CORRECTION TO "LOCAL ASYMPTOTICS FOR ORTHONORMAL POLYNOMIALS ON THE UNIT CIRCLE VIA UNIVERSALITY"

By

DORON S. LUBINSKY

There is a mistake in the proof of Lemma 4.2(a) in [1], namely there $\overline{t_{jn}}z_{jn} = 1$, so that the denominator in $K_n(z_{jn}, t_{jn})$ is 0. This causes a gap in the proofs of Lemma 4.3(d), and Theorems 1.1 and 1.2 (but not Theorems 1.3 and 1.4). Below we give replacements for Lemmas 4.2(a) and 4.3(d) and revised proofs of Theorems 1.1 and 1.2. Note that the rest of those lemmas, including the hypotheses, remain the same.

Revised Lemma 4.2(a) 1. Let $\rho > 0$ and

$$\mathcal{L}_n = \Big\{ re^{i\theta} : 1 - \frac{\rho}{n} \le r \le 1 \text{ and } \theta \in J \Big\}.$$

There exist C_0 , n_0 such that for $n \ge n_0$ and z_{jn} , $z_{kn} \in \mathcal{L}_n$ with $j \ne k$, we have

$$(4.4) |z_{jn} - z_{kn}| \ge C_0/n.$$

In particular, all zeros of φ_n in \mathcal{L}_n are simple.

Proof. If the result is false, we can find a subsequence of integers S and for $n \in S$, $z_{jn}, z_{kn} \in \mathcal{L}_n$ with $j \neq k$, j = j(n), k = k(n), such that $|z_{jn} - z_{kn}| = o(\frac{1}{n})$. Suppose first $z_{jn} \neq z_{kn}$. Let $\tau_n = z_{jn}/|z_{jn}|$. Write

$$z_{jn} = \tau_n (1 + 2\pi i \alpha_n/n)$$
 and $z_{kn} = \tau_n (1 + 2\pi i \beta_n/n)$,

so that $|\alpha_n - \beta_n| \to 0, n \to \infty, n \in S$. From the Christoffel–Darboux formula (2.1) and the uniform universality limit (1.1),

$$0 = \frac{K_n(z_{jn}, \frac{1}{z_{kn}})}{K_n(\tau_n, \tau_n)} = e^{i\pi(\alpha_n - \beta_n(1+o(1)))} \mathbb{S}(\alpha_n - \beta_n(1+o(1))) + o(1) = 1 + o(1).$$

Thus we have a contradiction. Next, if $z_{jn} = z_{kn}$, then φ_n has at least a double zero at z_{jn} . Then $\overline{\varphi_n^*(\frac{1}{z_{jn}} + 2\pi i \tau_n \frac{v}{n})}$ has at least a double zero at v = 0, so

$$\frac{K_n(z_{jn},\frac{1}{z_{jn}}+2\pi i\tau_n\frac{\overline{\nu}}{n})}{K_n(\tau_n,\tau_n)} = \frac{\overline{\varphi_n^*(\frac{1}{z_{jn}}+2\pi i\tau_n\frac{\overline{\nu}}{n})}\varphi_n^*(z_{jn})}{2\pi i\tau_n\frac{\overline{\nu}}{n}z_{jn}K_n(\tau_n,\tau_n)}$$

has at least a simple zero at v = 0. However, this contradicts the universality limit, which shows

$$\frac{K_n(z_{jn}, \frac{1}{z_{jn}} + 2\pi i \tau_n \frac{v}{n})}{K_n(\tau_n, \tau_n)} = e^{-i\pi v} \,\mathbb{S}(v_{-}) + o(1).$$

Revised Lemma 4.3(d) 2. Let A > 0. There exist n_0 , C > 0 such that for $n \ge n_0$ and $\zeta_n \in J_1$, with $|\varphi_n(\zeta_n)| \ge A$,

(4.15)
$$\frac{1}{n^2} \sum_{j=1, j \neq j_1}^n \frac{1}{|\zeta_n - z_{jn}|^2} \le C.$$

Here z_{j_1n} *is the closest zero of* φ_n *to* ζ_n *.*

Proof. Let \mathcal{L}_n be as in Lemma 4.2(a). Represent the zeros of φ_n in \mathcal{L}_n in terms of increasing distance to ζ_n , say, as $z_{j_k n}$, $1 \le k \le k_0$. Here k_0 depends on n. In view of Lemma 4.2(a) and the fact that \mathcal{L}_n has width $\frac{\rho}{n}$, with ρ fixed, any sector $\{re^{i\theta}: 1 - \frac{\rho}{n} \le r \le 1 \text{ and } \theta \in [\alpha, \beta]\}$ contained in \mathcal{L}_n can contain at most $(\frac{2\rho}{C_0} + 1)(\frac{2(\beta - \alpha)n}{C_0} + 1)$ zeros of φ_n . It follows that there exists $C_1 > 0$ depending on ρ and on C_0 in Lemma 4.2(a), but not on n, ζ_n , such that

$$|\zeta_n-z_{j_kn}|\geq C_1\frac{k}{n},\quad 2\leq k\leq k_0.$$

Then

$$\frac{1}{n^2}\sum_{k=2}^{k_0}\frac{1}{|\zeta_n-z_{j_kn}|^2}\leq \frac{1}{C_1^2}\sum_{k=2}^{\infty}\frac{1}{k^2}.$$

Next we deal with the zeros $z_{jn} = |z_{jn}|e^{i\theta_{jn}}$ of φ_n with $|z_{jn}| < 1 - \frac{\rho}{n}$ and $e^{i\theta_{jn}} \in J_1$. Summing over these zeros, we have

$$\frac{1}{n^2}\sum \frac{1}{|\zeta_n-z_{jn}|^2}\leq \frac{1}{\rho n}R_n(\zeta_n)\leq C,$$

by (4.8) and as $|\varphi_n(\zeta_n)| \ge A$. For the remaining zeros, their distance to ζ_n is bounded below by $C_2 > 0$, independent of *n*. Summing over such zeros, we obtain

$$\frac{1}{n^2} \sum \frac{1}{|\zeta_n - z_{jn}|^2} \le \frac{n}{n^2 C_2^2} = o(1).$$

Adding the three sums gives the result.

CORRECTION

Revised proof of Theorem 1.1. We need to show that the conditions (1.10) of Theorem 1.3 are satisfied for large *n* and for $\zeta_n = z_n$ or $\zeta_n = z_n e^{i\pi/n}$. We do this below. Then by Theorem 1.3, from any subsequence of integers, we can extract another subsequence S for which (1.11) holds. Moreover, from Lemma 4.3(a),

(*)
$$|C| = \lim_{n \to \infty, n \in \mathcal{S}} \left| \frac{\zeta_n \varphi'_n(\zeta_n)}{n \varphi_n(\zeta_n)} - 1 \right| \le 1,$$

provided $|\varphi_n(\zeta_n e^{\pm i\pi/n})/\varphi_n(\zeta_n)| \le 1$ in the right-hand side of (4.12). We turn to the proof of the latter and (1.10). Let

$$\zeta_n = \begin{cases} z_n, & \text{if } |\varphi_n(z_n)| \ge |\varphi_n(z_n e^{i\pi/n})|, \\ z_n e^{i\pi/n}, & \text{otherwise.} \end{cases}$$

By (4.12), with appropriate choice of z, we have (*), and then the first condition in (1.10) follows. Next, (4.7) shows

$$|\varphi_n(\zeta_n)|^2 \ge |\varphi_n(z_n)\varphi_n(z_n e^{i\pi/n})| \ge \frac{1+o(1)}{\mu'(z_n)}.$$

Then the second condition in (1.10) follows from the revised Lemma 4.3(d), provided

$$|z_{j_1n}-\zeta_n|\geq C_2/n,$$

where z_{j_1n} is the closest zero of φ_n to ζ_n . Suppose this fails for a subsequence S of integers so that as $n \to \infty$, $n \in S$, $|z_{j_1n} - \zeta_n| = o(1/n)$ and $1 - |z_{j_1n}| = o(\frac{1}{n})$. Then the universality limit (1.1) gives for such n

$$\frac{K_n(z_{j_1n},\,\zeta_n)}{K_n(\zeta_n,\,\zeta_n)} = 1 + o(1).$$

From the Christoffel–Darboux formula, and as $|\varphi_n^*(\zeta_n)| = |\varphi_n(\zeta_n)|$,

(#)
$$|\varphi_n^*(z_{j_1n})\varphi_n(\zeta_n)| = \left|\frac{K_n(z_{j_1n},\zeta_n)}{K_n(\zeta_n,\zeta_n)}\right| K_n(\zeta_n,\zeta_n) |1 - \overline{\zeta_n} z_{j_1n}| = o(1)$$

by (4.10). Next, by the universality limit, and the fact that it holds uniformly,

$$\left|\frac{K_n(z_{j_1n},\zeta_n e^{\pm i\pi/n})}{K_n(\zeta_n,\zeta_n)}\right| = \left|\mathbb{S}\left(\frac{1}{2}\right)\right| + o(1) = \frac{2}{\pi} + o(1),$$

while

$$|\varphi_n^*(z_{j_1n})\varphi_n(\zeta_n e^{\pm i\pi/n})| = \Big|\frac{K_n(z_{j_1n},\zeta_n e^{\pm i\pi/n})}{K_n(\zeta_n,\zeta_n)}\Big|K_n(\zeta_n,\zeta_n)|1 - \overline{\zeta_n e^{\pm i\pi/n}}z_{j_1n}| \ge C.$$

This and (#) show

(##)
$$\left|\frac{\varphi_n(\zeta_n)}{\varphi_n(\zeta_n e^{\pm i\pi/n})}\right| = o(1)$$

contradicting the choice of ζ_n .

Revised Proof of Theorem 1.2. Only the proof of $(IV) \Rightarrow (I)$ requires changes. From (4.8) and our hypothesis (1.8), we have (4.20), so from (4.9),

$$\lim_{n\to\infty,n\in\mathbb{S}}\operatorname{Re}\left(\frac{\zeta_n\varphi_n'(\zeta_n)}{n\varphi_n(\zeta_n)}-1\right)=0.$$

We also assumed (1.7), so that (4.19) follows from this last limit. Then we have the first condition in (1.10). Next, (4.20) shows that $|\varphi_n(\zeta_n)| \ge C_3$. Then the second condition in (1.10) follows from the revised Lemma 4.3(d), provided we can show that the closest zero z_{j_1n} of φ_n to ζ_n satisfies $|z_{j_1n} - \zeta_n| \ge \frac{C_4}{n}$. If this fails for a subsequence, then as in the proof of Theorem 1.1, (##) holds. This contradicts the consequence of (4.19) and (4.12) that

$$\frac{\varphi_n(\zeta_n e^{\pm i\pi/n})}{\varphi_n(\zeta_n)} = -1 + o(1).$$

So, the conditions (1.10) of Theorem 1.3 are fulfilled. By Theorem 1.3, from every subsequence of S, we can extract a further subsequence S_1 , for which

(0.1)
$$\lim_{n \to \infty, n \in \mathbb{S}_1} \frac{\varphi_n(\zeta_n(1 + \frac{u}{n}))}{\varphi_n(\zeta_n)} = e^u;$$

recall that C given by (4.19) is 0. As the limit is independent of the subsequence S_1 of S, we obtain (1.4).

REFERENCES

 D. S. Lubinsky, Local asymptotics for orthonormal polynomials on the unit circle via universality, J. Anal. Math. 141 (2020), 285–304.

Doron S. Lubinsky SCHOOL OF MATHEMATICS GEORGIA INSTITUTE OF TECHNOLOGY ATLANTA, GA 30332-0160, USA email: lubinsky@math.gatech.edu

(Received December 16, 2020 and in revised form January 25, 2021)

400