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Abstract. In this article, we prove a dimension-free upper bound for the
Lp-norms of the vector of Riesz transforms in the rational Dunkl setting. Our main
technique is the Bellman function method adapted to the Dunkl setting.

1 Introduction

In the seminal article [22], Charles F. Dunkl defined new commuting differential-
difference operators

Tξ f (x) = ∂ξ f (x) +
∑
α∈R

k(α)
2

〈α, ξ〉 f (x) − f (σα(x))
〈α, x〉

associated with a finite reflection group G which is related to a root system R

on a Euclidean space R
N . Here ξ ∈ R

N , σα denotes the reflection with respect
to the hyperplane orthogonal to the root α ∈ R, and k : R → C is a G-invariant
function (see Section 2 for details). The Dunkl operators are generalizations of
the directional derivatives (in fact, they are ordinary partial derivatives for k ≡ 0),
however, in general, they are non-local operators. They turn out to be a key
tool in the study of special functions with reflection symmetries and allow to
build up the framework for the theory of special functions and integral transforms
in several variables related with reflection groups in [21]–[23]. Afterwards, the
theory was studied and developed by many mathematicians from many different
points of view. Beside the special functions and mathematical analysis, the Dunkl
theory has deep connections with the other branches of mathematics, for instance
probability theory, mathematical physics, and algebra.

The aim of the article is to study the Riesz transforms in the rational Dunkl
setting defined as follows.
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Definition 1.1. Let f ∈ S(RN) and j ∈ {1, . . . ,N}. The Riesz transforms Rj

in the Dunkl setting are defined by

(1.1) F(Rjf )(ξ) = −i
ξj

‖ξ‖ (Ff )(ξ),

whereF is the Dunkl transform (see (2.9)). The vector of the Riesz transforms
in the Dunkl setting is defined by

(1.2) Rf (x) =
( N∑

j=1

|Rjf (x)|2
)1/2

.

Here and subsequently, S(RN) denotes the Schwartz class functions.

The Riesz transforms in the Dunkl setting were introduced in [56, Theorem5.3].
The following theorem was proved in [1, Theorem 3.3].

Theorem 1.2 ([1, Theorem 3.3]). Let 1 < p < ∞. The Riesz transforms,

defined initially on S(RN), extend to bounded operators Lp(dw) �−→ Lp(dw), where
dw is the measure associated with the root system R and the multiplicity function k

(see (2.2) and Section 2 for details).

Moreover, it can be checked by using the Dunkl transform (see Lemma 2.5)
that

(1.3) Rjf = −Tj(−�k)
−1/2f

for f ∈ L2(dw), where �k =
∑N

j=1 T2
ej

is the Dunkl Laplacian. Here and subse-
quently, {ej}1≤j≤N denote the canonical orthonormal basis in R

N .
A well-known result concerning the classical Riesz transforms, proved by

E. M. Stein in [52], stated that in the case k ≡ 0, there are upper bounds for the
Lp-norm of the vector of the Riesz transforms independent of the dimension N.
Then it was proved that, in fact, the Lp-norm of the vector of the Riesz transforms is
controlled by C max(p, p

p−1 ), whereC > 0 is independent of p and the dimension N;
see [4, 24]. At this point, it is worth mentioning that in the case k ≡ 0, the norms
of the vector of the Riesz transforms are still not known (see [5, 18, 33] for the
some results concerning the subject).

The aim of the current paper is to prove the bounds for Lp(dw)-norms of the
vector of Riesz transforms in that spirit in the rational Dunkl setting, i.e., the case
of k �≡ 0 and for any root system R.

The main goal of this paper is to prove the following theorem. Recall that the
measurable function is G-invariant, if for almost all x ∈ R

N and σ ∈ G we have

f (σ(x)) = f (x)

(see Section 2 for the definition of the Weyl group G).
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Theorem 1.3. Let p, q > 1 be such that 1
p + 1

q = 1. Set p∗ = max(p, q). Then

for all f ∈ Lp(dw) we have

(1.4) ‖Rf‖Lp(dw) ≤ 144(p∗ − 1)
(∑

α∈R

k(α) + 27
)

‖f‖Lp(dw).

Moreover, for all f ∈ Lp(dw), which are G-invariant, we have

(1.5) ‖Rf‖Lp(dw) ≤ 144(p∗ − 1)‖f‖Lp(dw).

Our second main goal in this paper will be to prove a different version of
Theorem 1.3 in the one-dimensional case. If N = 1, then there is just one Riesz
transform (Dunkl Hilbert transform), which will be denoted by H, i.e.,

(1.6) F(Hf )(ξ) = −i
ξ

|ξ| (Ff )(ξ), ξ ∈ R
N.

Theorem 1.4. Assume that N = 1. Let p, q > 1 be such that 1
p + 1

q = 1. Set

p∗ = max(p, q). Then for all f ∈ Lp(dw) we have

(1.7) ‖Hf‖Lp(dw) ≤ 1440(p∗ − 1)‖f‖Lp(dw).

The dimension free estimate for a vector of Riesz transforms has been studied
by many authors. For instance, the estimates of that spirit for the Riesz transforms
and the vector of the Riesz transforms are considered in the following contexts:

• Ornstein–Uhlenbeck operator (see [3, 10, 15, 18, 28, 29, 30, 39, 47]);
• Laguerre operator (see [26, 31, 37, 42, 54, 59]);
• Jacobi operator (see [43, 44, 45, 53]);
• Harmonic oscillator (see [14, 20, 32, 35, 36]);
• Bessel operator (see [6]);
• Grushin operator (see [51]);
• General context of orthogonal expansions (see [25, 60]);
• Weighted Riesz transforms (see [17]);
• Noncommutative Riesz transforms (see [34]).
The main tool that is used in the current paper is the Bellman function method

(see Section 4). The founder of the Bellman function technique is Donald
L. Burkholder (see [7, 8, 9]) who developed this technique in probability the-
ory and found a lot of very important Bellman functions (which were usually
called “auxiliary functions” there). Then this method was used and developed by
many mathematicians in probability theory. The term “Bellman function” was
introduced by Nazarov, Treil and Volberg in the mid-90s. Their paper [40] was
important from the point of view of implementation of the methods in analysis and
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explanation of its links with the control theory. For more information concerning
the history, development, and many various contexts in which the Bellman function
technique was explored we refer the reader to the books [46] and [57]. From the
point of view of the analytic results discussed in this article, it is worth mentioning
the series of papers by Dragičević and Volberg [18, 19, 20], and Carbonaro and
Dragičević [10, 11, 12, 13], where the approach based on carefully studying the
properties of the concrete Bellmann function was developed.

Let us discuss some difficulties in Dunkl analysis, which distinguish it from
the classical setting k ≡ 0. As it was pointed out in [55], one of the most serious
problems in the Dunkl analysis lay in the lack of knowledge about generalized
translations τx, x ∈ R

N , which generalize the ordinary translation of the function
f �−→ f (· − x). It was proved that for some root systems R the operators τx do not
preserve positive functions and the boundedness of τx on Lp(dw)-spaces (p �= 2)
becomes an open problem in the Dunkl analysis. In the context of this paper, we
overcome this difficulty using recently proved upper bounds for the Dunkl Poisson
kernel (see [2]).

Looking from the point of view of the current paper, let us discuss another
difficulty regarding the Dunkl operators. The Dunkl operators Tξ do not satisfy the
Leibniz rule in the usual sense, i.e., the formula

Tξ(fg)(x) = f (x)Tξg(x) + Tξ f (x)g(x)

holds just in specific cases, e.g., if f or g is radial. In general case, the formula for
Tξ(fg) contains summands of local and non-local character. The analysis becomes
more complicated when we compose two or more Dunkl operators, which is the
case when we are trying to adapt the Bellman function method.

At this point, it is also worth mentioning that in the Dunkl setting the explicit
formulas for �kup for p ∈ [1,∞) and u ∈ S(RN) seem to be of a quite different
nature than in the case k ≡ 0. In order to elaborate the case of p = 2, let us consider
the Dunkl version of the carré du champ operator:

�k(f, g) =
1
2
(�k(fg) − f�kg − g�kf ).

As noticed in [58], we have

∫
RN

�k(f, g) dw =
∫
RN

N∑
j=1

TjfTjg dw,

but the identity
∑N

j=1 TjfTjg ≡ �k(f, g) is not true if k �≡ 0, which can be checked
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by the explicit calculation:

�k(f, g)(x) = 〈∇f (x),∇g(x)〉 +
∑
α∈R

k(α)
2

(f (x) − f (σα(x)))(g(x) − g(σα(x)))
〈α, x〉2

(see also [27] for a more general calculation). In the current paper, following the
approach presented in [20], we obtain an explicit formula for �k applied to the
Bellman function, which turns out to be closely related to the known formulas
for �kup. Therefore, the Bellman approach has to be adapted to this specific
setting.

Acknowledgments. The authorwould like to thankBłażejWróbel and Jacek
Dziubański for their helpful comments and suggestions, and Charles Dunkl for
pointing out some references. The authors thank the anonymous reviewer for a
careful reading of the manuscript and for helpful comments which improved the
presentation of the paper.

2 Basic definitions of the Dunkl theory

In this section, for the convenience of the reader, we present basic facts concerning
the theory of the Dunkl operators. For details we refer the reader to [22], [49],
and [50]. The reader who is familiar with the Dunkl theory can omit this section
and proceed to Subsection 3.2.

We consider the Euclidean space R
N with the scalar product 〈x, y〉 =

∑N
j=1 xjyj,

where x = (x1, . . . , xN), y = (y1, . . . , yN), and the norm ‖x‖2 = 〈x, x〉. The
number N will be fixed throughout this paper. For a nonzero vector α ∈ R

N , the
reflection σα with respect to the hyperplane α⊥ orthogonal to α is given by

(2.1) σα(x) = x − 2
〈x, α〉
‖α‖2 α.

In this paper we fix a normalized root system inR
N , that is, a finite set R ⊂ R

N \{0}
such thatR∩αR = {±α}, σα(R) = R, and ‖α‖ =

√
2 for allα ∈ R. Thefinite groupG

generated by the reflections σα, α ∈ R is called the Weyl group (reflection
group) of the root system. A multiplicity function is a G-invariant function
k : R → C which will be ≥ 0 throughout this paper. Let

(2.2) dw(x) =
∏
α∈R

|〈x, α〉|k(α) dx

be the associated measure in R
N , where, here and subsequently, dx stands for the

Lebesgue measure in RN . For a Lebesgue measurable set A we denote

w(A) =
∫

A
dw(x).
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There is a constant C > 0 such that

(2.3) C−1w(B(x, r)) ≤ rN
∏
α∈R

(|〈x, α〉| + r)k(α) ≤ Cw(B(x, r)),

so dw(x) is doubling, that is, there is a constant C > 0 such that

(2.4) w(B(x, 2r)) ≤ Cw(B(x, r)) for all x ∈ R
N, r > 0.

Moreover, since the function w is G-invariant, for all σ ∈ G we have

(2.5)
∫
RN

f (σ(x)) dw(x) =
∫
RN

f (x) dw(x).

For ξ ∈ R
N , the Dunkl operators Tξ are the following k-deformations of the

directional derivatives ∂ξ by a difference operator:

(2.6) Tξ f (x) = ∂ξ f (x) +
∑
α∈R

k(α)
2

〈α, ξ〉 f (x) − f (σα(x))
〈α, x〉 .

The Dunkl operators Tξ , which were introduced in [22], commute and are skew-
symmetric with respect to the G-invariant measure dw. Let {ej}1≤j≤N denote the
canonical orthonormal basis in R

N and let Tj = Tej . As usual, for every multi-index

β = (β1, β2, . . . , βN) ∈ N
N
0 = (N ∪ {0})N,

we set |β| =
∑N

j=1 βj and

∂β = ∂β1
e1

◦ ∂β2
e2

◦ · · · ◦ ∂βN
eN

,

where {e1, e2, . . . , eN} is the canonical basis ofRN . The additional subscript x in ∂α
x

means that the partial derivative ∂α is taken with respect to the variable x ∈ RN .
By ∇x f we denote the gradient of the function f with respect to the variable x.

The following fundamental theorem was proved by Ch. Dunkl.

Theorem 2.1 ([23]). The Dunkl operators are skew-symmetric with respect
to the measure dw. More precisely, for any ξ ∈ RN, f ∈ S(RN), and g ∈ C1

b(R
N)

(here and subsequently, C1
b(R

N) denotes the set of bounded functions with bounded

and continuous partial derivatives), we have the following integration-by-parts
formula:

(2.7)
∫
RN

Tξ f (x)g(x) dw(x) = −
∫
RN

f (x)Tξg(x) dw(x).
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Remark 2.2. Note that (2.7) holds also if f ∈ C∞
c (RN) and g ∈ C1(RN). In

order to justify this fact, it is enough to take ϕ ∈ C∞
c (RN) such that ϕ ≡ 1 on

A =
⋃
σ∈G

σ(supp f ).

It follows from (2.6) that Tξ f ≡ 0 and f ≡ 0 on R
N \ A. Hence, by (2.7) we have∫

RN
Tξ f (x)g(x) dw(x) =

∫
RN

Tξ f (x)(ϕg)(x) dw(x)

= −
∫
RN

f (x)Tξ(ϕg)(x) dw(x) = −
∫
RN

f (x)Tξg(x) dw(x).

We will also need the following technical lemma, which is well-known. We
provide the sketch of its proof for the sake of completeness.

Lemma 2.3. For any β ∈ NN
0 there is a constant Cβ > 0 such that for all

f ∈ C∞(RN) we have

‖Tβf‖L∞ ≤ Cβ

∑
β′∈NN

0 , |β′ |=|β|
‖∂β′

f‖L∞ .

Proof. By the definition of Tj and by the fundamental theorem of calculus,
for all f ∈ C1(RN), we have

Tjf (x) = ∂jf (x) − ∑
α∈R

k(α)
2

αj〈x, α〉−1
∫ 1

0

d
dt

(φ(x − 2tα‖α‖−2〈x, α〉)) dt

= ∂jf (x) +
∑
α∈R

k(α)
2

αj

∫ 1

0
〈(∇xf )(x − 2tα‖α‖−2〈x, α〉), α〉 dt

(cf. [50, page 9]). Consequently, for any β ∈ N
N
0 there is a constant C > 0 such

that for all f ∈ C|β|+1(RN) and j ∈ {1, . . . ,N} we have

(2.8) sup
x∈RN

|∂βTjf (x)| ≤ C sup
x∈RN

‖∇x∂
βf (x)‖.

The claim follows from (2.8) by the induction on |β|. �
For fixed y ∈ R

N the Dunkl kernel E(x, y) is a unique analytic solution to the
system

Tξ f = 〈ξ, y〉f, f (0) = 1.

The function E(x, y), which generalizes the exponential function e〈x,y〉, has the
unique extension to a holomorphic function on CN × CN .
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The Dunkl transform is defined by

(2.9) Ff (ξ) = c−1
k

∫
RN

E(−iξ, x)f (x) dw(x),

where
ck =

∫
RN

e− ‖x‖2

2 dw(x) > 0,

for f ∈ L1(dw). It was introduced in [23] for k ≥ 0 and further studied in [16]
in the more general context. It was proved in [23, Corollary 2.7] (see also [16,
Theorem 4.26]) that it is an isometry on L2(dw), i.e.,

(2.10) ‖f‖L2(dw) = ‖Ff‖L2(dw) for all f ∈ L2(dw).

We have also the following inversion theorem.

Theorem2.4 (Inversion theorem, see [16, Theorem4.20]). For all f ∈ L1(dw)
such that Ff ∈ L1(dw) we have

(2.11) f (x) = (F)2f (−x) for almost all x ∈ R
N .

The inverse F−1 of F has the form

(2.12) F−1f (x) = c−1
k

∫
RN

f (ξ)E(iξ, x) dw(ξ) = Ff (−x).

Below we list some properties of F.

Lemma 2.5. Suppose that f ∈ S(RN) and j ∈ {1, . . . ,N}. Then we have

(A) Ff ∈ S(RN);
(B) Tj(Ff )(ξ) = Fg(ξ), where g(ξ) = −iξjf (ξ);
(C) F(Tjf )(ξ) = iξjFf (ξ).

2.1 Dunkl Laplacian.

Definition 2.6. The Dunkl Laplacian associated with G and k is the
differential-difference operator

(2.13) �k =
N∑
j=1

T2
j .

It was introduced in [22], where it was also proved that �k acts on C2(RN) functions
by

(2.14)

�kf (x) = �f (x) +
∑
α∈R

k(α)δαf (x),

δαf (x) =
∂αf (x)
〈α, x〉 − f (x) − f (σα(x))

〈α, x〉2 .

Here and subsequently, � =
∑N

j=1 ∂2
j .
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We have the following theorem, which allows us to define
√−�k by spectral

theorem.

Theorem 2.7 ([48, Theorem 4.8]). The operator (−�k, S(RN)) in L2(dw) is

densily defined and closable. Its closure will be denoted by the same symbol −�k,
is self-adjoint and its domain is

D(−�k) = {f ∈ L2(dw) : ‖ξ‖2(Ff )(ξ) ∈ L2(dw(ξ))}.
It is a unique positive self-adjoint extension of (−�k, S(RN)).

Note that, thanks to Lemma 2.5 (C), for all ξ ∈ R
N and f ∈ S(RN) we have

(2.15) F(�kf )(ξ) = −‖ξ‖2Ff (ξ),

therefore

(2.16) F((−�k)
1/2f )(ξ) = −‖ξ‖Ff (ξ).

3 The Dunkl Poisson semigroup and Lp(dw)-norm of the
Riesz transform in terms of an integral involving the
Dunkl Poisson semigroup

3.1 The k-Cauchy kernel and Dunkl Poisson semigroup.

Definition 3.1. Let x, y ∈ R
N and t > 0. We define the k-Cauchy kernel

pt(x, y) to be the integral kernel of the operator Pt = e−t
√−�k on L2(dw) (see

Theorem 2.7), that is

Ptf (x) =
∫
RN

pt(x, y)f (y) dw(y).

The kernel pt(x, y) was introduced and studied in [50].

Theorem 3.2 ([50, Theorem 5.6]). Let f be a bounded continuous function

on R
N. Then the function given by v(x, t) = Ptf (x) is continuous and bounded.

Moreover, it solves the Cauchy problem⎧⎨
⎩∂2

t v(x, t) + �k,xv(x, t) = 0 on R
N × (0,∞),

v(x, 0) = f (x) for all x ∈ RN.

The k-Cauchy kernel is also called the generalized Poisson kernel (or
Dunkl Poisson kernel) by the analogy with the classical Poisson semigroup.
We have the following lemma.
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Lemma 3.3. Let x, y ∈ R
N and t > 0. The generalized Poisson kernel pt(x, y)

has the following properties;
(A) pt(x, y) = pt(y, x);
(B)

∫
RN pt(x, z) dw(z) = 1;

(C) pt(x, y) > 0;

(D) pt(σ(x), σ(y)) = pt(x, y) for all σ ∈ G.

It follows by Theorem 3.2, (2.16), and the inversion theorem for the Dunkl
transform (see Theorem 2.4) that for all f ∈ S(RN), x ∈ R

N , and t > 0 we have

(3.1) Ptf (x) = c−1
k

∫
RN

e−t‖ξ‖E(iξ, x)Ff (ξ) dw(ξ).

We also have the following upper and lower bound for the generalized Poisson
kernel.

Proposition 3.4 ([2, Proposition 5.1]). For x, y ∈ R
N and t, r > 0 we denote

(3.2)
V(x, y, r) = max{w(B(x, r)), w(B(y, r))},

d(x, y) = min
σ∈G

‖σ(x) − y‖.

(a) Upper and lower bounds: there is a constant C ≥ 1 such that

(3.3)

C−1

V(x, y, t + ‖x − y‖)
t

t + ‖x − y‖ ≤ pt(x, y)

≤ C
V(x, y, t + d(x, y))

t
t + d(x, y)

for all t > 0 and for all x, y ∈ R
N.

(b) Dunkl gradient: for every ξ ∈ RN, there is a constant C > 0 such that

(3.4) |Tξ,ypt(x, y)| ≤ C
V(x, y, t + d(x, y))

1
t + d(x, y)

for all t > 0 and for all x, y ∈ R
N.

(c) Mixed derivatives: for any nonnegative integer m and for any multi-index

β ∈ N
N
0 , there is a constant C ≥ 0 such that, for all t > 0 and for all x, y ∈ R

N,

(3.5) |∂m
t ∂β

y pt(x, y)| ≤ C pt(x, y)(t + d(x, y))−m−|β| ×
⎧⎨
⎩1 if m = 0,

1 + d(x,y)
t if m > 0.

Moreover, for any nonnegative integer m and for any multi-indices β, β′ ∈ N
N
0 ,

there is a constant C ≥ 0 such that, for all t > 0 and for all x, y ∈ R
N,

(3.6) |∂m
t ∂β

x ∂β′
y pt(x, y)| ≤ C t−m−|β|−|β′ | pt(x, y) .
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Note that the estimates in Proposition 3.4 are given in the spirit of spaces of
homogeneous type, except that the metric ‖x−y‖ is replaced by the distance of the
orbits d(x, y) (see (3.2)). One of the reason why the estimates of Proposition 3.4
are suitable in many contexts is explained in the next lemma. We omit its standard
proof.

Lemma 3.5. Let 1 ≤ p ≤ ∞. If f ∈ Lp(dw), then (x, t) �−→ Ptf (x) belongs

to C∞(RN × (0,∞)) and for all (m, β) ∈ N0 × N
N
0 we have

∂m
t ∂β

xPtf (x) =
∫
RN

∂m
t ∂β

x pt(x, y)f (y) dw(y).

Moreover, for any m ∈ N0 there is a constant C = Cp,m > 0 such that for all t > 0
and f ∈ Lp(dw) we have

(3.7) ‖∂m
t Ptf‖Lp(dw) ≤ Ct−m‖f‖Lp(dw).

3.2 Lp(dw)-norm of Riesz transforms in terms of an integral in-
volving the Dunkl Poisson semigroup. The next proposition is well-known
(see [52], [18, Lemma 2.1]). We provide its version in the Dunkl setting for the
sake of completeness.

Proposition 3.6. For all j ∈ {1, . . . ,N} and f, g ∈ S(RN) we have

(3.8)

∣∣∣∣
∫
RN

Rjf (x)g(x) dw(x)

∣∣∣∣ = 4

∣∣∣∣
∫
RN

∫ ∞

0
t∂tPtg(x)TjPtf (x) dt dw(x)

∣∣∣∣.
Proof. For 1 ≤ j ≤ N, x ∈ RN , and t > 0 we define

ϕ(x, t) := PtRjf (x)Ptg(x).

It follows by Proposition 3.4 that for fixed x ∈ RN there is a constant C > 0
independent of x such that for all y ∈ R

N and t > 0 we have

pt(x, y) ≤ C
w(B(x, t))

.

Hence, for all F ∈ S(RN) we have

|PtF(x)| ≤
∫
RN

pt(x, y)|F(y)| dw(y) ≤ C
w(B(x, t))

‖F‖L1(dw).

Moreover, by (2.3), for all x ∈ R
N we have

lim
t→∞

1
w(B(x, t))

= 0.
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Consequently, by (3.6) we get that for fixed x ∈ R
N we have ϕ(x, ·) ∈ C2((0,∞))

and

lim
t→∞ ϕ(x, t) = lim

t→∞ t∂tϕ(x, t) = 0.

Therefore, by the fundamental theorem of calculus and Theorem3.2, for all x ∈ R
N

we have

(3.9) Rjf (x)g(x) = ϕ(x, 0) =
∫ ∞

0
t∂2

t ϕ(x, t) dt.

Since, by the definition of {Pt}t≥0, ∂tPt =
√−�kPt, and the operator

√−�k is
self-adjoint on L2(dw), by (3.9) we have∫

RN
Rjf (x)g(x) dw(x)

=
∫
RN

∫ ∞

0
t∂2

t ϕ(x, t) dt dw(x)

=
∫
RN

∫ ∞

0
t((∂2

t Pt)Rjf (x)Ptg(x) + 2∂tPtRjf (x)∂tPtg(x)

+ PtRjf (x)(∂2
t Pt)g(x)) dt dw(x)

= 4
∫
RN

∫ ∞

0
t
√−�kPtRjf (x)∂tPtg(x) dt dw(x).

(3.10)

Finally, note that by the definition of the Riesz transform (see (1.1)), (2.16), (3.1),
and Lemma 2.5 (C), for all 1 ≤ j ≤ N we have

√−�k(PtRj)f (x) = c−1
k

∫
RN

(−‖ξ‖)e−t‖ξ‖E(iξ, x)F(Rjf )(ξ) dw(ξ)

= c−1
k

∫
RN

(−‖ξ‖)e−t‖ξ‖E(iξ, x)
−iξj

‖ξ‖ Ff (ξ) dw(ξ)

= TjPtf (x),

so the claim follows by (3.10). �
As the consequence of Proposition 3.6, we obtain the following corollary.

Corollary 3.7. Let p, q > 1 be such that 1
p + 1

q = 1. Then for all f ∈ S(RN)
we have

(3.11)

‖Rf‖Lp(dw)

= 4 sup
gj∈S(RN ), ‖‖g(y)‖‖Lq(dw(y))≤1

∣∣∣∣
N∑
j=1

∫
RN

∫ ∞

0
t∂tPtgj(x)TjPtf (x) dt dw(x)

∣∣∣∣.
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Here and subsequently, for gj ∈ S(RN), 1 ≤ j ≤ N, and x ∈ R
N we denote

g(x) = (g1(x), . . . , gN(x)),

‖g(x)‖ =
( N∑

j=1

|gj(x)|2
)1/2

.

4 Bellman function

In this section, we introduce the Bellman function, which will be the main ingre-
dient in the proof of Theorem 1.3.

Definition 4.1. Let p ≥ 2 and let q be such that 1
p + 1

q = 1. Let N1,N2 ∈ N.
We define the Bellman function β : [0,∞)2 → [0,∞) by the formula

(4.1) β(s, t) = sp + tq + γ

⎧⎨
⎩s2t2−q if sp < tq

2
ps

p + (2
q − 1)tq if sp ≥ tq,

γ :=
q(q − 1)

8
.

The number γ will be fixed throughout the paper. Next, we define the Nazarov–
Treil Bellman function B : RN1 × RN2 → [0,∞) by the formula

(4.2) B(η, ζ) =
1
2
β(‖η‖, ‖ζ‖).

The function B(η, ζ) was introduced by Nazarov and Treil in [41], then used
and simplified in [10, 11, 18, 19, 20].

Note that the function B is differentiable but not smooth. We will need the
smooth version of B. For N1,N2 ∈ N let φ : RN1 × R

N2 → [0,∞) be a smooth
radial function supported in B(0, 1) ⊂ RN1 × RN2 defined by the formula

φ(x1, x2) = cN1,N2χB(0,1)(x1, x2) exp(−(1 − ‖x1‖2 − ‖x2‖2)−1),

where cN1,N2 > 0 is a constant such that∫
RN1×RN2

φ(x1, x2) dx1 dx2 = 1.

For κ > 0 and (x1, x2) ∈ RN1 × RN2 we set

(4.3) φκ(x1, x2) =
1

κN1+N2
φ(x1/κ, x2/κ).

Definition 4.2. Let p ≥ 2 and let q be such that 1
p + 1

q = 1. Let N1,N2 ∈ N

and κ > 0. We define Bκ : RN1 × RN2 → [0,∞) by the formula

(4.4)
Bκ(η, ζ) = B � φκ(η, ζ) :=

1
2
βκ(‖η‖, ‖ζ‖)

=
∫
RN1×RN2

φκ(η − η1, ζ − ζ1)B(η1, ζ1) dη1 dζ1.
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Remark 4.3. In order to avoid misunderstanding, we would like to emphasize
that the convolution “�” in (4.4) is the ordinary one (not the Dunkl generalized
convolution). Let us also point out that in the proof of Theorem 1.3 we will
set N1 = 1 and N2 = N.

The following properties of the functions βκ and Bκ were proved in [20, Theo-
rems 3 and 4] and [37].

Proposition 4.4. Let p ≥ 2 and let q be such that 1
p + 1

q = 1. There is a
constant Cp > 0 such that for all κ ∈ (0, 1] and s, t > 0 we have

0 ≤ ∂sβκ(s, t) ≤ Cp max((s + κ)p, (t + κ)),

0 ≤ ∂tβκ(s, t) ≤ Cp(t + κ)q−1.

Theorem 4.5. Let p ≥ 2 and let q be such that 1
p + 1

q = 1. Let κ ∈ (0, 1]. Then
Bκ ∈ C∞(RN1 × R

N2 ). Moreover, there is a function τ : RN1 × R
N2 → [0,∞) such

that for all η ∈ R
N1 , ζ ∈ R

N2 , and ω = (ω1, ω2) ∈ R
N1 × R

N2 we have

0 ≤ Bκ(η, ζ) ≤ 1 + γ

2
((‖η‖ + κ)p + (‖ζ‖ + κ)q),(4.5)

〈Hess(Bκ)(η, ζ)ω,ω〉 ≥ γ

2

(
(τ � φκ)(η, ζ)‖ω1‖2 +

(1
τ

� φκ

)
(η, ζ)‖ω2‖2

)
.(4.6)

It follows from the proof of [20, Theorem 3] that one can take

(4.7) τ(η, ζ) = ‖ζ‖2−q.

Remark 4.6. In our further considerations, we will need the explicit form of τ

(see (4.7)). This form of τ follows directly from the proofs presented in [20, Theo-
rem3] and [37, Proposition 6.3], although it is not given explicitly there. Therefore,
for the convenience of the reader, we repeat the proof from [37] in Appendix A
with τ given by (4.7).

In our further considerations, we will need the following elementary lemma,
which concerns the properties of τ in (4.7).

Lemma 4.7. Let 1 < q ≤ 2 and N3 ∈ N. Then for all a, b ∈ RN3 we have

∫ 1

0
s‖sa + (1 − s)b‖2−q ds ≥ 2−6 max(‖a‖, ‖b‖)2−q,(4.8) ∫ 1

0
s‖sa + (1 − s)b‖q−2 ds ≥ 2−1 max(‖a‖, ‖b‖)q−2.(4.9)
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Proof. The proof is standard, but we provide it for the sake of completeness.
We will prove (4.8) first. Let us consider two cases.

Case 1. ‖a‖ ≥ ‖b‖. Then we have∫ 1

0
s‖sa + (1 − s)b‖2−q ds ≥

∫ 1

3/4
s‖sa + (1 − s)b‖2−q ds

≥
∫ 1

3/4
s(s‖a‖ − (1 − s)‖b‖)2−q ds

≥
∫ 1

3/4
s(3‖a‖/4 − ‖b‖/4)2−q ds ≥ 2−6‖a‖2−q.

Case 2. ‖b‖ > ‖a‖. By the change of variables we have∫ 1

0
s‖sa + (1 − s)b‖2−q ds =

∫ 1

0
s‖sb + (1 − s)a‖2−q ds,

so we are reduced to Case 1.
In order to prove (4.9), we write∫ 1

0
s‖sa + (1 − s)b‖q−2 ds ≥

∫ 1

0
s(s‖a‖ + (1 − s)‖b‖)q−2 ds

≥ max(‖a‖, ‖b‖)q−2
∫ 1

0
s ds

= 2−1 max(‖a‖, ‖b‖)q−2. �

4.1 The Dunkl Laplacian on the Bellman function.

Definition 4.8. Let p ≥ 2 and let q be such that 1
p + 1

q = 1, κ ∈ (0, 1].
For f ∈ Lp(dw) and gj ∈ Lq(dw), 1 ≤ j ≤ N, x ∈ RN , and t > 0 we define

u(x, t) := (Ptf (x),Ptg1(x), . . . ,PtgN(x)),(4.10)

ũ(x, t) := (Ptf (x),Ptg(x)) = (Ptf (x), (Ptg1(x), . . . ,PtgN(x))),(4.11)

bκ(x, t) := Bκ(Ptf (x),Ptg(x)) = Bκ(Ptf (x), (Ptg1(x), . . . ,PtgN(x)))),(4.12)

where {Pt}t≥0 is the Dunkl Poisson semigroup (see Definition 3.1).

Lemma 4.9. Assume that f, gj ∈ S(RN), 1 ≤ j ≤ N, and κ ∈ (0, 1]. Then

(A) bκ ∈ C∞(RN × (0,∞));
(B) there is a constant Cf,g > 0, which depends on f and g and is independent

of κ, such that for all x ∈ R
N and t > 0 we have

(4.13) |∂tbκ(x, t)| ≤ 1
t
Cf,g.
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Proof. By Lemma 3.5, for f, gj ∈ S(RN), 1 ≤ j ≤ N, the functions Ptf,Ptgj

belong to C∞(RN × (0,∞)). Therefore, by Theorem 4.5 and (4.12), bκ is a
composition of smooth functions, so (A) follows. In order to prove (B), note that
by the chain rule we have

∂tbκ(x, t) = 〈∇Bκ(ũ(x, t)), ∂tu(x, t)〉.

Consequently, by Proposition 4.4 and the Cauchy–Schwarz inequality we get that
there is a constant Cp > 0, which depends just on p, such that

(4.14) |∂tbκ(x, t)| ≤ Cp‖∂tu(x, t)‖(|Ptf (x)|p−1 + ‖Ptg(x)‖q−1 + ‖Ptg(x)‖ + κq−1).

Note that by Lemma 3.5 and the fact that f, gj ∈ S(RN) there is a constant
C = Cf,g > 0 such for all x ∈ R

N , t > 0, and 1 ≤ j ≤ N we have

|Ptf (x)| ≤ C, |Ptgj(x)| ≤ C,

‖∂tu(x, t)‖ ≤ C
t
,

so, by (4.14), the proof of (B) is finished. �
In the next proposition we obtain an explicit formula for �kbκ (cf. [27, Sec-

tion 4]).

Proposition 4.10. Assume that f, gj ∈ S(RN), 1 ≤ j ≤ N, and κ ∈ (0, 1].
Let u, ũ, and bκ be as in Definition 4.8. Then for all x ∈ R

N and t > 0 we have

(∂2
t + �k,x)bκ(x, t)

= 〈Hess(Bκ)(ũ(x, t))∂tu(x, t), ∂tu(x, t)〉

+
N∑
j=1

〈Hess(Bκ)(ũ(x, t))∂j,xu(x, t), ∂j,xu(x, t)〉

+
∑
α∈R

k(α)
∫ 1

0
s〈Hess(Bκ)(sũ(x, t)

+ (1 − s)ũ(σα(x), t))ραu(x, t), ραu(x, t)〉 ds,

(4.15)

where

(4.16) ραu(x, t) :=
u(x, t) − u(σα(x), t)

〈x, α〉 .

Proof. It follows by the chain rule (see, e.g., [18, Lemma 1.4]) that

∂2
t bκ(x, t) = 〈Hess(Bκ)(ũ(x, t))∂tu(x, t), ∂tu(x, t)〉

+ 〈∇Bk(ũ(x, t)), ∂2
t u(x, t)〉,(4.17)
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and

�xbκ(x, t) =
N∑
j=1

〈Hess(Bκ)(ũ(x, t))∂j,xu(x, t), ∂j,xu(x, t)〉

+ 〈∇Bk(ũ(x, t)),�xu(x, t)〉.
(4.18)

Moreover, for α ∈ R we have

(4.19)
∂α,xbκ(x, t)

〈x, α〉 =
〈
∇Bk(ũ(x, t)),

∂α,xu(x, t)
〈x, α〉

〉
.

Recall that, by the definition of the Dunkl Poisson semigroup (see Definition 3.1),
(∂2

t + �k,x)u(x, t) = 0. Therefore, by (2.14), (4.17), (4.18), and (4.19) we get

(∂2
t + �k,x)bκ(x, t) = 〈Hess(Bκ)(ũ(x, t))∂tu(x, t), ∂tu(x, t)〉

+
N∑
j=1

〈Hess(Bκ)(ũ(x, t))∂j,xu(x, t), ∂j,xu(x, t)〉

+
∑
α∈R

k(α)
〈
∇Bk(ũ(x, t)),

u(x, t) − u(σα(x), t)
〈x, α〉2

〉

− ∑
α∈R

k(α)
bκ(x, t) − bκ(σα(x), t)

〈x, α〉2 .

Finally, note that by the Taylor’s expansion of the function bκ(x, t), for all α ∈ R

we have〈
∇Bk(ũ(x, t)),

u(x, t) − u(σα(x), t)
〈x, α〉2

〉
− bκ(x, t) − bκ(σα(x), t)

〈x, α〉2

=
∫ 1

0
s 〈Hess(Bκ)(sũ(x, t) + (1 − s)ũ(σα(x), t))ραu(x, t), ραu(x, t)〉 ds,

so the proof is finished. �

Corollary 4.11. Assume that f, gj ∈ S(RN), 1 ≤ j ≤ N. There is a constant
C = Cf,g > 0 such that for all x ∈ RN, κ ∈ (0, 1], and t > 0 we have

|�k,x(bκ)(x, t)| ≤ Cf,g

t2
.

Proof. Since f, gj ∈ S(RN), 1 ≤ j ≤ N , by Lemma 3.5 there is a constant
C > 0, which depends on f, gj, such that for all x ∈ R

N and t > 0 we have

|Ptf (x)| ≤ C, ‖Ptg(x)‖ ≤ C.
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Consequently, by the fact that ∇Bκ and Hess(Bκ) are smooth and by (4.12), we
obtain that there is a constant C′ = C′

f,g > 0 such that for all x ∈ R
N , t > 0, α ∈ R,

and s ∈ [0, 1] we have

‖∇Bκ(ũ(x, t))‖ ≤ C′, ‖ Hess(Bκ)(sũ(x, t) + (1 − s)ũ(σα(x), t))‖HS ≤ C′,

where ‖ · ‖HS is the Hilbert–Schmith norm. Moreover, by Lemma 3.5, there is a
constant C′′ = C′′

f,g > 0 such that for all x ∈ RN and t > 0 we have

|∂tu(x, t)| ≤ C′′

t
, |∂2

t u(x, t)| ≤ C′′

t2
.

Recall that for all x ∈ RN and α ∈ R we have
√

2|〈x, α〉| = ‖x − σα(x)‖ (see (2.1)).
Hence, by (3.6) and the mean value theorem we have that there is a constant
C′′′ = C′′′

f,g > 0 such that for all x ∈ RN and t > 0 we have

|ραu(x, t)| ≤ C′′′

t
.

Finally, the claim is a consequence of (4.15), (4.17), and the Cauchy–Schwarz
inequality. �

5 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. We closely follow the reasoning from [10]
and [20].

5.1 Definition of I(n, ε, κ). The proof of Theorem1.3 is based on the upper
and lower estimates of the quantities I(n, ε, κ), which approximate the integral∫

RN

∫ ∞

0
t(∂2

t + �k,x)bκ(x, t) dt dw(x).

Definition 5.1. Let � ∈ C∞
c (RN) be a radial radially decreasing function

such that supp� ⊆ B(0, 2), 0 ≤ � ≤ 1, and �(x) = 1 for all x ∈ B(0, 1). The
function � will be fixed throughout the paper.

For a > 0 we define the function νa : (0,∞) → (0,∞) by the formula

(5.1) νa(t) := t exp(−a(t + t−1)).

Let n ∈ N and ε > 0. For a function κ : N → (0, 1] we set

(5.2) I(n, ε, κ) :=
∫
RN

�(x/n)
∫ ∞

0
νε(t)(∂

2
t + �k,x)(bκ(n))(x, t) dt dw(x).
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5.2 Lower estimate of I(n, ε, κ).

Lemma 5.2. Assume that f, gj ∈S(RN), 1≤ j≤N. Then for any κ : N → (0, 1]
we have

(5.3)

N∑
j=1

∫
RN

∫ ∞

0
t|∂tPtgj(x)TjPtf (x)| dt dw(x)

≤ 2
γ

(∑
α∈R

k(α) + 27
)

lim inf
ε→0+

lim inf
n→∞ I(n, ε, κ).

Moreover, if the function f is G-invariant, then

(5.4)
N∑
j=1

∫
RN

∫ ∞

0
t|∂tPtgj(x)TjPtf (x)| dt dw(x) ≤ 2

γ
lim inf
ε→0+

lim inf
n→∞ I(n, ε, κ).

Proof. Let us prove (5.3) first. Fix κ : N → (0, 1]. By the monotone conver-
gence theorem we have

N∑
j=1

∫
RN

∫ ∞

0
t|∂tPtgj(x)TjPtf (x)| dt dw(x)

= lim
ε→0+

lim
n→∞

N∑
j=1

∫
RN

�(x/n)
∫ ∞

0
νε(t)|∂tPtgj(x)TjPtf (x)| dt dw(x).

Fix n ∈ N and ε > 0. By the definition of Tj (see (2.6)) we get

N∑
j=1

∫
RN

�(x/n)
∫ ∞

0
νε(t)|∂tPtgj(x)TjPtf (x)| dt dw(x)

≤
N∑
j=1

∫
RN

�(x/n)
∫ ∞

0
νε(t)|∂tPtgj(x)∂j,xPtf (x)| dt dw(x)

+
N∑
j=1

∑
α∈R

k(α)
2

|αj|

×
∫
RN

�(x/n)
∫ ∞

0
νε(t)

∣∣∣∂tPtgj(x)
Ptf (x) − Ptf (σα(x))

〈x, α〉
∣∣∣ dt dw(x)

=: I1 + I2.

(5.5)

We will estimate I1 and I2 separately.
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Estimate of I1. In order to estimate I1, for y = (y1, y2) ∈ R × R
N we set

(5.6) τ1(y) = τ1(y1, y2) = ‖y2‖2−q.

Recall that φκ(n) for n ∈ N is defined in (4.3). By the fact that
∫
RN+1 φκ(n)(y) dy = 1,

the inequality between the arithmetic and geometric mean, and (4.6) with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N1 = 1, N2 = N,

η = Ptf (x),

ζ = Ptg(x),

ω = ∂tu(x, t) or ω = ∂j,xu(x, t)

(see (4.10)) we get

N∑
j=1

∫
RN

�(x/n)
∫ ∞

0
νε(t)|∂tPtgj(x)∂j,xPtf (x)| dt dw(x)

=
N∑
j=1

∫
RN

�(x/n)
∫ ∞

0
νε(t)

×
(∫

RN+1
φκ(n)(u(x, t) − y) dy

)
|∂tPtgj(x)∂j,xPtf (x)| dt dw(x)

≤
∫
RN

�(x/n)
∫ ∞

0
νε(t)

×
(∫

RN+1
φκ(n)(u(x, t) − y)

(
τ1(y)−1

( N∑
j=1

|∂tPtgj(x)|2
))

dy
)

dt dw(x)

+
∫
RN

�(x/n)
∫ ∞

0
νε(t)

×
(∫

RN+1
φκ(n)(u(x, t) − y)

(
τ1(y)

( N∑
j=1

|∂j,xPtf (x)|2
))

dy
)

dt dw(x)

≤ 2
γ

∫
RN

�(x/n)
∫ ∞

0
νε(t)〈HessBκ(n)(ũ(x, t))∂tut(x), ∂tut(x)〉 dt dw(x)

+
N∑
j=1

2
γ

∫
RN

�(x/n)

×
∫ ∞

0
νε(t)〈HessBκ(n)(ũ(x, t))∂j,xut(x), ∂j,xut(x)〉 dt dw(x).

(5.7)
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Estimate of I2. In order to estimate I2, by the fact that ‖α‖ =
√

2,∫
RN+1

φκ(n)(y) dy = 1,

and the inequality between the arithmetic and geometric mean, we have

N∑
j=1

∑
α∈R

k(α)
2

|αj|
∫
RN

�(x/n)
∫ ∞

0
νε(t)

∣∣∣∂tPtgj(x)
Ptf (x)−Ptf (σα(x))

〈x, α〉
∣∣∣ dt dw(x)

≤ ∑
α∈R

k(α)
∫
RN

�(x/n)
∫ ∞

0
νε(t)

×
( N∑

j=1

|∂tPtgj(x)|2
)1/2∣∣∣∣Ptf (x) − Ptf (σα(x))

〈x, α〉
∣∣∣∣ dt dw(x)

≤ ∑
α∈R

k(α)
∫
RN

�(x/n)
∫ ∞

0
νε(t)

×
(∫

RN+1
φκ(n)(u(x, t) − y)τ1(y)−1 dy

)( N∑
j=1

|∂tPtgj(x)|2
)

dt dw(x)

+
∑
α∈R

k(α)
∫
RN

�(x/n)
∫ ∞

0
νε(t)

(∫
RN+1

φκ(n)(u(x, t) − y)τ1(y) dy
)

×
∣∣∣Ptf (x) − Ptf (σα(x))

〈x, α〉
∣∣∣2 dt dw(x)

=: I2,1 + I2,2.

(5.8)

The summand I2,1 is the same as the first summand in (5.7), but it is multiplied
by

∑
α∈R k(α). Recall that φκ(n) ≥ 0. In order to estimate I2,2 we write∫

RN+1
φκ(n)(u(x, t) − y)τ1(y) dy

≤
∫
RN+1

(φκ(n)(u(x, t) − y) + φκ(n)(u(σα(x), t) − y))τ1(y) dy

=
∫
RN+1

φκ(n)(y)(τ1(u(x, t) − y) + τ1(u(σα(x), t) − y)) dy

≤ 2
∫
RN+1

φκ(n)(y) max(τ1(u(x, t) − y), τ1(u(σα(x), t) − y)) dy,

then use (4.8) with a = u(x, t) − y and b = u(σα(x), t) − y. Consequently,∫
RN+1

φκ(n)(u(x, t) − y)τ1(y) dy

≤ 27
∫
RN+1

φκ(n)(y)
∫ 1

0
sτ1(su(x, t) + (1 − s)u(σα(x), t) − y) ds dy,
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which leads us to∑
α∈R

k(α)
∫
RN

�(x/n)
∫ ∞

0
νε(t)

(∫
RN+1

φκ(n)(u(x, t) − y)τ1(y) dy
)

×
∣∣∣Ptf (x) − Ptf (σα(x))

〈x, α〉
∣∣∣2 dt dw(x)

≤ 27
∑
α∈R

k(α)
∫
RN

�(x/n)
∫ ∞

0
νε(t)

×
(∫ 1

0
s(τ1 � φκ(n))(su(x, t) + (1−s)u(σα(x), t)) ds

)

×
∣∣∣Ptf (x) − Ptf (σα(x))

〈x, α〉
∣∣∣2 dt dw(x).

Now, by (4.6) with ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N1 = 1, N2 = N,

η = sPtf (x) + (1 − s)Ptf (σα(x)),

ζ = sPtg(x) + (1 − s)Ptg(σα(x)),

ω = ραu(x, t),

where s ∈ [0, 1] and α ∈ R (see (4.10), (4.11), and (4.16)) we get

27
∑
α∈R

k(α)
∫
RN

�(x/n)
∫ ∞

0
νε(t)

×
(∫ 1

0
s(τ1 � φκ(n))(su(x, t)+(1−s)u(σα(x), t)) ds

)

×
∣∣∣Ptf (x) − Ptf (σα(x))

〈x, α〉
∣∣∣2 dt dw(x)

≤ 28

γ

∑
α∈R

k(α)
∫
RN

�(x/n)
∫ ∞

0
νε(t)

×
(∫ 1

0
s〈Hess(sũ(x, t) + (1 − s)ũ(x, t))ραu(x, t), ραu(x, t)〉 ds

)
dt dw(x).

(5.9)

Now the claim is a direct consequence of (5.7), (5.8), (5.9), and Proposition 4.10.
Finally, in order to prove (5.4), note that, by the definition of the Poisson semi-

group (see Definition 3.1) and Lemma 3.3 (D), for G-invariant f , the function Ptf

is also G-invariant for all t > 0. Therefore, for all 1 ≤ j ≤ N we have

TjPtf = ∂jPtf

and the summand I2 in (5.5) is equal to zero. Moreover, by (4.6), the third summand
in (4.15) is nonnegative, so (5.4) follows. �
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5.3 Upper estimate of I(n, ε, κ).

Lemma 5.3. Let p ≥ 2 and q > 1 be such that 1
p + 1

q = 1. Assume that

f, gj ∈ S(RN), 1 ≤ j ≤ N, and ε > 0. For n ∈ N we set

(5.10) κ(n) =
(1

n
max(1, w(B(0, 2n)))−1

)1/q
.

Then we have

(5.11) lim sup
n→∞

∫
RN

�(x/n)
∫ ∞

0
νε(t)�k,x(bκ(n))(x, t) dt dw(x) = 0.

Proof. Recall that supp� ⊆ B(0, 2). Therefore, by Lemma 4.9 (A),
Corollary 4.11, and the fact that for fixed ε > 0 we have

∫ ∞
0 t−2νε(t) dt < ∞,

we can change the order of integration in (5.11). Note that by the fact that∫ ∞
0 t−2|νε(t)| dt < ∞, it is enough to show that for fixed t > 0 we have

lim sup
n→∞

∫
RN

�(x/n)�k,x(bκ(n))(x, t) dw(x) = 0.

Recall that bκ(n) ∈ C∞(RN × (0,∞)). Integrating by parts (see Theorem 2.1
and Remark 2.2), for any t > 0 we get∫

RN
�(x/n)�k,x(bκ(n))(x, t) dw(x) =

∫
RN

�k�(x/n)(bκ(n))(x, t) dw(x).

Recall that supp�(·/n) ⊆ B(0, 2n). Then, it follows from Lemma 2.3 that there
is a constant C > 0 independent of � and n such that for all x ∈ RN and n ∈ N we
have

(5.12)

|(�k�)(x/n)| ≤ C sup
y∈RN

∑
β∈NN

0 , |β|≤2

|∂β
x�(y/n)|

≤ C
∑

β∈NN
0 , |β|≤2

‖∂β�‖L∞ ≤ C�.

Moreover, by (2.14) and the fact that �(x/n) = 1 for all x ∈ B(0, n) we have

�k�(x/n) = 0 for all x ∈ B(0, n).

Consequently, by (4.5) there is a constant Cp > 0, which depends just on p, such
that for all n ∈ N we have

(5.13)

∣∣∣∣
∫
RN

(�k�)(x/n)(bκ(n))(x, t) dw(x)

∣∣∣∣
≤ CpC�

∫
B(0,2n)\B(0,n)

(|Ptf (x)|p + ‖Ptg(x)‖q + κ(n)q) dw(x).
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Since f, gj ∈ S(RN), by Lemma 3.5 we get Ptf ∈ Lp(dw) and Ptgj ∈ Lq(dw) for
all t > 0 and 1 ≤ j ≤ N. Hence,

lim
n→∞

(∫
B(0,2n)\B(0,n)

(|Ptf (x)|p + ‖Ptg(x)‖q) dw(x)
)

= 0.

Moreover, by the choice of κ(n) (see (5.10)) we get

lim
n→∞

(∫
B(0,2n)\B(0,n)

κ(n)q dw(x)
)

= lim
n→∞

(1
n

w(B(0, 2n) \ B(0, n))
w(B(0, 2n))

)
= 0.

Therefore,

lim sup
n→∞

∫
RN

�(x/n)�k,x(bκ(n))(x, t) dw(x)

= lim sup
n→∞

∫
RN

�k�(x/n)(bκ(n))(x, t) dw(x) = 0. �

Lemma 5.4. Assume that f, gj ∈ S(RN), 1 ≤ j ≤ N, κ ∈ (0, 1], and ε > 0.

Then for all x ∈ R
N we have

lim
t→0

νε(t)|∂tbκ(x, t)| = 0, lim
t→∞ νε(t)|∂tbκ(x, t)| = 0,(5.14)

lim
t→0

|ν′
ε(t)||bκ(x, t)| = 0, lim

t→∞ |ν′
ε(t)||bκ(x, t)| = 0.(5.15)

Recall that νε is defined in (5.1).

Proof. Note that (5.14) is a consequence of Lemma 4.9 (B) and the fact that
for fixed ε > 0 we have

lim
t→0

1
t
νε(t) = lim

t→∞
1
t
νε(t) = 0.

The proof of (5.15) is similar. Indeed, since f, gj ∈ S(RN), by (3.6) there is a
constant C = Cf,g > 0 such that for all x ∈ R

N and t > 0 we have

|Ptf (x)| ≤ C and |Ptgj(x)| ≤ C.

Consequently, by (4.5), there is a constant C′ > 0, which depends on f and gj and
is independent of κ ∈ (0, 1], such that for all x ∈ R

N and t > 0 we have

0 ≤ bκ(x, t) ≤ C′,

so the claim is a consequence of an elementary fact that for fixed ε > 0 we have

lim
t→0

|ν′
ε(t)| = lim

t→∞ |ν′
ε(t)| = 0. �



DIMENSION-FREE LP-ESTIMATES FOR VECTORS OF RIESZ TRANSFORMS 509

Lemma 5.5. Recall that νε is defined in (5.1). We have

lim sup
ε→0+

∫ ∞

0
|ν′′

ε (t)| dt ≤ 2(1 + e−2).

Proof. It follows from an elementary calculation (see, e.g., [20, (3.30)]). �

Lemma 5.6. Let p ≥ 2 and q > 1 be such that 1
p + 1

q = 1. Assume that

f, gj ∈ S(RN), 1 ≤ j ≤ N, and ε > 0. For n ∈ N we set

(5.16) κ(n) =
(1

n
max(1, w(B(0, 2n)))−1

)1/q
.

Then we have

(5.17)
lim sup

ε→0+
lim sup

n→∞

∫
RN

�(x/n)
∫ ∞

0
νε(t)∂

2
t (bκ(n))(x, t) dt dw(x)

≤ 3(1 + γ)(‖f‖p
Lp(dw) + ‖g‖q

Lq(dw)).

Proof. Integrating by parts with respect to t without boundary terms (it is
possible thanks to Lemma 5.4) we get

(5.18)

∫
RN

�(x/n)
∫ ∞

0
νε(t)∂

2
t (bκ(n))(x, t) dt dw(x)

=
∫
RN

�(x/n)
∫ ∞

0
ν′′

ε (t)(bκ(n))(x, t) dt dw(x).

Then, by (4.5), we have∣∣∣∣
∫
RN

�(x/n)
∫ ∞

0
ν′′

ε (t)(bκ(n))(x, t) dt dw(x)
∣∣∣∣

≤ (1 + γ)
∫
RN

�(x/n)
∫ ∞

0
|ν′′

ε (t)|((|Ptf (x)| + κ(n))p + (‖Ptg(x)‖ + κ(n))q) dt dw(x).

For fixed t > 0 let At := {x ∈ RN : ε|Ptf (x)| ≥ κ(n)}. Then∫
RN

�(x/n)
∫ ∞

0
|ν′′

ε (t)|((|Ptf (x)| + κ(n))p) dt dw(x)

=
∫ ∞

0

∫
At

· · · +
∫ ∞

0

∫
Ac

t

· · ·

≤ (1 + ε)p
∫
RN

�(x/n)
∫ ∞

0
|ν′′

ε (t)||Ptf (x)|p dt dw(x)

+ (1 + ε−1)p
∫
RN

�(x/n)
∫ ∞

0
|ν′′

ε (t)||κ(n)|p dt dw(x).
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Recall that supp�(·/n) ⊆ B(0, 2n) and 0 ≤ �(·/n) ≤ 1 for all n ∈ N. Conse-
quently, by the choice of κ(n) (see (5.10)) we get

lim sup
n→∞

(1 + ε−1)p
∫
RN

�(x/n)
∫ ∞

0
|ν′′

ε (t)||κ(n)|p dt dw(x)

≤ lim
n→∞

(∫ ∞

0
|ν′′

ε (t)| dt
)

(1 + ε−1)pw(B(0, 2n))
1

np/qw(B(0, 2n))p/q
= 0.

Therefore,

lim sup
n→∞

∫
RN

�(x/n)
∫ ∞

0
|ν′′

ε (t)|(|Ptf (x)| + κ(n))p dt dw(x)

= (1 + ε)p lim sup
n→∞

∫
RN

�(x/n)
∫ ∞

0
|ν′′

ε (t)||Ptf (x)|p dt dw(x).
(5.19)

Similarly,

lim sup
n→∞

∫
RN

�(x/n)
∫ ∞

0
|ν′′

ε (t)|(‖Ptg(x)‖ + κ(n))q dt dw(x)

= lim sup
n→∞

(1 + ε)q
∫
RN

�(x/n)
∫ ∞

0
|ν′′

ε (t)|‖Ptg(x)‖q dt dw(x).
(5.20)

Note that by Hölder’s inequality and Lemma 3.3 (B) and (C) for all x ∈ R
N

and t > 0 we have

|Ptf (x)|p ≤ Pt(|f (·)|p)(x), ‖Ptg(x)‖q ≤ Pt(‖g(·)‖q)(x).

Furthermore, by Lemma 3.3 we have∫
RN

|Ptf (x)|p dw(x) ≤ ‖f‖p
Lp(dw),

∫
RN

Pt(‖g(·)‖q)(x) dw(x) ≤ ‖g‖q
Lq(dw).

Consequently, by the Fubini theorem, the fact that 0 ≤ �(·/n) ≤ 1, andLemma 4.9,
we get

lim sup
n→∞

∫
RN

�(x/n)
∫ ∞

0
|ν′′

ε (t)|(|Ptf (x)|p + ‖Ptg(x)‖q) dt dw(x)

≤ lim sup
n→∞

∫ ∞

0
|ν′′

ε (t)|
∫
RN

(|Ptf (x)|p + ‖Ptg(x)‖q) dw(x) dt

≤
(∫ ∞

0
|ν′′

ε (t)| dt
)

(‖f‖p
Lp(dw) + ‖g‖q

Lq(dw)).

(5.21)

Finally, by (5.18), (5.19), (5.20), (5.21), and Lemma 5.5 we obtain

lim sup
ε→0+

lim sup
n→∞

∫
RN

�(x/n)
∫ ∞

0
νε(t)∂

2
t (bκ(n))(x, t) dt dw(x)

≤ (1 + γ)2(1 + e−2)(‖f‖p
Lp + ‖g‖q

Lq(dw))

≤ 3(1 + γ)(‖f‖p
Lp(dw) + ‖g‖q

Lq(dw)). �
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As a direct consequence of Lemmas 5.3 and 5.6 we obtain the following
corollary.

Corollary 5.7. Let p ≥ 2 and q > 1 be such that 1
p + 1

q = 1. Assume that

f, gj ∈ S(RN), 1 ≤ j ≤ N. For n ∈ N we set

(5.22) κ(n) =
(1

n
max(1, w(B(0, 2n)))−1

)1/q
.

Then we have

lim inf
ε→0+

lim inf
n→∞ I(n, ε, κ) ≤ 3(1 + γ)(‖f‖p

Lp(dw) + ‖g‖q
Lq(dw)),

where I(n, ε, κ) is defined in (5.2).

5.4 Proof of Theorem 1.3.

Proof of Theorem 1.3. We will prove (1.4) first. Assume first that p ≥ 2.
Take f ∈ Lp(dw). Thanks to Theorem1.2 and the fact that S(RN) is dense in Lp(dw),
without loss of generality we can assume f ∈ S(RN). Let κ : N → (0, 1] be defined
by (5.10). By Corollary 3.7 we get

‖Rf‖Lp(dw)

= 4 sup
gj∈S(RN ), ‖‖g(y)‖‖Lq(dw(y))≤1

∣∣∣∣
N∑
j=1

∫
RN

∫ ∞

0
t∂tPtgj(x)TjPtf (x) dt dw(x)

∣∣∣∣.(5.23)

Next, by Lemma 5.2 and Corollary 5.7,

4 sup
gj∈S(RN ), ‖‖g(y)‖‖Lq(dw(y))≤1

∣∣∣∣
N∑
j=1

∫
RN

∫ ∞

0
t∂tPtgj(x)TjPtf (x) dt dw(x)

∣∣∣∣
≤ 8

γ

(∑
α∈R

k(α) + 27
)

lim inf
ε→0+

lim inf
n→∞ I(n, ε, κ)

≤ 24(1 + γ)
γ

(∑
α∈R

k(α) + 27
)

(‖f‖p
Lp(dw) + ‖g‖q

Lq(dw)).

(5.24)

Finally, we use a polarization argument. Let s > 0. We replace f (·) by sf (·)
and g(·) by s−1g(·) in (5.24). Then, the left hand side of (5.24) is unchanged, and
minimizing the right-handside by s > 0 we obtain

‖Rf‖Lp(dw)

≤ 24(1 + γ)
γ

((p/q)1/p + (q/p)1/q)
(∑

α∈R

k(α) + 27
)

‖f‖Lp(dw)‖‖g(y)‖‖Lq(dw(y)).
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It was shown in [60, proof of the main theorem] that

(1 + γ)
γ

((p/q)1/p + (q/p)1/q) ≤ 6(p∗ − 1),

which ends the proof for p ≥ 2. The proof in case 1 < p < 2 is analogous: we
switch Ptf and Ptg in the definition of bκ. The proof of (1.5) is similar (we use (5.4)
instead of (5.3) in (5.24)). �

6 One-dimensional case

This section is devoted to the proof of Theorem 1.4. We will work in the one-
dimensional setting, i.e., we assume N = 1. We would like to emphasize that in
this case we have

R = {√2,−√
2}, G = {id, σ−√

2},
where σ−√

2(x) = −x for all x ∈ R. Consequently, the multiplicity function k takes
just one value, which, for simplicity of the notation, will be denoted by k. In this
case, the associated measure dw is of the form

(6.1) dw(x) = 2|x|2k dx.

The Dunkl operator in the one-dimensional case is

(6.2) Tf (x) := ∂xf (x) + k
f (x) − f (−x)

x
.

In this section, we will use the same notation as in the previous sections unless
specified otherwise. We will also assume k > 1 (otherwise, the claim follows by
Theorem 1.3).

We will slightly modify the proof of Theorem 1.3 to obtain Theorem 1.4. The
main point is to prove a modified version of Lemma 5.2. We will also need the
following version of Proposition 3.6. We state and prove it for the convenience of
the reader.

Proposition 6.1. For all f, g ∈ S(R) we have

(6.3)

∣∣∣∣
∫
R

Hf (x)g(x) dw(x)

∣∣∣∣ = 4

∣∣∣∣
∫ ∞

0

∫
R

t∂tPtf (x)TPtg(x) dw(x) dt

∣∣∣∣.
Proof. By Plancherel’s identity (see (2.10)) and the definition of the Dunkl

Hilbert transform (see (1.6)) we have∫
R

Hf (x)g(x) dw(x) =
∫
R

(−iξ
|ξ| Ff (ξ)

)
Fg(ξ) dw(ξ)

=
∫
R

Ff (ξ)
(−iξ

|ξ| Fg(ξ)
)

dw(ξ) = −
∫
R

Hg(x)f (x) dw(x).

Consequently, the rest of the proof is the same as in the proof of Proposition 3.6
(with g instead of f and f instead of g). �
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Now we are ready to state and prove the modified version of Lemma 5.2. Recall
that I(n, ε, κ) is defined in Subsection 5.1 (see (5.1)).

Lemma6.2. Assume that p ≥ 2, q > 1 are such that 1
p + 1

q = 1, and f, g ∈ S(R).
Assume that g is odd. Then for any κ : N → (0, 1] we have

∫
R

∫ ∞

0
t|∂tPtf (x)||TPtg(x)| dt dw(x)

≤ 8
γ

lim inf
ε→0+

lim inf
n→∞ I(n, ε, κ) + lim inf

ε→0+
lim inf
n→∞ e1(n, ε, κ)

+ lim inf
ε→0+

lim inf
n→∞ e2(n, ε, κ),

(6.4)

where

e1(n, ε, κ) := 6κ(n)2−q
∫
R

�(x/n)
∫ ∞

0
νε(t)|∂tPtf (x)|2 dt dw(x),(6.5)

e2(n, ε, κ) := −n−1
∫
R

(∂x�)(x/n)
∫ ∞

0

4k
q

(|Ptg(x)|2 + κ(n)2)q/2x−1 dt dw(x).(6.6)

Remark 6.3. Let us note that in Lemma 6.2 we do not have the factor “k”
in front of “lim infε→0+ lim infn→∞ I(n, ε, κ)”, which appears in Lemma 5.2. This
is a crucial difference. However, there are two additional error terms e1(n, ε, κ)
and e2(n, ε, κ), but we will show that they are negligible (see Lemmas 6.6 and 6.7).
The terms e1(n, ε, κ) and e2(n, ε, κ) appear in (6.4) just for technical reasons.

Proof of Lemma 6.2. Fix κ : N → (0, 1]. By the monotone convergence
theorem we have∫ ∞

0

∫
R

|t∂tPtf (x)||TPtg(x)| dw(x) dt

≤ lim
ε→0+

lim
n→∞

∫
R

�(x/n)
∫ ∞

0
νε(t)|∂tPtf (x)||TPtg(x)| dt dw(x).

Recall that � and νε are defined in Definition 5.1. Fix n ∈ N and ε > 0. It follows
by the definition of the Poisson semigroup (see Definition 3.1) and Lemma 3.3 (D)
that if g is odd, then Ptg is also odd for all t > 0. Consequently, by (6.2),

TPtg(x) = ∂xPtg(x) + 2k
Ptg(x)

x
.

For (y1, y2) ∈ R × R we set

(6.7) τ2(y1, y2) = (|y2|2 + κ(n)2)(2−q)/2
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(cf. (5.6)). By the inequality between the geometric and arithmetic mean we get

∫
R

�(x/n)
∫ ∞

0
νε(t)|∂tPtf (x)|

∣∣∣∂xPtg(x) + 2k
Ptg(x)

x

∣∣∣ dt dw(x)

≤
∫
R

�(x/n)
∫ ∞

0
νε(t)|∂tPtf (x)|2τ2(u(x, t)) dt dw(x)

+
∫
R

�(x/n)
∫ ∞

0
νε(t)

∣∣∣∂xPtg(x) + 2k
Ptg(x)

x

∣∣∣2τ−1
2 (u(x, t)) dt dw(x)

=: I1 + I2.

We will estimate I1 and I2 separately.

Estimate of I1. Recall that

∫
R×R

φκ(n)(y1, y2) dy1 dy2 = 1 and suppφκ(n) ⊆ B(0, κ(n))

(φκ(n) is defined in (4.3)). Moreover, q ∈ (1, 2], so (2 − q)/2 ≥ 0. Hence,

τ2(u(x, t)) =
∫
R×R

φκ(n)(y1, y2)τ2(u(x, t)) dy1 dy2

=
∫
R×R

φκ(n)(y1, y2)(|Ptg(x)|2 + κ(n)2)(2−q)/2 dy1 dy2

≤
∫
R×R

φκ(n)(y1, y2)(2|Ptg(x) − y2|2 + 2|y2|2 + κ(n)2)(2−q)/2 dy1 dy2

≤
∫
R×R

φκ(n)(y1, y2)(2|Ptg(x) − y2|2 + 3κ(n)2)(2−q)/2 dy1 dy2

≤
∫
R×R

φκ(n)(y1, y2)(4|Ptg(x) − y2|(2−q) + 6κ(n)(2−q)) dy1 dy2

= 4φκ(n) � τ1(u(x, t)) + 6κ(n)2−q,

where τ1 and u(x, t) are defined in (5.6) and (4.10) respectively. Therefore,

I1 ≤ 4
∫
R

�(x/n)
∫ ∞

0
νε(t)(τ1 � φκ(n))(u(x, t))|∂tPtf (x)|2 dt dw(x)

+ 6κ(n)2−q
∫
R

�(x/n)
∫ ∞

0
νε(t)|∂tPtf (x)|2 dt dw(x)

= 4
∫
R

�(x/n)
∫ ∞

0
νε(t)(τ1 � φκ(n))(u(x, t))|∂tPtf (x)|2 dt dw(x)

+ e1(n, ε, κ).

(6.8)
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Estimate of I2. We split I2 into three parts:

∫
R

�(x/n)
∫ ∞

0
νε(t)

∣∣∣∣∂xPtg(x) + 2k
Ptg(x)

x

∣∣∣∣2 τ−1
2 (u(x, t)) dt dw(x)

=
∫
R

�(x/n)
∫ ∞

0
νε(t)|∂xPtg(x)|2τ−1

2 (u(x, t)) dt dw(x)

+
∫
R

�(x/n)
∫ ∞

0
νε(t)4k2 |Ptg(x)|2

x2
τ−1
2 (u(x, t)) dt dw(x)

+
∫
R

�(x/n)
∫ ∞

0
νε(t)4k(∂xPtg)(x)

Ptg(x)
x

τ−1
2 (u(x, t)) dt dw(x)

=: J1 + J2 + J3.

(6.9)

We will estimate J1 and J2 + J3 separately.

Estimate of J1. Recall that

∫
R×R

φκ(n)(y1, y2) dy1 dy2 = 1 and suppφκ(n) ⊆ B(0, κ(n)).

Therefore, by the definitions of τ2 and τ1 (see (6.7) and (5.6) respectively), the fact
that q ∈ (1, 2], and the triangle inequality we get

∫
R

�(x/n)
∫ ∞

0
νε(t)|∂xPtg(x)|2τ−1

2 (u(x, t)) dt dw(x)

=
∫
R

�(x/n)
∫ ∞

0
νε(t)|∂xPtg(x)|2

×
(∫

R×R

φκ(n)(y1, y2)τ
−1
2 (u(x, t)) dy1 dy2

)
dt dw(x)

≤ 2
∫
R

�(x/n)
∫ ∞

0
νε(t)|∂xPtg(x)|2

×
(∫

R×R

φκ(n)(y1, y2)τ
−1
1 (u(x, t) − (y1, y2)) dy1 dy2

)
dt dw(x)

= 2
∫
R

�(x/n)
∫ ∞

0
νε(t)(τ

−1
1 � φκ(n))(u(x, t))|∂xPtg(x)|2 dw(x) dt.

(6.10)

Estimate of J2 + J3. By the definition of τ2 (see (6.7)), we get

4k(∂xPtg)(x)
Ptg(x)

x
τ−1
2 (u(x, t)) = x−1 4k

q
∂x((|Ptg(x)|2 + κ(n)2)q/2).
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Therefore, by (6.1) and the integration by parts (with respect to the Lebesgue
measure), for any t > 0 we get

J3 =
∫
R

�(x/n)4k(∂xPtg)(x)
Ptg(x)

x
τ−1
2 (u(x, t)) dw(x)

=
∫
R

4k
q

∂x((|Ptg(x)|2 + κ(n)2)q/2)(x−12|x|2k�(x/n)) dx

= −
∫
R

(|Ptg(x)|2 + κ(n)2)q/2 4k(2k − 1)
q

2|x|2k

x2 �(x/n) dx

−
∫
R

(|Ptg(x)|2 + κ(n)2)q/2 4k
q

2|x|2k

x
(n−1(∂x�)(x/n)) dx

= J3,1 + e2(n, ε, κ).

(6.11)

Recall that q ∈ (1, 2], so

0 ≤ 4k2 − 4k(2k − 1)
q

≤ 4k
q

.

Hence, by the definitions of J2 and J3,1 and the assumption k > 1, we get

J2 + J3,1

=
∫
R

�(x/n)
∫ ∞

0
νε(t)

×
(
4k2|Ptg(x)|2 − 4k(2k − 1)

q
(|Ptg(x)|2 + κ(n)2)

)
τ−1
2 (u(x, t))

x2 dt dw(x)

≤
∫
R

�(x/n)
∫ ∞

0
νε(t)

4k
q

|Ptg(x)|2 τ−1
2 (u(x, t))

x2 dt dw(x).

(6.12)

Note that, by the fact that q ∈ (1, 2] and the triangle inequality, for all
(y1, y2) ∈ B(0, κ(n)) we have

(6.13) τ−1
2 (u(x, t)) ≤ 2 max(|Ptg(x) − y2|, | − Ptg(x) − y2|)q−2.

Recall that Ptg is odd for all t > 0, so

2Ptg(x)
x

=
Ptg(x) − Ptg(−x)

x
.

Therefore, by (6.13) and (4.9) with

a = Ptg(x) − y2 and b = −Ptg(x) − y2 = Ptg(−x) − y2,
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we get

∫
R

�(x/n)
∫ ∞

0
νε(t)

4k
q

|Ptg(x)|2 τ−1
2 (u(x, t))

x2
dt dw(x)

=
∫
R

�(x/n)
∫ ∞

0
νε(t)

4k
q

×
(∫

R×R

φκ(n)(y1, y2)τ
−1
2 (u(x, t)) dy1 dy2

) |Ptg(x)|2
x2

dt dw(x)

≤ 2
∫
R

�(x/n)
∫ ∞

0
νε(t)

4k
q

×
(∫

R×R

φκ(n)(y1, y2) max(|Ptg(x) − y2|, |Ptg(−x) − y2|)q−2 dy1 dy2

)

× |Ptg(x)|2
x2 dt dw(x)

≤ 4
∫
R

�(x/n)
∫ ∞

0
νε(t)

4k
q

×
(∫

R×R

(∫ 1

0
φκ(n)(y1, y2)τ

−1
1 (su(x, t)+(1−s)u(−x, t)−y2)ds

)
dy1 dy2

)

× |Ptg(x)|2
x2

dt dw(x)

= 4
∫
R

�(x/n)
∫ ∞

0
νε(t)

4k
q

×
(∫ 1

0
s(φκ(n) � τ−1

1 )(su(x, t) + (1 − s)u(−x, t)) ds
)

× |Ptg(x)|2
x2

dt dw(x).

(6.14)

Finally, by (6.9), (6.10), (6.11), and (6.14),

I2 ≤ 2
∫
R

�(x/n)
∫ ∞

0
νε(t)(φκ(n) � τ−1

1 )(u(x, t))|∂xPtg(x)|2 dw(x) dt

+ 4k
∫
R

�(x/n)
∫ ∞

0
νε(t)

×
(∫ 1

0
s(φκ(n) � τ−1

1 )(su(x, t) + (1 − s)u(−x, t)) ds
)

× |Ptg(x) − Ptg(−x)|2
x2 dt dw(x)

+ e2(n, ε, κ).

(6.15)

Now we are ready to apply the same argument as in the proof of Lemma 5.2.
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Indeed, by (4.6) with ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N1 = N2 = 1,

η = Ptf (x),

ζ = Ptg(x),

ω = ∂tu(x, t) or ω = ∂xu(x, t)

(see (4.10)), we get

4
∫
R

�(x/n)
∫ ∞

0
νε(t)(τ1 � φκ(n))(u(x, t))|∂tPtf (x)|2 dt dw(x)

+ 2
∫
R

�(x/n)
∫ ∞

0
νε(t)(τ

−1
1 � φκ(n))(u(x, t))|∂xPtg(x)|2 dw(x) dt

≤ 8
γ

∫
R

�(x/n)
∫ ∞

0
νε(t)〈Hess(Bκ(n))(ũ(x, t))∂tu(x, t), ∂tu(x, t)〉 dt dw(x)

+
8
γ

∫
R

�(x/n)

×
∫ ∞

0
νε(t)〈Hess(Bκ(n))(ũ(x, t))∂xu(x, t), ∂xu(x, t)〉 dt dw(x).

(6.16)

Then, by (4.6) with⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N1 = N2 = 1,

η = sPtf (x) + (1 − s)Ptf (−x),

ζ = sPtg(x) + (1 − s)Ptg(−x),

ω = ρ−√
2u(x, t) = (Ptf (x)−Pt f (−x)

x , Ptg(x)−Ptg(−x)
x ),

where s ∈ [0, 1], we obtain

4k
∫
R

�(x/n)
∫ ∞

0
νε(t)

(∫ 1

0
s(φκ(n) � τ−1

1 )(su(x, t) + (1 − s)u(−x, t)) ds
)

× |Ptg(x) − Ptg(−x)|2
x2 dt dw(x)

≤ 8k
γ

∫
R

�(x/n)
∫ ∞

0
νε(t)

×
(∫ 1

0
s〈Hess(Bκ(n))(sũ(x, t)

+ (1 − s)ũ(−x, t))ρ−√
2u(x, t), ρ−√

2u(x, t)〉 ds
)

dt dw(x).

(6.17)

Finally, the claim is a consequence of (6.8), (6.15), (6.16) (6.17), and Proposi-
tion 4.10. �
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Remark 6.4. We would like to emphasize that we get rid of the “k2” factor
in (6.11) and (6.12), which is a crucial difference between the proofs of Lemma 5.2
and Lemma 6.2.

For the sake of completeness, we also formulate an analogue of Lemma 6.2 for
even functions. Its proof is identical to the proof of Lemma 5.2.

Lemma6.5. Assume that f, g ∈ S(R) and g is even. Then for any κ : N→ (0, 1]
we have ∫ ∞

0

∫
R

|t∂tPtf (x)||TPtg(x)| dw(x) dt ≤ 2
γ

lim inf
ε→0+

lim inf
n→∞ I(n, ε, κ).(6.18)

Proof. Note that by the definition of the Poisson semigroup (see Defini-
tion 3.1) and Lemma 3.3 (D), if g is even, then Ptg is also even for all t > 0.
Hence, by (6.2), for all t > 0 and x ∈ R we get

TPtg(x) = ∂xPtg(x).

Therefore, the reminder of the proof is the same as in the proof of Lemma 5.2
since I2 = 0 in (5.5). �

Lemma 6.6. Assume that f ∈ S(R), κ : N → (0, 1], ε > 0, and e1(n, ε, κ) is

defined in (6.5). If limn→∞ κ(n) = 0, then

(6.19) lim sup
n→∞

e1(n, ε, κ) = 0.

Proof. If follows by the definition of the Poisson semigroup (see Defini-
tion 3.1) and (3.6) that there is a constant C > 0 independent of f such that for
all t > 0 and x ∈ R we have

|(∂tPtf )(x)|2 ≤ Ct−2Pt|f |(x)2.
Therefore, by the fact that 0 ≤ � ≤ 1 and, by definition, {Pt}t≥0 are contractions
on L2(dw), we get

|e1(n, ε, κ)| ≤ 6Cκ(n)2−q
∫ ∞

0
νε(t)

(∫
R

�(x/n)t−2|Ptf (x)|2 dw(x)
)

dt

≤ 6Cκ(n)2−q‖f‖2
L2(dw)

(∫ ∞

0
t−2νε(t) dt

)
.

(6.20)

Recall that f ∈ S(R), so ‖f‖L2(dw) < ∞. Moreover, by the definition of νε

(see (5.1)), for fixed ε > 0 we have
∫ ∞
0 t−2νε(t) dt < ∞. Finally, the claim is a

consequence of (6.20) and the assumption limn→∞ κ(n) = 0. �
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Lemma 6.7. Let p ≥ 2 and q > 1 be such that 1
p + 1

q = 1. Assume that

g ∈ S(R) and ε > 0. For n ∈ N we set

(6.21) κ(n) =
(1

n
max(1, w(B(0, 2n)))−1

)1/q
.

Then we have

(6.22) lim sup
n→∞

|e2(n, ε, κ)| = 0,

where e2(n, ε, κ) is defined in (6.6).

Proof. We split e2(n, ε, κ) as follows:

|e2(n, ε, κ)| ≤ 16k
q

n−1
∫
R

|(∂x�)(x/n)|x−1
(∫ ∞

0
νε(t)|Ptf (x)|q dt

)
dw(x)

+
16k
q

n−1κ(n)q
∫
R

|(∂x�)(x/n)|x−1
(∫ ∞

0
νε(t) dt

)
dw(x)

=: e2,1(n, ε, κ) + e2,2(n, ε, κ).

We will estimate e2,1(n, ε, κ) and e2,2(n, ε, κ) separately.
Estimate of e2,1(n, ε, κ). In this case, we use the same argument as in

Lemma 6.6. Recall that � ∈ C∞
c (R). Therefore, there is C > 0 such that

(6.23) |(∂x�)(x/n)| ≤ C for all x ∈ R.

Moreover, supp� ⊆ B(0, 2) and � ≡ 1 on B(0, 1), so

(6.24) (∂x�)(x/n) = 0 for all x ∈ B(0, n).

Consequently,

(6.25) e2,1(n, ε, κ) ≤ 16k
q

Cn−1
∫

B(0,2n)\B(0,n)
x−1

(∫ ∞

0
νε(t)|Ptg(x)|q dt

)
dw(x).

Next, since |x−1| ≤ n−1 for all x �∈ B(0, n) and, by Lemma 3.5, {Pt}t≥0 are
uniformly bounded on Lq(dw), we get

16k
q

Cn−1
∫

B(0,2n)\B(0,n)
x−1

(∫ ∞

0
νε(t)|Ptg(x)|q dt

)
dw(x)

≤ C′n−2‖f‖q
Lq(dw)

∫ ∞

0
νε(t) dt.

Now, lim supn→∞ e2,1(n, ε, κ) = 0 follows by the fact that ‖f‖Lq(dw) < ∞, for
fixed ε > 0 we have

∫ ∞
0 νε(t) dt < ∞, and limn→∞ C′n−2 = 0.
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Estimate of e2,2(n, ε, κ). In this case, we utilize (6.21). By (6.23) and (6.24)
we get

e2,2(n, ε, κ) ≤ 16k
q

Cn−1κ(n)q
∫

B(0,2n)\B(0,n)
x−1

(∫ ∞

0
νε(t) dt

)
dw(x).

Then, by the fact that |x−1| ≤ n−1 for x �∈ B(0, n) and by (6.21),

16k
q

Cn−1κ(n)q
∫

B(0,2n)\B(0,n)
x−1

(∫ ∞

0
νε(t) dt

)
dw(x)

≤ 16k
q

Cn−3 1
w(B(0, 2n))

(∫
B(0,2n)\B(0,n)

dw(x)
)(∫ ∞

0
νε(t) dt

)

≤ 16k
q

Cw(B(0, 2n) \ B(0, n))
n3w(B(0, 2n))

(∫ ∞

0
νε(t) dt

)
.

Finally, the claim is a consequence of the fact that for fixed ε > 0 we
have

∫ ∞
0 νε(t) dt < ∞. �

As a direct consequence of Lemmas 6.2, 6.6, and 6.7, we obtain the following
corollary.

Corollary 6.8. Assume that p ≥ 2, f, g ∈ S(R), and g is odd. Let κ : N→ (0, 1]
be defined in (5.10). Then we have

(6.26)
∫ ∞

0

∫
R

|t∂tPtf (x)||TPtg(x)| dw(x) dt ≤ 8
γ

lim inf
ε→0+

lim inf
n→∞ I(n, ε, κ).

Proof of Theorem 1.4. Assume first that p ≥ 2. Take f ∈ Lp(dw). Thanks
to Theorem 1.2 and the fact that S(R) is dense in Lp(dw), without loss of generality
we can assume f ∈ S(R). Let κ : N → (0, 1] be defined by (5.10) and let q be such
that 1

p + 1
q = 1. By Proposition 6.1 we have

‖Hf‖Lp(dw) = sup
g∈S(R), ‖g‖Lq(dw)=1

∣∣∣∣
∫
R

Hf (x)g(x) dw(x)

∣∣∣∣
= 4 sup

g∈S(R), ‖g‖Lq(dw)=1

∣∣∣∣
∫
R

∫ ∞

0
t∂tPtf (x)TPtg(x) dt dw(x)

∣∣∣∣.
Then we split g into even and odd parts g1 and g2 respectively, so

‖Hf‖Lp(dw) ≤ 4 sup
g∈S(R), ‖g‖Lq (dw)=1

∫ ∞

0

∫
R

|t∂tPtf (x)TPtg1(x)| dw(x) dt

+ 4 sup
g∈S(R), ‖g‖Lq (dw)=1

∫ ∞

0

∫
R

|t∂tPtf (x)TPtg2(x)| dw(x) dt.
(6.27)
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For j ∈ {1, 2}, n ∈ N, and ε > 0 let us denote

Ij(n, ε, κ) :=
∫
R

�(x/n)
∫ ∞

0
νε(t)(∂

2
t + �k)(b

{j}
κ(n))(x, t) dt dw(x),

where

b{j}
κ(n)(x, t) = Bκ(n)(Ptf (x),Ptgj(x)).

By Lemma 6.5 and Corollary 5.7 we have

4 sup
g∈S(R), ‖g‖Lq (dw)=1

∣∣∣∣
∫
R

∫ ∞

0
t∂tPtf (x)TPtg1(x) dt dw(x)

∣∣∣∣
≤ 8

γ
lim inf
ε→0+

lim inf
n→∞ I1(n, ε, κ)

≤ 24(γ + 1)
γ

(‖f‖p
Lp(dw) + ‖g1‖q

Lq(dw)).

(6.28)

Then, by Lemma 6.2, Corollary 6.8, and Corollary 5.7,

4 sup
g∈S(R), ‖g‖Lq(dw)=1

∣∣∣∣
∫
R

∫ ∞

0
t∂tPtf (x)TPtg2(x) dt dw(x)

∣∣∣∣
≤ 32

γ
lim inf
ε→0+

lim inf
n→∞ I2(n, ε, κ)

≤ 96(γ + 1)
γ

(‖f‖p
Lp(dw) + ‖g2‖q

Lq(dw)).

(6.29)

By the triangle inequality and (2.5), for j ∈ {1, 2} we have ‖gj‖Lq(dw) ≤ ‖g‖Lq(dw).
Therefore, by (6.27), (6.28), and (6.29),

‖Hf‖Lp(dw) ≤ 240(γ + 1)
γ

(‖f‖p
Lp(dw) + ‖g‖q

Lq(dw)).

Finally, applying the same polarization arguments as in the proof of Theorem 1.3,
we obtain the claim. In case 1 < p < 2, one can use the duality argument. �

Appendix A Proof of (4.6)

We will consider first the function B(η, ζ) defined in (4.2).

PropositionA.1. The function (η, ζ) �−→B(η, ζ) is C2 on the setRN1×R
N2 \ϒ,

where

(A.1) ϒ = {(η, ζ) ∈ R
N1 × R

N2 : ‖η‖p = ‖ζ‖qor ζ = 0}.
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Moreover, for all (η, ζ) ∈ R
N1 × R

N2 \ ϒ and ω = (ω1, ω2) ∈ R
N1 × R

N2 we have

(A.2) 〈HessB(η, ζ)ω,ω〉 ≥ γ

2
(τ(η, ζ)‖ω1‖2 + τ(η, ζ)−1‖ω2‖2),

where

(A.3) τ(η, ζ) = ‖ζ‖2−q.

Proof. We repeat the proof of [37, Proposition 6.2]. The regularity properties
of B follows directly by the definition of B, so we will prove just (A.2). First, we
observe that 〈HessB(η, ζ)ω,ω〉 is the sum of three summands as follows:

〈HessB(η, ζ)ω,ω〉

=
N1∑

i,j=1

∂ηi∂ηjB(η, ζ)(ω1)i(ω1)j + 2
N1∑
i=1

N2∑
j=1

∂ηi∂ζjB(η, ζ)(ω1)i(ω2)j

+
N2∑

i,j=1

∂ζi∂ζjB(η, ζ)(ω2)i(ω2)j =: B1 + B2 + B3.

We will estimate 〈HessB(η, ζ)ω,ω〉 in two regions:

R1 = {(η, ζ) ∈ R
N1 × R

N2 : ‖η‖p < ‖ζ‖q, ζ �= 0}
and

R2 = {(η, ζ) ∈ R
N1 × R

N2 : ‖η‖p > ‖ζ‖q, ζ �= 0}.
Estimate in R1. In this case we have

B(η, ζ) =
1
2
(‖η‖p + ‖ζ‖q + γ‖η‖2‖ζ‖2−q).

Hence, we calculate

∂ηi∂ηjB(η, ζ) =

⎧⎨
⎩

p(p−1)
2 ‖η‖p−4ηiηj if i �= j,

p(p−1)
2 ‖η‖p−4ηiηj +

p
2‖η‖p−2 + γ‖ζ‖2−q if i = j,

∂ηi∂ζjB(η, ζ) = γ(2 − q)‖ζ‖−qηiζj,

∂ζi∂ζjB(η, ζ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q(q−2)
2 ‖ζ‖q−4ζiζj +

γ
2q(q − 2)‖η‖2‖ζ‖−q−2 if i �= j,

q(q − 2)
2

‖ζ‖q−4ζiζj +
q
2
‖ζ‖q−2

+
γ

2
q(q − 2)‖η‖2‖ζ‖−q−2 +

γ(2 − q)
2

‖η‖2‖ζ‖−q
if i = j.
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Thus, in R1,

B1 =
p(p − 2)

2
‖η‖p−4〈η,ω1〉2 +

p
2
‖η‖p−2‖ω1‖2 + γ‖ζ‖2−q‖ω1‖2

≥ γ‖ζ‖2−q‖ω1‖2.

Next, note that the condition ‖η‖p < ‖ζ‖q implies ‖η‖‖ζ‖1−q < 1. Therefore,

B2 = 2γ(2 − q)‖ζ‖−q〈η,ω1〉〈ζ, ω2〉
≥ −2γ(2 − q)‖ζ‖−q‖ω1‖‖ω2‖‖η‖‖ζ‖
≥ −γ

(‖ζ‖2−q

2
‖ω1‖2 + 2‖ζ‖q−2‖ω2‖2

)
.

In order to estimate B3, note that ‖η‖‖ζ‖1−q < 1 implies ‖η‖2‖ζ‖−q < ‖ζ‖q−2.
Recall that γ = q(q−1)

8 . Consequently,

B3 ≥ q
2
‖ζ‖q−2((q − 2)‖ζ‖2〈ζ, ω2〉2 + ‖ω2‖2)

+
γ

2
(2 − q)‖η‖2‖ζ‖−q(−q‖ζ‖−2〈ζ, ω2〉2 + ‖ω2‖2)

≥ γ

2
(8‖ζ‖q−2 + (2 − q)(1 − q)‖η‖2‖ζ‖−q)‖ω2‖2

≥ γ

2
(8 + (2 − q)(1 − q))‖ζ‖q−2‖ω2‖2.

Combining the estimates for B1, B2, and B3 we get

〈HessB(η, ζ)ω,ω〉 ≥ γ

2
(‖ζ‖2−q‖ω1‖2 + (q2 − 3q + 6)‖ζ‖q−2‖ω2‖2)

≥ γ

2
(‖ζ‖2−q‖ω1‖2 + ‖ζ‖q−2‖ω2‖2),

so (A.2) follows with τ(η, ζ) = ‖ζ‖2−q.
Estimate in R2. In this case we have

B(η, ζ) =
1
2

(
‖η‖p + ‖ζ‖q + γ

(2
p
‖η‖p +

(2
q

− 1
)
‖ζ‖q

))
,

so the second derivatives are

∂ηi∂ηjB(η, ζ) =

⎧⎨
⎩

1
2 (p + 2γ)(p − 2)‖η‖p−4ηiηj if i �= j,
1
2 (p + 2γ)(p − 2)‖η‖p−4ηiηj + 1

2(p + 2γ)‖η‖p−2 if i = j,

∂ηi∂ζjB(η, ζ) = 0,

∂ζi∂ζjB(η, ζ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 (q + γ(2 − q))(q − 2)‖ζ‖q−4ζiζj if i �= j,
1
2
(q + γ(2 − q))(q − 2)‖ζ‖q−4ζiζj

+
1
2
(q + γ(2 − q))‖ζ‖q−2

if i = j.
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Hence,

〈HessB(η, ζ)ω,ω〉
≥ 1

2
(p + 2γ)(p − 2)‖η‖p−4〈η,ω1〉2 +

1
2
(p + 2γ)‖η‖p−2‖ω1‖2

+
1
2
(q + γ(2 − q))(q − 2)‖ζ‖q−4〈ζ, ω2〉2 +

1
2
(q + γ(2 − q))‖ζ‖q−2‖ω2‖2.

Recall that γ = q(q−1)
8 . Hence, we have p+2γ ≥ 1 and q+γ(2−q) ≥ 1. Therefore,

〈HessB(η, ζ)ω,ω〉 ≥ 1
2
((p − 1)‖η‖p−2‖ω1‖2 + (q − 1)‖ζ‖q−2‖ω2‖2).

Note that ‖η‖p > ‖ζ‖q implies

‖η‖p−2 = ‖η‖p(p−2)/p > ‖ζ‖q(p−2)/p = ‖ζ‖2−q,

so

〈HessB(η, ζ)ω,ω〉 ≥ 1
2
((p − 1)‖ζ‖2−q‖ω1‖2 + (q − 1)‖ζ‖q−2‖ω2‖2).

Note that p − 1 ≥ 1 and q − 1 ≥ γ. Therefore,

〈HessB(η, ζ)ω,ω〉 ≥ γ

2
(‖ζ‖2−q‖ω1‖2 + ‖ζ‖q−2‖ω2‖2)

and we can take τ(η, ζ) = ‖ζ‖2−q in (A.2). �

Proof of (4.6). We repeat the argument from [20, Theorem 4] and [37,
Proposition 6.3]. It follows by the formulas for the second derivatives of B which
are given above that they are C2 on R

N1 × R
N2 \ ϒ and they are locally integrable.

Moreover, B is C1 on R
N1 × R

N2 . That means that the distributional derivatives
of B exist and they coincide with the usual ones on R

N1 × R
N2 \ ϒ. Hence, we get

the identity

〈HessBκ(η, ζ)ω,ω〉 =
∫
RN1×RN2\ϒ

φκ(η − η1, ζ − ζ1)〈HessB(η1, ζ1)ω,ω〉 dη1 dζ1

for all (η, ζ) ∈ RN1 × RN2 and ω ∈ RN1+N2 . By (A.2) we obtain∫
RN1×RN2\ϒ

φκ(η − η1, ζ − ζ1)〈HessB(η1, ζ1)ω,ω〉 dη1 dζ1

≥ γ

2

∫
R

N1×R
N2

φκ(η − η1, ζ − ζ1)τ(η1, ζ1)‖ω1‖2dη1 dζ1

+
γ

2

∫
RN1×RN2

φκ(η − η1, ζ − ζ1)τ
−1(η1, ζ1)‖ω2‖2dη1 dζ1,

so (4.6) is proved. �
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[13] A. Carbonaro and O. Dragičević, Bilinear embedding for divergence-form operators with complex
coefficients on irregular domains, Calc. Var. Partial Differential Equations 59 (2020), Article
no. 104.

[14] T. Coulhon, D. Müller and J. Zienkiewicz, About Riesz transforms on the Heisenberg groups,
Math. Ann. 305 (1996), 369–379.

[15] K. Dahmani, Sharp dimension free bound for the Bakry–Riesz vector, arXiv:1611.07696
[math.CA]

[16] M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), 147–162.

[17] K. Domelevo, S. Petermichl and J. Wittwer, A linear dimensionless bound for the weighted Riesz
vector, Bull. Sci. Math. 141 (2017), 385–407.

[18] O. Dragičević and A.Volberg, Bellman functions and dimensionless estimates of Littlewood–Paley
type, J. Operator Theory 56 (2006), 167–198.



DIMENSION-FREE LP-ESTIMATES FOR VECTORS OF RIESZ TRANSFORMS 527
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[20] O. Dragičević and A. Volberg, Linear dimension-free estimates in the embedding theorem for
Schrödinger operators, J. Lond. Math. Soc. (2) 85 (2012), 191–222.

[21] C. F. Dunkl, Reflection groups and orthogonal polynomials on the sphere, Math. Z. 197 (1988),
33–60.

[22] C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math.
Soc. 311 (1989), 167–183.

[23] C. F.Dunkl, Hankel transforms associated to finite reflection groups, in Hypergeometric Functions
on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), American
Mathematical Society, Providence, RI, 1992, pp. 123–138.

[24] J. Duoandikoetxea and J. L. Rubio de Francia, Estimations indépendantes de la dimension pour
les transformées de Riesz, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 193–196.

[25] L. Forzani, E. Sasso and R. Scotto, Lp boundednessof Riesz transforms for orthogonal polynomials
in a general context, Studia Math. 231 (2015), 45–71.
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