a ∈ C∞(U ×Rn × �) is a symbol with parameter of mixed-regularity (u,m) if for
any compact K ⊆ U, k ∈ N, α ∈ Nn and β ∈ Nn there is a constant C > 0 such that

sup
x∈K

|∂k
ξn
∂
β
(ξ ′,R)∂

α
x a(x, ξ′, ξn,R)| ≤ C〈(ξ,R)〉u−k〈(ξ′,R)〉m−|β|,

for all (ξ,R) ∈ Rn+1. We let Su,m(U;�) denote the space of symbols with parameter
of mixed-regularity (u,m). We set Su,−∞(U;�) :=

⋂
m∈R Su,m(U;�).

For a ∈ Su,m(U;�) we define

Op(a) : C∞
c (U) → C∞(U), Op(a)f (x) :=

1
(2π)n

∫
Rn

a(x, ξ,R)f̂ (ξ)dξ.

Let�u,m(U;�) denote the linear space of operators C∞
c (U) → C∞(U) spanned by

{Op(a) : a ∈ Su,m(U;�)} and smoothing operators with parameter. We set

�u,−∞(U;�) :=
⋂
m∈R

�u,m(U;�).

Example 5.3. Assume that 0 /∈ �. Suppose that

a(x, ξ,R) = b(x, ξ′,R)(ξn − h(x, ξ′,R))u

where b is a homogeneous symbol with parameter of order m and h is a ho-
mogeneous symbol with parameter of order 1. A short computation shows
that ∂k

ξn
∂
β
(ξ ′,R)∂

α
x a is a sum of terms of the form b̃(x, ξ′,R)(ξn − h(x, ξ′,R))u−k−l

where b̃ is homogeneous of order m − |β| + l. Therefore a ∈ Su,m(U;�), and in
fact a ∈ Su0,m+u−u0 (U;�) for any u0 ≤ u.

We note that since differentiation in the (ξ′,R)-direction improves the order of
decay, we have for a ∈ Su,m(U;�) and f ∈ C∞

c (U) that

Op(a)f (x) :=
1

(2π)n

∫
Rn×Rn−1

a(x, ξ,R)Fyn→ξn f (y
′, ξn)eiξnxn+iξ′(x′−y)′dy′dξ,

as an oscillatory integral. Moreover, we can conclude the following result from
standard techniques of oscillatory integrals (cf. [39, Chapter I.1]).

Proposition 5.4. Assume that A ∈ �u,m(U;�). Then for any χ, χ′ ∈ C∞(U)
with χχ′ = 0 it holds that χAχ′ ∈ �u,−∞(U;�). In particular, if χ, χ′ ∈ C∞

c (U)
satisfies χχ′ = 0 then ‖χAχ′‖Hs→Hs′ = O(|R|−∞) as R → ∞ for all s ≥ s′ + u.

The last statement of the proposition follows from the next theorem.
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Theorem 5.5. Let u,m, s, t, s′, t′ ∈ R and n ∈ N>0. Let A ∈ �u,m(Rn;�).
Then A extends to a continuous operator

A : Hs,t
c (Rn) → Hs′,t′

loc (Rn),

if s ≥ s′ + u and t ≥ t′ + m. In this case, we have for any χ, χ′ ∈ C∞
c (Rn) that there

exists a C = C(s, s′,A, χ, χ′) > 0 for which

‖χAχ′‖Hs,t(Rn)→Hs′ ,t′ (Rn) ≤ C(1 + |R|)t′−t+m.

Proof. The first part follows from the Calderón–Vaillancourt theorem. The
second part follows from noting that Calderón–Vaillancourt’s theorem proves
the case t′ + m = t and for A ∈ �u,m(Rn;�) compactly supported, then
(R2 +�′)(t−t′−m)/2A ∈ �u,t−t′(Rn;�) (where �′ denotes the Laplacian in the x′-
direction). �

Definition 5.6. Let u ∈ R. Consider a sequence (aj)j∈N of mixed-regularity
symbols with aj ∈ Su,mj(U;�) for a sequence mj → −∞. Set m := maxj mj. If
a ∈ Su,m(U;�) satisfies that for any N, there is an M such that

a −
M∑
j=0

aj ∈ Su,−N(U;�),

we write

a ∼
∞∑
j=0

aj,

and call a the asymptotic sum of (aj)j∈N.

Proposition 5.7. Let u ∈ R. For any sequence (aj)j∈N of mixed symbols with
aj ∈ Su,mj(U;�) for a sequence mj → −∞, the asymptotic sum

a ∼
∞∑
j=0

aj

exists in Su,m(U;�), where m := maxj mj. The asymptotic sum is uniquely deter-
mined modulo Su,−∞(U;�).

Proof. The proof of this proposition is carried out ad verbatim as in [25,
Proposition 18.1.3] upon replacing the ξ in [25] with (ξ′,R). �

Again, using that differentiation in the (ξ,R)-direction improves the order of
decay, we can conclude several results from the standard situation (cf. [39, Chap-
ter I]). For instance, the analogue of [39, Theorem3.1, Chapter I.3] extends modulo
�u,−∞ to �u,m which implies asymptotic expansions of products and adjoints.
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Proposition 5.8. Let A∈�u,m(U;�) and B∈�u′,m′
(U;�) be mixed-regularity

pseudodifferential operators out of which at least one is properly supported. Then
AB ∈ �u+u′,m+m′

(U;�) is a mixed-regularity pseudodifferential operator. Moreover,

if a ∈ Su,m(U;�) and b ∈ Su′,m′
(U;�) are symbols with A − Op(a) and B − Op(b)

being smoothing with parameter, then AB − Op(c) is smoothing with parameter

where c ∈ Su+u′,m+m′
(U;�) is uniquely determined modulo Su+u′,−∞(U;�) as the

asymptotic sum

c ∼ ∑
α∈Nn

1
α!
∂αξ aDα

x b.

Theorem 5.9. Let u,m, s, t, s′, t′ ∈ R and n ∈ N>0. Let a ∈ Su,m(Rn;�) be

compactly supported in the x-direction and assume that a extends to a holomor-

phic function in Im(ξn) < 0. Set A := Op(a). Then A restricts to and induces,
respectively, continuous operators

Ȧ : Ḣs,t(Rn
+) → Ḣs′,t′(Rn

+) and A : H
s,t

(Rn
−) → H

s′,t′
(Rn

−),

if s ≥ s′ + u and t ≥ t′ + m.

Proof. Note that A is well defined as the operator induced by

A : Hs,t(Rn) → Hs′,t′(Rn)

as soon as A preserves supports in Rn
+. Because the same holds for

Ȧ : Ḣs,t(Rn
+) → Ḣs′,t′(Rn

+),

we only need to show that A preserves supports in Rn
+. By standard density

arguments, it suffices to prove that A preserves supports in Rn
+ when applied to test

functions.
Using Proposition 5.8, we note that upon replacing A with the operator

A Op((1 + iξn + |(ξ′,R)|)−m0 (1 + |(ξ′, ξn,R)|2)−u0 ),

for sufficiently large u0 and m0, we can assume that a is integrable in ξ. Set
KR(x, z) := Fξ→za(x, ξ,R). Then for any test function f ,

Af (x) = (2π)n
∫
Rn

KR(x, x − y)f (y)dy.

The Paley–Wiener theorem combined with the assumption that a extends to a
holomorphic function in Im(ξn) < 0 implies that KR is supported in Rn × Rn

+ × �.
We conclude that if supp(f ) ⊆ Rn

+, then

Af (x) = (2π)n
∫
Rn

+

KR(x, x − y)f (y)dy

is also supported in Rn
+. �
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Remark 5.10. Under the assumptions of Theorem 5.9, Theorem 5.5 implies
that for any s and s′ with s ≥ s′ + u there is a C > 0 such that for t ≥ t′ + m

‖A‖Ḣs,t(Rn
+)→Ḣs′ ,t′ (Rn

+) ≤ C(1 + |R|)t′−t+m and

‖A‖
H

s,t
(Rn−)→H

s′,t′
(Rn−)

≤ C(1 + |R|)t′−t+m.

5.2 Wiener–Hopf factorization of QX near the boundary. Using the
machinery of the previous subsection, we shall now factorize the operator QX near
the boundary into factors that extend holomorphically into the lower, respectively
upper half-plane, and useTheorem5.9 to (near the boundary) invert these individual
factors as operators Ḣ−μ(X) → L2(X) and L2(X) → H

μ
(X), respectively. The

reader should recall the structure of the full symbol of Q from Theorem 2.9. We
shorten the notation and write Cj for Cj

d2 , where Cj
d2 are the Taylor coefficients

of d2 as in equation (9).
As above, we consider a compact manifold with boundary X and a distance

function d on X whose square is regular at the diagonal (cf. Definition 2.2). We
tacitly fix a manifold M containing X as a smooth compact domain to which d
extends as a distance function whose square is regular at the diagonal. In particular,
we can Taylor expand d2 near any point in the diagonal as in equation (9) and its
Taylor coefficients enter the full symbol of Q as in Theorem 2.9. To study the
behavior at the boundary, we first reduce to the model case that X=∂X×[0,∞), as
a domain in ∂X×R. We remark that ∂X×[0,∞) is not compact, but we shall later on
only use the constructed operators in a form localized to near the compact boundary.

Proposition 5.11. Let X be a compactmanifold with boundarywith a distance
function d whose square is regular at the diagonal, embedded into a manifold M as

in the preceding paragraph. Consider the compact manifold Y = ∂X and choose a
tubular neighborhood U ⊆ M of ∂X and a diffeomorphism ϕ : U → Y × (−1, 1),
with ∂X = ϕ−1(Y × {0}). Then there exists a classical elliptic pseudodifferential

operator with parameter Q∂ ∈ �−n−1
cl (Y × R;C+) and a number ε > 0 such that:

• Q∂ is translation invariant outside a compact subset in the sense that there

exists a t0 > 0 such that if f ∈ C∞
c (Y × R) is supported in {(y, t) : ±t > t0}

then [Q∂f ](· ∓ s) = Q∂[f (· ∓ s)] for all s > 0.

• For all f ∈ C∞
c (Y × (−ε, ε)) it holds that Q(ϕ∗f ) is supported in U and

Q(ϕ∗f ) = ϕ∗(Q∂f ).

• The principal symbol of Q∂ is given by

σ−n−1(x, ξ,R) = c(R2 + g(ξ, ξ))−μ,

where g is a Riemannian metric on Y × R which is translation invariant in
the R-direction outside a compact and coincides with ϕ∗gd2 on Y × (−1, 1).
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Proof. Construct g from interpolating between gd2 near 0 and something at
infinity. Construct Q∂ from interpolation along the real line between Q near 0 and
(R2 +�g)−μ at infinity. The second part follows from that Q by construction has
small propagation. �

Henceforth, we shall fix a choice of Q∂ and g as in Proposition 5.11.

Remark 5.12. To fix a choice of a diffeomorphism ϕ : U → Y × (−1, 1) is
(up to a self-diffeomorphism of Y) equivalent to choosing a vector field defined
near Y = ∂X which is transversal to the boundary. This choice of vector field, or
equivalently, the last entry of ϕ : U → Y × (−1, 1), gives rise to a coordinate that
we denote by xn : U → (−1, 1). We remark that it is always possible to use the
transversal vector field to be the metric normal to the boundary, in which case we
have that on ∂X:

gd2 = dx2
n + g∂X,d2 ,

where g∂X,d2 is the induced Riemannian metric on ∂X. For computational purposes,
it becomes clumsy to restrict to the case when the transversal vector field is
orthogonal to the boundary but for some considerations it simplifies the formulas.

Following the notation of Subsection 5.1, we write xn for this transversal
coordinate and x′ for coordinates on ∂X. Similarly, ξn denotes the cotangent variable
in the transversal direction and ξ′ denotes the cotangent variables along ∂X.

We let q∂ ∈ S−2μ
cl (Y × R;�) denote the full symbol of Q∂. We note that

q∂ ∼∑∞
j=0 q∂j in S−2μ(Y×R;C) where eachq∂j ∈ S−2μ−j(Y×R;C) is a homogeneous

symbol in (ξ,R) of order −2μ − j = −n − 1 − j and near t = 0, we have in any
local coordinates on Y that q∂j = qj where qj is computed as in Theorem 2.9 using
the coordinates induced from Y and ϕ.

Proposition 5.13. There are unique homogeneous degree 1 symbols

h± = h±(x, ξ′,R) ∈ S1(T∗Y × R,Y × R;C)

that determine the complex solutions to the equation R2 + gx((ξ′, ξn), (ξ′, ξn)) = 0
for fixed (x, ξ′,R) with ±Im(ξn) > 0. Furthermore, there is a unique function

h0 ∈ C∞(Y × R,R>0) such that

R2 + g(ξ, ξ) = h0(x)(ξn − h+(x, ξ
′,R))(ξn − h−(x, ξ′,R)).

Moreover, we have that

h±(x, ξ′,R) = −ξ
′(b(x))
h0(x)

± i

√
R2 + gY (ξ′, ξ′) − (ξ′(b))2√

h0(x)
,

for suitable b and gY determined from the metric.
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Proof. It is not hard to see that h0 and h± are well defined and unique, but let
us construct them explicitly. We can decompose

(28) g =

(
h0 b

bT gY

)
,

where gY is a metric on Y on each slice, and b ∈ C∞(Y × R,TY). Since g
is translation invariant outside a compact, h0, b and gY are translation invariant
outside a compact. We have that

R2 + g(ξ, ξ) = R2 + h0ξ
2
n + 2ξ′(b)ξn + gY(ξ′, ξ′).

We see that h0 in the above definition is the h0 in equation (28) and that the complex
roots are as prescribed. The proposition follows. �

Theorem 5.14. Let q∂ ∈ S−2μ
cl (Y × R;�) be as above. Then there exists

q∂± ∈ S−μ,0(Y × R;�) that are translation invariant outside a compact such that

(1) q∂± ∈ S−μ,0(Y ×R;�) admits asymptotic expansions (in S−μ,0 in the sense of

Definition 5.6 on page 58)

q∂± ∼
∞∑
j=0

q∂±,j,

where q∂±,0 ∈ S−μ,0 and for j > 0,

q∂±,j(x, ξ,R) =
j−1∑

k=−1

b±,j,k(x, ξ′,R)(ξn − h±(x, ξ′,R))−μ−j+k ∈ S−μ−1,−j+1,

where b±,j,k is homogeneous of degree −k in (ξ′,R) and can be computed

by an iterative scheme of partial fraction decompositions as a homogeneous

rational function in derivatives of h0, h+ and h−. The first terms are given by

(29)
q∂+,0 = n!ωn(ξn − h+)

−μ,

q∂−,0 = h−μ
0 (ξn − h−)−μ,

and q±,1 are computed in Proposition 5.16 below.
(2) The mixed-regularity symbols q∂± ∈ S−μ,0(Y × R;�) and q∂±,j ∈ S−μ−1,−j+1

admit holomorphic extensions to ∓Im(ξn) > 0.

(3) It holds that

q∂ =
∑
α

1
α!
∂αξ q

∂
−Dα

x q
∂
+ mod S−2μ,−∞.
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Proof. Let us first massage the statements of the theorem. We want to con-
struct q∂± ∼ ∑∞

j=0 q∂±,j ∈ S−μ,0 admitting holomorphic extensions to ∓Im(ξn) > 0
and satisfying q∂ =

∑
α

1
α!∂

α
ξ q
∂−Dα

x q
∂
+ mod S−2μ,−∞. We remark that to ensure

item (2), i.e., the holomorphic extension of q∂±, it suffices to construct each q∂±,j
so that it admits a holomorphic extension to ∓Im(ξn) > 0. We also note that the
requirement on the composition is equivalent to

(30) q∂j =
∑

k+l+|α|=j

1
α!
∂αξ q

∂
−,kD

α
x q
∂
+,l.

We take the formula (29) as a definition, and note that q∂±,0 satisfy the structural
statement in item (1), extend holomorphically to ∓Im(ξn) > 0 and q∂0 = q∂−,0q∂+,0.
Using an idea described in [23], equation (30) is for j > 0 equivalent to

q∂+,j
q∂+,0

+
q∂−,j
q∂−,0

=
q∂j
q∂0

− 1
q∂0

∑
k+l+|α|=j

k,l<j

1
α!
∂αξ q

∂
−,kD

α
x q
∂
+,l.

We proceed by induction. Assume that we have constructed q±,k for k < j

satisfying the statements of items (1), (2), and (3) in the relevant degrees. Using
Lemma 2.19 and item (1) for q±,k for k < j, we can use Lemma B.1 to uniquely
partial fraction decompose

q∂j
q∂0

− 1
q∂0

∑
k+l+|α|=j

k,l<j

1
α!
∂αξ q

∂
−,kD

α
x q
∂
+,l = q+,j + q−,j,

where q±,j by Proposition 2.6 and Theorem 2.9 takes the form

q±,j(x, ξ,R) =
j−1∑

k=−1

b±,j,k(x, ξ′,R)(ξn − h±(x, ξ′,R))−j+k ∈ S−1,−j+1,

where b±,j,k is homogeneous of degree −k in (ξ′,R) and can be explicitly computed
from the results of Appendix Appendix B and Theorem 2.9. We now define

q∂±,j := q∂±,0q±,j,

and note that it by construction satisfies items (1), (2), and (3) in the relevant
degrees. �

Remark 5.15. As noted in Proposition 5.13, the symbols h+ and h− are di-
rectly determined from the metric and the choice of transversal to the bound-
ary. Moreover, as the proof of Theorem 5.14 shows, each of the symbols
b±,j,k = b±,j,k(x, ξ′,R) depends
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(1) polynomially on (C(γ)
G )γ∈∪k≤jIk and its derivatives contracted by gG and ιngG

and its derivatives,
(2) polynomially on h+, h− and rationally on h+ − h− and h−1/2

0 .
The total degree is j where each C(γ)

G , γ ∈ Ik, has degree k, the metric and h0 have
degree zero, h+ and h− have degree 1 and x-derivatives increase the order by 1.

Proposition 5.16. For n > 1, the terms q±,1 appearing in the expansion of

q± in Theorem 5.14 are given by

q∂+,1 = n!ωna0,+(x, ξ
′,R)(ξn − h+)

−μ−1 + n!ωna1,+(x, ξ
′,R)(ξn − h+)

−μ−2,

q∂−,1 = a0,−(x, ξ′,R)h−μ
0 (ξn − h−)−μ−1 + a1,−(x, ξ′,R)h−μ

0 (ξn − h−)−μ−2,

where

a0,+(x, ξ
′,R)

= − 3ic1,n(n2 − 1)
n!ωn

(C3(x, g ⊗ ιng)h+ + C3(x, g ⊗ ιξ′g))
h−1

0

h+ − h−
+

+
ic1,n(n + 3)3,−2

n!ωn

h−2
0

(h+ − h−)3

× [C3(x, ιng ⊗ ιng ⊗ ιng)h2
+(h+ − 3h−) − 6h+h−C3(x, ιng ⊗ ιng ⊗ ιξ′g)

− 3(h+ + h−)C3(x, ιng ⊗ ιξ′g ⊗ ιξ′g) − 2C3(x, ιξ′g ⊗ ιξ′g ⊗ ιξ′g)]

+
i(n + 1)2

4
(∇ξ′h− · ∇x′h+ − ∂xnh+)

h+ − h−
,

a1,+(x, ξ
′,R) =

ic1,n(n + 3)3,−2

n!ωn

h−2
0

(h+ − h−)2

× [C3(x, ιng ⊗ ιng ⊗ ιng)h3
+ + 3h2

+C
3(x, ιξ′g ⊗ ιng ⊗ ιng)

+ 3h+C
3(x, ιξ′g ⊗ ιξ′g ⊗ ιng) + C3(x, ιng ⊗ ιξ′g ⊗ ιξ′g)],

a0,−(x, ξ′,R)

=
3ic1,n(n2 − 1)

n!ωn
(C3(x, g ⊗ ιng)h− + C3(x, g ⊗ ιξ′g))

h−1
0

h+ − h−

− ic1,n(n + 3)3,−2

n!ωn

h−2
0

(h+ − h−)3

× [C3(x, ιng ⊗ ιng ⊗ ιng)h2
−(h− − 3h+) − 6h+h−C3(x, ιng ⊗ ιng ⊗ ιξ′g)

− 3(h+ + h−)C3(x, ιng ⊗ ιξ′g ⊗ ιξ′g) − 2C3(x, ιξ′g ⊗ ιξ′g ⊗ ιξ′g)]

− i(n + 1)2

4
(∇ξ′h− · ∇x′h+ − ∂xnh+)

h+ − h−
,
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and

a1,−(x, ξ′,R) =
ic1,n(n + 3)3,−2

n!ωn

h−2
0

(h+ − h−)2

× [C3(x, ιng ⊗ ιng ⊗ ιng)h3
− + 3h2

−C3(x, ιξ′g ⊗ ιng ⊗ ιng)

+ 3h−C3(x, ιξ′g ⊗ ιξ′g ⊗ ιng) + C3(x, ιng ⊗ ιξ′g ⊗ ιξ′g)].

The proof is computational and based on Lemma B.1 using the explicit forms
in Corollary B.3. The details can be found in the arXiv version of this paper [14].

Lemma 5.17. The operators Q∂± := Op(q∂±) ∈ �−μ,0(Y × R;�) satisfy that

(1) Q − Q−Q+ ∈ �−2μ,−∞(Y × R;�);
(2) Q+ restricts to a well defined operator Ḣ−μ(Y × [0,∞) → L2(Y × [0,∞))

which is invertible for large R;
(3) Q− restricts to a well defined operator L2(Y × [0,∞)) → H

μ
(Y × [0,∞))

which is invertible for large R.

Proof. Part (1) follows from Proposition 5.8 and Theorem 5.14. Parts (2)
and (3) follow from Theorem 5.5 and Theorem 5.9. �

Definition 5.18. Define w±,j ∈ Sμ,−j inductively by

w±,0(x, ξ,R) := (q∂±,0)
−1 =

⎧⎪⎪⎨
⎪⎪⎩

1
n!ωn

(ξn − h+(x, ξ′,R))μ, for +,

h0(x)μ(ξn − h−(x, ξ′,R))μ, for −,
and then

w±,j := −w±,0
∑

k+l+|α|=j, l<j

1
α!
∂αξ q

∂
±,kD

α
xw±,l.

We also define w± :=
∑

jw±,j ∈ Sμ,0(Y × R;�) and W± ∈ �μ,0(Y × R;�) is
defined as a properly supported modification of Op(w±) with the same full symbol
which is translation invariant outside a compact subset.

Lemma 5.19. Let w± ∈ Sμ,0(Y × R;�) be as above. Then:
(1) The asymptotic expansion (in Sμ,0 in the sense of Definition 5.6 on page 58)

of w± ∈ Sμ,0(Y × R;�),

w± ∼
∞∑
j=0

w±,j,

can for j > 0 be expanded in a finite sum

w±,j(x, ξ,R) =
j−1∑
k=0

w±,j,k(x, ξ′,R)(ξn − h±(x, ξ′,R))μ−j+k ∈ Sμ−1,−j+1,
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where w±,j,k is homogeneous of degree −k in (ξ′,R) and can be computed by

an iterative scheme as a rational function of derivatives of h0, h+ and h−.
(2) The mixed-regularity symbols w± ∈ Sμ,0(Y × R;�) and w±,j ∈ Sμ−1,−j+1

admit holomorphic extensions to ∓Im(ξn) > 0.
(3) The symbols w±,j,k = w±,j,k(x, ξ′,R) depend

(a) polynomially on (C(γ)
G )γ∈⋃k≤j Ik and its derivatives contracted by gG and

ιngG and its derivatives,

(b) polynomially on h+, h− and rationally on h+ − h− and h−1/2
0 .

The total degree is j where each C(γ)
G , γ ∈ Ik, has degree k, the metric and

h0 have degree zero, h+ and h− have degree 1 and x-derivatives increase the
order by 1.

Proof. Items (1) and (2) follow from a short induction argument with the
construction (in Definition 5.18) and Theorem 5.14. �

We now compute w±,1. By definition, we have that

w±,1 = −w2
±,0q

∂
±,1 −w±,0

∑
|α|=1

∂αξ q
∂
±,0D

α
xw±,0.

A short algebraic manipulation with the computation of q±,1 from Proposition 5.16
gives the following formulas.

Proposition 5.20. For n > 1, the terms w±,1 appearing in the expansion

of w± in Lemma 5.19 are given by

w+,1(x, ξ
′, ξn,R)

= − 1
n!ωn

a0,+(x, ξ
′,R)(ξn − h+)

μ−1 − 1
n!ωn

a1,+(x, ξ
′,R)(ξn − h+)

μ−2

− i(n + 1)2

4 · n!ωn
(∂xnh+ − ∇ξ′h+ · ∇x′h+)(ξn − h+)

μ−2,

w−,1(x, ξ′, ξn,R)

= − a0,−(x, ξ′,R)hμ0 (ξn − h−)μ−1 − a1,−(x, ξ′,R)hμ0 (ξn − h−)μ−2

− i(n + 1)2

4
(∂xnh− − ∇ξ′h− · ∇x′h−)hμ0 (ξn − h−)μ−2

− i(n + 1)2

4
(∂xnh0 − ∇ξ′h− · ∇x′h0)h

μ−1
0 (ξn − h−)μ−1,

where the homogeneous symbols a±,0 (of degree 0) and a±,1 (of degree 1) were

explicitly given in Proposition 5.16 above.
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Lemma 5.21. The operators W± ∈ �μ,0(Y × R;�) satisfy that

(1) 1 − W±Q∂±, 1 − Q∂±W± ∈ �0,−∞(Y × R;�);
(2) W− preserves supports in Y×(−∞, 0] and restricts to a well defined operator

H
μ
(Y × [0,∞)) → L2(Y × [0,∞) which is invertible for large R;

(3) W+ preserves supports in Y × [0,∞) and restricts to a well defined operator

L2(Y × [0,∞)) → Ḣ−μ(Y × [0,∞) which is invertible for large R.
In particular, the operators

S0 := 1 − W+W−Q∂ : Ḣ−μ(Y × [0,∞)) → Ḣ−μ(Y × [0,∞)) and

S1 := 1 − Q∂W+W− : H
μ
(Y × [0,∞)) → H

μ
(Y × [0,∞))

are normbounded by O(R−∞).

Proof. Part (1) follows from Proposition 5.8 and Lemma 5.19. Parts (2)
and (3) follow from Theorem 5.5 and Theorem 5.9. �

5.3 Decomposition of the inverse magnitude operator.

Theorem 5.22. Let X be an n-dimensional compact manifold with boundary

and d a distance function whose square is regular at the diagonal.
Set μ := (n + 1)/2. Let QX : Ḣ−μ(X) → H

μ
(X) denote the restriction of Qχ,d2

to X and let A ∈ �n+1
cl (X;C+) denote a parametrix of Qχ,d2 . For some R0 ≥ 0 and

any R ∈ �π/(n+1)(R0), we can write

Q−1
X = χ1Aχ

′
1 + χ2(ϕ

−1)∗W+W−ϕ∗χ′
2 + S,

where χ2, χ
′
2 ∈ C∞(X) are functions supported in a collar neighborhood U0 of ∂X

in X and χ1, χ
′
1 ∈ C∞

c (X◦) are functions such that

χ1 + χ2 = 1 and χ′
j|supp(χj) = 1, j = 1, 2,

ϕ : ∂X × [0, 1) → U0 is a collar identification, and the operators S, W− and W+

satisfy the following as R → ∞:

(1) S : H
μ
(X) → Ḣ−μ(X) is a continuous operator with

‖S‖H
μ
(X)→Ḣ−μ(X) = O(R−∞).

(2) W+ : L2(∂X × [0,∞)) → Ḣ−μ(∂X × [0,∞)) is the properly supported
pseudodifferential operator of mixed-regularity (μ, 0) from Definitions 5.18

which is invertible for large R > 0 and in local coordinates has an asymp-
totic expansion modulo Sμ,−∞ as in Lemma 5.21 and preserves support in

∂X × [0,∞) ⊆ ∂X × R. Moreover, for χ, χ′ ∈ C + C∞
c (∂X × [0,∞)) with

χχ′ = 0, it holds that ‖χW+χ
′‖L2(∂X×[0,∞))→H−μ (∂X×R) = O(R−∞).
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(3) W− : H
μ
(∂X × [0,∞)) → L2(∂X × [0,∞)) is the properly supported

pseudodifferential operator of mixed-regularity (μ, 0) from Definitions 5.18
which is invertible for large R > 0 and in local coordinates has an asymp-

totic expansion modulo Sμ,−∞ as in Lemma 5.21 and preserves support in
∂X×(−∞, 0] ⊆ ∂X×R. Moreover, for χ, χ′ ∈ C+C∞

c (∂X×R) with χχ′ = 0,

it holds that ‖χW−χ′‖Hμ(∂X×R)→L2(∂X×R) = O(R−∞).

Proof. The properties of W+ and W− listed in items (2) and (3) follow from
the results of Subsection 5.1. We note that it follows from the previous subsection
that

χ1Q
−1
M χ′

1 + χ2(ϕ
−1)∗W+W−ϕ∗χ′

2 : H
μ
(X) → Ḣ−μ(X),

is a well defined continuous operator. Pick a χ3 supported close to ∂X with χ3 = 1
on supp(χ′

2). We compute that

(χ1Q
−1
M χ′

1 + χ2(ϕ
−1)∗W+W−ϕ∗χ′

2)QX

= χ1 + χ1Q
−1
M (χ′

1 − 1)QX + χ2(ϕ
−1)∗W+W−ϕ∗QXχ3

+ χ2(ϕ
−1)∗W+W−ϕ∗(χ′

2 − 1)QXχ3 + χ2(ϕ
−1)∗W+W−ϕ∗χ′

2QX(1 − χ3)

= χ1 + χ1Q
−1
M (χ′

1 − 1)QX + χ2(ϕ
−1)∗W+W−Q∂ϕ∗χ3

+ χ2(ϕ
−1)∗W+W−ϕ∗(χ′

2 − 1)QXχ3 + χ2(ϕ
−1)∗W+W−ϕ∗χ′

2QX(1 − χ3)

= χ1 + χ1Q
−1
M (χ′

1 − 1)QX + χ2 + (ϕ−1)∗S0ϕ
∗χ3

+ χ2(ϕ
−1)∗W+W−ϕ∗(χ′

2 − 1)QXχ3 + χ2(ϕ
−1)∗W+W−ϕ∗χ′

2QX(1 − χ3)

= 1 + χ1Q
−1
M (χ′

1 − 1)QX + (ϕ−1)∗S0ϕ
∗χ3 + χ2(ϕ

−1)∗W+W−ϕ∗(χ′
2 − 1)QXχ3

+ χ2(ϕ
−1)∗W+W−ϕ∗χ′

2QX(1 − χ3) = 1 + S2 + (ϕ−1)∗S0ϕ
∗χ3 + S3 + S4.

Since χ1(χ′
1 − 1) = 0, S2 is a smoothing operator with parameter. Similarly,

since χ′
2(1 − χ3) = 0, S4 is a smoothing operator with parameter. Using Proposi-

tion 5.4 and Lemma 5.21, respectively, we conclude that S3 : Ḣ−μ(X) → Ḣ−μ(X)
and (ϕ−1)∗S0ϕ

∗χ3 : Ḣ−μ(X) → Ḣ−μ(X) are continuous with norms bounded
by O(R−∞) as R → ∞. In particular,

S5 := (χ1Q
−1
M χ′

1 + χ2(ϕ
−1)∗W+W−ϕ∗χ′

2)QX − 1

satisfies that S5 : Ḣ−μ(X) → Ḣ−μ(X) is continuous and

‖S5‖Ḣ−μ(X)→Ḣ−μ(X) = O(R−∞) as R → ∞.

We conclude that (1 + S5)−1 exists for large R and

‖1 − (1 + S5)
−1‖Ḣ−μ(X)→Ḣ−μ(X) = O(R−∞) as R → ∞.
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We therefore have that

Q−1
X = (1 + S5)

−1(χ1Q
−1
M χ′

1 + χ2(ϕ
−1)∗W+W−ϕ∗χ′

2)

= χ1Q
−1
M χ′

1 + χ2(ϕ
−1)∗W+W−ϕ∗χ′

2 + S,

where
S := (1 − (1 + S5)

−1)(χ1Q
−1
M χ′

1 + χ2(ϕ
−1)∗W+W−ϕ∗χ′

2).

Since ‖1 − (1 + S5)−1‖Ḣ−μ(X)→Ḣ−μ(X) = O(R−∞) as R → ∞, the same holds for S
and the proof is complete. �

By combining Theorem 4.5 with Theorem 5.22, we arrive at the following
corollary.

Corollary 5.23. Let X be an n-dimensional compact manifold with boundary

and d a distance function with property (MR) on �. For some R0 ≥ 0 and any
R ∈ �π/(n+1)(R0) ∩ �, we can write

Z−1
X = χ1Aχ

′
1 + χ2(ϕ

−1)∗W+W−ϕ∗χ′
2 + S̃,

where A, W+, W− and χ1, χ1, χ2, χ
′
2 ∈ C∞(X) are as in Theorem 5.22

and S̃ : H
μ
(X) → Ḣ−μ(X) is continuous with ‖S̃‖H

μ
(X)→Ḣ−μ(X) = O(Re(R)−∞),

as Re(R) → ∞ in �.

6 Conditional expectations of Q−1
X and Z−1

X

A large motivation for this paper is the relation of the operator ZX with magnitude.
For that purpose, we shall be interested in computing conditional expectations
of Q−1

X and Z−1
X against the constant function 1. In an accompanying paper

[13], we prove that this conditional expectation of (RZX(R))−1 coincides with the
magnitude function. The section is divided into three subsections: firstly, we
study the case of no boundary, secondly we proceed to compute the asymptotic
expansion of the conditional expectation of Q−1

X and finally we produce explicit
formulas for the asymptotic expansion and consider examples. As in the previous
sections, we perform computations for Q that later translate into results for Z under
assumptions of property (MR).

6.1 Asymptotic expansions for compact manifolds. Let us consider
the case that X = M is a compact manifold. Starting from Lemma 2.23 we compute
the asymptotics of 〈Q(R)−11, 1〉 as R → ∞ for a pseudodifferential operator with
parameter R. Let vold(M) denote the volume of M in the Riemannian metric
defined from the transversal Hessian of d2 at the diagonal.
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Theorem 6.1. Let M be an n-dimensional compact manifold with a distance

function d whose square is regular at the diagonal. Let (aj,0)j∈N ⊆ C∞(M;C+)
denote the sequence of homogeneous functions obtained from restriction to ξ = 0
of the full symbol of Q−1

M , as in Lemma 2.23. It holds that

〈1,QM(R)−11〉 ∼
∞∑
k=0

ck(M, d)Rn+1−k + O(Re(R)−∞), as Re(R) → +∞,

where
ck(M, d) =

∫
M

ak,0(x, 1)dx.

Here dx is the Riemannian volume density defined from gd2 . The functions ak,0(x, 1)
depend on the Taylor expansion (9) as described in Theorem 2.26 and can be

computed inductively using Lemma 2.24. In particular,

ck(M, d) =

⎧⎪⎪⎨
⎪⎪⎩

0, when k is odd,
vold(M)

n!ωn
, when k = 0,

n+1
6·n!ωn

∫
X sd2dx, when k = 2,

where sd2 in local coordinates is computed as the polynomial in the Taylor coeffi-

cients of d2 at the diagonal given as

sd2(x) := 3C4(x, g ⊗ g) − 3
c2,n(n + 5)(n2 − 9)

c1,n
(C3 ⊗ C3)(x, g ⊗ g ⊗ g),

if n 
= 1, 3,

sd2(x) := 3
(
10C4

G(x, gG ⊗ gG) − c2,3
c1,3

(C3
G ⊗ C3

G)(x, gG ⊗ gG ⊗ gG)
)
,

if n = 3.

Proof. The asymptotic expansion

〈Q−1
M 1, 1〉 ∼

∞∑
k=0

ck(M, d)Rn+1−k + O(R−∞)

where ck(M, d) =
∫
M ak,0(x, 1)dx follows directly from Lemma 2.23 and the fact

that Q−1
M is of order n + 1. It follows from Lemma 2.24 that ak(x, 0, 1) = 0 for

odd k. It follows from Theorem 2.26 that c0 and c2 take the prescribed form. �
The justification for the notation sd2 in Theorem 6.1 comes from Example 2.30

which shows that for the geodesic distance on a Riemannian manifold, sd2 is the
scalar curvature. We further conclude the following corollary.
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Corollary 6.2. Let M be a compact Riemannian manifold equipped with its

geodesic distance. Then

〈1,QM(R)−11〉 =
vold(M)

n!ωn
Rn+1 +

n + 1
6 · n!ωn

∫
M

sdxRn−1 + O(Re(R)n−3),

as Re(R) → +∞,

where s denotes the scalar curvature of M.

Combining Theorem 3.7 with Theorem 6.1 we arrive at the following corollary.

Corollary 6.3. Let M be an n-dimensional compact manifold with a distance

function d with property (MR) on �. It holds that

〈1,ZM(R)−11〉 ∼
∞∑
k=0

ck(M, d)Rn+1−k + O(Re(R)−∞), as Re(R) → +∞ in �,

where ck(M, d) is as in Theorem 6.1.

6.2 A lengthy exercise in integration by parts. To study the asymp-
totic expansions of 〈1,Q−1

X 1〉 in the presence of a boundary, we need a series of
smaller lemmas. The reader should recall the notation from Theorem 5.22.

Lemma 6.4. Let X be an n-dimensional compact manifold with boundary
and d a distance function whose square is regular at the diagonal. It holds that

〈Q−1
X 1, 1〉L2(X) = 〈A1, χ1〉L2(X) + 〈W−1, (W+)

∗(χ2 ◦ ϕ)〉L2(∂X×[0,∞)) + O(R−∞).

Proof. We first note that W− preserves supports in ∂X × (−∞, 0] ⊆ ∂X × R

by Lemma 5.21 and (W+)∗ preserves supports in ∂X× (−∞, 0] ⊆ ∂X ×R since W+

preserves supports in ∂X × [0,∞) by Lemma 5.21. Therefore, viewing 1 as an
element of H

μ
loc(∂X × [0,∞)) and χ2 ◦ ϕ as an element of H

μ
c (∂X × [0,∞)), the

images W−1 ∈ L2
loc(∂X × [0,∞)) and (W+)∗(χ2 ◦ ϕ) ∈ L2

c(∂X × [0,∞)) are well
defined and 〈W−1, (W+)∗(χ2 ◦ ϕ)〉L2(∂X×[0,∞)) is well defined. By the same token,
〈A1, χ1〉L2(X) is defined as the inner product of χ1 ∈ L2(X) with the restriction
of A1M ∈ L2(M) to X.

Since χ′
j|supp(χj) = 1, for j = 1, 2, it follows that

〈A1, χ1〉L2(X) = 〈Aχ′
1, χ1〉L2(X) + O(R−∞) and

〈W−1, (W+)
∗(χ2◦ϕ)〉L2(∂X×[0,∞)) = 〈W−(χ′

2◦ϕ), (W+)
∗(χ2◦ϕ)〉L2(∂X×[0,∞))+O(R−∞).

The last equality follows from Proposition 5.4. Therefore, Theorem 5.22 reduces
the statement of the theorem to the property that 〈S1, 1〉L2(X) = O(R−∞). This is
clear from the property of S that ‖S‖H

μ→Ḣ−μ = O(R−∞). �
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Lemma 6.5. Let X be an n-dimensional compact manifold with boundary

and d a distance function whose square is regular at the diagonal. Let

(aj,0)j∈N ⊆ C∞(M;C+)

denote the sequence of homogeneous functions obtained from restriction to ξ = 0
of the full symbol of A, as in Lemma 2.23. It holds that

〈A1, χ1〉∼
∞∑
k=0

ck,χ1 (X, d)Rn+1−k + O(R−∞),

where ck,χ1 (M, d) =
∫
X χ1(x)ak,0(x, 1)dx and dx denotes the Riemannian volume

density defined from gd2 .

Proof. The lemma follows immediately from Lemma 2.23 since χ1 has com-
pact support in X◦. �

Lemma 6.6. Let a = a(x′, ξ) ∈ C∞(Rn−1 × Rn) be a polynomially bounded

smooth function with compact support in x′, and χ ∈ S(Rn) a real even Schwartz

function. Then as R → +∞,

1
(2π)n

∫
Rn−1

∫
Rn

a(x′, ξ)Rnχ̂(−Rξ)e−Rix′ξ′
dξdx

=
∑
α∈Nn

Dα
xχ(0)
α!

∫
Rn−1

Dα
ξ=0(a(x′, ξ)e−ix′ξ′

)dxR−|α| + O(R−∞).

In particular, if χ is locally constant near 0, then

1
(2π)n

∫
Rn−1

∫
Rn

a(x′, ξ)Rnχ̂(−Rξ)e−Rix′ξ′
dξdx = χ(0)

∫
Rn−1

a(x′, 0)dx + O(R−∞).

Proof. Consider the distribution uR(ξ) := Rnχ̂(−Rξ). For any test function
ϕ ∈ S(Rn), we compute that

(uR, ϕ) =
∫
Rn
χ̂(−ξ)ϕ(ξ/R)dξ =

∑
α∈Nn

Dα
xϕ(0)
α!

∫
Rn
χ̂(−ξ)ξαdξR−|α| + O(R−∞)

= (2π)n
∑
α∈Nn

Dα
xχ(0)
α!

R−|α|(δα, ϕ) + O(R−∞.

We conclude that in S′(Rn), we have an asymptotic expansion

uR = (2π)n
∑
α∈Nn

Dα
xχ(0)
α!

R−|α|δα + O(R−∞).

Using standard methods for oscillatory integrals, we see that the same expansion
holds also in the weak topology against polynomially bounded smooth functions.
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We compute that

1
(2π)n

∫
Rn−1

∫
Rn

a(x′, ξ)Rnχ̂(−Rξ)e−Rix′ξ′
dξdx

=
1

(2π)n

∫
Rn−1

∫
Rn

a(x′, ξ)uR(ξ)e−Rix′ξ′
dξdx

=
∑
α∈Nn

Dα
xχ(0)
α!

R−|α|
∫
Rn−1

(δαξ , a(x′, ξ)e−ix′ξ′
)dx + O(R−∞)

=
∑
α∈Nn

Dα
xχ(0)
α!

∫
Rn−1

Dα
ξ=0

(
a(x′, ξ)e−ix′ξ′)

dxR−|α| + O(R−∞). �

Lemma 6.7. Let X be an n-dimensional compact manifold with boundary
and d a distance function whose square is regular at the diagonal. We denote the

symbols of W± by w± (as in Definition 5.18 and Lemma 5.18). Then it holds that

〈W−1,W∗
+χ2〉∼

∞∑
k=0

ck,χ2 (X, d)Rn+1−k + O(R−∞),

where

ck,χ2 (X, d) =
∫

X
χ2(x)ak,0(x, 1)dx

+
∑

k=|β|+γn+j+l
γn>0

i|β|+|γn |(−1)|β|+1

β′!(βn + γn)!

×
∫
∂X
∂βxw−,j(x′, 0, 0, 1)∂γn−1

xn
∂
β+(0,γn)
ξ w+,l(x

′, 0, 0, 1)dx′.

Here dx is the Riemannian volume density on X defined from gd2 and dx′ the induced

Riemannian volume density on ∂X.

Proof. The computation can be reduced to one in local coordinates, so we
can assume thatw+ and w− are symbols of mixed-regularity (−μ, 0) in Rn, and up
to O(R−∞) we can treat W+ and W− as compactly based. As such, we replace M

by Rn and X by Rn
+ in all computations. Let w∗

+ denote the symbol of W∗
+. By the

same arguments as in [39, Chapter I.3], we have that

(31) w∗
+(x, ξ,R) ∼∑

α

1
α!
∂αξD

α
xw+(x, ξ,R),

in the sense of Definition 5.6. We note that equation (31) only identifies w∗
+

up to Sμ,−∞ but this suffices as symbols from Sμ,−∞ will only contribute to the
conditional expectation with O(R−∞).
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Using that W− and W∗
+ preserve supports in Rn−, we can consider χ2 as an

element of C∞
c (Rn), and write

〈W−1,W∗
+χ2〉L2(Rn

+) =
∫
Rn

+

[W−1](x)[W∗
+χ2](x)dx,

where

W∗
+χ2(x) :=

1
(2π)n

∫
Rn
w∗

+(x, ξ,R)χ̂2(ξ)dξ,

is computed from the action of (Q−1
+ )∗ on χ ∈ C∞

c (Rn). We compute that

〈W−1,W∗
+χ2〉L2(Rn

+)

=
1

(2π)n

∫
Rn

+

∫
Rn
w−(x, 0,R)w∗

+(x, ξ,R)χ̂2(ξ)eixξdξdx

=
1

(2π)n

∫
Rn

+

∫
Rn
w−(x, 0,R)w∗

+(x, ξ,R)χ̂2(−ξ)e−ixξdξdx

∼ ∑
α

(−1)|α|

(2π)nα!

∫
Rn

+

∫
Rn
w−(x, 0,R)∂αξD

α
xw+(x, ξ,R)χ̂2(−ξ)e−ixξdξdx + O(R−∞)

∼ ∑
α

(−1)αn

(2π)nα!

×
∫
Rn

+

∫
Rn

Dα′
x′ (w−(x, 0,R)e−ixξ)Dαn

xn
∂αξw+(x, ξ,R)χ̂2(−ξ)dξdx + O(R−∞)

∼ ∑
α

∑
γ′+β′=α′

(−1)αn

(2π)nβ′!γ′!αn!

∫
Rn

+

∫
Rn

Dβ′
x′w−(x, 0,R)Dαn

xn
∂αξw+(x, ξ,R)(−iξ′)γ

′

× χ̂2(−ξ)e−ixξdξdx

+ O(R−∞)

∼ ∑
γ,β

1
(2π)nβ!γ!

∫
Rn

+

∫
Rn

Dβ
xw−(x, 0,R)∂γ+βξ w+(x, ξ,R)(−iξ)γχ̂2(−ξ)e−ixξdξdx

+
∑
γ,β,
γn>0

βn∑
k=0

bγ,β,k

∫
Rn−1

∫
Rn

Dβ−(0,k)
x w−(x′, 0, 0,R)Dγn−1

xn

× ∂
β+γ
ξ w+(x

′, 0, ξ,R)(iξ)(γ
′,k)χ̂2(−ξ)e−ix′ξ′

dξdx

+ O(R−∞),

where

bγ,β,k =
i(−1)|γn|+1βn!

(2π)nβ′!γ′!(βn + γn)!k!(βn − k)!
.
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By the composition formula for pseudodifferential operators (see [39, Chap-
ter I.3]), we have that∑
γ,β

1
(2π)nβ!γ!

∫
Rn

+

∫
Rn

Dβ
xw−(x, 0,R)∂γ+βξ w+(x, ξ,R)(−iξ)γχ̂2(−ξ)e−ixξdξdx

=
∫
Rn

+

χ2(x)a(x, 0,R)dx + O(R−∞) = 〈Q−1
M 1, χ2〉L2(Rn

+) + O(R−∞).

We can therefore continue our calculation

〈W−1,W∗
+χ2〉L2(Rn

+)∼〈Q−1
M 1, χ2〉L2(Rn

+)

+
∑
γ,β,
γn>0

βn∑
k=0

bγ,β,k

∫
Rn−1

∫
Rn

Dβ−(0,k)
x w−(x′, 0, 0,R)Dγn−1

xn

× ∂
β+γ
ξ w+(x

′, 0, ξ,R)(iξ)(γ
′,k)χ̂2(−ξ)e−ixξdξdx

+ O(R−∞)

To obtain an asymptotic expansion, we expandw± in its defining homogeneous
expansionw± ∼∑

w±,l from Definition 5.18 (see also Lemma 5.21). We see that

∑
γ,β,
γn>0

βn∑
k=0

bγ,β,k

∫
Rn−1

∫
Rn

Dβ−(0,k)
x w−(x′, 0, 0,R)Dγn−1

xn

× ∂
β+γ
ξ w+(x

′, 0, ξ,R)(iξ)(γ
′,k)χ̂2(−ξ)e−ixξdξdx + O(R−∞)

=
∞∑
i=0

∑
i=|β|+|γ|+j+l,

γn>0

βn∑
k=0

bγ,β,k

∫
Rn−1

∫
Rn

Dβ−(0,k)
x w−,j(x′, 0, 0,R)Dγn−1

xn

× ∂
β+γ
ξ w+,l(x

′, 0, ξ,R)(iξ)(γ
′,k)χ̂2(−ξ)e−ix′ξ′

dξdx

Let us consider each of the terms:

∑
i=|β|+|γ|+j+l,

γn>0

βn∑
k=0

bγ,β,k

∫
Rn−1

∫
Rn

Dβ−(0,k)
x w−,j(x′, 0, 0,R)Dγn−1

xn

× ∂
β+γ
ξ w+,l(x

′, 0, ξ,R)(iξ)(γ
′,k)χ̂2(−ξ)e−ix′ξ′

dξdx

= R2μ−i
∑

i=|β|+|γ|+j+l,
γn>0

βn∑
k=0

bγ,β,k

∫
Rn−1

∫
Rn

Dβ−(0,k)
x w−,j(x′, 0, 0, 1)Dγn−1

xn

× ∂
β+γ
ξ w+,l

(
x′, 0,

ξ

R
, 1
)
(iξ)(γ

′,k)χ̂2(−ξ)e−ix′ξ′
dξdx.
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We can compute each of the terms using Lemma 6.6 which implies that

1
(2π)n

∫
Rn−1

∫
Rn

Dβ−(0,k)
x w−,j(x′, 0, 0, 1)Dγn−1

xn

× ∂
β+γ
ξ w+,l(x

′, 0, ξ, 1)(iξ)(γ
′,k)Rnχ̂2(−Rξ)e−Rix′ξ′

dξdx

=

⎧⎪⎪⎨
⎪⎪⎩

O(R−∞), if (γ′, k) 
= 0,∫
Rn−1 Dβ

xw−,j(x′, 0, 0, 1)Dγn−1
xn

∂
β+(0,γn)
ξ w+,l(x′, 0, 0, 1)dx + O(R−∞),

if (γ′, k) = 0.

We conclude that

〈Q−1
− 1, (Q−1

+ )∗χ2〉L2(Rn
+) − 〈Q−1

M 1, χ2〉L2(Rn
+)

∼R2μ
∞∑
i=0

∑
i=|β|+γn+j+l,

γn>0

i(−1)|γn|+1R−i

β′!(βn + γn)!

∫
Rn−1

Dβ
xw−,j(x′, 0, 0, 1)Dγn−1

xn

× ∂
β+(0,γn)
ξ w+,l(x

′, 0, 0, 1)dx + O(R−∞).

After using D = −i∂, the boundary contributions have been computed. The lemma
now follows from Lemma 2.23 giving the asymptotic expansion

〈Q−1
M 1, χ2〉L2(Rn

+)∼
∑

k

Rn+1−k
∫
Rn

+

χ2(x)ak(x, 0, 1)dx.
�

6.3 Asymptotic expansions for compact manifolds with boundary.
We now study asymptotic expansions of 〈1,Q−1

X 1〉 for a compact manifold with
boundary, and give a procedure to compute the coefficients. An important dif-
ference to the case of empty boundary is the boundary contributions: we identify
from Lemma 6.7 as follows.

Definition 6.8. If X is an n-dimensional compact manifold with boundary
and d a distance function whose square is regular at the diagonal, then we define
the sequence of functions (Bd2,k)k>0 ⊆ C∞(∂X) by

Bd2,k(x
′)

:=
∑

k=|β|+γn+j+l
γn>0

i|β|+|γn |(−1)|β|+1

β′!(βn + γn)!
∂βxw−,j(x′, 0, 0, 1)∂γn−1

xn
∂
β+(0,γn)
ξ w+,l(x

′, 0, 0, 1).

For notational simplicity, we set B0 := 0.
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Proposition 6.9. Let X be an n-dimensional manifold with boundary, d a

distance function whose square is regular at the diagonal, and (Bd2,k)k>0 ⊆ C∞(∂X)
as in Definition 6.8. Then for each k > 0, Bd2,k is a polynomial in (C(γ)

G )γ∈∪k≤jIk

and its derivatives contracted by the metric gG, its contraction along the normal
to the boundary, and its derivatives of total degree j where each C(γ)

G , γ ∈ Ik, has

degree k, the metric has degree zero and x-derivatives increase the order by 1.

Computing from the results of Appendix Appendix C, we can describe the
special cases k = 1 and k = 2.

Proposition 6.10. Let (X, d) be as in Proposition 6.9. Then

Bd2,1(x
′) =

(n + 1)

2 · n!ωn
√

h0(x′)
.

In particular, if xn is the transversal coordinate defined from the unit normal to ∂X

(in gd2), then

Bd2,1(x
′) =

(n + 1)
2 · n!ωn

.

Proof. By definition, we have that

Bd2,1(x
′) = − iw−,0(x′, 0, 0, 1)∂ξnw+,0(x

′, 0, 0, 1)

= − i(n + 1)
2 · n!ωn

h0(x
′)(−h−(x′, 0, 1))) =

(n + 1)
2 · n!ωn

√
h0(x)

.

Herewe have used the identities fromAppendix AppendixC. If xn is the transversal
coordinate defined from the unit normal to ∂X, then h0 = 1. �

Proposition 6.11. Let (X, d) be as in Proposition 6.9 and assume that xn is

the transversal coordinate defined from the unit normal ∂n to ∂X (in gd2). Then
there are universal polynomials α1 and α2 with rational coefficients such that

Bd2,2(x
′) =

α1(n)
n!ωn

C3(x′, ∂n ⊗ ∂n ⊗ ∂n) +
α2(n)
n!ωn

C3(x′, g ⊗ ∂n).

Proof. By definition, we have that

Bd2,2(x) =
1
2
w−,0(x′, 0, 0, 1)∂xn∂

2
ξn
w+,0(x

′, 0, 0, 1)

− 1
2
∂xnw−,0(x′, 0, 0, 1)∂2

ξn
w+,0(x

′, 0, 0, 1)

− iw−,1(x′, 0, 0, 1)∂ξnw+,0(x
′, 0, 0, 1)

− iw−,0(x′, 0, 0, 1)∂ξnw+,1(x
′, 0, 0, 1)

+ ∇x′w−,0(x′, 0, 0, 1) · ∇ξ′∂ξnw+,0(x
′, 0, 0, 1).
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These expressions were computed in Section Appendix C of the appendix. If xn is
the transversal coordinate defined from the unit normal to ∂X, then h0 = 1 and b = 0.
The lemmas of Section Appendix C, for h0 = 1 and b = 0, shows that Bd2,2(x

′) is in
the linear span of C3(x′, ∂n ⊗ ∂n ⊗ ∂n) and C3(x′, g ⊗ ∂n), and carefully inspecting
the computations implies the existence of the universal polynomials α1 and α2. �

Proposition 6.12. Let X ⊆ Rn be a domain with smooth boundary equipped
with the Euclidean distance. Then for a universal polynomial β, it holds that

Bd2,2 =
β(n)
n!ωn

H,

where H denotes the mean curvature of the boundary.

Proof. Fix a point x0 ∈ ∂X and choose coordinates as in Example 2.15; in
other words we write ∂X as the graph of a function ϕ = ϕ(x′) with ∇ϕ(x0) = 0. The
computations in Example 2.15 show that h0(x′) = 1 + |∇ϕ(x′)|2 is xn-independent
and that b(x0) = ∇ϕ(x0) = 0. Moreover, C3(x, v) is a first order polynomial in vn,
so C3(x, ιng ⊗ ιng ⊗ ιng) = 0. A short computation using equation (13) gives us
that

C3(x0, g ⊗ ιng) = −2gx0 (∇2ϕ(x0)) = −(n − 1)H(x0),

where H denotes the mean curvature. The result follows from Proposition 6.11.�
Combining Lemmas 6.4, 6.5 and 6.7 we arrive at the following theorem:

Theorem 6.13. Let X be an n-dimensional compact manifold with boundary
and d a distance function whose square is regular at the diagonal. Denote the Rie-

mannian volume density on X defined from gd2 by dx and the induced Riemannian

volume density on ∂X by dx′. It holds that

(32) 〈1,Q−1
X 1〉L2(X)∼

∞∑
k=0

ck(X, d)Rn+1−k + O(R−∞), as R → +∞,

where the coefficients ck(X, d) are given as

ck(X, d) =
∫

X
ak,0(x, 1)dx +

∫
∂X

Bd2,k(x)dx′,

where

(1) ak,0(·, 1) ∈ C∞(X) is an invariant polynomial in the entries of the Taylor

expansion (9) as described in Theorem 2.26 and can be computed inductively
using Lemma 2.24, with ak,0 = 0 if k is odd; and
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(2) Bd2,k ∈ C∞(∂X) is an invariant polynomial in the entries of the Taylor coeffi-

cients of d2 at the diagonal in X near ∂X as described in Proposition 6.9 and
can be inductively computed using Lemma 5.19.

In particular, we have that

c0(X, d) =
vol(X)
n!ωn

, c1(X, d) =
(n + 1)vol(∂X)

2n!ωn
,(33)

c2(X, d) =
n + 1

6 · n!ωn

∫
X

sd2dx +
(n − 1)(n + 1)2

8 · n!ωn

∫
∂X

Hd2dx′,(34)

where the scalar curvature sd2 is defined as in Theorem 6.1 and the mean cur-
vature Hd2 is an explicit function in the linear span of C3(x′, ∂n ⊗ ∂n ⊗ ∂n)
and C3(x′, g⊗ ∂n) that coincides with the usual mean curvature for domains in Rn.

Our notation Hd2 in Theorem 6.13 is justified by Proposition 6.12 showing
that Hd2 = H is the mean curvature if X is a domain in Euclidean space.

Proof. The expression in equation (32) follows from Lemma 6.4 by adding
together the computation of Lemma 6.5 with that in Lemma 6.7. The compu-
tation (33) follows from the fact that a0,0(x, 1) = 1

n!ωn
(see Theorem 2.26) and

Proposition 6.10. The computation (34) is a consequence of Theorem 2.26 (com-
puting the interior contribution) and Proposition 6.11 (computing the boundary
contribution). �

Combining Theorem 4.5 with Theorem 6.13 we arrive at the following corol-
lary:

Corollary 6.14. Let X be an n-dimensional compact manifold with boundary
and d a distance function with property (MR) on [R0,∞), for some R0 ≥ 0. It

holds that

〈1,Z−1
X 1〉L2(X)∼

∞∑
k=0

ck(X, d)Rn+1−k + O(R−∞), as R → +∞,

where the coefficients ck(X, d) are as in Theorem 6.13.

Corollary 6.15. If X ⊆ Rn is a compact domain with smooth boundary, then

c0(X, d) =
vol(X)
n!ωn

, c1(X, d) =
μvol(∂X)

n!ωn
, c2(X, d) =

μ2(n − 1)
2 · n!ωn

∫
∂X

HdS.

The computation of Corollary 6.15 is compatible with the computations of [11]
for μ ∈ N. We note that the precise proportionality constant in c2 follows from
the computation from [11] for μ ∈ N since the pre-factor by Proposition 6.12 is
determined as a universal polynomial in n.
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Appendix A Conormal distributions and parameter de-
pendent calculus

Pseudodifferential operators with parameters will play an important role in our
study of the operators Q and Z, both to prove meromorphic extensions and to
compute asymptotic expansions. We use an approach to parameter dependence
described in terms of conormal distributions to which the operator Q is susceptible.
More details on conormal distributions can be found in [25, Chapter 18.2] or [40],
or a summary thereof in the arXiv version of this paper [14]. We here review the
necessary computational tools. We write CIm(Z,Y) for the space of distributions
on Z conormal to Y that admit a classical expansion near Y of order m; so that we
have a symbol isomorphism

CIm(Z,Y)/CI−∞(Z,Y) ∼= CSm(N∗Y)/CS−∞(N∗Y).

Take an α ∈ C and define uα,0 ∈ C∞(Rm \ {0}) by

uα,0(y, z) := |z|α.
If α /∈ −m − N, [24, Theorem 3.2.3] guarantees that uα,0 has a unique extension to
a distribution uα ∈ D′(Rm) homogeneous of degree α and depending holomorphi-
cally on α ∈ C \ (−m − N). If f = f (w) is a function depending holomorphically
on w in a punctured neighborhood of α, we write F.P.w=αf for the constant co-
efficient in the Laurent expansion of f around w = α. For α ∈ C, we use the
notation F.P.|z|−α to denote the distribution

〈F.P.|z|−α, ϕ〉 := F.P.w=α〈uw, ϕ〉.
Proposition A.1. Let α ∈ C. Then F.P.|z|α is a tempered distribution on Rm

and for ξ 
= 0, we have that

FF.P.|z|α =

⎧⎨
⎩π

m/22α+m �( α+m
2 )

�(− α
2 ) |ξ|−m−α, α ∈ C \ (−m − 2N),

πm/2(−1)l

22ll!�( m
2 +l) |ξ|2l(− log |ξ|2 + βl,m), α = −m − 2l, l ∈ N,

where

βl,m := 2 log(2) +
1
2
ψ(m/2 + l) − Hl − γ,

andψ(z) := �′(z)
�(z) , H0 = 0 and Hl :=

∑l
j=1

1
j for l > 0, and γ is the Euler–Mascheroni

constant.

This computation can be found in [37, Lemma 25.2] par the value of βl,m, which
can be found from a Laurent expansion. See also [38, Exemple 5, Chapitre VII.7]
and [14].
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For g ∈ C∞(Z) and a submanifold Y ⊆ Z with a prescribed tubular neighbor-
hood U ∼= NY , we define the transversal Hessian of g in y ∈ Y as the symmetric
bilinear form on (NY)y defined from the Hessian at the zero section of g restricted
to (NY)y along the tubular neighborhood.

Proposition A.2. Assume that Y ⊆ Z is a k-dimensional smooth submanifold

of an N-dimensional smooth manifold. Let G̃ ∈ C∞(Z) be a smooth function such

that

• G̃ and dG̃ vanish on Y;
• G̃(x) > 0 for x /∈ Y; and

• for each y ∈ Y, the transversal Hessian HG̃ of G̃ (defined as in Definition 2.1)
is a positive definite quadratic form on the transversal tangent bundle of

Y ⊆ Z.

Then log G̃ ∈ CI−N+k(Z;Y) and its principal symbol σ−N+k(log G̃) ∈ C∞(N∗Y \ Y)
is given by

σ−N+k(log G̃)(y, ξ) = −2π(N − k − 1)!ωN−k−1|gG̃(ξ, ξ)|−(N−k)/2, ξ 
= 0,

where gG̃ is the metric dual to the transversal Hessian HG̃.

Proof. The statement is local, so we can assume that there is an open
set U ⊆ Rn containing 0 such that Z = U and Y = U ∩ Rk. Since dg van-
ishes on TY , we can consider its restriction to Y to be a section dg|Y : Y → N∗Y .
Under the assumption that the transversal Hessian of g is non-degenerate in all
points of Y , we can assume that U is taken small enough to be able to choose
coordinates (ỹ, z̃) on U such that g(ỹ, z̃) = |z̃|2 for z̃ 
= 0. For notational simplicity,
we assume that g(y, z) = |z|2 and that Z = U = RN and Y = Rk. The proposition
now follows from Proposition A.1. �

This work makes heavy use of parameter-dependent pseudodifferential opera-
tors. This subject is well explained in [39]. We only require classical symbols with
parameters. For clarity, for a conical set � ⊆ C and m ∈ C, a classical symbol with
parameter of order m is a symbol with parameter a that admits a sequence (aj)j∈N
of functions homogeneous of degree m − j (aj(x, tξ, tR) = tm−jaj(x, ξ,R) for t > 0)
such that a ∼∑

j aj away from (ξ,R) = 0. We write CSm for the space of classical
symbols with parameter of order m and �m

cl(M;�) for the space of classical pseu-
dodifferential operators with parameter R ∈ � of order m. An important feature of
the parameter-dependent calculus is that there is a Gårding equality; we omit its
proof as it extends ad verbatim from the classical setting [25].
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Theorem A.3 (Gårding inequality). Let � ⊆ �α(0) ∪ −�α(0) be a bisector

with opening angle < α ∈ [0, π/2), and A ∈ �m
cl(M;�) a formally self-adjoint

operator with strictly positive principal symbol, i.e. for some ε > 0,

σ(A)(x, ξ,R) ≥ ε

for all |ξ|2 + |R|2 = 1 and x ∈ M.
Then for large R, the quadratic form f �→ 〈Af, f 〉L2 is continuous, positive and

coercive on HRe(m)/2
|R| . To be precise, there is an R0 > 0 and a C > 0 such that

1
C

‖f‖HRe(m)/2
|R|

≤ 〈Af, f 〉L2 ≤ C‖f‖HRe(m)
|R|
, ∀f ∈ Hs(M), |R| > R0.

One of the reasons for introducing conormal distributions above was that it
will give us a direct way of verifying that the magnitude operator is an ellip-
tic pseudodifferential operator with parameter. We let Z = U × R ⊆ M × M × R

denote an R-invariant tubular neighborhood of the diagonal of M. Assume that
K ∈ CIm(Z;M × {0}) in exponential coordinates has a classical asymptotic expan-
sion of the form K ∼∑∞

j=0 χKj where χ ∈ C∞
c (U) is a function with χ = 1 near the

diagonal and Kj is a smooth function on TM⊕R\(M×{0}) such that if m /∈ Z, Kj is
homogeneous of degree −m−j−n−1. If m ∈ Z, Kj = uj+pj log(|v|2+η2) where uj

is homogeneous of degree −m − j − n − 1 and pj is a homogeneous polynomial
in (v, η) of degree −m − j − n − 1 (in particular pj = 0 if j < −m − n − 1).

Definition A.4. We shall say that K ∈ CIm(Z;M × {0}) has a uniform
asymptotic expansion if for any α ∈ Np, β ∈ Nn, k,N ∈ N there is a con-
stant C > 0 and an N0 ∈ N such that for R 
= 0∣∣∣∣∂αx ∂βv ∂k

η

(
K −

N0∑
j=0

χKj

)∣∣∣∣ ≤ C(1 + |v| + |η|)−N.

For x ∈ M, we write expx : TxM → M for the exponential map. Note that under
our assumption on the injectivity radius, expx : BxM → M is a diffeomorphism
onto its range.

Proposition A.5. Let M be a smooth n-dimensional manifold and Z is as in

the preceding paragraphs. Assume that K ∈ CIm(Z;M × {0}) admits a uniform
asymptotic expansion. Then there is a pseudodifferential operator with parame-

ter A ∈ �m(M;R) such that for any R, the Schwartz kernel of A(R) is given by
Fη→RK. In other words, for f ∈ C∞(M), A(R)f is defined as the oscillatory integral

A(R)f (x) :=
∫

BxM⊕R

K(x, v, η)f (expx(v))e
iηRdv dη.

In particular, the full symbol of A in CSm(M;R)/S−∞(M;R) coincides with the full
symbol of K in CSm(N∗(DiagM × {0} ⊆ Z))/S−∞(N∗(DiagM × {0} ⊆ Z)).
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Proof. If the uniform asymptotic expansion of K only contains one term,
i.e., K = K0, the statement of the proposition holds by homogeneity properties of
the Fourier transform. As such, the proposition is in fact a statement concerning
the asymptotic completeness of the space of pseudodifferential operators with
parameters. This is proven just as in the usual setting (see [25, Proposition
18.1.3]). �

Appendix B Partial fraction decompositions of symbols

We note the following structural result from basic calculus:

Lemma B.1. For all l,m ∈ N with m < 2l, there exist homogeneous rational
functions (with rational coefficients) of (h+, h−) denoted by

βl,m,0,±, βl,m,1,±, . . . , βl,m,l−1,±,

where each βl,m,j,± = bl,m,j,±(h+, h−) has homogeneous degree m− j− l in (h+, h−),
such that

ξm
n (ξn − h+)

−l(ξn − h−)−l

=
l−1∑
j=0

βl,m,j,+(h+, h−)(ξn − h+)
j−l +

l−1∑
j=0

βl,m,j,−(h+, h−)(ξn − h−)j−l.

More generally, by differentiating with respect to h± we obtain

Lemma B.2. For all l,m ∈ N and two distinct complex numbers h+, h− ∈ C,
consider the rational function

Km,l(ξn) := (ξn − h+)
−m(ξn − h−)−l.

This rational function can be decomposed as

Km,l(ξn)

=
m−1∑
j=0

(−1)j

(h+ − h−)l+j

(
l + j − 1

j

)
(ξn − h+)

−m+j

+
l−1∑
j=0

(−1)m

(h+ − h−)m+j

(
m + j − 1

j

)
(ξn − h−)−l+j .
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These following formulas allow us to obtain explicit partial fraction decompo-
sitions for the terms relevant to the factorization of ZR.

Corollary B.3. For all l ∈ N and two distinct complex numbers h+, h− ∈ C,

ξn(ξn − h+)
−l(ξn − h−)−l

= Kl−1,l(ξn) + h+Kl,l(ξn),

ξ2
n (ξn − h+)

−l(ξn − h−)−l

= Kl−1,l−1(ξn) + h−Kl−1,l(ξn) + h+Kl,l−1(ξn) + h+h−Kl,l(ξn),

ξ3
n (ξn − h+)

−l(ξn − h−)−l

= Kl−2,l−1(ξn) + (2h+ + h−)Kl−1,l−1(ξn)

+ (h2
− + h2

+ + h+h−)Kl−1,l(ξn) + h2
+h−Kl,l(ξn).

Appendix C Evaluation of some boundary symbols at
zero

For the purpose of computations in Subsection 6.3, we are interested in evaluating
some symbols at ξ = 0 and R = 1. We will use the notations from the Sections 5
and 6 freely. We tacitly assume that n > 1 to avoid limit cases.

Recall from Proposition 5.13 that

R2 + g(ξ, ξ) = h0(ξn − h+)(ξn − h−),

where h± = h±(x, ξ′,R) ∈ S1(T∗Y × R,Y × R;C) are of the form

h±(x, ξ′,R) = −ξ
′(b(x))
h0(x)

± i

√
R2 + gY(ξ′, ξ′) − (ξ′(b))2√

h0(x)
.

Here we use the splitting of the metric

g =

(
h0 b

bT gY

)
.

For xn = 0, i.e. on ∂X, we write x′ instead of (x′, 0). We conclude the following
lemma from elementary computations, which are included in [14]. We use the
notation μ = n+1

2 .
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Lemma C.1. The following identities hold on ∂X:

w−,0(x′, 0, 0, 1)∂xn∂
2
ξn
w+,0(x

′, 0, 0, 1) =
μ(μ− 1)(μ− 2)

2n!ωn
∂xnh0(x

′),

∂xnw−,0(x′, 0, 0, 1)∂2
ξn
w+,0(x

′, 0, 0, 1) = −μ
2(μ− 1)
2 · n!ωn

∂xnh0(x
′),

∇x′w−,0(x′, 0, 0, 1) · ∇ξ′∂ξnw+,0(x
′, 0, 0, 1) = −μ

2(μ− 1)
2 · n!ωn

b(x′)
h0(x′)

· ∇x′h0(x
′),

w−,1(x′, 0, 0, 1)∂ξnw+,0(x
′, 0, 0, 1)

=
iμc1,n(n2 − 1)

(n!ωn)2

(3
2
C3(x′, g ⊗ ιng) +

17(n + 3)
4h0(x)

C3(x′, ιng ⊗ ιng ⊗ ιng)
)

− 7iμ3

4 · n!ωn

(
∂xnh0(x

′) +
b(x′)
h0(x′)

· ∇x′h0(x
′)
)
,

w−,0(x′, 0, 0, 1)∂ξnw+,1(x
′, 0, 0, 1)

=
ic1,n(n2 − 1)

(n!ωn)2

(
− 3(μ− 1)

2
C3(x′, g ⊗ ιng) +

μ(n + 3)
4h0(x′)

C3(x, ιng ⊗ ιng ⊗ ιng)
)

+
iμ2(3μ− 5)

4 · n!ωn

(
∂xnh0(x

′) +
b(x′)
h0(x′)

· ∇x′h0(x
′)
)
.
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