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Abstract. The complement of a Cantor set in the complex plane is itself
regarded as a Riemann surface of infinite type. The problem of this paper is
the quasiconformal equivalence of such Riemann surfaces. Particularly, we are
interested in Riemann surfaces given by Cantor sets which are created through
dynamical methods. We discuss the quasiconformal equivalence for the comple-
ments of Cantor Julia sets of rational functions and generalized Cantor sets. We
also consider the Teichmüller distance between generalized Cantor sets.

1 Introduction

Let E be a Cantor set in the Riemann sphere Ĉ, that is, a totally disconnected
perfect set in Ĉ. The standard middle one-third Cantor set C is a typical example.
We consider the complement XE := Ĉ \ E of the Cantor set E. It is an open
Riemann surface with uncountably many boundary components. We are interested
in the quasiconformal equivalence of such Riemann surfaces. In the previous
paper [15], we show that the complement of the limit set of a Schottky group
is quasiconformally equivalent to XC, the complement of C ([15] Theorem 6.2).
In this paper, we discuss the quasiconformal equivalence for the complements
of Cantor Julia sets of hyperbolic rational functions and generalized Cantor sets
(see §2 for the terminologies). We establish the following theorems.

Theorem I. Let f be a rational function of degree d > 1 and J be the Julia
set of f . Suppose that f is hyperbolic and J is a Cantor set. Then, the complementXJ

of J is quasiconformally equivalent to XC.

We should mention that Theorem I may be obtained from a result of MacManus
[10] about quasi-circles on C. In this paper, we prove the theorem by using some
arguments on open Riemann surfaces and quasiconformal mappings. In fact, those
arguments will be fundamental tools throughout this paper.

∗The author was partially supported by the Ministry of Education, Science, Sports and Culture,
Japan; Grant-in-Aid for Scientific Research (B), 16H03933, 2016–2020.
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2 H. SHIGA

For a sequence ω = (qn)∞n=1 with 0 < qn < 1, we have a generalized Cantor
set E(ω) (see §2.2 for the construction). For a positive constant δ, we say that the
sequenceω has a δ-lower bound if qn > δ, and it has a δ-upper bound if qn < 1− δ
(n = 1, 2, . . . ). We also say that ω has lower and upper bounds if δ < qn < 1 − δ

(n = 1, 2, . . . ) for some δ > 0. Then, we obtain the following results.

Theorem II. Let ω = (qn)∞n=1 and ω̃ = (q̃n)∞n=1 be sequences with δ-lower
bound. We put

(1.1) d(ω, ω̃) = sup
n∈N

max
{∣∣∣ log

1 − q̃n

1 − qn

∣∣∣, |q̃n − qn|
}
.

(1) If d(ω, ω̃) <∞, then there exists an exp(C(δ)d(ω, ω̃))-quasiconformal map-

ping ϕ on Ĉ such that ϕ(E(ω)) = E(ω̃), where C(δ) > 0 is a constant
depending only on δ;

(2) if limn→∞ log 1−q̃n

1−qn
= 0, then E(ω̃) is asymptotically conformal to E(ω), that

is, there exists a quasiconformal mapping ϕ on Ĉ with ϕ(E(ω)) = E(ω̃) such

that for any ε > 0, ϕ|Uε
is (1 + ε)-quasiconformal on a neighborhood Uε

of E(ω).

A Kleinian group G is called a Schottky group if there exist mutually disjoint
2g (≥ 4) closed JordandomainsDi, D̃i andMöbius transformationsγi (i = 1, . . . , g)
such that each γi sends Di onto the outside of D̃i and G is generated by γ1, . . . , γg.

From above results and a result [15] Theorem 6.2, immediately we obtain

Corollary 1.1. Let E be a Cantor set which is a Julia set of a rational function
satisfying the conditions in Theorem I. Then, the complement of the limit set of a

Schottky group G is quasiconformally equivalent to XE.

As consequences of Theorem II (1), we obtain

Corollary 1.2. Let E(ω) be a generalized Cantor set for ω = (qn)∞n=1. Suppose
that ω has lower and upper bounds. Then, XE(ω) is quasiconformally equivalent

to XC.

We have also the following.

Corollary 1.3. Let E be a Cantor set as in Corollaries 1.1 or 1.2. Then,

the Cantor set E is quasiconformally removable, that is, every quasiconformal
mapping on the complement of E is extended to a quasiconformal mapping on the

Riemann sphere.

The proof of Theorem II gives the following.
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Corollary 1.4. Let ω and ω̃ be sequences satisfying the same conditions as

in Theorem II (2). Then, the Hausdorff dimension of E(ω̃) is the same as that of
E(ω).

It is known ([11] V. 11F. Theorem) that the generalized Cantor set E(ω) for ω
is of capacity zero if and only if

(1.2)
∞∏
n=1

(1 − qn)
2−n

= 0.

Hence if {qn}∞n=1 rapidly converges to one as it satisfies (1.2), then XE(ω) is not qua-
siconformally equivalent to XC because the positivity of the capacity of closed sets
in the plane is preserved by quasiconformal mappings (cf. [11] III. Theorem 8 H).
In fact, we can say more:

Theorem III. If ω does not have an upper bound, then XE(ω) is not quasicon-
formally equivalent to XC.

Acknowledgements. The author thanks Prof. K. Matsuzaki for his valuable
comments. This research was partly done during the author’s stay in the Erwin
Schrödinger institute at Vienna. He thanks the Institute for its brilliant support to
his research. Finally, the author expresses his sincere gratitude to the referee for
the valuable comments.

2 Preliminaries

2.1 Complex dynamics. We begin with a small and brief introduction of
complex dynamics. We may refer textbooks on the topic, e.g., [6] for a general
theory of complex dynamics.

Let f be a rational function of degree d > 1 on C. We denote by f n the n

times iterations of f . The Fatou set F of f is the set of points in Ĉ which have
neighborhoods where {f n}∞n=1 is a normal family. The complement of F, which is
denoted by J, is called the Julia set of f .

A rational function f is called hyperbolic if it is expanding near J. More
precisely, if J �� ∞, then f is hyperbolic if there exist a constant A > 1 and a
smooth metric σ(z)|dz| in a neighborhood U of J such that

σ(f (z))|f ′(z)| ≥ Aσ(z), z ∈ J

(see [6] V. 2). If ∞ ∈ J, the hyperbolicity of f is defined by conjugation of Möbius
transformations as usual.
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The hyperbolicity is also characterized in terms of the Euclidean metric and the
dynamical behavior of rational functions as well.

Proposition 2.1 ([6] V. 2. Lemma 2.1 and Theorem2.2). A rational function f

is hyperbolic if and only if every critical point belongs to F and is attracted to an
attracting cycle. If ∞ �∈ J, then the hyperbolicity of f is equivalent to the existence

of m ≥ 1 such that |(f m)′| > 1 on J.

2.2 GeneralizedCantor sets (cf. [11] I. 6). Letω=(qn)∞n=1 =(q1, q2, . . . )
be a sequence of real numbers with 0 < qn < 1 for each n ∈ N. We construct a
Cantor set E(ω) for ω inductively as follows.

First, we remove an open interval J1 of length q1 from E0 := I = [0, 1] so that
I \J1 consists of two closed intervals I1

1, I
2
1 of the same length. We put E1 =

⋃2
i=1 Ii

1.
We remove an open interval of length |Ii

1|q2 from each Ii
1 so that the remainder E2

consists of four closed intervals of the same length, where |J| is the length of an
interval J. Inductively, we define Ek+1 from Ek =

⋃2k

i=1 Ii
k by removing an open

interval of length |Ii
k|qk+1 from each closed interval Ii

k of Ek so that Ek+1 consists
of 2k+1 closed intervals of the same length. The generalized Cantor set E(ω) for ω
is defined by

E(ω) =
∞⋂
k=1

Ek.

It is a generalization of the standard middle one-third Cantor set C. In fact,
C = E(ω0) for ω0 = ( 1

3 )
∞
n=1 = ( 1

3,
1
3 , . . . ).

We say that a sequenceω = (qn)∞n=1 as above is of (δ-)lower bound if there exists
a δ > 0 such that qn ≥ δ for any n ∈ N. We also say that a sequence ω has a
(δ-)upper bound if qn ≤ 1 − δ for any n ∈ N.

2.3 Hausdorff dimension. Let E be a subset ofC andα > 0. We consider
a countable open covering {Ui}i∈N of E with diam(Ui) < r for a given r > 0. Then,
we set

	r
α(E) := inf

{∑
i∈N

(diam(Ui))
α

}
,

where the infimum is taken over all countable open coverings {Ui}i∈N with
diam(Ui) < r. We put

	α(E) = lim
r→0

	r
α(E)

and the Hausdorff dimension dimH(E) of E by

dimH(E) = inf{α | 	α(E) = 0}.
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2.4 The quasiconformal equivalence of open Riemann surfaces.
We say that two Riemann surfaces R1,R2 are quasiconformally equivalent if there
exists a quasiconformal homeomorphism between them. We also say that they are
quasiconformally equivalent near the ideal boundary if there exist compact subsets
Kj of Rj (j=1, 2) and a quasiconformal homeomorphism ϕ from R1\K1 onto R2\K2.

It is obvious that if R1,R2 are quasiconformally equivalent, then they are qua-
siconformally equivalent near the ideal boundary. On the other hand, we have
shown that the converse is not true in general. In fact, we have constructed two
Riemann surfaces which are not quasiconformally equivalent while they are home-
omorphic to each other and quasiconformally equivalent near the ideal boundary
([15] Example 3.1). We also give a sufficient condition for Riemann surfaces to
be quasiconformally equivalent ([15] Theorem 5.1).

Proposition 2.2. Let R1,R2 be open Riemann surfaces which are homeomor-
phic to each other and quasiconformally equivalent near the ideal boundary. If

the genus of R1 is finite, then R1 and R2 are quasiconformally equivalent.

At the end of this section, we present a result on the removability for quasicon-
formal mappings.

Proposition 2.3 (cf. [9] I. Theorem 8.3). Let D be a domain or a Riemann

surface and ϕ be a homeomorphism from D to a Riemann surface. Suppose that ϕ
is quasiconformal on D \ C, where C is an analytic curve in D. Then, ϕ is a

quasiconformal mapping on D.

3 Proof of Theorem I

Let f be a hyperbolic rational function with a Cantor Julia set J. We show that XJ

is quasiconformally equivalent to XC. By Proposition 2.2, it suffices to show that
there exists a compact subset K of F such that F \K is quasiconformally equivalent
to the complement of a compact subset of XC. Considering f m instead of f for
some m ∈ N, we may assume that |f ′| > 1 on J since the Julia set of f m is the same
as that of f for any m ∈ N.

Considering the conjugation by Möbius transformations, we may assume that J
does not contain ∞. Since J is a Cantor set, the Fatou setF is connected. Therefore,
it follows from Proposition 2.1 that F itself is the attractive Fatou component and
it contains the attracting fixed point z0 of f .

It follows from the local theory of attracting fixed points (cf. [6] II. 2) that there
exists a simply connected neighborhood 
0 of z0 such that f (
0) ⊂ 
0. We may
take
0 so that the boundary ∂
0 is a smooth Jordan curve and it does not contain
the forward orbits of critical points of f .
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For 
k := f−k(
0) (k ∈ N), we have

z0 ∈ 
0 ⊂ 
0 ⊂ 
1 ⊂ 
1 ⊂ · · · ⊂ 
k ⊂ 
k+1 ⊂ · · · ⊂ F

and

F =
∞⋃
k=0


k.

SinceF is connected,
k := f−k(
0) is connected for each k ∈ N. Therefore,
k

is not simply connected for a sufficiently large k becauseF is not simply connected.
Hence, we may assume that 
1 is bounded by at least two Jordan curves. Then,
each
k is bounded by mutually disjoint finitely many smooth Jordan curves.

Since f is hyperbolic, the Julia set J does not contain critical points. Moreover, it
follows from Proposition 2.1 that there exists a simply connected neighborhood Vz

of each z ∈ J such that f |Vz is injective on Vz. Hence, from compactness of J

there exist disks V1, . . . ,Vn for some n ∈ N such that J ⊂ ⋃n
j=1 Vj, f |Vj is injective

(1 ≤ j ≤ n). Then, we show

Lemma 3.1. There exists k0 ∈ N such that for any k ≥ k0, each connected

component of 
k+1 \
k is contained in some Vj (1 ≤ j ≤ n).

Proof. Let �1
k, . . . ,�

j(k)
k be the set of connected components of C \ 
k. To

prove the claim of this proposition, we need an observation on {�i
k}.

Since �i
k is a connected component of the complement of a planar domain 
k

bounded by finitely many Jordan curves, �i
k is a closed Jordan domain, that is,

a topological disk. Therefore, �1
k, . . . ,�

j(k)
k are mutually disjoint closed Jordan

domains in C. If �i
k is contained in Vj, then for every l > k, any connected

component of F \
l contained in �i
k is also contained in the same Vj.

From the above observation, we see that if every connected component of

k0+1 \
k0 ⊂ �i

k0
(1 ≤ i ≤ j(k0)) is contained in some Vj, then it is so for k ≥ k0.

Hence, it suffices to show that there exists k0 ∈ N such that each�i
ko

(1 ≤ i ≤ j(k0))
is contained in some Vj.

Suppose that for any k ∈ N, there exists an i(k) ∈ {1, . . . , j(k)} such that �i(k)
k

is not contained in any Vj (j = 1, 2, . . . , n). We may assume that i(k) = 1 and we
put Wk := �1

k . By using the above observation again, we may assume that {Wk}∞k=1

is nested, that is, Wk ⊃ Wk+1 for any k.
Noting that any relatively compact subset in F is eventually contained in

some 
k, we see that Wk is in
⋃n

j=1 Vj for a sufficiently large k because F \ ⋃n
j=1 Vj

is compact in F.
Now, we consider A :=

⋂∞
k=1 Wk. Since {Wk}∞k=1 is a nested set of closed Jordan

domains and F =
⋃∞

k=1
k, A has to be a connected closed subset of J. On the other
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hand, the Julia set J is totally disconnected. Hence, we conclude that A = {x} for
some x ∈ J and x is in some Vj. This means that Wk ⊂ Vj for a sufficiently large k
and we have a contradiction. �

We take k0 ∈ N in the above lemma. Let ω1, ω2, . . . , ω
 be the set of
connected components of 
k0+1 \ 
k0 . Each ωj is bounded by a finite num-
ber, say L(j) + 1, of mutually disjoint simple closed curves. We may assume
that L(j) > 1 (j = 1, 2, . . . , 
) since {
k}∞k=1 exhausts F. Note that the number of
connected components of ∂
k0 ∩ ∂
k0+1 is equal to 
. It is because ∂ωj ∩ ∂
k0

consists of one simple closed curve for each j ∈ {1, . . . , 
}.

P1,1P−1,1

P2,1

P2,2

P−2,1

P−2,2

P1

P2

Figure 1. The middle one-third Cantor set.

For any k > k0 and for a connected component ω of 
k+1 \ 
k, we have
f k−k0 (ω) ⊂ 
k0+1 \
k0 and f k−k0 is conformal in ω since ω is contained in some Vj.
Hence, ω is conformally equivalent to ωJ for some J ∈{1, 2, . . . , 
}. Therefore, if
k>k0, then
k+1\
k contains atmost 
 conformally different connectedcomponents.

Now, we consider the middle one-third Cantor set C and XC := Ĉ \ C. It is
not hard to see that XC admits a pants decomposition {Pk,j}k∈Z\{0},j∈{1,...,2|k|−1} as in
Figure 1. While a construction of the pants decomposition is given in [15], we will
present the construction for readers’ convenience as follows.

We make the middle one-third Cantor set C on I = [−1, 1].
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First, we remove an open interval J1 of length 2/3 from E0 := I = [−1, 1] so that
I \ J1 consists of two closed intervals I−1

1 , I1
1 of the same length, where I−1

1 ⊂ R<0

and I1
1 ⊂ R>0. We put E1 = I−1

1 ∪ I1
1. We remove an open interval of length 1

3 |Ii
1|

from each I±1
1 so that the remainder E2 consists of four closed intervals of the same

length, where |J| is the length of an interval J. Inductively, we define Ek+1 from
Ek =

⋃−1
i=−2k−1 Ii

k ∪ ⋃2k−1

i=1 Ii
k by removing an open interval of length 1

3 |Ii
k| from each

closed interval Ii
k of Ek so that Ek+1 consists of 2k+1 closed intervals of the same

length. The Cantor set C is defined by

C =
∞⋂
k=1

Ek.

We denote the imaginary axis by C0
0. For any (k, i) (k ∈ N; i = ±1, . . . ,±2k−1),

we take a circle Ci
k which is a circle centered at the midpoint of Ii

k with radius 5
6 |Ii

k|.
We see that all Ci

k’s are mutually disjoint curves in XC and each Ci
k contains

Cε(i)(2|i|−1)
k+1 ,C2i

k+1, where ε(i) = −1 if i < 0 and ε(i) = 1 if i > 0. Hence, they make
a pants decomposition of XC. A pair of pants bounded by C0

0, C1
2 (resp., C−1

2 )
and C2

2 (resp., C−2
2 ) is denoted by P1,1 (resp., P−1,1). We also denote by Pε(i)k,|i| a

pair of pants bounded by Ci
k, C

2i−ε(i)
k+1 and C2i

k+1. Obviously, for every k with |k| ≥ 2,
Pk.j (j = 1, . . . , 2|k|−1) is conformally equivalent to P2,1. Thus, we have the pants
decomposition as Figure 1. Let PN(N ∈ N) be a subdomain of XC consisting of
Pi,j for i = 1, . . . ,N and j = 1, . . . , 2i−1.

Let N0 ∈ N be the largest number with 2N0 + 1 ≤ 
. We put

K0 := PN0


0⋃
j=1

PN0+1,j,

where 
0 = 
− 2N0 − 1. Then, K0 is a compact subset of XC bounded by 
 simple
closed curves. We denote them by C1, . . . ,C
, where C1 ⊂ ∂P1,1. We may take a
subdomain G1 of XC so that G1 \ K0 is quasiconformally equivalent to 
k0+1 \
k0

as follows.

We take the largest number L1 with 2L1 ≤ L(1). Then,

G1,1 :=
( L1⋃

i=1

⋃
j=1,...,2i−1

P−i,j

)
∪
( ⋃

j=1,...,L(1)−2L1

P−L1−1,j

)

is a closed subdomain of XC with L(1) + 1 boundary curves. Hence, G1,1 is
quasiconformally equivalent to ω1 since both of them are planar domains bounded
by the same number of closed curves.
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Similarly, we may construct subdomains G1,2, . . . ,G1,
 such that

∂G1,j ∩ ∂K0 = Cj

and each G1,j is quasiconformally equivalent to ωj (j = 1, 2, . . . , 
). Combining K0

with G1,1, . . . ,G1,
, we obtain a desired subdomain G1.

By using the same argument as above, we have a subdomain G2 of XC such that
G1 ⊂ G2 and G2 \ G1 is quasiconformally equivalent to 
k0+2 \
k0+1.

We may use this argument inductively and we obtain an exhaustion {Gi}∞i=1

of XC such that

K0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gi ⊂ Gi+1 ⊂ . . . , XC =
∞⋃
i=1

Gi,

and Gi+1 \ Gi are quasiconformally equivalent to 
k0+i+1 \
k0+i (i = 1, 2, . . . ).

From this construction, we have a natural bijection I between the set of con-
nected components of Gi+1 \ Gi and those of 
k0+i+1 \ 
k0+i (i = 1, 2, . . . ) such
that

(1) ifD is a connected component ofGi+1\Gi, then I(D) is a connected component
of 
k0+i+1 \
k0+i;

(2) if D′ is a connected component of Gi+2 \Gi+1 which is adjacent to a connected
component D of Gi+1 \Gi, that is, ∂D∩∂D′ �= ∅, then I(D′) is adjacent to I(D).

Now, we use the following proposition which is obtained from [15] Lemma 4.1
and its proof.

Proposition 3.1. Let X,Y be Riemann surfaces. We consider simple closed

curves α ⊂ X and β ⊂ Y with X \ α = X1 � X2 and Y \ β = Y1 � Y2, respectively.

Suppose that there exist quasiconformal mappings fi : Xi → Yi (i = 1, 2) such
that f1(α) = f2(α) = β. Then, there exist an annular neighborhood U of α and a

quasiconformal mapping f on U into Y such that

(1) V := f (U) is an annular neighborhood of β;
(2) we put

(3.1) F(p) =

⎧⎨
⎩fi(p), p ∈ Xi \ U (i = 1, 2),

f (p), p ∈ U.

Then F is a quasiconformal mapping from X to Y.

Proof. Since the proof is the same as that of [15, Lemma 4.1], we give a brief
outline of the proof.
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We take an annular neighborhood U of α so that the boundary ∂U consists of
analytic Jordan curves. We put Ci := Xi ∩∂U (i = 1, 2) and denote by V the annulus
bounded by f1(C1), f2(C2). By arranging f1|C1 and f2|C2 , we may assume that both
f1|C1 and f2|C2 are smooth mappings.

Take γ ∈ PSL(2,R) which represents U, that is, H/〈γ〉 is conformally equiv-
alent to U. We may assume that γ(z) = kz for some k > 1. Then, we verify
that f1|C1 together with f2|C2 determines a 〈γ〉-compatible quasi-symmetric home-
omorphism h on R. Taking the Douady–Earle extension ([8]) of h, we obtain
a 〈γ〉-compatible quasiconformal mapping f̃ on H with f̃ |R = h. The projected
mapping f : U → V is a quasiconformal mapping with f |Ci = fi (i = 1, 2). It fol-
lows from Proposition 2.3 that the mapping F defined by (3.1) is a quasiconformal
mapping from X to Y . �

Remark 3.1. From the above construction, we see that the quasiconformal
mapping f is determined by the local behaviors of fj (j = 1, 2) near α. Namely, if
we have quasiconformal mappings fij : Xi → Yi (i, j = 1, 2) satisfying the above
conditions and a neighborhood U0 of α such that fi1|U0∩Xi = fi2|U0∩Xi , then we obtain
quasiconformalmapping Fj as in Proposition 3.1 for fj (j = 1, 2) so that F1|U = F2|U
in a neighborhood U of α.

Let D′ be a connected component of 
k0+i+2 \ 
ko+i+1 which is adjacent to
a connected component D of 
k0+i+1 \ 
k0+i. We put β := ∂D ∩ ∂D′ and
YD,D′ := D ∪ β ∪ D′. We may find connected components D of Gi+1 \ Gi and D′

of Gi+2 \ Gi+1 so that I(D) = D and I(D′) = D′ and D′ is adjoining D along
α := ∂D ∩ ∂D′. We put

XD,D′ := D ∪ α ∪ D′.

Let X1,X2, . . . ,Xn be the set of connected components of G3\G1 andY1, . . . ,Yn

the set of connected components of
k0+3 \
k0+1. It follows from Lemma 3.1 that
the rational function f is conformal in every connected component of
k0+i+1\
k0+i

(i ∈ N). Therefore, the Riemann surface YD,D′ is conformally equivalent to
some Yj via f i−1. We may assume that f i−1(YD,D′) = Y1 and put β1 := f i−1(β).
Similarly, XD,D′ is conformally equivalent to a connected component, say X1, of
G3 \ G1 via a conformal map h. We put α1 := h(α).

Then, we have

X1 \ α1 = X1,1 � X1,2 and Y1 \ β1 = Y1,1 � Y1,2,

where

X1,1 = h(D), X1,2 = h(D′), Y1,1 = f i−1(D) and Y1,2 = f i−1(D′).
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We see that there are quasiconformal mappings ϕ1,j : X1,j → Y1,j (j = 1, 2) such
that ϕ1,j(α1) = β1. It follows from Proposition 3.1 that there exist a quasiconfor-
mal mapping �1 : X1 → Y1 and an annular neighborhood U1 of α1 in X1 such
that �1|X1,j\U1 = ϕ1,j (j = 1, 2). Then, a mapping �D,D′ : XD,D′ → YD,D′ given by

�D,D′ := (f i−1|YD,D′ )
−1 ◦�1 ◦ h

is a quasiconformal mapping with the same maximal dilatation as that of�1 which
depends only on X1,Y1 and ϕ1,j (j = 1, 2).

Next, we take a connected component D′′ of Gi+3 \ Gi+2 adjoining D′ along
α′ := ∂D′ ∩ ∂D′′. Then, D′′ := I(D′′) is a connected component of 
k0+i+3 \
k0+i+2

adjoining D′ along β′ := ∂D′ ∩ ∂D′′. We extend�1 to D′′.
PutXD′,D′′ := D′∪α′∪D′′ andYD′,D′′ := D′∪β′∪D′′. Then, XD′,D′′ is conformally

equivalent to a connected component of G3\G1, say X2, via a conformalmapping g
and YD′,D′′ is conformally equivalent to a connected component of 
k0+3 \ 
k0+1,
say Y2, via f i. We put

X2,1 := g(D′), X2,2 := g(D′′), α2 := g(α′), Y2,1 := f i(D′), Y2,2 := f i(D′′)

and β2 := f i(β′).

Note that f |Y1,2 : Y1.2 → Y2,1 is a conformal mapping with f |Y1,2 (f
i−1(β′)) = β2. It

is also seen that

h̃ := g ◦ (h|X1,2 )
−1 : X1,2 → X2,1

is a conformal mapping with h̃(h(α′)) = α2. Hence,

ϕ2,1 := f ◦�1|X1,2 ◦ h̃−1 : X2,1 → X1,2

is a quasiconformal mapping with the same maximal dilatation as that of �1. It is
also seen that ϕ2,1(α2) = β2.

We take a quasiconformalmapping ϕ2,2 : X2,2 → Y2,2 with ϕ2,2(α2) = β2. It fol-
lows from Proposition 3.1 that there exist a quasiconformalmapping�2 : X2 → Y2

and an annular neighborhood U2 of α2 in X2 such that �2|X2,j\U2 = ϕ2,j (j = 1, 2).

Note that we may take U2 small so that (U2 ∩X2,1)∩ h̃(U1) = ∅. Then, we have

ϕ2,1|U2∩X2,1 = f ◦ ϕ1,2 |̃h−1 ◦ h̃−1|U2∩X2,1

and we see that the maximal dilatation of�2|U2 is independent of the construction
of �1 but depends only on ϕ2,j|U2 (j = 1, 2) (see Remark 3.1).
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We define a mapping �D′,D′′ by

�D′,D′′ := (f i|YD′,D′′ )
−1 ◦�2 ◦ g : XD′,D′′ → YD′,D′′ .

It is a quasiconformal mapping with the same maximal dilatation as that of �2.
Since h̃(h(p)) ∈ X2,1 \ U2 for p ∈ D′ \ g−1(U2), we have

�D′,D′′ (p) = (f i|YD′,D′′ )
−1 ◦�2 ◦ g ◦ h−1(h(p))

= (f i|YD′,D′′ )
−1 ◦�2 ◦ h̃(h(p))

= (f i|YD′,D′′ )
−1 ◦ ϕ2,1(h̃(h(p))

= (f i|YD′,D′′ )
−1 ◦ f ◦�1|X1,2 (h(p))

= (f i|YD′,D′′ )
−1 ◦ f ◦ f i−1 ◦�D,D′(p)

= �D,D′(p).

Thus, a mapping �D,D′,D′′ given by

�D,D′,D′′ (p) =

⎧⎨
⎩�D,D′(p), p ∈ XD,D′ \ g−1(U2)

�D′,D′′ (p), p ∈ XD′,D′′

is a quasiconformal mapping from

XD,D′,D′′ := XD,D′ ∪ XD′,D′′

onto
YD,D′,D′′ := YD,D′ ∪ YD′,D′′

and the maximal dilatation depends only on Xj,Yj and ϕi,j (i, j = 1, 2). In other
words, we can extend a quasiconformal mapping �D,D′ : XD,D′ → YD,D′ to a
quasiconformal mapping �D,D′,D′′ : XD,D′,D′′ → YD,D′,D′′ .

Repeating this construction inductively to cover all connected components of
Gi+2 \ Gi and 
k0+i+2 \
k0+i (i ∈ N), we obtain a homeomorphism

� : XC \ G1 → F \
k0+1.

Furthermore, in each step of the argument, the maximal dilatation of the ex-
tended quasiconformal mapping depends only on a finite number of data, namely,
{Xj}n

j=1, {Yj}n
j=1 and prescribed quasiconformal mappings, such as {ϕi,j}, between

them. Therefore, the maximal dilatations are uniformly bounded and � is a qua-
siconformal mapping.

Since G1,
k0 are compact subsets of planar domains, from Proposition 2.2 we
verify that XC and F are quasiconformally equivalent. �
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4 Proof of Theorem II

Proof of (1). We divide the proof into several steps.
Step 1: Analyzing generalized Cantor sets. Let ω = (qn)∞n=1 and

ω̃ = (q̃n)∞n=1 be sequences with δ-lower bound. We take

Ek =
2k⋃
i=1

Ii
k and Ẽk =

2k⋃
i=1

Ĩ i
k

as in §2.2 for ω and ω̃, respectively. In fact, Ii
k (resp., Ĩ i

k) is located at the left of Ii+1
k

(resp., Ĩ i+1
k ) for i = 1, 2, . . . , 2k − 1. The set [0, 1] \ Ek (resp., [0, 1] \ Ẽk) consists

of 2k − 1 open intervals J1
k , . . . , J

2k−1
k (resp., J̃1

k , . . . , J̃
2k−1
k ). Each Ji

k (resp., J̃i
k) is

located between Ii
k and Ii+1

k (resp., Ĩ i
k and Ĩ i+1

k ).
Because of the construction, we have

|Ii
k+1| =

1
2
(1 − qk+1)|Ii

k| (k = 0, 1, . . . ).

Therefore, we have

(4.1) |Ii
k| = 2−k

k∏
j=1

(1 − qj).

Next, we estimate the length of Ji
k.

In the construction of Ek+1 from Ek, we obtain open intervals I2i−1
k+1 , I2i

k+1 and the
closed interval J2i−1

k+1 such that Ii
k = I2i−1

k+1 ∪ J2i−1
k+1 ∪ I2i

k+1 for each i, k (Figure 2).

Ii
kJi−1

k Ji
k

I2i−1
k+1 I2i

k+1

Ek

J2i−2
k+1 J2i−1

k+1 J2i
k+1

Ek+1

Figure 2.
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If i is odd, we have

(4.2) |Ji
k+1| = |Ii

k|qk+1 =
2qk+1

1 − qk+1
|I1

k+1| ≥ 2δ|I1
k+1|,

as qk+1 ≥ δ.
If i is even, then i = 2
m for an integer 
 with 1 ≤ 
 ≤ k and an odd number m.

Since Ji
k+1 is located between Ii

k+1 and Ii+1
k+1, we see that Ji

k+1 = Ji/2
k = J2
−1m

k .
Repeating this argument, we have Ji

k+1 = Jm
k−
+1. Since m is odd, we conclude from

(4.2) that

(4.3)

|Ji
k+1| = |Jm

k−
+1| = 2−k+
qk−
+1

k−
∏
j=1

(1 − qj)

≥ 2−k+1δ
k+1∏
j=1

(1 − qj) ≥ 4δ|I1
k+1|

as qk−
+1 ≥ δ.
Thus, we obtain the following from (4.2) and (4.3).

Lemma 4.1. Let Ii
k and Ji

k+1 be the same ones as above for a sequence

ω = (qn)∞n=1 with δ-lower bound. Then,

(4.4) |Ji
k+1| ≥ 2δ|I1

k+1|
hold for i = 1, 2, . . . , 2k+1 − 1 and for k ≥ 0.

Step 2: Constructing a pants decomposition. We draw a circle Ci
k

centered at the midpoint of Ii
k with radius 1

2 (1 + δ)|I1
k | for each k ∈ N ∪ {0} and

1 ≤ i ≤ 2k. Here, we put I1
0 := I(= E0) and Dδ := {|z − 1

2 | ≤ 1
2 (1 + δ)}. From (4.4),

we see that Ci
k ∩ Cj

k = ∅ if i �= j. Since

1
2

· δ|I1
k+1| < 1

2
· δ|I1

k |,

we also see that Ci
k+1∩Cj

k = ∅. Therefore,
⋃∞

k=1

⋃2k

i=1 Ci
k gives a pants decomposition

for XE(ω) \ Dδ.
We draw circles C̃i

k for ω̃ by the same way. Then, we also see that
⋃∞

k=1

⋃2k

i=1 C̃i
k

gives a pants decomposition for XE(ω̃) \ Dδ.

Step 3: Analyzing a pair of pants. We denote by Pi
k a pair of pants

bounded by Ci
k,C

2i−1
k+1 and C2i

k+1. We consider the complex structure of Pi
k so that

we may assume that the center of Ci
k is the origin with radius 1

2 (1 + δ)|I1
k |. Then,

the centers of C2i−1
k+1 and C2i

k+1 are

−1
4
(1 + qk+1)|I1

k |
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and
1
4
(1 + qk+1)|I1

k |,
respectively.

Apply an affine map z �→ αz + β for some α > 0, β ∈ R to Pi
k so that the

circle Ci
k is sent to a circle centered at the origin with radius 1 + δ. We denote the

circle by Ck,1. Then, the circle C2i−1
k+1 is sent to a circle Ck,2 centered at

−xk := −1
2
(1 + qk+1)

with radius
rk :=

1
2
(1 + δ)(1 − qk+1)

and C2i
k+1 is sent to a circle Ck,3 centered at xk with radius rk. We may conformally

identify Pi
k with a pair of pants Pk bounded by Ck,1,Ck,2 and Ck,3.

Similarly, we consider a pair of pants P̃i
k bounded by C̃i

k, C̃
2i−1
k+1 and C̃2i

k+1, and
apply an affine map to the pair of pants P̃i

k so that the circle C̃i
k is mapped to a

circle centered at the origin with radius 1 + δ, which is the same circle as the image
of Ci

k above. We denote by C̃k,i the image of C̃i
k (i = 1, 2, 3). We may conformally

identify P̃i
k with a pair of pants P̃k bounded by C̃k,1, C̃k,2 and C̃k,3, where C̃k,1 is

the same circle as Ck,1, C̃k,2 is centered at

−x̃k := −1
2
(1 + q̃k+1)

with radius
r̃k :=

1
2
(1 + δ)(1 − q̃k+1)

and C̃k,3 is centered at x̃k with radius r̃k.

Step 4: Constructing intermediate pairs of pants. By applying

z �→ (xk/x̃k)z

to P̃k, we obtain a pair of pants P̂k. The pair of pants P̂k is bounded by Ĉk,1, Ĉk,2

and Ĉk,3. Each Ĉk,i is corresponding to C̃k,i (i = 1, 2, 3). Note that for each i, the
center of Ĉk,i is the same as that of Ck,i, and P̂k is conformally equivalent to P̃k.
The radius of Ĉk,1 is

(1 + δ) · xk

x̃k
= (1 + δ)

1 + qk+1

1 + q̃k+1
,

and the radius of Ĉk,2, Ĉk,3 is

r̂k :=
1
2
(1 + δ)(1 − q̃k+1)

1 + qk+1

1 + q̃k+1
.

Now, we take an intermediate pair of pants P′
k bounded by Ĉk,1,Ck,2 and Ck,3.
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Step 5: Making quasiconformal mappings, I. In the following argument,
we use a notation d(ϕ) for a quasiconformal mapping ϕ as

d(ϕ) = log K(ϕ),

where K(ϕ) is the maximal dilatation of ϕ.

We suppose that qk+1 ≥ q̃k+1. Then, we have

r̂k ≥ rk =
1
2
(1 + δ)(1 − qk+1).

In other words, the radius of Ĉk,2, Ĉk,3 is not smaller than that of Ck,2, Ck,3.

Let Ck,+ be a circle centered at xk with radius

R̃k := (1 + δ)
xk

x̃k
− xk,

so that Ck,+ is tangent with Ĉk,1.

We consider two circular annuli Ak,+ bounded by Ck,+ and Ĉk,3, A′
k,+ bounded

by Ck,+ and Ck,3. We have

Ck,+ ∩ R = {xk − R̃k, xk + R̃k}.

Since q̃k+1 ≥ δ, we have

xk − R̃k = 2xk

{
1 − 1 + δ

1 + q̃k+1

}
≥ 0.

Hence, Ak,+,A′
k,+ ⊂ {Re z > 0}.

Here, we use the following well-known fact.

Lemma 4.2. For annuli Ai = {0 < ri < |z| < Ri < ∞} (i = 1, 2), there exists

a quasiconformal mapping ϕ : A1 → A2 such that

ϕ(r1e
iθ) = r2e

iθ,

ϕ(R1E
iθ) = R2e

iθ,

and

K(ϕ) = ed(A1,A2),

where

d(A1,A2) =
∣∣∣ log

log R1 − log r1

log R2 − log r2

∣∣∣.
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Proof. The mapping ϕ is given by

ϕ : z �→ r2

rk
1

|z|k−1z

for k = logR2−log r2

logR1−log r1
. Indeed, it is easy to see that |ϕ(z)| = r2 when |z| = r1 and

|ϕ(z)| = R2 when |z| = R1. Moreover,

ϕ ◦ exp = exp◦f

holds for f (x + iy) = k(x − log r1) + log r2 + iy. Since exp is locally conformal, we
verify that K(ϕ) = ed(A1,A2). �

It follows from Lemma 4.2 that there exists a quasiconformal mapping
ϕk,+ : Ak,+ → A′

k,+ such that

d(ϕk,+) = log
log R̃k − log rk

log R̃k − log r̂k
,

(4.5) ϕk,+(z) = z,

for any z ∈ Ck,+ and

(4.6) arg(ϕk,+(z) − xk) = arg(z − xk)

for z ∈ Ĉk,3.

Since

log
c − a
c − b

= log
(
1 +

b − a
c − b

)
≤ b − a

c − b

for 0 < a ≤ b < c, we obtain

(4.7) d(ϕk,+) ≤ log r̂k − log rk

log R̃k − log r̂k

.

Moreover, we have

(4.8)
log R̃k − log r̂k = log

{ 1
1 + δ

·
(
1 +

2δ
1 − q̃k+1

)}
≥ log

1
1 − δ

> 0,

and

(4.9) log r̂k − log rk = log
1 − q̃k+1

1 − qk+1
+ log

1 + qk+1

1 + q̃k+1
.
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From (4.7)–(4.9), we obtain

(4.10)
d(ϕk,+) ≤

(
log

1
1 − δ

)−1{
log

1 − q̃k+1

1 − qk+1
+ (qk+1 − q̃k+1)

}
≤

(
log

1
1 − δ

)−1
d(ω, ω̃).

We may do the same operation, symmetrically; we take a circle Ck,− centered
at −xk of radius R̃k and consider two annuli Ak,− and A′

k,−. The annulus Ak,−
is bounded by Ck,− and Ĉk,2, and A′

k,− is bounded by Ck,− and Ck,2. Note that
Ak,−,A′

k,− ⊂ {Re z < 0}.
Then, we obtain a quasiconformal mapping ϕk,− : Ak,− → A′

k,− such that

(4.11) ϕk,−(z) = z

for z ∈ Ck,− and

(4.12) arg(ϕk,−(z) + xk) = arg(z + xk)

for z ∈ Ĉk,2. Moreover, the mapping satisfies an inequality

(4.13) d(ϕk,−) ≤
(

log
1

1 − δ

)−1
d(ω, ω̃).

We define a mapping ϕk : P̂k → P′
k by

ϕk(z) =

⎧⎪⎪⎨
⎪⎪⎩
ϕk,+(z), z ∈ Ak,+,

ϕk,−(z), z ∈ Ak,−,

z, otherwise.

As we have seen that Ak,+ is in {Re z > 0} and Ak,− is in {Re z < 0}, annuli Ak,+

and Ak,− are mutually disjoint and the mapping ϕk is a well-defined homeomor-
phism. The homeomorphism ϕk is quasiconformal except circles Ck,+,Ck,−. From
Proposition 2.3, it has to be quasiconformal on P̂k with

(4.14) d(ϕk) ≤
(

log
1

1 − δ

)−1
d(ω, ω̃).

Step 6: Making quasiconformal mappings, II. In this step, we make a
quasiconformal mapping from P′

k to Pk. Recall that P′
k is a pair of pants bounded

by Ĉk,1, Ck,2 and Ck,3, and Pk is bounded by Ck,1, Ck,2 and Ck,3.

Let Ck,0 be a circle centered at the origin of radius xk + rk, so that Ck,0 is
tangent with Ck,2, Ck,3. We consider circular annuli B′

k bounded by Ck,0 and Ĉk,1,
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and Bk bounded by Ck,0 and Ck,1. It follows from Lemma 4.2 that there exists a
quasiconformal mapping ψk,0 : B′

k → Bk such that

d(ψk,0) = log
log(1 + δ) xk

x̃k
− log(xk + rk)

log(1 + δ) − log(xk + rk)

and ψk,0|Ck,0 is the identity.

As in Step 5, we have

d(ψk,0) ≤ log xk − log x̃k

log(1 + δ) − log(xk + rk)
.

Since

xk + rk =
1
2
(1 + qk+1 + (1 + δ)(1 − qk+1)) =

1
2
(2 + δ − δqk+1),

we see that

(4.15)

log(1 + δ) − log(xk + rk) = log
1 + δ

1 + 1
2δ(1 − qk+1)

≥ log
1 + δ

1 + 1
2δ(1 − δ)

> 0,

and

(4.16) log xk − log x̃k = log
1 + qk+1

1 + q̃k+1
≤ qk+1 − q̃k+1.

From (4.15))and (4.16) we have

(4.17) d(ψk,0) ≤
(

log
1 + δ

1 + 1
2δ(1 − δ)

)−1
(qk+1 − q̃k+1).

We define a homeomorphism ψk : P′
k → Pk by

ψk(z) =

⎧⎨
⎩ψk,0(z), z ∈ B′

k,

z, otherwise.

Then, as in Step 5, we see that ψk is quasiconformal on P′
k with

(4.18) d(ψk) ≤
(

log
1 + δ

1 + 1
2δ(1 − δ)

)−1
d(ω, ω̃).

In the case where qk+1 ≤ q̃k+1, the same argument still works in Steps 5 and 6;
we obtain the same results.
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Step 7: Making a global quasiconformal mapping. In Steps 5 and 6,
we have made quasiconformal mappings ϕk : P̂k → P′

k and ψk : P′
k → Pk. Thus,

�k := ψk ◦ ϕk : P̂k → Pk gives a quasiconformal mapping with

d(�k) ≤ C(δ)d(ω, ω̃)

for each k ∈ N.
Because of the boundary behaviors (4.5), (4.6), (4.11) and (4.12), we see that

those mappings give a homeomorphism � from XE(ω) ∩ Dδ onto XE(ω̃) ∩ Dδ. The
homeomorphism � is quasiconformal on XE(ω) ∩ Dδ except on circles which are
boundaries of pairs of pants. It follows from Proposition 2.3 that� is quasiconfor-
mal on XE(ω) ∩Dδ. We define� for z ∈ Ĉ \Dδ by�(z) = z. Using Proposition 2.3
again, we verify that � is a quasiconformal mapping on XE(ω) with

d(�) ≤ C(δ)d(ω, ω̃).

Furthermore, from our construction of the mapping, we see that �(z̄) = �(z)
for z ∈ XE(ω). Therefore,� is extended to a homeomorphism on Ĉ to itself. Since
the extended homeomorphism is quasiconformal on Ĉ \ R, it must be quasicon-
formal because of Proposition 2.3. Thus, we obtain a quasiconformal mapping as
desired. �

Proof of (2). Take any ε > 0. Since log 1−q̃n

1−qn
→ 0 as n → ∞, we also see

that qn − q̃n → 0. Viewing (4.10) and (4.17), we verify that there exists an N ∈ N

such that

d(ϕk) <
1
2

log(1 + ε) and d(ψk) <
1
2

log(1 + ε),

if k > N. Hence, if k > N, then

(4.19) d(�k) = d(ψk ◦ φk) ≤ d(ψk) + d(ϕk) < log(1 + ε).

Since the pants decompositions in Step 2 of the proof of (1) give exhaus-
tions XE(ω) and XE(ω̃), (4.19) implies the maximal dilatation K(�) = ed(�) is less
than (1+ε) on the outside of a sufficiently large compact subset of XE(ω). Therefore,
� : XE(ω) → XE(ω̃) is asymptotically conformal. �

5 Proof of Theorem III

In the proof of this theorem, we use Wolpert’s lemma (cf. [14], [16]) for quasi-
conformal mappings and the hyperbolic lengths. The lemma says that if there is
a K-quasiconformal mapping f from a hyperbolic Riemann surface X to another



QUASICONFORMAL EQUIVALENCE 21

hyperbolic Riemann surface Y , then for any non-trivial closed curve α in X, we
have

1
K

X([α]) ≤ 
Y([f (α)]) ≤ K
X([α]),

where 
X([α]) stands for the hyperbolic length of the geodesic homotopic to α
on X.

First of all, we note that there exists a positive constant such that the hyperbolic
length of any closed curve on XC is greater than a constant.

Indeed, XC is quasiconformally equivalent to the region of discontinuity 
(G)
of a Schottky groupG (cf. [15]). The quotient space
(G)/G is a compact Riemann
surface. Hence, there exists a positive constant such that the hyperbolic length of
any non-trivial closed curve on the surface is greater than the constant. Since the
quotient map is a coveringmap, any non-trivial closed curve in
(G) is projected to
a non-trivial closed curve on the Riemann surface by the quotient map from
(G)
onto 
(G)/G. Also, the covering map is isometry with respect to the hyperbolic
metrics. Hence, the hyperbolic length of any non-trivial closed curve in 
(G) is
greater than some positive constant. Therefore, by Wolpert’s lemma, we verify
that the hyperbolic length of any non-trivial closed curve in XC is also greater than
some constant, say d > 0.

Suppose that there exists a K-quasiconformal map from XC to XE(ω). Then, the
hyperbolic length of any closed curve in XE(ω) is not less than K−1d.

Let ε > 0 be an arbitrary small constant. Since sup{qn | n ∈ N} = 1, there exist
a sequence {nk}∞k=1 in N and N0 ∈ N such that

1 − ε < qnk < 1,

if k > N0.

Now, we look at I1
nk−1 of Enk−1 for k > N0. Then, I1

nk
⊂ Enk is an interval of

length 1
2 (1−qnk)|I1

nk−1| < 1
2ε|I1

nk−1|. Therefore, we may take an annulus Ak in XE(ω)

bounded by two concentric circles C1
nk
,C2

nk
such that the radius of C1

nk
is 1

4ε|I1
nk−1|

and that of C2
nk

is ( 1
2 − 1

4ε)|I1
nk−1|. If we take ε > 0 sufficiently small, then the

length of the core curve of Ak with respect to the hyperbolic metric on Ak becomes
smaller than K−1d.

Indeed, we put

�(z) = exp
(

− i
log Mε

π
log z

)
(z ∈ H),

and

γ(z) = exp
{ −2π2

logMε

}
z
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for Mε = ε
(2−ε) , the ratio of the radius of C1

nk
and the radius of C2

nk
. Then, we see that

�(γ(z)) = exp
{

− i
log Mε

π

(
log z − 2π2

log Mε

)}

= exp
(

− i
log Mε

π
log z

)
= �(z),

�
([

1, exp
( −2π2

logMε

)])
= {|z| = 1},

�
([

− exp
( −2π2

logMε

)
,−1

])
= {|z| = Mε},

and

�
({

z ∈ H | 1 ≤ |z| < exp
( −2π2

logMε

)})
= {Mε < |z| < 1}.

The domain {
z ∈ H | 1 ≤ |z| < exp

( −2π2

logMε

)}
is a fundamental domain for 〈γ〉. Hence, � : H → {Mε < |z| < 1} is a universal
covering map and {Mε < |z| < 1} = H/〈γ〉. Since Ak is conformally equivalent to
{Mε < |z| < 1}, the hyperbolic length of the core curve Ak is −2π2

logMε
which is equal

to the distance between i and γ(i) with respect to the hyperbolic metric |dz|
Im z on H.

Thus, the hyperbolic length of the core curve of Ak converges to zero as ε → 0.
Since Ak ⊂ XE(ω), the length of the core curve of Ak with respect to the hyper-

bolic metric of XE(ω) is not greater than the length with respect to the hyperbolic
metric of Ak. Thus, we find a closed curve in XE(ω) whose length is less that K−1d.
It is a contradiction and we complete the proof of the theorem.

6 Proofs of the Corollaries

Proof of Corollary 1.1. Let 	 be the limit set of the Schottky group G. We
have shown ([15] Theorem 6.2) that X	 is quasiconformally equivalent to XC.
Hence, it follows from Theorem I that XE is quasiconformally equivalent to X	 as
desired. �

Proof of Corollary 1.2. Since C = E(ω0) for ω0 = ( 1
3 )

∞
n=1, the statement

follows immediately from Theorem II (1). �
Proof of Corollary 1.3. Let ϕ : X	 → XE be a quasiconformal map given

by Corollary 1.1. Take any quasiconformal map ψ on XE to Ĉ. Then, � := ψ ◦ ϕ
is a quasiconformal map on X	. It is known that any quasiconformal map on X	
is extended to a quasiconformal map on Ĉ (see [13] Theorem 1.2 (A) and the
comment after the theorem). Hence, both ϕ and � are extended to Ĉ and so is
ψ = � ◦ ϕ−1. �
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Proof of Corollary 1.4. Let � : C → C be the quasiconformal mapping
given in §4. We put D = dimH(E(ω)) and D̃ = dimH(E(ω̃)). We use the argument
in the proof of Theorem II (2).

For any ε > 0, there exists N ∈ N such that

K(�k) < 1 + ε

if k > N, where �k is the quasiconformal mapping given in §4. Therefore, �|UN

is a (1 + ε)-quasiconformal mapping on UN := E(ω) ∪ ⋃
k>N

⋃2k

i=1 Pi
k. Here, we use

the following result by Astala [3].

Proposition 6.1. Let 
,
′ be planar domains and f : 
 → 
′ be a K-
quasiconformal mapping. Suppose that E ⊂ 
 is a compact subset of 
. Then,

(6.1) dimH(f (E)) ≤ 2K dimH(E)
2 + (K − 1) dimH(E)

.

It follows from (6.1) that

dimH(E(ω̃)) ≤ 2(1 − ε) dimH(E(ω))
2 + ε dimH(E(ω))

.

Since ε > 0 could be arbitrarily small, we obtain

dimH(E(ω̃)) ≤ dimH(E(ω)).

By considering �−1, we get the reverse inequality for dimH(E(ω)) and
dimH(E(ω̃)). Thus, we conclude that dimH(E(ω)) = dimH(E(ω̃)) as desired. �

7 Examples

Example 7.1. Let fc(z) = z2 + c. Suppose that c is not in the Mandelbrot set.
Then, it is well-known that fc is hyperbolic and the Julia set Jfc is a Cantor set.
Thus, fc satisfies the condition of Theorem I.

Example 7.2. Let B0(z) be a Blaschke product of degree d > 1. It is known
([6] III. 1. Example) that the Julia set of B0 is either the unit circle or a Cantor set
on the unit circle. Suppose that B0 has an attracting fixed point on the unit circle.
Since the attracting fixed point belongs to the Fatou set of B0, the Julia set has to
be a Cantor set. It is also easy to see that B0 is hyperbolic. Thus, B0 satisfies the
condition on Theorem I.
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In Theorem II, we have estimated the maximal dilatations for sequences with
lower bound. In the next example, we may estimate the maximal dilatation for
sequences without lower bound.

Example 7.3. For 0 < a < 1 and a fixed L ∈ N, we put qn = an and q̃n = an+L

and we consider E(ω), E(ω̃) for ω = (qn)∞n=1, ω̃ = (q̃n)∞n=1. By using the same idea as
in the proof of Theorem II, we claim that there exists an exp(Ca−L)-quasiconformal
mapping ϕ : C → C with ϕ(E(ω)) = E(ω̃), where C > 0 is a constant independent
of ω and ω̃.

Proof of the claim. We use the same notations for E(ω) and E(ω̃) as those
in the proof of Theorem II. Then,

Ek =
2k⋃
i=1

Ii
k, [0, 1] = Ek ∪

2k−1⋃
i=1

Ji
k

and for i = 1, 2, . . . , 2k,

|Ii
k| =

(1
2

)k k∏
j=1

(1 − aj).

If i is odd, then
|Ji

k+1| = ak+1|I1
k | ≥ 2ak+1|I1

k+1|.
If i = 2
m (1 ≤ 
 ≤ k;m is odd), then we have

|Ji
k+1| = |Jm

k−
+1| ≥ 4ak+1|I1
k+1|.

Thus, we conclude that

(7.1) |Ji
k+1| ≥ 2ak+1|I1

k+1|,
for i = 1, 2, . . . , 2k+1 − 1.

We draw a circle Ci
k centered at the midpoint of Ii

k with radius 1
2 (1 + ak)|I1

k |
for each k ∈ N and 1 ≤ i ≤ 2k. From (7.1), we see that Ci

k ∩ Cj
k = ∅ if i �= j.

Furthermore, Ci
k ∩Cj

k+1 = ∅ since ak|I1
k | > ak+1|I1

k+1|. Therefore,
⋃∞

k=1

⋃2k

i=1 Ci
k gives

a pants decomposition of XE(ω) ∩ D, where D = {|z − 1
2 | < 1}. We also draw

circles C̃i
k for ω̃ in the same way. Then,

⋃∞
k=1

⋃2k

i=1 C̃i
k gives a pants decomposition

of XE(ω̃) ∩ D.
We denote by Pi

k a pair of pants bounded by Ci
k,C

2i−1
k+1 and C2i

k+1. As in Step 3
of the proof of Theorem II, we may identify Pi

k with a pair of pants Pk bounded
by Ck,1,Ck,2 and Ck,3, where Ck,1 is a circle centered at the origin with radius 1+ak,
Ck,2 is centered at

−xk := −1
2
(1 + ak+1)
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with radius

rk :=
1
2
(1 + ak+1)(1 − ak+1)

and Ck,3 is centered at xk with radius rk.

Similarly, we take a pair of pants P̃i
k bounded by C̃i

k, C̃
2i−1
k+1 and C̃2i

k+1, which is
conformally equivalent to a pair of pants P̃k bounded by C̃k,1, C̃k,2 and C̃k,3, where
C̃k,1 is the same circle as Ck,1, C̃k,2 is centered at

−x̃k := −1
2
(1 + ak+L+1)

with radius

r̃k :=
1
2
(1 + ak+L+1)(1 − ak+L+1)

and C̃k,3 is centered at x̃k with radius r̃k.

We also take an intermediate pair of pants, P̂k, similar to that in the proof
of Theorem II. Then, by using exactly the same method, we may construct a
exp(Ca−L)-quasiconformal mapping from Pi

k onto P̃i
k, where C > 0 is a constant

independent of k and i. Since the calculation is rather long but the same as in §4,
we leave it to the reader.

By gluing those quasiconformal mappings together, we get an exp(Ca−L)-
quasiconformal mapping ϕ : C → C with ϕ(E(ω)) = E(ω̃) as desired. �

Cantor Julia sets of Blaschke products with parabolic fixed points.
We showed ([15] Example 3.2) that a Cantor setwhich is the limit set of an extended
Schottky group is not quasiconformally equivalent to the limit set of a Schottky
group. We discuss the same thing for Cantor sets defined by non-hyperbolic
rational functions.

Let B1(z) be a Blaschke product with a parabolic fixed point on the unit circle T .
Suppose that there exists only one attracting petal at the parabolic fixed point.
Then, we see that the Julia set JB1 is a Cantor set on T (see [6] IV. 2. Example).
However, B1 is not hyperbolic since it has a parabolic fixed point.

It follows from Theorem I that two Riemann surfaces XJfc
for Example 7.1

and XJB0
for Example 7.2 are quasiconformally equivalent. While the Julia set JB1

ofB1 is also aCantor set, it is not hyperbolic. Therefore,we cannot applyTheoremI
for B1.

Now, we consider the Martin compactification of the complement. For a
general theory of the Martin compactification, we may refer to [7]. Here, we note
the following result.
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Proposition 7.1. Let B be a hyperbolic Blaschke product of degree d > 1.

Suppose that the Julia set JB is a Cantor set in T. Then, the Martin compactification
of XJB is homeomorphic to Ĉ.

Hence, the same statements as in Proposition 7.1 hold for XJB0
:= Ĉ \ JB0 and

the quasiconformal map ϕ on XJB0
is extended to a homeomorphism of the Martin

compactification of XJB0
.

Next, we consider the Martin compactification of XJB1
:= Ĉ \ JB1 , especially

the set of the Martin boundary over the parabolic fixed point of B1. If the set
contains at least two points, then it follows from Proposition 7.1 that there exists
no quasiconformal map from XJB0

to XJB1
.

Indeed, in [13] we observe the Martin compactification of the complement of
the limit set of an extended Schottky group and show that the set of the Martin
boundary over a parabolic fixed point consists of more than two points. It is a key
fact to show that the limit set of the extended Schottky group is not quasiconformally
equivalent to that of a Schottky group ([15]). However, by using an argument of
Benedicks ([4]) (see also Segawa [12]) on the Martin compactification, we may
show the following.

Lemma 7.1. In the Martin compactification of XJB1
, there is exactly one

minimal point over the parabolic fixed point of B1.

Remark 7.1. In the Martin compactification of a Riemann surface, the set
corresponding to a topological boundary component of the Riemann surface is
connected and the minimal points in the set are regarded as extreme points of a
convex set. Thus, if the set over a boundary component on the Martin compactifi-
cation contains only one minimal point, then it consists of only one point, that is,
the minimal point.

Proof. To prove the lemma, we use a result by Benedicks.

Let E be a proper closed subset ofR∪{∞}. We denote by Q(t, r) (t ∈ R, r > 0)
the square {

x + iy | |x − t| < r
2
, |y| < r

2

}
.

For a fixed α with 0 < α < 1 and every x ∈ R \ {0}, we consider the solution of
the Dirichlet problem on Q(x, α|x|) \ E with boundary values one on ∂Q(x, α|x|)
and zero on E ∩ Q(x, α|x|). We denote the solution by βE

x . Then, Benedicks [4]
showed the following.
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Proposition 7.2 ([4] Theorem 4). On the Martin compactification of Ĉ \ E,

there exist more than two points over ∞ if and only if

(7.2)
∫

|x|≥1

βE
x (x)
|x| dx < ∞.

Let a ∈ T be the parabolic fixed point B1. We take a Möbius transformation γ
so that γ(T) = R ∪ {∞} and γ(a) = ∞. For B̂1 := γB1γ

−1, we see that ∞ is
a parabolic fixed point with a unique attracting petal of B̂1, and J

̂B1 = γ(JB1 ) is
contained in R ∪ {∞}.

Since z = ∞ is a parabolic fixed point of B̂1 with only one attracting petal, there
are only one attracting direction and repelling direction (cf. [6] II. 5). Because
of the symmetricity of B̂1, those directions are on the real line. The attracting
direction is contained in the Fatou set of B̂1. Hence, there exists a sufficiently large
M > 0 such that either J

̂B1 ∩{Re z < −M} or J
̂B1 ∩{Re z > M} is empty. We may

assume that J
̂B1 ∩ {Re z < −M} = ∅.

Hence, J
̂B1 ∩ Q(x, α|x|) = ∅ if x < 0 and |x| is sufficiently large. Therefore,

β
J

̂B1
x (x) = 1 for such x. Thus, we have

∫
|x|≥1

β
J

̂B1
x (x)
|x| dx = ∞

and conclude that there exists exactly one point over ∞ from Proposition 7.2. �
Lemma 7.1 implies that we cannot use the argument used for extended Schottky

groups. We exhibit the following conjecture at the end of this article.

Conjecture. XJB1 is not quasiconformally equivalent to XC.
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