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Abstract. We consider a class of weighted harmonic functions in the open
upper half-plane known as α-harmonic functions. Of particular interest is the
uniqueness problem for such functions subject to a vanishing Dirichlet boundary
value on the real line and an appropriate vanishing condition at infinity. We find that
the non-classical case (α �= 0) allows for a considerably more relaxed vanishing
condition at infinity compared to the classical case (α = 0) of usual harmonic
functions in the upper half-plane. The reason behind this dichotomy is different
geometry of zero sets of certain polynomials naturally derived from the classical
binomial series. These findings shed new light on the theory of harmonic functions,
forwhichweprovide sharp uniqueness results under vanishing conditions at infinity
along geodesics or along rays emanating from the origin.

1 Introduction

Let H be the open upper half-plane in the complex plane C and consider the
weighted Laplace differential operator

(1.1) �H;α,z = ∂z(Im z)−α∂̄z, z ∈ H,

where ∂ and ∂̄ are the usual complex partial derivatives and α > −1. Here Im z is
the imaginary part of the complex number z ∈ C and the functionwH;α(z) = (Im z)α

for z ∈ H has an interpretation of a standard weight function for H. The study of
differential operators of the form (1.1) is suggested by a classical paper of Paul
Garabedian [11].

We refer to the differential operator�H;α in (1.1) as the α-Laplacian for H. An
α-harmonic function u in H is a twice continuously differentiable function u in H

(in symbols: u ∈ C2(H)) such that

�H;αu = 0 in H.

Notice that �H;0 = ∂∂̄ is the usual Laplacian and that a 0-harmonic function in H

is a harmonic function in H in the usual sense. The restriction α > −1 on the
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weight parameter ensures good supply of α-harmonic functions with well-behaved
boundary values.

In this paper we address the uniqueness problem for α-harmonic functions inH,
that is, we wish to characterize the identically zero function u ≡ 0 within the class
of α-harmonic functions in H. A natural condition is that of a vanishing boundary
value

(1.2) lim
H�z→x

u(z) = 0, x ∈ R,

on the real line R. A condition of this type is often referred to as a vanishing
Dirichlet boundary value. There are plenty of non-trivial α-harmonic functions
in H satisfying (1.2). A simple such example is the function

u(z) = (Im z)α+1, z ∈ H,

which is α-harmonic in H and satisfies (1.2). In order to obtain satisfactory results
on the uniqueness problem above it is thus natural to complement (1.2) with some
condition(s) taking into account the behavior of the α-harmonic function u at
infinity. Here we think of the point at infinity ∞ as a boundary point of H in the
extended complex plane C∞ = C ∪ {∞}. In the case of usual harmonic functions
in H (α = 0) this problem setup is classical. We mention here a recent contribution
by Carlsson and Wittsten [9] concerned with a uniqueness result in this flavor for
α-harmonic functions in H with α > −1. This result of Carlsson and Wittsten has
served as a guidance for the present investigations.

We say that a function u in H is of temperate growth at infinity if it satisfies an
estimate of the form

|u(z)| ≤ C(|z|2/ Im(z))N

for z ∈ H with |z| > R, where C, R and N are positive constants. We refer to the
parameter N as an order of growth at infinity for the function u.

A first main result concerns α-harmonic functions u in H that are of temperate
growth at infinity. We prove that such a function u satisfies (1.2) if and only if it
has the form

(1.3) u(z) =
n∑

k=0

ck(Im z)α+1pk,α(z), z ∈ H,

for some n ∈ N = {0, 1, 2, . . . } and c0, . . . , cn ∈ C, where

pk,α(z) =
k∑

j=0

(α + 1)j
j!

zk−jz̄j
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for k = 0, 1, . . . (see Corollary 5.4). We point out that the polynomials pk,α are
naturally derived from the classical binomial series. We also establish (1.3) under
a weaker distributional version of (1.2) (see Theorem 5.7).

We denote by Vα the set of all functions u of the form (1.3) for some n ∈ N and
c0, . . . , cn ∈ C. The set Vα is naturally filtered in the sense that

Vα =
∞⋃
n=0

Vα,n,

where Vα,n is the set of all functions of the form (1.3) for some c0, . . . , cn ∈ C.
The set Vα,n has a natural structure of a complex vector space of finite dimension
n + 1. The space Vα,n admits a natural description within the class Vα using order
of growth at infinity (see Lemma 5.6 and Proposition 5.9). The finer study of
behaviors at infinity of functions in the class Vα depends on the parameter α > −1
and divides naturally into cases whether α �= 0 or α = 0. The reason behind this
dichotomy is a different geometry of zero sets for the polynomials pk,α.

We consider next the problem of characterizing the null function in the class Vα
using a vanishing condition at infinity. For parameters α > −1 with α �= 0, we
prove that if u ∈ Vα is such that

(1.4) lim
j→∞

u(zj)
(Im(zj))α+1

= 0

for some sequence {zj} in H with zj → ∞ in C∞ as j → ∞, then u(z) = 0
for all z ∈ H (see Theorem 6.4). We emphasize the big freedom allowed in the
choice of sequence {zj} in (1.4) above. This analysis leads to the following highly
flexible uniqueness result for α-harmonic functions in the case α �= 0 as well as a
distributional version thereof (see Theorem 6.5).

Theorem 1.1. Let α > −1 and α �= 0. Let u be an α-harmonic function in H

which is of temperate growth at infinity.

(1) Assume that (1.2) holds.

(2) Assume that there exists a sequence {zj} in H with zj → ∞ in C∞ as j → ∞
such that (1.4) holds.

Then u(z) = 0 for all z ∈ H.

We now turn our attention to the case α = 0 of usual harmonic functions in H.
A function u belongs to the class V0 if and only if it has the form

u(z) =
n∑

k=1

ck Im(zk), z ∈ H,
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for some n ∈ Z+ = {1, 2, 3, . . . } and c1, . . . , cn ∈ C (see Proposition 5.2). (Thus,
Z+ are the positive integers, while N, introduced above, are the non-negative
integers.) Observe that the harmonic polynomial

uk(z) = Im(zk), z ∈ C,

vanishes on a union of k lines passing through the origin. Notice also that the
zero set of uk intersects the unit circle at the 2k-th roots of unity. These examples
make evident that the flexible uniqueness results for α-harmonic functions in H

with α �= 0 are no longer true when α = 0 (compare with Theorem 1.1 above).
In order to obtain satisfactory uniqueness results for usual harmonic functions

in H we shall restrict condition (1.4) to suitable classes of curves. We consider two
such classes of curves, namely, geodesics in H and rays in H emanating from the
origin.

By a geodesic in H we understand a ray in H which is parallel to the imaginary
axis. We prove that if u ∈ V0 is such that

lim
y→+∞ u(x + iy)/y = 0

for x = xj ∈ R (j = 1, 2) with x1 �= x2, then u(z) = 0 for all z ∈ H (see Theorem
7.1). This analysis leads to corresponding uniqueness results for usual harmonic
functions in H (see Theorems 7.2 and 7.3). We emphasize that those geodesic
uniqueness results require vanishing on two distinct geodesics which is best pos-
sible. Together with the results for α �= 0, this marks a significant advancement
from an earlier uniqueness result of Carlsson and Wittsten [9, Corollary 1.9] for
α-harmonic functions which required vanishing on an interval of geodesics.

By a ray in H emanating from a point a ∈ R we understand a set of the form
{a + teiθ : t > 0}, where 0 < θ < π. We shall restrict our attention to rays
emanating from the origin (a = 0). In view of translation invariance of the class
of harmonic functions this restriction is minor. In order to discuss vanishing of
functions along rays we introduce a notion of admissible function of angles which
is a function element (E, η) with E ⊂ (0, π) and η : E → Z+ having the property
that for every k ∈ Z+ there exists θ ∈ E such that sin(kθ) �= 0 and k ≥ η(θ) (see
Definition 8.1). We prove that if u ∈ V0 and there exists an admissible function of
angles (E, η) such that

lim
t→+∞ u(teiθ)/tη(θ) = 0

for every θ ∈ E, then u(z) = 0 for all z ∈ H (see Theorem 8.2). This analysis
leads to corresponding uniqueness results for usual harmonic functions in H (see
Theorems 8.3 and 8.4).
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The notion of admissible function of angles involves an arithmetic element. In
order to illuminate this fact we mention the following result.

Theorem 1.2. Let u be a harmonic function in the open upper half-plane H

which is of temperate growth at infinity.

(1) Assume that (1.2) holds.
(2) Assume that

(1.5) lim
t→+∞ u(teiθ)/t = 0

for some 0 < θ < π which is not a rational multiple of π.

Then u(z) = 0 for all z ∈ H.

The examples uk above show that the arithmetic condition on θ in (1.5) is to the
point. Behind Theorem 1.2 lies a construction of a one point admissible function
of angles (E, η), where E = {θ} and η(θ) = 1. The arithmetic condition on θ
in (1.5) ensures that this latter function element (E, η) is an admissible function
of angles. More elaborate constructions of admissible functions of angles lead to
corresponding uniqueness results for usual harmonic functions inH (seeCorollaries
8.5, 8.6, 8.7 and 8.8).

In the final section we provide constructions of admissible functions of angles
(see Theorems 9.1 and 9.2). The set A of admissible functions of angles is
structured by a natural partial order. We show that every element in A has a lower
bound which is minimal (see Theorem 9.3 and Lemma 9.4). Our constructions
of admissible functions of angles yield precisely the minimal elements in A (see
Theorem 9.5).

There is a substantial literature on boundary uniqueness problems for (sub-)
harmonic functions with contributions of Wolf [26], Shapiro [22], Dahlberg [10],
Berman and Cohn [5] and Borichev with collaborators [6, 8] to name a few. As far
as usual harmonic functions in H are concerned our uniqueness results supersede
an earlier uniqueness result of Siegel and Talvila [23, Corollary 3.1].

The α-Laplacian (or rather its symmetric part) is also related to the Laplace-
Beltrami equation in the Riemannian space defined by the metric

ds2 = x−α/(n−2)
n

n∑
1

dx2
i , n > 2,

as studied by Weinstein [24] and Huber [15], among others. For historic reasons,
solutions of said Laplace–Beltrami equation are referred to as generalized axi-
ally symmetric potentials. For a discussion on this connection and more recent
applications in this direction we refer to Wittsten [25]. Another related area of
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interest is the recent study of higher order Laplacians initiated by Borichev and
Hedenmalm [7].

The present paper is rooted in previous investigations. In an earlier paper [20]
we initiated a theory of α-harmonic functions in the open unit discD in the complex
plane. A function u ∈ C2(D) is called α-harmonic in D if �D;αu = 0 in D, where

�D;α,z = ∂z(1 − |z|2)−α∂̄z, z ∈ D,

is the α-Laplacian for D and α ∈ R. A main concern in this theory is the repre-
sentation of an α-harmonic function in D as a Poisson integral u = Pα[f ] in D with
respect to the kernel

(1.6) Pα(z) =
(1 − |z|2)α+1

(1 − z)(1 − z̄)α+1
, z ∈ D.

We refer to the function Pα as the α-harmonic Poisson kernel for D.
We prove that a Poisson integral representation u = Pα[f ] with f a distribution

on the unit circle T = ∂D exists if and only if u is α-harmonic in D, u has
temperate growth in D and a certain spectral condition is satisfied (see Theorem
3.3). This latter spectral condition is automatically satisfiedwhenα is not a negative
integer (see Corollary 3.4). For α > −1, the distribution f ∈ D ′(T) has a natural
interpretation as a (distributional) boundary limit of the function u. On the other
hand, for α ≤ −1, existence of a distributional boundary limit of an α-harmonic
function u in D, forces u to be analytic in D (see Theorem 3.5). We thus establish
Poisson integral representations u = Pα[f ] with f ∈ D ′(T) in situations where a
distributional boundary value of u is non-existent. To overcome those difficulties
we resort to a study of related hypergeometric functions, found in Section 2.

A link between the settings of the upper half-plane H and the unit disc D is
providedby a certain conformal invariance property ofα-harmonic functionswhich
was recently studied by the first author [18]. Let ϕ : D → H be a biholomorphic
map. For a function u in H we consider the weighted pull-back

(1.7) v(z) = uϕ,α(z) = ϕ′(z)−α/2u(ϕ(z)), z ∈ D,

of u by ϕ with respect to the parameter α. Here the power in (1.7) is defined in the
usual way using a logarithm of ϕ′ in D. We shall use the fact that the function v
is α-harmonic in D if and only if the function u is α-harmonic in H. This latter
fact follows easily from [18, Theorem 1.1]. We refer to Geller [13] or Ahern et al.
[1, 2] for earlier results.

Let us return to an α-harmonic function u in H satisfying some appropriate
conditions, notably (1.2) and temperate growth at infinity. We consider a weighted
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pull-back v of u of the form (1.7). The function v is α-harmonic in D and we
propose to study this function by means of its Poisson integral representation
v = Pα[f ] in D. An ambiguity lies in the choice of biholomorphic map ϕ : D → H

which we chose as the Möbius transformation

ϕ(z) = i
1 + z
1 − z

.

Notice that ϕ(0) = i and ϕ(1) = ∞.

From (1.2) we have that the boundary value f for v vanishes on the set T \ {1}.
Standard distribution theory then dictates that the distribution f ∈ D ′(T) is a finite
linear combination of derivatives of a Dirac mass δ1 located at the point 1 on
T: f =

∑n
k=0 ckδ

(k)
1 in D ′(T) (see Hörmander [14, Theorem 2.3.4]). The Poisson

integral Pα[δ′1] is naturally interpreted as an angular derivative iAPα of the Poisson
kernel Pα, and by iteration we find that v =

∑n
k=0 ck(iA)kPα (see Corollary 3.7).

In Section 4, those angular derivatives (iA)kPα of Pα are carefully investigated
using the Möbius transformation ϕ above, and in Section 5 this part of the analysis
culminates in the proof of the representation formula (1.3) (see Theorem 5.1).

2 Series expansion of α-harmonic functions in D

In this section we revisit the series expansion of α-harmonic functions in D. Of
particular concern is a characterization of temperate growth of an α-harmonic
function in D in terms of polynomial growth of coefficients (see Theorem 2.3).
The proof of this latter result depends on properties of related hypergeometric
functions.

For a ∈ C, we set (a)0 = 1 and

(a)k =
k−1∏
j=0

(a + j)

for k = 1, 2, . . . . The numbers (a)k are known as Pochhammer symbols. Notice
that (a)k = 
(a + k)/
(a) for k ∈ N, where 
 is the standard Gamma function.

The hypergeometric function is the function defined by the power series expan-
sion

(2.1) F(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, z ∈ D,

for parameters a, b, c ∈ C with c �= 0,−1,−2, . . . . Convergence in (2.1) follows
by the standard ratio test.
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Recall also the classical binomial series

(2.2) (1 − z)−a =
∞∑
k=0

(a)k
k!

zk, z ∈ D,

for a ∈ C. Notice that
F(a, b; b; z) = (1 − z)−a,

which follows from (2.1) and (2.2).
We take as our starting point a certain series expansion of α-harmonic functions

in D. It is known that a function u is α-harmonic in D if and only if it has the form

(2.3) u(z) =
∞∑
k=0

ckz
k +

∞∑
k=1

c−kF(−α, k; k + 1; |z|2)z̄k, z ∈ D,

for some sequence {ck}∞k=−∞ of complex numbers such that

(2.4) lim sup
|k|→∞

|ck|1/|k| ≤ 1,

where F is the hypergeometric function (2.1) (see [20, Theorem 1.2]). Condi-
tion (2.4) ensures that the series expansion (2.3) is absolutely convergent in the
space C∞(D) of indefinitely differentiable functions in D. As a consequence we
have that u ∈ C∞(D). We refer to Klintborg and Olofsson [16] for an updated
account on these matters.

The property F(a, b; c; 0) = 1 of the hypergeometric function (2.1) yields a
normalization of the expansion (2.3). As a consequence we have the coefficient
formulas

ck = ∂ku(0)/k! and c−k = ∂̄ku(0)/k!

for k ∈ N, where u is as in (2.3) (see [16, Theorem 5.3]). In particular, an
α-harmonic function in D is uniquely determined by its germ at the origin.

As an example of a series expansion of the form (2.3) we mention that of
the α-harmonic Poisson kernel

(2.5) Pα(z) =
∞∑
k=0

zk +
∞∑
k=1

(α + 1)k
k!

F(−α, k; k + 1; |z|2)z̄k

for z ∈ D (see [16, Theorem 6.3]).
We shall make use of a classical result known as Euler’s integral formula for

the hypergeometric function. This result says that

(2.6) F(a, b; c; z) =

(c)


(b)
(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−a dt
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for z ∈ D when Re c > Re b > 0, where 
 is the standard Gamma function (see [3,
Theorem 2.2.1]).

In particular, from (2.6) we have that

(2.7) F(−α, k; k + 1; x) = k
∫ 1

0
tk−1(1 − xt)α dt, 0 ≤ x < 1,

for k ∈ Z+ and α ∈ R. From this latter formula we see that the function
F(−α, k; k + 1; ·) is non-negative on the interval [0, 1). Furthermore, the func-
tion F(−α, k; k + 1; ·) is decreasing on the interval [0, 1) if α ≥ 0 and, similarly,
the function F(−α, k; k + 1; ·) is increasing on the interval [0, 1) if α ≤ 0.

A passage to the limit in (2.7) shows that

(2.8) lim
x→1

F(−α, k; k + 1; x) =

(k + 1)
(α + 1)

(k + α + 1)

for α > −1, where we have used a standard formula for the Beta function. When
α ≤ −1, the quantity F(−α, k; k + 1; x) diverges to +∞ as x → 1.

We shall need some more detailed estimates of the hypergeometric functions
appearing in (2.3).

Lemma 2.1. Let k ∈ Z+. Then

F(1, k; k + 1; x) ≤ k
x

log
( 1

1 − x

)

for 0 < x < 1.

Proof. From (2.7) we have that

F(1, k; k + 1; x) = k
∫ 1

0

tk−1

1 − xt
dt

for 0 ≤ x < 1. An integration by parts shows that

F(1, k; k + 1; x) =
k
x

log
( 1

1 − x

)
+

k(k − 1)
x

∫ 1

0
tk−2 log(1 − xt) dt

for 0 < x < 1. Observe that the logarithm in the rightmost integral is negative.
This yields the conclusion of the lemma. �

We shall use also another result of Euler which says that

(2.9) F(a, b; c; z) = (1 − z)c−a−bF(c − a, c − b; c; z)

for z ∈ D (see [3, Theorem 2.2.5]).



10 A. OLOFSSON AND J. WITTSTEN

Lemma 2.2. Let α < −1 and k ∈ Z+. Then

F(−α, k; k + 1; x) ≤ max
(
1,− k

α + 1

)
(1 − x)α+1

for 0 ≤ x < 1.

Proof. We first apply (2.9) to see that

(2.10) F(−α, k; k + 1; x) = (1 − x)α+1F(k + α + 1, 1; k + 1; x)

for 0 ≤ x < 1. We shall divide into cases depending on whether k + α + 1 > 0
or k + α + 1 ≤ 0.

Assume first that k + α + 1 ≤ 0. By (2.6) we have that

F(k + α + 1, 1; k + 1; x) = k
∫ 1

0
(1 − t)k−1(1 − xt)−(k+α+1) dt

for 0 ≤ x < 1. Since k+α+1 ≤ 0, we have that this latter hypergeometric function
F(k+α+1, 1; k+1; ·) is decreasing on [0, 1). ThereforeF(k+α+1, 1; k+1; x) ≤ 1 for
0 ≤ x < 1. In viewof (2.10) this yields the conclusion of the lemma for k+α+1 ≤ 0.

We next assume that k + α + 1 > 0. By symmetry and (2.6) we have that

F(k + α + 1, 1; k + 1; x) = F(1, k + α + 1; k + 1; x)

=

(k + 1)


(k + α + 1)
(−α)
∫ 1

0
tk+α(1 − t)−(α+1) 1

1 − xt
dt

for 0 ≤ x < 1. By monotonicity we have that

F(k + α + 1, 1; k + 1; x) ≤ 
(k + 1)

(k + α + 1)
(−α)

∫ 1

0
tk+α(1 − t)−(α+1)−1 dt

=

(k + 1)
(−(α + 1))


(−α)
(k)
= − k

α + 1

for 0 ≤ x < 1, where the last two equalities follow by standard formulas for the
Beta and Gamma functions. In view of (2.10) this yields the conclusion of the
lemma for k + α + 1 > 0. �

We say that a function u in D is of temperate growth in D if it satisfies an
estimate of the form

(2.11) |u(z)| ≤ C(1 − |z|2)−N, z ∈ D,

for some positive constants C and N.

Theorem 2.3. Let α ∈ R. Let u be an α-harmonic function in D and consider

the expansion (2.3). Then the function u is of temperate growth in D if and only if
the sequence of coefficients {ck}∞k=−∞ in (2.3) has at most polynomial growth.
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Proof. Assume that u has temperate growth in D. We first show that the
coefficient ck has at most polynomial growth as k → +∞. Let k ∈ N and
0 < r < 1. From (2.3) we have that

ckr
k =

1
2π

∫
T

u(reiθ)e−ikθ dθ.

From the triangle inequality and (2.11) we have that

|ck|rk ≤ C/(1 − r2)N ≤ C/(1 − r)N

for k ∈ N and 0 < r < 1, where C is as in (2.11). Choosing r = 1 − 1/k with k big
in this latter inequality, we see that |ck| ≤ C′kN as k → +∞.

We next show that the coefficient ck has atmost polynomial growth as k → −∞.
Let k ∈ Z− = Z \ N and 0 < r < 1. From (2.3) we have that

(2.12) ckF(−α, |k|; |k| + 1; r2)r|k| =
1
2π

∫
T

u(reiθ)e−ikθ dθ.

Let us first consider the case α ≤ 0. Since the function F(−α, |k|; |k| + 1; ·) is
increasing on [0, 1), we have from (2.12) and the triangle inequality that

|ck|r|k| ≤ C/(1 − r)N,

where C is as in (2.11). Choosing r = 1 − 1/|k| in this latter inequality we see that
|ck| ≤ C′|k|N as k → −∞.

Let us now consider the case α ≥ 0. Since the function F(−α, |k|; |k| + 1; ·) is
decreasing on [0, 1), we have from (2.12) and the triangle inequality that

(2.13) |ck|
(|k| + 1)
(α + 1)

(|k| + α + 1)

r|k| ≤ C/(1 − r)N,

where we have used (2.8) and C is as in (2.11). Stirling’s formula ensures that
a quotient of Gamma functions 
(x)/
(x + α) behaves asymptotically as 1/xα

when x → +∞ ([3, Section 1.4]). Choosing r = 1 − 1/|k| in (2.13) we see that
|ck| ≤ C′|k|N+α as k → −∞.

Assume now that the sequence of coefficients {ck}∞k=−∞ in (2.3) has at most
polynomial growth, that is, |ck| ≤ C(1 + |k|)N for k ∈ Z, where N ≥ 0. We shall
show that the function u has temperate growth in D. We consider first the leftmost
sum

f (z) =
∞∑
k=0

ckz
k, z ∈ D,

appearing in (2.3). Observe that

(1 + k)N ≤ (k + N)!
k!

= N!
1
k!

k∏
j=1

(N + j) = N!
(N + 1)k

k!
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for k ∈ N. By the triangle inequality we have that

|f (z)| ≤ C
∞∑
k=0

(1 + k)N|z|k ≤ CN!
∞∑
k=0

(N + 1)k
k!

|z|k = CN!(1 − |z|)−(N+1)

for z ∈ D, where in the last equality we have used (2.2). This proves that the
function f above has temperate growth in D.

We consider next the function

g(z) =
∞∑
k=1

c−kF(−α, k; k + 1; |z|2)z̄k, z ∈ D,

appearing in (2.3). Assume first that α ≥ 0. Then the function F(−α, k; k + 1; ·) is
decreasing on [0, 1). From the triangle inequality we have that

|g(z)| ≤
∞∑
k=1

|c−k||z|k ≤ C
∞∑
k=1

(1 + k)N|z|k ≤ CN!(1 − |z|)−(N+1)

for z ∈ D, where the last two inequalities follow as in the previous paragraph. This
proves that the function g above has temperate growth in D if α ≥ 0.

Assume next that −1 < α ≤ 0. In this case the function F(−α, k; k + 1; ·) is
increasing on [0, 1). By the triangle inequality and (2.8) we have that

|g(z)| ≤
∞∑
k=1

|c−k|
(k + 1)
(α + 1)

(k + α + 1)

|z|k

for z ∈ D. Since 
(x)/
(x + α) behaves asymptotically as 1/xα when x → +∞ we
deduce as above that the function g has temperate growth in D if −1 < α ≤ 0.

Assume next that α = −1. By the triangle inequality and Lemma 2.1 we have
that

|g(z)| ≤
∞∑
k=1

|c−k| k
|z|2 log

( 1
1 − |z|2

)
|z|k ≤ C

|z|2 log
( 1
1 − |z|2

) ∞∑
k=1

(1 + k)N+1|z|k

for z ∈ D. We can now deduce as above that the function g has temperate growth
in D if α = −1.

Assume finally that α < −1. By the triangle inequality and Lemma 2.2 we
have that

|g(z)| ≤
∞∑
k=1

|c−k|kC(α)(1 − |z|2)α+1|z|k ≤ CC(α)(1 − |z|2)α+1
∞∑
k=1

(1 + k)N+1|z|k

for z ∈ D, where C(α) = max(1,−1/(α + 1)). We can then once again deduce as
above that the function g has temperate growth in D if α < −1. �
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The case division in the proof of Theorem 2.3 depends on different behaviors of
the hypergeometric functions appearing in (2.3). One can notice that the quantity
F(−α, k; k + 1; x) is decreasing in α ∈ R. This observation leads to a shorter proof
of Theorem 2.3 with less precision. An earlier result can be found in Olofsson [17,
Proposition 3.2].

3 Poisson integrals of distributions

The purpose of this section is to further develop a theory of Poisson integral repre-
sentations of α-harmonic functions in D. Of particular interest is a characterization
of Poisson integrals of distributions on T (see Theorem 3.3 and Corollary 3.4).
Along the way we introduce some notation needed later.

We denote by D ′(T) the space of distributions on T. An integrable function
f ∈ L1(T) on T is identified with the distribution

〈f, ϕ〉 =
1
2π

∫
T

f (eiθ)ϕ(eiθ) dθ, ϕ ∈ C∞(T),

where C∞(T) is the space of indefinitely differentiable test functions on T. The
space D ′(T) is topologized in the usual way using the semi-norms

D ′(T) � f �→ |〈f, ϕ〉|
for ϕ ∈ C∞(T). Notice that fk → f in D ′(T) as k → ∞ means that the limit
limk→∞〈fk, ϕ〉 = 〈f, ϕ〉 holds for every ϕ ∈ C∞(T).

Let
φk(e

iθ) = eikθ, eiθ ∈ T,

for k ∈ Z be the exponential monomials on T. The Fourier coefficients of a
distribution f ∈ D ′(T) are defined by

f̂ (k) = 〈f, φ−k〉, k ∈ Z.

A distribution on T is uniquely determined by its sequence of Fourier coefficients.
It is well-known that a sequence of complex numbers {ck}∞k=−∞ is of at most
polynomial growth if and only if it is the sequence of Fourier coefficients for some
distribution on T, that is, there exists f ∈ D ′(T) such that f̂ (k) = ck for k ∈ Z.

The derivative of a distribution f ∈ D ′(T) is the distribution f ′ in D ′(T) deter-
mined by (f ′)ˆ(k) = ikf̂ (k) for k ∈ Z.

The convolution h = f ∗ g of the distributions f ∈ D ′(T) and g ∈ D ′(T) is
the distribution h ∈ D ′(T) determined by ĥ(k) = f̂ (k)ĝ(k) for k ∈ Z. Notice that
f ∗ g ∈ C∞(T) if f ∈ D ′(T) and g ∈ C∞(T).
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For a suitably smooth function u in D we set

(3.1) ur(e
iθ) = u(reiθ), eiθ ∈ T,

for 0 ≤ r < 1. Notice that the function ur is essentially the restriction of u to the
circle {z ∈ C : |z| = r}.

Recall formula (1.6). Theα-harmonic Poisson integral of a distribution f∈D ′(T)
is defined by

Pα[f ](z) = (Pα,r ∗ f )(eiθ), z = reiθ ∈ D,

where ∗ denotes convolution, Pα,r is defined in accordance with (3.1), r ≥ 0 and
eiθ ∈ T. Observe that

Pα[f ](z) =
1
2π

∫
T

Pα(ze
−iτ)f (eiτ) dτ, z ∈ D,

if f ∈ L1(T).
We next calculate the series expansion of the Poisson integral.

Proposition 3.1. Let α ∈ R and f ∈ D ′(T). Then

Pα[f ](z) =
∞∑
k=0

f̂ (k)zk +
∞∑
k=1

f̂ (−k)
(α + 1)k

k!
F(−α, k; k + 1; |z|2)z̄k

for z ∈ D, where f̂ (k) is the k-th Fourier coefficient of f .

Proof. Let 0 ≤ r < 1. From (2.5) we have that

Pα,r(e
iθ) =

∞∑
k=0

rkeikθ +
∞∑
k=1

(α + 1)k
k!

F(−α, k; k + 1; r2)rke−ikθ

for eiθ ∈ T. Passing to the convolution we have that

Pα[f ](z) = (Pα,r ∗ f )(eiθ) =
∞∑
k=0

rkf̂ (k)eikθ

+
∞∑
k=1

(α + 1)k
k!

F(−α, k; k + 1; r2)rkf̂ (−k)e−ikθ

for z=reiθ∈Dwith r≥0 and eiθ∈T. This yields the conclusion of the proposition.�
Notice that the expansion in Proposition 3.1 is a series expansion of the form

(2.3). As a consequence, we have that the function Pα[f ] is α-harmonic in D. We
record also that

(3.2)
(α + 1)k

k!
=


(α + k + 1)

(α + 1)
(k + 1)

∼ 1

(α + 1)

(1 + k)α

as k → +∞ which follows by Stirling’s formula.
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Recall the notion of Fourier spectrum of a distribution on T defined by

Spec(f ) = {k ∈ Z : f̂ (k) �= 0}

for f ∈ D ′(T). We shall need a similar notion of spectrum of an α-harmonic
function in D. Recall that an α-harmonic function in D is uniquely determined by
its sequence of coefficients in (2.3). For such a function u we set

Spec(u) = {k ∈ Z : ck �= 0},

where the ck’s are as in (2.3). Observe that Spec(u) = ∅ if and only if u = 0.

Let us denote by Z− the set of negative integers. In view of the series expansion
(2.5) of the function Pα we have that Spec(Pα) = Z if α ∈ R \ Z− whereas

Spec(Pα) = {α + 1, α + 2, . . . }

if α ∈ Z−.

Corollary 3.2. Let α ∈ R and f ∈ D ′(T). Then

Spec(Pα[f ]) = Spec(Pα) ∩ Spec(f ).

In particular, Pα[f ] = 0 if α ∈ Z− and Spec(f ) ⊂ {k ∈ Z : k ≤ α}.

Proof. The result is evident from Proposition 3.1. When α ∈ Z− the inclusion
Spec(f ) ⊂ {k ∈ Z : k ≤ α} ensures that Spec(Pα) ∩ Spec(f ) = ∅. �

We next turn our attention to a characterization of Poisson integrals of distri-
butions.

Theorem 3.3. Let α ∈ R. Then a function u in D has the form of a Poisson

integral u = Pα[f ] in D for some f ∈ D ′(T) if and only if u is α-harmonic in D, u
has temperate growth in D, and Spec(u) ⊂ Spec(Pα).

Proof. Assume first that u = Pα[f ] in D for some f ∈ D ′(T). From a well-
known characterization of Fourier coefficients of distributions on T we know that
the sequence of Fourier coefficients {f̂ (k)}∞k=−∞ has at most polynomial growth.
Proposition 3.1 supplies us with the series expansion of u. Clearly u is α-harmonic
in D. From Corollary 3.2 we have that Spec(u) ⊂ Spec(Pα). By Theorem 2.3 we
conclude that u has at most temperate growth in D.

Assume next that u is α-harmonic in D, u has temperate growth in D, and
Spec(u) ⊂ Spec(Pα). Consider the series expansion (2.3). By Theorem 2.3 we
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conclude that the sequence of coefficients {ck}∞k=−∞ in (2.3) has at most polynomial
growth. We set ak = ck for k ∈ N,

ak =
(−k)!

(α + 1)−k
ck

for k ∈ Z− and k ∈ Spec(Pα), and ak = 0 for k ∈ Z− and k �∈ Spec(Pα). From (3.2)
we have that the sequence {ak}∞k=−∞ is of polynomial growth. From a well-known
characterization of Fourier coefficients of distributions on T there exists f ∈ D ′(T)
such that f̂ (k) = ak for k ∈ Z. Since Spec(u) ⊂ Spec(Pα), we have by Proposition
3.1 that u = Pα[f ] in D. �

The spectral condition in Theorem 3.3 is redundant when α is not a negative
integer.

Corollary 3.4. Let α ∈ R \ Z−. Then a function u in D has the form of a

Poisson integral u = Pα[f ] in D for some f ∈ D ′(T) if and only if it is α-harmonic
in D and of temperate growth there.

Proof. Recall that Spec(Pα) = Z in the present situation. The result follows
from Theorem 3.3. �

The α-harmonic Poisson kernel Pα has bounded L1-means when α > −1 (see
Olofsson [17, Theorem 3.1]). As a consequence, for α > −1, one has that ur → f

in D ′(T) as r → 1 if f ∈ D ′(T) and u = Pα[f ], where ur is as in (3.1).

The boundary behavior of α-harmonic functions in D is conceptually different
when α ≤ −1. The next result exemplifies this fact.

Theorem 3.5. Let α ≤ −1 and let u be an α-harmonic function in D. Assume
that the limit f = limr→1 ur in D ′(T) exists, where ur is as in (3.1). Then u is

analytic in D.

Proof. Consider the series expansion (2.3). We shall prove that ck = 0 for
k < 0. Let k ∈ Z+. From (2.3) we have that

(3.3) c−kF(−α, k; k + 1; r2)rk =
1
2π

∫
T

u(reiθ)eikθ dθ

for 0 < r < 1. By assumption the right-hand side in (3.3) has a limit as
r → 1. Recall from the discussion following formulas (2.7)–(2.8) that the quantity
F(−α, k; k + 1; x) increases to +∞ as x → 1. Passing to the limit in (3.3) as r → 1
we conclude that c−k = 0. This yields the conclusion of the theorem. �
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We refer to Olofsson [17, Theorem 2.3] for a result analogous to Theorem 3.5
phrased in another setting of generalized harmonic functions in D. Under an
assumption of pointwise boundary limit, a similar result also exists for the class of
generalized axially symmetric potentials mentioned in the introduction; see Huber
[15, Theorem 2].

A traditional approach to the Poisson integral representation

(3.4) u(z) = Pα[f ](z), z ∈ D,

is to exhibit the distribution f ∈ D ′(T) as a limit point of the ur’s as r → 1 and then
deduce the Poisson integral representation (3.4) from a uniqueness argument. See
for instance Olofsson and Wittsten [20, Theorem 5.5] for an elaboration on this
theme. An interesting point of Theorem 3.3 is that this result establishes Poisson
integral representations (3.4) in cases where boundary limits are non-existent.

Structure in (2.3) suggests use of the differential operator A = z∂− z̄∂̄. Observe
that

(3.5) Au(z) =
∞∑
k=1

kckz
k −

∞∑
k=1

kc−kF(−α, k; k + 1; |z|2)z̄k, z ∈ D,

if u has the form (2.3). In particular, the function Au is α-harmonic in D if u is.

Proposition 3.6. Let α ∈ R and f ∈ D ′(T). Then

iAPα[f ](z) = Pα[f
′](z)

for z ∈ D, where f ′ is the distributional derivative of f .

Proof. Recall that (f ′)ˆ(k) = ikf̂ (k) for k ∈ Z. By Proposition 3.1 we have that

Pα[f
′](z) =

∞∑
k=0

ikf̂ (k)zk +
∞∑
k=1

(−ik)f̂ (−k)
(α + 1)k

k!
F(−α, k; k + 1; |z|2)z̄k

= iAPα[f ](z)

for z ∈ D, where in the last equality we have used (3.5). �
We refer to the differential operator iA = i(z∂ − z̄∂̄) as the angular derivative.

Our interest in this operator arose in connection to the paper Olofsson [19].
Let δ1 ∈ D ′(T) be the unit Dirac mass located at the point 1 ∈ T, that is,

〈δ1, ϕ〉 = ϕ(1) for ϕ ∈ C∞(T).

Corollary 3.7. Let α ∈ R and k ∈ N. Then

Pα[δ
(k)
1 ](z) = (iA)kPα(z)

for z ∈ D, where δ(k)1 denotes the k-th distributional derivative of δ1.
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Proof. It is straightforward to check that (δ1)ˆ(k) = 1 for k ∈ Z. By Proposition
3.1 and formula (2.5) we have that Pα[δ1](z) = Pα. The result now follows by
Proposition 3.6. �

4 Angular derivatives of Poisson kernels

This section is devoted to a careful analysis of angular derivatives of Poisson
kernels. We shall make good use of the Möbius transformation

(4.1) ϕ(z) = i
1 + z
1 − z

in our calculations. Notice that ϕ maps D one-to-one onto H, ϕ(0) = i and
ϕ(1) = ∞. From standard theory we have that the Möbius transformation ϕ is
uniquely determined by these three properties. For the sake of easy reference we
record also the formulas

(4.2) Imϕ(z) =
1 − |z|2
|1 − z|2 and ϕ′(z) =

2i
(1 − z)2

,

which are straightforward to check.
A most naturalα-harmonic function inH is the (α+1)-th power of the imaginary

part:
u(z) = (Im z)α+1, z ∈ H.

We first calculate the weighted pull-back uϕ,α from (1.7) of this function by ϕ.

Theorem 4.1. Let α ∈ R. Then

Pα(z) = cϕ′(z)−α/2(Imϕ(z))α+1, z ∈ D,

where ϕ is as in (4.1) and cϕ′(0)−α/2 = 1.

Proof. Recall formula (1.6). The two formulas in (4.2) make evident that

Pα(z) = cϕ′(z)−α/2(Imϕ(z))α+1, z ∈ D,

where c ∈ C. From Pα(0) = 1 we see that cϕ′(0)−α/2 = 1. �
Notice that Theorem 4.1 with α = 0 yields the well-known formula

P0(z) = Re
( 1 + z
1 − z

)
, z ∈ D,

for the usual Poisson kernel for D.
Our next task is to calculate angular derivatives of Poisson kernels. We begin

with a preparatory lemma.
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Lemma 4.2. Let ϕ be as in (4.1). Then iAϕ = 1
2(ϕ

2 + 1).

Proof. From formula (4.2) we have that

iAϕ(z) = izϕ′(z) = −2z/(1 − z)2.

Using some elementary algebra we now calculate that

iAϕ(z) =
1
2

(1 − z)2 − (1 + z)2

(1 − z)2
=

1
2

(
1 −

( 1 + z
1 − z

)2)
=

1
2
(1 + ϕ(z)2),

where the last equality follows by (4.1). �
Let us record some properties of the angular derivative. The differential op-

erator iA satisfies the product rule for differentiation: iA(fg) = giA(f ) + fiA(g) for
suitable f and g. Denote by f̄ the pointwise complex conjugate of a complex-valued
function f . We shall use the chain rule in the form

(4.3) iA(h ◦ f ) = ((∂h) ◦ f )iAf + ((∂̄h) ◦ f )iAf

for suitable f and h. Formula (4.3) is straightforward to check. As a consequence
of (4.3) we have that the differential operator iA commutes with the action of
complex conjugation of functions: iA(f̄ ) = iAf for suitable f .

We now turn to differentiation of powers.

Lemma 4.3. Let ϕ be as in (4.1) and α ∈ R. Then

iA((Imϕ)α+1) = (α + 1)(Reϕ)(Imϕ)α+1 in D.

Proof. Let u = (Imϕ)α+1 in D. By a standard rule for differentiation we have
that

iAu = (α + 1)(Imϕ)αiA
( 1

2i
(ϕ− ϕ̄)

)

in D, compare with (4.3). Since the differential operator iA commutes with the
action of complex conjugation of functions we have that

iAu = (α + 1)(Imϕ)α
1
2i

(iAϕ− iAϕ)

in D. We now use Lemma 4.2 and calculate that

iAu = (α + 1)(Imϕ)α
1
2i

(1
2
(ϕ2 + 1) − 1

2
(ϕ̄2 + 1)

)
= (α + 1)(Imϕ)α

1
2i

1
2
(ϕ2 − ϕ̄2)

in D, where the last equality follows by cancellation. By some elementary algebra
we now have that

iAu = (α + 1)(Imϕ)α
1
2i

1
2
(ϕ− ϕ̄)(ϕ + ϕ̄) = (α + 1)(Imϕ)α(Imϕ)(Reϕ)

in D. This yields the conclusion of the lemma. �
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Lemma4.4. Letϕ be as in (4.1) andα∈R. Then iA((ϕ′)−α/2)= α
2 (i−ϕ)(ϕ′)−α/2

in D.

Proof. We first show that iAϕ′ = (ϕ− i)ϕ′. From (4.2) we have that

iAϕ′(z) = izϕ′′(z) = (2i)2
z

(1 − z)3
= i

2z
1 − z

ϕ′(z),

where the last equality again follows by (4.2). By some elementary algebra we
now have that

iAϕ′(z) = i
(1 + z) − (1 − z)

1 − z
ϕ′(z) = i

( 1 + z
1 − z

− 1
)
ϕ′(z) = (ϕ(z) − i)ϕ′(z),

where the last equality follows by (4.1).
We now consider the general case. By a well-known differentiation formula

we have that
iA((ϕ′)−α/2) = −α

2
(ϕ′)−α/2−1iAϕ′

in D, compare with (4.3). We now use the result of the previous paragraph to
conclude that

iA((ϕ′)−α/2) = −α
2

(ϕ′)−α/2−1(ϕ− i)ϕ′ =
α

2
(i − ϕ)(ϕ′)−α/2

in D. �
We next calculate the angular derivative of the Poisson kernel.

Theorem 4.5. Let α ∈ R and let ϕ be as in (4.1). Then

iAPα(z) =
1
2
(ϕ(z) + (α + 1)ϕ(z) + iα)Pα(z)

for z ∈ D.

Proof. Let u = (ϕ′)−α/2(Imϕ)α+1 in D. In view of Theorem 4.1 it suffices to
prove the conclusion of the theorem with Pα replaced by the function u. By the
product rule for differentiation we have that

iAu = (Imϕ)α+1iA((ϕ′)−α/2) + (ϕ′)−α/2iA((Imϕ)α+1)

in D. We now use Lemmas 4.3 and 4.4 to conclude that

iAu = (Imϕ)α+1α

2
(i − ϕ)(ϕ′)−α/2 + (ϕ′)−α/2(α + 1)(Reϕ)(Imϕ)α+1

=
(α

2
(i − ϕ) + (α + 1)

1
2
(ϕ + ϕ̄)

)
u

inD, where the last equality is straightforward to check. This yields the conclusion
of the theorem. �
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An earlier version of Theorem 4.5 appears in Olofsson [19, Theorem 1.11]; see
also Klintborg and Olofsson [16, Corollary 1.3] for a generalization along similar
lines. Here our focus is on applications to the setting of the upper half-plane and
we express matters using the Möbius transformation ϕ.

We denote by C[z, z̄] the algebra of polynomials in z and z̄ with complex
coefficients. Define polynomials {hk,α}∞k=0 in C[z, z̄] by h0,α = 1 and

hk+1,α(z) =
1
2
(z2 + 1)∂hk,α(z) +

1
2
(z̄2 + 1)∂̄hk,α(z)(4.4)

+
1
2
(z + (α + 1)z̄ + iα)hk,α(z)

for k ≥ 0. It is straightforward to check that hk,α has degree at most k for
k = 0, 1, . . . .

Theorem 4.6. Let α ∈ R and let ϕ be as in (4.1). Then

(iA)kPα(z) = hk,α(ϕ(z))Pα(z), z ∈ D,

for k = 0, 1, 2, . . . , where the hk,α’s are as in (4.4).

Proof. For k = 0 the result is evident. For k = 1 the result follows by
Theorem 4.5. We proceed by induction and assume that (iA)kPα = (hk,α ◦ ϕ)Pα for
some k ≥ 0. Applying the operator iA we have that

(iA)k+1Pα = PαiA(hk,α ◦ ϕ) + (hk,α ◦ ϕ)iAPα,

where we have used the product rule. From the chain rule (4.3) and Lemma 4.2
we have that

iA(hk,α ◦ ϕ) = ((∂hk,α) ◦ ϕ)1
2
(ϕ2 + 1) + ((∂̄hk,α) ◦ ϕ)1

2
(ϕ̄2 + 1).

We now return to the function (iA)k+1Pα and use Theorem 4.5 to conclude that

(iA)k+1Pα = Pα
(
((∂hk,α) ◦ ϕ)1

2
(ϕ2 + 1) + ((∂̄hk,α) ◦ ϕ)1

2
(ϕ̄2 + 1)

)

+ (hk,α ◦ ϕ)1
2
(ϕ + (α + 1)ϕ̄ + iα)Pα = (hk+1,α ◦ ϕ)Pα,

where in the last equality we have used (4.4). The result now follows by invoking
the induction principle. �

We shall study the polynomials hk,α in some more detail.

Lemma 4.7. Let hk,α ∈ C[z, z̄] be as in (4.4) for some α ∈ R and k ≥ 0. Then
the function H � z �→ (Im z)α+1hk,α(z) is α-harmonic in H.
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Proof. Recall that the function iAu is α-harmonic in D if u is, see (3.5).
From Theorem 4.6 we thus have that the function (hk,α ◦ ϕ)Pα is α-harmonic
in D. Theorem 4.1 displays the Poisson kernel Pα as a weighed pull-back by the
function ϕ. From Olofsson [18, Theorem 1.1] we now conclude that the function
z �→ (Im z)α+1hk,α(z) is α-harmonic in H; see discussion following formula (1.7). �

Let α ∈ R and let us denote by y the imaginary part. A calculation shows that

�α;Hyα+1 =
1
2i

Dα

in the sense of differential operators, where

(4.5) Dα = Dα,z = (z − z̄)∂z∂̄z + ∂̄z − (α + 1)∂z.

As a consequence, we have that a product yα+1h is α-harmonic in H if and only if
Dαh = 0 in H, where Dα is as in (4.5).

Notice that if p ∈ C[z, z̄] is homogeneous of degree m, then the polynomial
Dαp is homogeneous of degree m − 1.

Consider the partial sums

(4.6) sk,α(z) =
k∑

j=0

(α + 1)j
j!

zj

for k = 0, 1, . . . of a binomial series (2.2) with a = α + 1. We shall need the
associated homogeneous polynomials

(4.7) pk,α(z) = zksk,α(z̄/z) =
k∑

j=0

(α + 1)j
j!

zk−jz̄j

for k = 0, 1, . . . , where α ∈ R. Notice that pk,α ∈ C[z, z̄] is homogeneous of
degree k.

We now return to the differential operator Dα in (4.5).

Theorem 4.8. Let α ∈ R. Let p in C[z, z̄] be homogeneous of degree k. Then
Dαp = 0 if and only if p is a constant multiple of pk,α, where pk,α is as in (4.7).

Proof. We shall evaluate the differential operator Dα on a polynomial p of the
form

(4.8) p(z) =
k∑

j=0

ajz
k−jz̄j
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for some a0, . . . , ak ∈ C. Calculations show that

∂̄p(z) =
k−1∑
j=0

(j + 1)aj+1z
k−1−jz̄j, ∂p(z) =

k−1∑
j=0

(k − j)ajz
k−1−jz̄j,

and

(z − z̄)∂∂̄p(z) =
k−2∑
j=0

(j + 1)(k − 1 − j)aj+1z
k−1−jz̄j −

k−1∑
j=1

j(k − j)ajz
k−1−jz̄j.

From these formulas we have that

Dαp(z) =
k−1∑
j=0

(k − j)((j + 1)aj+1 − (j + α + 1)aj)z
k−1−jz̄j

for p of the form (4.8).
From the result of the previous paragraph we have that Dαp = 0 if and only if

(j + 1)aj+1 − (j + α + 1)aj = 0

for j = 0, . . . , k − 1. We conclude that Dαp = 0 if and only if p = a0pk,α. �

Corollary 4.9. Let α ∈ R and k ∈ N. Let pk,α be as in (4.7). Then the function

H � z �→ (Im z)α+1pk,α(z) is α-harmonic in H.

Proof. By Theorem 4.8 we have that Dαpk,α = 0. Therefore �αyα+1pk,α = 0
in H by the factorization formula preceding (4.5). �

We now return to the hk,α’s.

Theorem 4.10. Let α ∈ R and k ∈ N. Let hk,α be as in (4.4). Then hk,α is a
linear combination of p0,α, . . . , pk,α, where the pj,α’s are as in (4.7).

Proof. From Lemma 4.7 we have that the product yα+1hk,α is α-harmonic
in H. Therefore Dαhk,α = 0 in C[z, z̄], where Dα is as in (4.5). We next write the
polynomial hk,α as a sum of homogeneous polynomials: hk,α =

∑k
j=0 pj, where pj

is homogeneous of degree j. Clearly p0 is a constant multiple of p0,α. Applying
the differential operator Dα we see that

0 = Dαhk,α =
k∑

j=1

Dαpj

in C[z, z̄]. Since Dαpj is homogeneous of degree j − 1, we have that Dαpj = 0 for
j = 1, . . . k. From Theorem 4.8 we have that pj is a constant multiple of pj,α for
j = 1, . . . k. We conclude that hk,α is a linear combination of p0,α, . . . , pk,α. �
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5 A general representation theorem

In this section we consider α-harmonic functions in H which are of temperate
growth at infinity and vanish on the real line. A main task is to establish a
representation of such functions. The analysis uses results from Section 4.

Theorem 5.1. Let α > −1. Let u be an α-harmonic function in H which is of

temperate growth at infinity. Assume that u(z) → 0 as H � z → x for every x ∈ R.
Then

(5.1) u(z) =
n∑

k=0

ck(Im z)α+1pk,α(z), z ∈ H,

for some n ∈ N and c0, . . . , cn ∈ C, where the pk,α’s are as in (4.7).

Proof. We consider the weighted pull-back

v(z) = ϕ′(z)−α/2u(ϕ(z)), z ∈ D,

where ϕ is as in (4.1). From [18, Theorem 1.1] it follows that v is α-harmonic
in D. From temperate growth of u at infinity and vanishing of u on R we have
by a compactness argument that v is of temperate growth in D. By Theorem 3.3
we conclude that v = Pα[g] for some distribution g ∈ D ′(T). Since α > −1, it
follows that vr → g in D ′(T) as r → 1, where the vr’s are defined as in (3.1) (see
for instance [20, Theorem 5.4]). Since u(z) → 0 as H � z → x for x ∈ R, we see
that g vanishes on T \ {1} in the sense of distributions. Now since supp(g) ⊂ {1},
standard distribution theory dictates that g =

∑n
k=0 akδ

(k)
1 in D ′(T) for some n ∈ N

and complex numbers a0, . . . , an ∈ C (see Hörmander [14, Theorem 2.3.4]). By
Corollary 3.7 we have that Pα[δ

(k)
1 ] = (iA)kPα for k ≥ 0. Passing to the Poisson

integral we have that

(5.2) v(z) =
n∑

k=0

ak(iA)kPα(z) =
( n∑

k=0

akhk,α(ϕ(z))
)
Pα(z)

for z ∈ D, where the last equality follows by Theorem 4.6. By Theorem 4.10 the
function hk,α is a linear combination of p0,α, . . . , pk,α. From (5.2) we conclude that

v(z) =
( n∑

k=0

bkpk,α(ϕ(z))
)
Pα(z), z ∈ D,

for some b0, . . . , bn ∈ C. Invoking Theorem 4.1 we see that

v(z) = ϕ′(z)−α/2
( n∑

k=0

cbk(Imϕ(z))
α+1pk,α(ϕ(z))

)
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for z ∈ D, where cϕ′(0)−α/2 = 1. A passage back to the function u yields (5.1)
with ck = cbk for k = 0, . . . , n. This completes the proof of the theorem. �

For α > −1 and n ∈ N, we denote by Vα,n the set of all functions u of the
form (5.1) for some c0, . . . , cn ∈ C, where the pk,α’s are as in (4.7). We also set

Vα =
∞⋃
n=0

Vα,n.

The space Vα,n is a complex vector space of finite dimension n + 1. Notice that
the set Vα is a complex vector space which is naturally filtered by the sets Vα,n

for n = 0, 1, . . . .

Observe that the conclusion of Theorem 5.1 says that u ∈ Vα. We next describe
the class V0 in some more detail.

Proposition 5.2. Let n ∈ N. Then a function u belongs to the space V0,n if
and only if it has the form

(5.3) u(z) =
n+1∑
k=1

ck Im(zk), z ∈ H,

for some c1, . . . , cn+1 ∈ C.

Proof. A calculation using the formula for a finite geometric sum shows that

pk,0(z) =
k∑

j=0

zk−jz̄j =
zk+1 − z̄k+1

z − z̄
.

Therefore

(Im z)pk,0(z) =
z − z̄
2i

zk+1 − z̄k+1

z − z̄
= Im(zk+1).

The result is now evident from definition of the space V0,n. �
We shall next investigate the order of growth of a function of the form

(5.4) uk,α(z) = (Im z)α+1pk,α(z), z ∈ H,

for some k ∈ N and α > −1, where pk,α is as in (4.7). From the proof of
Proposition 5.2 we have that

uk,0(z) = Im(zk+1), z ∈ C,

for k ∈ N.
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Proposition 5.3. Let uk,α be as in (5.4) for some k ∈ N and α > −1. Then

|uk,α(z)| ≤ max
0<θ<π

sink+2α+2(θ)|pk,α(e
iθ)|(|z|2/ Im(z))k+α+1

for z ∈ H. In particular, if u ∈ Vα,n for some n ∈ N, then u has order of growth at
most n + α + 1 at infinity.

Proof. Let z ∈ H andwrite z = teiθ with t > 0 and 0 < θ < π. By homogeneity
we have that

uk,α(z) = sinα+1(θ)pk,α(e
iθ)tk+α+1.

Notice also that |z|2/ Im(z) = t/ sin(θ). From these two facts we have that

uk,α(z) = sink+2α+2(θ)pk,α(e
iθ)(|z|2/ Im(z))k+α+1

for z ∈ H, where θ = arg z. This yields the conclusion of the proposition. �
The next result points out the significance of the class Vα.

Corollary 5.4. Let α > −1. Then a function u belongs to the class Vα if and

only if it is α-harmonic in H, has temperate growth at infinity and vanishes on the
real line in the sense that u(z) → 0 as H � z → x for every x ∈ R.

Proof. The if part is a restatement of Theorem 5.1. From Corollary 4.9 we
have that every function u ∈ Vα is α-harmonic in H. From Proposition 5.3 we
have that every function u ∈ Vα is of temperate growth at infinity. It is evident that
every function u ∈ Vα vanishes on the real line. �

Corollary 5.4 explains how the space Vα can be thought of as the class of
obstructions for the uniqueness problem forα-harmonic functions inHwith respect
to a vanishing Dirichlet boundary value on the real line and temperate growth at
infinity.

Lemma 5.5. Let u ∈ Vα,n be of the form (5.1) for some α > −1 and n ∈ N.
Then

lim
t→+∞ u(teiθ)/tn+α+1 = cn sinα+1(θ)pn,α(e

iθ)

for 0 < θ < π.

Proof. Let t > 0 and 0 < θ < π. By homogeneity we have that

u(teiθ) =
n∑

k=0

ck(sin θ)
α+1pk,α(e

iθ)tk+α+1.

The result now follows by a passage to the limit. �
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We shall dissect the space Vα using orders of growth at infinity. We say that a
function u in H has order of growth n + α + 1 at infinity if it satisfies an estimate of
the form

(5.5) |u(z)| ≤ C(|z|2/ Im(z))n+α+1

for z ∈ H with |z| > R, where C ≥ 0 and R > 1 are finite constants.

Lemma 5.6. Let u ∈ Vα for some α > −1. Let n ∈ N. Then u ∈ Vα,n if

and only if (5.5) holds. Moreover, there exists a constant C′ = C′
α,n,R such that

|ck| ≤ C′C for k = 0, 1, . . . , n whenever u ∈ Vα,n has the form (5.1) and C is as in

(5.5).

Proof. From Proposition 5.3 we know that (5.5) holds if u ∈ Vα,n. Assume
next that u ∈ Vα satisfies (5.5). We shall prove that u ∈ Vα,n. If u ∈ Vα,0 there is
nothing to prove. Assume therefore that u ∈ Vα,m and u �∈ Vα,m−1 for some m ∈ Z+.
An application of Lemma 5.5 with 0 < θ < π chosen such that pm,α(eiθ) �= 0 shows
that u has order of growth at least m + α + 1. Therefore m ≤ n, so that u ∈ Vα,n.

For fixed R > 1 we equip the space Vα,n with the semi-norm given by the
best constant C in (5.5). Another application of Lemma 5.5 shows that this latter
semi-norm is in fact a norm. The spaceVα,n is thus a normed complex vector space
of finite dimension n + 1. Since any two norms on such a space are equivalent, we
conclude that |ck| ≤ C′C for k = 0, 1, . . . , n whenever u ∈ Vα,n. �

We denote by D ′(R) the space of distributions on the real line R. An integrable
function f ∈ L1(R) is identified with the distribution

〈f, ϕ〉 =
∫ ∞

−∞
f (x)ϕ(x) dx, ϕ ∈ C∞

0 (R),

where C∞
0 (R) is the space of indefinitely differentiable test functions on R with

compact support. By uj → u in D ′(R) as j → ∞ we understand that

lim
j→∞〈uj, ϕ〉 = 〈u, ϕ〉

for every ϕ ∈ C∞
0 (R). A standard reference for distribution theory is Hörmander

[14].
We shall next extend the validity of Theorem 5.1 to allow for a distributional

boundary value.

Theorem 5.7. Let α > −1. Let u be an α-harmonic function in H which

is of temperate growth at infinity. Assume that limy→0+ u(· + iy) = 0 in D ′(R).
Then u ∈ Vα.
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Proof. The theorem is proved by a regularization argument. Let ψ ∈ C∞
0 (R)

be a non-negative compactly supported test function with
∫ ∞
−∞ψ(x) dx = 1 and set

ψε(x) = ψ(x/ε)/ε for x ∈ R and ε > 0. We consider the regularizations

uε(z) =
∫ ∞

−∞
u(z − t)ψε(t) dt, z ∈ H,

for ε > 0. A differentiation under the integral shows that the function uε is α-
harmonic in H. It is straightforward to check that uε(z) → 0 as H � z → x for
every x ∈ R. Using that u is of temperate growth at infinity it is straightforward to
check that

(5.6) |uε(z)| ≤ C(|z|2/ Im(z))n+α+1

for z ∈ H with |z| > R and 0 < ε < 1, where C ≥ 0 and R > 1 are finite constants
and n ∈ N. Notice also that u = limε→0 uε in H in the sense of normal convergence.

We now proceed to details. By Theorem 5.1 we have that uε ∈ Vα. From (5.6)
and Lemma 5.6 we have that uε ∈ Vα,n. Therefore

(5.7) uε(z) =
n∑

k=0

ck(ε)(Im z)α+1pk,α(z), z ∈ H,

for some c0(ε), . . . , cn(ε) ∈ C. Another application of Lemma 5.6 gives that
|ck(ε)| ≤ C′C for k = 0, 1, . . . , n, where C is as in (5.6) and C′ = C′

α,n,R is a positive
constant. By a compactness argument we can extract a subsequence ε = εj → 0 of
positive real numbers such that ck(εj) → ck as j → ∞ for k = 0, 1, . . . , n. The con-
clusion of the theorem now follows by setting ε = εj in (5.7) and letting j → ∞.�

We point out that the assumption in Theorem 5.7 is that

lim
y→0

∫ ∞

−∞
u(x + iy)ϕ(x) dx = 0

for every ϕ ∈ C∞
0 (R).

The case of usual harmonic functions deserves special mention.

Corollary 5.8. Let u be a harmonic function in H which is of temperate

growth at infinity. Assume that limy→0+ u(· + iy) = 0 in D ′(R). Then u ∈ V0.

We record also the following slight improvement of the if part of Lemma 5.6.

Proposition 5.9. Let u ∈ Vα for some α > −1. Let n ∈ N. Assume that

u(z) = o((|z|2/ Im(z))n+α+2)

as H � z → ∞ in the extended complex plane. Then u ∈ Vα,n.
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Proof. If u ∈ Vα,0 there is nothing to prove. Assume therefore that u ∈ Vα,m

and u �∈ Vα,m−1 for some m ∈ Z+. An application of Lemma 5.5 with 0 < θ < π

chosen such that pm,α(eiθ) �= 0 shows that u has order of growth at least m + α + 1
at infinity. Therefore m < n + 1, so that u ∈ Vα,n. �

Proposition 5.9 is included for the sake of convenience. We shall prove more
refined versions of Proposition 5.9 in later sections.

6 A uniqueness result for the case α �= 0

We now turn our attention to uniqueness results for α-harmonic functions in H. In
this section we study the case of parameters α > −1 such that α �= 0. The special
case of usual harmonic functions is investigated in later sections. We begin our
analysis with a study of the zeros of the polynomials pk,α.

A classical result of Eneström–Kakeya says that if

(6.1) p(z) =
n∑

k=0

akz
k

is an analytic polynomial of degree n ≥ 0 such that 0 ≤ ak ≤ ak+1 for 0 ≤ k < n,
then the zeros of p are all located in the closed unit disc D̄. An easy proof of this
result can be found in Gardner and Govil [12, Theorem 1.3].

Corollary 6.1. Let p be an analytic polynomial of the form (6.1) with positive

coefficients: ak > 0 for 0 ≤ k ≤ n. Set

r = min
0≤k<n

ak/ak+1 and R = max
0≤k<n

ak/ak+1.

Then the zeroes of p are all located in the annulus {z ∈ C : r ≤ |z| ≤ R}.
Proof. Wefirst show that the zeros of p are all located in the disc {z∈C : |z|≤R}.

Consider the polynomial g(z) = p(Rz). By assumption the polynomial g satisfies
the assumptions of the Eneström–Kakeya theorem quoted above. We conclude
that the zeros of g are all located in D̄. This yields that the zeros of p are all located
in the disc {z ∈ C : |z| ≤ R}.

We next show that the zeros of p are all located in the exterior disc
{z ∈ C : |z| ≥ r}. Consider the polynomial h(z) = znp(1/z). Notice that

h(z) =
n∑

k=0

an−kz
k.

By the result of the previous paragraph, the zeros of h are all located in the
disc {z ∈ C : |z| ≤ 1/r}. Therefore the zeros of p are all located in the exterior
disc {z ∈ C : |z| ≥ r}. �
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Our interest in zeros of polynomials stems from the following result.

Theorem 6.2. Let α > −1 and α �= 0. Let pk,α be as in (4.7) for some k ∈ N.

Then pk,α(eiθ) �= 0 for eiθ ∈ T.

Proof. By (4.7) it suffices to show that sk,α(eiθ) �= 0 for eiθ ∈ T, where sk,α is
as in (4.6). Set aj(α) = 1

j! (α + 1)j. Observe that

(6.2)
aj(α)

aj+1(α)
=

j + 1
α + j + 1

= 1 − α

α + j + 1

for 0 ≤ j < k.
Assume next that α > 0. In this case the quotients in (6.2) increase in j and we

have that aj(α)/aj+1(α) ≤ k/(α+k) for 0 ≤ j < k. By Corollary 6.1 the zeros of sk,α

are all located in the disc {z ∈ C : |z| ≤ k/(α + k)} which is compactly contained
in D.

Assume next that −1 < α < 0. In this case the quotients in (6.2) decrease in j

and we have that aj(α)/aj+1(α) ≥ 1/(α + 1) for 0 ≤ j < k. By Corollary 6.1 the
zeros of sk,α are all located in the exterior disc {z ∈ C : |z| ≥ 1/(α + 1)} which is
disjoint from D̄. �

Remark 6.3. We point out that the zero set of pk,0 intersects the unit circle if
k ≥ 1. In fact, from (4.6) we have that

sk,0(z) =
k∑

j=0

zj = (1 − zk+1)/(1 − z)

for k ∈ N.

We now consider the class Vα.

Theorem 6.4. Let u ∈ Vα for some α > −1 with α �= 0. Assume that there is
a sequence {zj} in H with |zj| → ∞ as j → ∞ such that

(6.3) lim
j→∞

u(zj)
(Im(zj))α+1

= 0.

Then u(z) = 0 for all z ∈ H.

Proof. We express u ∈ Vα in the form (5.1) for some n ∈ N and constants
c0, . . . , cn ∈ C, where the pk,α’s are as in (4.7). Recall that the polynomial pk,α

is homogeneous of degree k ∈ N. By Theorem 6.2 the polynomial pk,α has no
zeros on the unit circle. From these two properties of pk,α we have that the



UNIQUENESS THEOREMS 31

quotient |pk,α(z)|/|z|k is bounded from above and below by finite positive constants
uniformly in the punctured plane. From (6.3) we now have that

0 = lim
j→∞

u(zj)
pn,α(zj)(Im(zj))α+1

= cn.

Repeating the argument we conclude that ck = 0 for 0 ≤ k ≤ n. Therefore u(z) = 0
for all z ∈ H. �

We emphasize that condition (6.3) can be checked along any sequence {zj} in H

such that zj → ∞ in the extended complex plane C∞ as j → ∞.

We now turn to uniqueness theorems for α-harmonic functions with α �= 0. We
first prove Theorem 1.1 stated in the introduction.

Proof of Theorem 1.1. By assumption (1) (formula (1.2)) we can apply
Theorem 5.1 to conclude that u ∈ Vα. We next apply Theorem 6.4 to conclude that
u(z) = 0 for z ∈ H. �

Wenext extend the validity of Theorem1.1 to allow for a distributional boundary
value instead of (1.2).

Theorem 6.5. Let α > −1 and α �= 0. Let u be an α-harmonic function in H

which is of temperate growth at infinity.

(1)′ Assume that limy→0+ u(· + iy) = 0 in D ′(R).
(2) Assume that there is a sequence {zj} in H with zj → ∞ in C∞ as j → ∞

such that (6.3) holds.

Then u(z) = 0 for all z ∈ H.

Proof. In view of assumption (1)′ we can apply Theorem 5.7 to conclude that
u ∈ Vα. We next apply Theorem 6.4 to conclude that u(z) = 0 for z ∈ H. �

We close this section with a relaxed version of Theorem 6.4.

Theorem 6.6. Let u ∈ Vα for some α > −1 with α �= 0. Let n ∈ N. Assume

that there is a sequence {zj} in H with zj → ∞ in C∞ as j → ∞ such that

lim
j→∞

u(zj)
|zj|n+1(Im(zj))α+1

= 0.

Then u ∈ Vα,n.

The proof of Theorem 6.6 follows along the same lines as the proof of Theo-
rem 6.4. We omit the details.
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7 Harmonic functions vanishing along geodesics

We shall now turn to uniqueness results for classical harmonic functions in H

(α = 0). Recall the harmonic polynomials

uk,0(z) = Im(zk+1), z ∈ C,

for k ∈ N which all vanish on the real line R. Observe that the zero set of uk,0 is
a union of k + 1 lines passing through the origin. A treatment of the uniqueness
problem for classical harmonic functions along the lines of what we did in Section 6
thus calls for a more demanding vanishing condition at infinity. In this section we
shall consider vanishing conditions along geodesics in H, that is, along rays in H

that are parallel to the positive imaginary axis.
Let us first consider the class V0.

Theorem 7.1. Let u ∈ V0. Assume that

(7.1) lim
y→+∞ u(x + iy)/y = 0

for x = xj ∈ R (j = 1, 2) with x1 �= x2. Then u(z) = 0 for all z ∈ H.

Proof. We put u ∈ V0 on the form (5.3) for some c1, . . . , cn+1 ∈ C and n ∈ N.
By adding an extra term in (5.3) if necessary, we can arrange that n ≥ 1 is odd.
We shall prove that cn = cn+1 = 0. This will complete the proof of the theorem.

We now proceed to details. Let x ∈ R. From the binomial theorem we have
that

(x + iy)n+1 = (iy)n+1 + (n + 1)x(iy)n + O(yn−1)

= (−1)(n+1)/2yn+1 + i(n + 1)(−1)(n−1)/2xyn + O(yn−1)

as y → +∞. Passing to the imaginary part we have that

(7.2) Im((x + iy)n+1) = (n + 1)(−1)(n−1)/2xyn + O(yn−1)

as y → +∞. A similar consideration shows that

(7.3) Im((x + iy)n) = (−1)(n−1)/2yn + O(yn−1)

as y → +∞.
We now return to the function u. From (7.2) and (7.3) we have that

lim
y→+∞ u(x + iy)/yn = cn+1(n + 1)(−1)(n−1)/2x + cn(−1)(n−1)/2
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for x ∈ R. From (7.1) we have that

cn+1(n + 1)(−1)(n−1)/2x + cn(−1)(n−1)/2 = 0

for x = xj (j = 1, 2). Since x1 �= x2, we conclude that cn+1 = cn = 0. �
We next turn to uniqueness theorems for harmonic functions.

Theorem 7.2. Let u be a harmonic function in the open upper half-plane H

which is of temperate growth at infinity.

(1) Assume that u(z) → 0 as H � z → x for every x ∈ R.
(2) Assume that

lim
y→+∞ u(x + iy)/y = 0

for x = xj ∈ R (j = 1, 2) with x1 �= x2.

Then u(z) = 0 for all z ∈ H.

Proof. From Theorem 5.1 we have that u ∈ V0. An application of Theorem
7.1 yields that u(z) = 0 for z ∈ H. �

Recall the definition of uk,α in (5.4) and let a ∈ R. We point out that the function

u(z) = u1,0(z − a) = Im((z − a)2) = 2(x − a)y, z = x + iy ∈ C,

is of quadratic growth, harmonic, and vanishes on the lines x = a and y = 0. Thus,
the vanishing assumption (2) in Theorem 7.2 can not be relaxed to vanishing along
one geodesic x = a only.

We next extend the validity of Theorem7.2 to allow for a distributional boundary
value in (1).

Theorem 7.3. Let u be a harmonic function in the open upper half-planeH
which is of temperate growth at infinity.

(1)′ Assume that limy→0+ u(· + iy) = 0 in D ′(R).
(2) Assume that

lim
y→+∞ u(x + iy)/y = 0

for x = xj ∈ R (j = 1, 2) with x1 �= x2.

Then u(z) = 0 for all z ∈ H.

Proof. From Theorem 5.7 we have that u ∈ V0. An application of Theorem
7.1 yields that u(z) = 0 for z ∈ H. �
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The results of this section together with corresponding results from Section 6
yield considerable advancement from a recent result by Carlsson and Wittsten [9,
Corollary 1.9 ]. In fact, instead of (6.3) or (7.1) those authors considered functions
such that

lim
y→∞ u(x + iy)/yα+1 = 0

for all |x| < δ, where δ > 0.
The importance of condition (7.1) for two distinct geodesics brings to mind an

analogous situation in the study non-tangential limits. If u is a bounded harmonic
function in H such that

lim
r→0

u(reiθ1) = L = lim
r→0

u(reiθ2)

for some 0 < θ1 < θ2 < π, then u has non-tangential limit L at the origin (see
Axler et al. [4, Theorem 2.10]). This latter result can be thought of as a harmonic
function version of a classical result of Lindelöf (see Rudin [21, Theorem 12.10]).

8 Harmonic functions vanishing along rays

In this section we continue our study of uniqueness results for classical harmonic
functions in H (α = 0). We now consider functions vanishing along rays in H

emanating from the origin, that is, along rays of the form {teiθ : t > 0}, where
0 < θ < π.

We shall use a concept of admissible function of angles that we proceed to
define.

Definition 8.1. Let E ⊂ (0, π) be a set and η : E → Z+ a positive integer
valued function on E. We say that the function element (E, η) is an admissible
function of angles if it has the property that for every k ∈ Z+ there exists θ ∈ E
such that sin(kθ) �= 0 and k ≥ η(θ).

Our interest in admissible functions of angles stems from the following theorem.

Theorem 8.2. Let u ∈ V0. Assume that there is an admissible function of

angles (E, η) such that

lim
t→+∞ u(teiθ)/tη(θ) = 0

for every θ ∈ E. Then u(z) = 0 for all z ∈ H.

Proof. We put u ∈ V0 on the form

u(z) =
n∑

k=1

ck Im(zk), z ∈ H,
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for some c1, . . . , cn ∈ C and n ∈ Z+. It suffices to show that cn = 0. For such
functions,

lim
t→+∞ u(eiθt)/tn = lim

t→+∞

n∑
k=1

ck Im(eikθtk)/tn = cn sin(nθ).

Since (E, η) is an admissible function of angles we may choose θ ∈ E such that
sin(nθ) �= 0 and η(θ) ≤ n. It follows that

cn sin(nθ) = lim
t→+∞

u(teiθ)
tη(θ)

tη(θ)

tn
= 0.

Since sin(nθ) �= 0 we conclude that cn = 0. �
We next turn to uniqueness results.

Theorem 8.3. Let u be a harmonic function in the open upper half-plane H

which is of temperate growth at infinity.

(1) Assume that u(z) → 0 as H � z → x for every x ∈ R.

(2) Assume that there is an admissible function of angles (E, η) such that

lim
t→+∞ u(teiθ)/tη(θ) = 0

for every θ ∈ E.
Then u(z) = 0 for all z ∈ H.

Proof. From Theorem 5.1 we have that u ∈ V0. An application of Theorem
8.2 yields that u(z) = 0 for z ∈ H. �

Wenext extend the validity of Theorem8.3 to allow for a distributional boundary
value in (1).

Theorem 8.4. Let u be a harmonic function in the open upper half-plane H

which is of temperate growth at infinity.

(1)′ Assume that limy→0+ u(· + iy) = 0 in D ′(R).
(2) Assume that there is an admissible function of angles (E, η) such that

lim
t→+∞ u(teiθ)/tη(θ) = 0

for every θ ∈ E.

Then u(z) = 0 for all z ∈ H.

Proof. From Theorem 5.7 we have that u ∈ V0. An application of Theorem
8.2 yields that u(z) = 0 for z ∈ H. �
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Let us comment on the generic situation.

Corollary 8.5. Let u be a harmonic function in the open upper half-plane H

which is of temperate growth at infinity.

(1)′ Assume that limy→0+ u(· + iy) = 0 in D ′(R).
(2) Assume that u satisfies the vanishing condition that limt→+∞ u(teiθ)/t = 0 for

some 0 < θ < π which is not a rational multiple of π.

Then u(z) = 0 for all z ∈ H.

Proof. Let E = {θ} and η(θ) = 1. Then (E, η) is an admissible function of
angles for which condition (2) of Theorem 8.4 holds. Thus, an application of the
mentioned theorem gives the result. �

Theorem 1.2 in the introduction is proved in the same way as Corollary 8.5 by
using Theorem 8.3 instead of Theorem 8.4.

The examples

uk(z) = Im(zk),

for k = 1, 2, . . . , show that the arithmetic condition on θ ∈ (0, π) in Corollary 8.5
is to the point. Clearly, the polynomial uk vanishes on R. Moreover, if θ = m

n π for
some integers m and n with n ≥ 1, then the function un vanishes on the line eiθR.

Corollary 8.6. Let u be a harmonic function in the open upper half-plane H

which is of temperate growth at infinity. Let τ = m
n π with m, n ∈ Z+ relatively

prime and m < n.

(1)′ Assume that limy→0+ u(· + iy) = 0 in D ′(R).
(2) Assume that limt→+∞ u(teiτ)/t = 0.

(3) Assume that limt→+∞ u(teiθ)/tn = 0 for some 0 < θ < π which is not a
rational multiple of π.

Then u(z) = 0 for all z ∈ H.

Proof. Let E = {τ, θ} and set η(τ) = 1 and η(θ) = n. Then (E, η) is an
admissible function of angles such that condition (2) of Theorem 8.4 is satisfied.
Applying the mentioned theorem thus gives the result. �

It might be worthwhile to state the special case of Corollary 8.6 obtained when
τ = π/2:

Corollary 8.7. Let u be a harmonic function in the open upper half-plane H

which is of temperate growth at infinity.

(1)′ Assume that limy→0+ u(· + iy) = 0 in D ′(R).
(2) Assume that u satisfies the vanishing condition that limy→+∞ u(iy)/y = 0.
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(3) Assume that u satisfies the vanishing condition that limt→+∞ u(teiθ)/t2 = 0
for some 0 < θ < π which is not a rational multiple of π.

Then u(z) = 0 for all z ∈ H.

Let us elaborate some more on the theme of Corollary 8.7.

Corollary 8.8. Let u be a harmonic function in the open upper half-plane H

which is of temperate growth at infinity.
(1)′ Assume that limy→0+ u(· + iy) = 0 in D ′(R).
(2) Assume that

lim
t→+∞ u(tei2−kπ)/t2

k−1
= 0

for k = 1, 2, . . . .
Then u(z) = 0 for all z ∈ H.

Proof. Let E = {2−kπ : k = 1, 2, . . . } and set η(2−kπ) = 2k−1 for
k = 1, 2, . . . . From Theorem 9.1 in the next section we have that (E, η) is an
admissible function of angles. Clearly condition (2) of Theorem 8.4 is satisfied.
Applying the mentioned theorem thus gives the result. �

9 Admissible functions of angles

In this section we shall provide some constructions of admissible functions of
angles (see Theorems 9.1 and 9.2). Examples of such function elements are
needed for successful applications of Theorems 8.3 or 8.4. The set of admissible
functions of angles is equipped with a natural partial order. We show that the
admissible functions of angles constructed are in fact the minimal elements in the
partial order (see Theorem 9.5). We also show that every admissible function of
angles has a lower bound which is minimal (see Theorem 9.3). The construction
uses some notions from ideal theory for the ring of integers Z.

Let θ ∈ R be a real number and consider the set of integers

I(θ) = {m ∈ Z : sin(mθ) = 0}.
Using standard properties of the sine function, it is straightforward to check that
the set I(θ) is an ideal in Z. Since the ring Z is a principal ideal domain, we have
that

I(θ) = d(θ)Z

for some integer d(θ). Since the units in Z are ±1, this integer d(θ) is uniquely
determined by the condition that d(θ) ≥ 0. This defines a function d : θ �→ d(θ)
from R to N.
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We observe that d(θ) = 0 if and only if θ ∈ R is not a rational multiple of π.
Furthermore, if θ = r

sπ with r ∈ Z and s ∈ Z+ relatively prime, then d(θ) = s.
These assertions are straightforward to check.

We denote by lcm(a1, . . . , an) the least common multiple of integers a1, . . . , an.
Recall that lcm(a1, . . . , an) is the non-negative generator of the ideal

⋂n
k=1 akZ:

lcm(a1, . . . , an)Z =
n⋂

k=1

akZ.

The symbol a|b means that the integer b is divisible by the integer a in the usual
sense that b = ac for some integer c.

We are now ready for the construction of admissible functions of angles.

Theorem 9.1. Let {θk}∞k=1 be an infinite sequence of rational multiples of π

from the interval (0, π) such that

d(θk) � lcm(d(θ1), . . . , d(θk−1))

for k = 2, 3, . . . . Set E = {θk : k = 1, 2, . . . } and define η : E → Z+ by η(θ1) = 1
and

η(θk) = lcm(d(θ1), . . . , d(θk−1))

for k = 2, 3, . . . . Then (E, η) is an admissible function of angles.

Proof. Observe first that the requirements on the sequence {θk}∞k=1 guarantee
that

2 ≤ lcm(d(θ1), . . . , d(θj)) < lcm(d(θ1), . . . , d(θk))

for 1 ≤ j < k. Thus θj �= θk if j �= k and
⋂∞

k=1 d(θk)Z = {0}.
The function η : E → Z+ is well-defined since the θk’s are distinct. We proceed

to prove that (E, η) is an admissible function of angles. Let m ∈ Z+ be a positive
integer. Since

⋂∞
k=1 d(θk)Z = {0}, there exists k ∈ Z+ such that m �∈ d(θk)Z.

Furthermore, by the well-ordering of positive integers we can also arrange that
m ∈ d(θj)Z for 1 ≤ j < k. Since m �∈ d(θk)Z, we have that sin(mθk) �= 0. If k = 1,
we clearly have that m ≥ 1 = η(θ1). Assume next that k ≥ 2. Since m ∈ d(θj)Z for
1 ≤ j < k, we have

m ∈
k−1⋂
j=1

d(θj)Z = lcm(d(θ1), . . . , d(θk−1))Z,

which allows us to conclude that m ≥ lcm(d(θ1), . . . , d(θk−1)) = η(θk). This
completes the proof of the theorem. �
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Theorem9.1 provides amultitude of examples of admissible functions of angles.
For example, let θk = nk

2kπ with 1 ≤ nk < 2k odd for k = 1, 2, . . . . Now d(θk) = 2k

for k = 1, 2, . . . , which makes evident that the assumption of Theorem 9.1 is
satisfied. In this case η(θk) = 2k−1 for k = 1, 2, . . . .

We next turn to the construction of admissible functions of angles (E, η) with E

finite.

Theorem 9.2. Let {θk}n
k=1 be a finite sequence of rational multiples of π from

the interval (0, π) such that

d(θk) � lcm(d(θ1), . . . , d(θk−1))

for 2 ≤ k ≤ n, where n ∈ N. Let θn+1 ∈ (0, π) be an irrational multiple of π. Set
E = {θk : 1 ≤ k ≤ n + 1} and define η : E → Z+ by η(θ1) = 1 and

η(θk) = lcm(d(θ1), . . . , d(θk−1))

for 2 ≤ k ≤ n + 1. Then (E, η) is an admissible function of angles.

Proof. The function η : E → Z+ is well-defined since the θk’s are distinct.
We proceed to prove that (E, η) is an admissible function of angles. Let m ∈ Z+ be
a positive integer. If m ≥ lcm(d(θ1), . . . , d(θn)), then it is straightforward to check
that sin(mθn+1) �= 0 and m ≥ η(θn+1).

It remains to consider the case 1 ≤ m < lcm(d(θ1), . . . , d(θn)). Since

n⋂
k=1

d(θk)Z = lcm(d(θ1), . . . , d(θn))Z,

there exists k ∈ Z+ with 1 ≤ k ≤ n such that m �∈ d(θk)Z and m ∈ d(θj)Z for
1 ≤ j < k. Since m �∈ d(θk)Z, we have that sin(mθk) �= 0. If k = 1, we clearly have
that m ≥ 1 = η(θ1). Assume next that k≥2. Since m∈d(θj)Z for 1≤ j<k, we have

m ∈
k−1⋂
j=1

d(θj)Z = lcm(d(θ1), . . . , d(θk−1))Z,

which allows us to conclude that m ≥ lcm(d(θ1), . . . , d(θk−1)) = η(θk). This yields
the conclusion of the theorem. �

We point out that the case of an empty sequence {θk}n
k=1 (n = 0) in Theorem 9.2

yields the admissible function of angles used in the proof of Corollary 8.5.
Let Ej ⊂ (0, π) and ηj :Ej →Z+ (j=1, 2) be such that E1 ⊂E2 and η1(θ)≥η2(θ)

for θ ∈ E1. If (E1, η1) is an admissible function of angles, then so is (E2, η2). For
applications of Theorems 8.3 or 8.4 it is of interest to have an admissible function
of angles (E, η) which is as economical as possible in this respect.
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Let us denote by A the set of all admissible functions of angles. We equip the
setAwith a relation (≤) defined by (E1, η1) ≤ (E2, η2) if E1 ⊂ E2 andη1(θ) ≥ η2(θ)
for θ ∈ E1. It is straightforward to check that this relation gives the setA a structure
of a partial order.

We denote by A0 the subset of A consisting of those admissible functions of
angles (E, η) that are constructed as in Theorem 9.1 or 9.2.

We next prove that every element in A has a lower bound from the set A0.

Theorem 9.3. Let (E1, η1) ∈ A be arbitrary. Then there exists (E, η) ∈ A0

such that (E, η) ≤ (E1, η1) in A.

Proof. The proof relies on a construction of a suitable sequence {θk} from
the set E1 ⊂ (0, π). Since (E1, η1) is an admissible function of angles there exists
θ ∈ E1 such that η1(θ) = 1. We set θ1 = θ. If θ1 is an irrational multiple of π,
then (E, η) ≤ (E1, η1) in A, where E = {θ1} and η(θ1) = 1 are as in Theorem 9.2
with n = 0 there. If θ1 is a rational multiple of π, then we proceed to construct an
element θ2 as described in the following paragraph.

Assume that θ1, . . . , θn ∈ E1 are rational multiples of π such that

d(θk) � lcm(d(θ1), . . . , d(θk−1))

and
η1(θk) ≤ lcm(d(θ1), . . . , d(θk−1))

for 2 ≤ k ≤ n, where n ≥ 1. Let m = lcm(d(θ1), . . . , d(θn)). Clearly m ∈ Z+.
Since (E1, η1) is an admissible function of angles there exists θ ∈ E1 such that
sin(mθ) �= 0 and m ≥ η1(θ). We set θn+1 = θ. If θn+1 is an irrational multiple
of π, then the construction from Theorem 9.2 provides us with a function of angles
(E, η) ∈ A0 such that (E, η) ≤ (E1, η1) in A.

Assume next that θn+1 is a rational multiple of π. Since sin(mθn+1) �= 0, we have

m �∈ I(θn+1) = d(θn+1)Z,

which gives that d(θn+1) � m = lcm(d(θ1), . . . , d(θn)). Notice also that the in-
equality η1(θn+1) ≤ lcm(d(θ1), . . . , d(θn)) is evident from construction. We are
now in position to repeat the procedure from the previous paragraph.

Unless the above procedure terminates in a finite number of steps, the principle
of induction provides us with an infinite sequence {θk}∞k=1 of rational multiples of π
from the set E1 satisfying the assumptions of Theorem 9.1. The construction from
Theorem 9.1 now provides us with an admissible function of angles (E, η) ∈ A0

such that (E, η) ≤ (E1, η1) in A. �
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Recall that an element m in a partial order M is called minimal (in M) if it has
the property that x ∈ M and x ≤ m implies that x = m.

We next prove that the admissible functions of angles (E, η) from the set A0 are
minimal elements in A.

Lemma 9.4. Let (E, η) ∈ A0. Let (E1, η1) ∈ A be such that (E1, η1) ≤ (E, η)
in A. Then (E1, η1) = (E, η).

Proof. We consider the case when (E, η) is as in Theorem 9.1. The remaining
case when (E, η) is as in Theorem 9.2 is similar and therefore omitted. By
construction we have that η(θ1) = 1, η(θj) < η(θk) for 1 ≤ j < k and sin(η(θk)θj) = 0
for 1 ≤ j < k. We need to prove that θk ∈ E1 and η1(θk) = η(θk) for k = 1, 2, . . . .
We proceed by induction.

Since (E1, η1) is an admissible function of angles there exists θ ∈ E1 such
that η1(θ) = 1. Since (E1, η1) ≤ (E, η) we have that θ = θj for some j ∈ Z+ and
η(θj) = 1. The condition η(θj) = 1 forces j = 1. We have shown that θ1 ∈ E1

and η1(θ1) = η(θ1) = 1.

Assume next that θj ∈ E1 and η1(θj) = η(θj) for 1 ≤ j < k, where k ≥ 2. We
shall prove that θk ∈ E1 and η1(θk) = η(θk). Let m = η(θk) ∈ Z+. Since (E1, η1)
is an admissible function of angles, there exists θ ∈ E1 such that sin(mθ) �= 0
and m ≥ η1(θ). Since (E1, η1) ≤ (E, η) we have that θ = θj for some j ∈ Z+

with η1(θj) ≥ η(θj). The inequality η(θj) ≤ η(θk) gives that 1 ≤ j ≤ k. The condi-
tion sin(mθj) �= 0 now forces j = k. We have shown that θk ∈ E1 and η1(θk) = η(θk).
The conclusion of the lemma now follows by induction. �

We are now in position to calculate the minimal elements in A.

Theorem 9.5. The minimal elements in A are exactly those that belong to the

set A0.

Proof. By Lemma 9.4 we know that the admissible functions of angles (E, η)
from the setA0 are minimal elements inA. We proceed to show that every minimal
element in A has such form.

Let (E1, η1) ∈ A be minimal in A. By Theorem 9.3 there exists (E, η) ∈ A0

such that (E, η) ≤ (E1, η1) in A. Since (E1, η1) is minimal in A, we conclude that
(E, η) = (E1, η1). �
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