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DORON S. LUBINSKY

There is a mistake in the proof of Lemma 4.2(a) in [1], namely there tjnzjn = 1,
so that the denominator in Kn(zjn, tjn) is 0. This causes a gap in the proofs of
Lemma4.3(d), andTheorems 1.1 and 1.2 (but not Theorems 1.3 and 1.4). Belowwe
give replacements forLemmas 4.2(a) and 4.3(d) and revised proofs of Theorems1.1
and 1.2. Note that the rest of those lemmas, including the hypotheses, remain the
same.

Revised Lemma 4.2(a) 1. Let ρ > 0 and

Ln =
{
reiθ : 1 − ρ

n
≤ r ≤ 1 and θ ∈ J

}
.

There exist C0, n0 such that for n ≥ n0 and zjn, zkn ∈ Ln with j �= k, we have

(4.4) |zjn − zkn| ≥ C0/n.

In particular, all zeros of ϕn in Ln are simple.

Proof. If the result is false, we can find a subsequence of integers S and for
n ∈ S, zjn, zkn ∈ Ln with j �= k, j = j(n), k = k(n), such that |zjn − zkn| = o( 1

n).
Suppose first zjn �= zkn. Let τn = zjn/|zjn|. Write

zjn = τn(1 + 2πiαn/n) and zkn = τn(1 + 2πiβn/n),

so that |αn−βn| → 0, n → ∞, n ∈ S. From the Christoffel–Darboux formula (2.1)
and the uniform universality limit (1.1),

0 =
Kn(zjn,

1
zkn

)

Kn(τn, τn)
= eιπ(αn−βn(1+o(1)))

S(αn − βn(1 + o(1))) + o(1) = 1 + o(1).
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Thus we have a contradiction. Next, if zjn = zkn, then ϕn has at least a double zero
at zjn. Then ϕ∗

n(
1
z̄jn

+ 2πiτn
v̄
n ) has at least a double zero at v = 0, so

Kn(zjn,
1
z̄jn

+ 2πiτn
v̄
n )

Kn(τn, τn)
=

ϕ∗
n(

1
z̄jn

+ 2πiτn
v̄
n )ϕ∗

n(zjn)

2πiτn
v
n zjnKn(τn, τn)

has at least a simple zero at v = 0. However, this contradicts the universality limit,
which shows

Kn(zjn,
1
z̄jn

+ 2πiτn
v̄
n )

Kn(τn, τn)
= e−ιπv

S(v ) + o(1). �

Revised Lemma 4.3(d) 2. Let A > 0. There exist n0, C > 0 such that for
n ≥ n0 and ζn ∈ J1, with |ϕn(ζn)| ≥ A,

(4.15)
1
n2

n∑
j=1,j �=j1

1
|ζn − zjn|2 ≤ C.

Here zj1n is the closest zero of ϕnto ζn.

Proof. Let Ln be as in Lemma 4.2(a). Represent the zeros of ϕn in Ln in
terms of increasing distance to ζn, say, as zjkn, 1 ≤ k ≤ k0. Here k0 depends
on n. In view of Lemma 4.2(a) and the fact that Ln has width ρ

n , with ρ fixed, any
sector {reiθ : 1 − ρ

n ≤ r ≤ 1 and θ ∈ [α, β]} contained in Ln can contain at most
( 2ρ
C0

+ 1)( 2(β−α)n
C0

+ 1) zeros of ϕn. It follows that there exists C1 > 0 depending on ρ

and on C0 in Lemma 4.2(a), but not on n, ζn, such that

|ζn − zjkn| ≥ C1
k
n
, 2 ≤ k ≤ k0.

Then
1
n2

k0∑
k=2

1
|ζn − zjkn|2

≤ 1
C2

1

∞∑
k=2

1
k2 .

Next we deal with the zeros zjn = |zjn|eiθjn of ϕn with |zjn| < 1 − ρ
n and eiθjn ∈ J1.

Summing over these zeros, we have

1
n2

∑ 1
|ζn − zjn|2 ≤ 1

ρn
Rn(ζn) ≤ C,

by (4.8) and as |ϕn(ζn)| ≥ A. For the remaining zeros, their distance to ζn is
bounded below by C2 > 0, independent of n. Summing over such zeros, we obtain

1
n2

∑ 1
|ζn − zjn|2 ≤ n

n2C2
2

= o(1).

Adding the three sums gives the result. �
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Revised proof of Theorem 1.1. We need to show that the conditions (1.10)
of Theorem 1.3 are satisfied for large n and for ζn = zn or ζn = zneiπ/n. We do this
below. Then by Theorem 1.3, from any subsequence of integers, we can extract
another subsequence S for which (1.11) holds. Moreover, from Lemma 4.3(a),

(∗) |C| = lim
n→∞,n∈S

∣∣∣ζnϕ
′
n(ζn)

nϕn(ζn)
− 1

∣∣∣ ≤ 1,

provided |ϕn(ζne±iπ/n)/ϕn(ζn)| ≤ 1 in the right-hand side of (4.12). We turn to the
proof of the latter and (1.10). Let

ζn =

⎧⎨
⎩

zn, if |ϕn(zn)| ≥ |ϕn(zneiπ/n)|,
zneiπ/n, otherwise.

By (4.12), with appropriate choice of z, we have (∗), and then the first condition
in (1.10) follows. Next, (4.7) shows

|ϕn(ζn)|2 ≥ |ϕn(zn)ϕn(zne
iπ/n)| ≥ 1 + o(1)

μ′(zn)
.

Then the second condition in (1.10) follows from the revised Lemma 4.3(d),
provided

|zj1n − ζn| ≥ C2/n,

where zj1n is the closest zero of ϕn to ζn. Suppose this fails for a subsequence S of
integers so that as n → ∞, n ∈ S, |zj1n − ζn| = o(1/n) and 1 − |zj1n| = o( 1

n). Then
the universality limit (1.1) gives for such n

Kn(zj1n, ζn)
Kn(ζn, ζn)

= 1 + o(1).

From the Christoffel–Darboux formula, and as |ϕ∗
n(ζn)| = |ϕn(ζn)|,

(#) |ϕ∗
n(zj1n)ϕn(ζn)| =

∣∣∣Kn(zj1n, ζn)
Kn(ζn, ζn)

∣∣∣Kn(ζn, ζn)|1 − ζnzj1n| = o(1)

by (4.10). Next, by the universality limit, and the fact that it holds uniformly,

∣∣∣Kn(zj1n, ζne±iπ/n)
Kn(ζn, ζn)

∣∣∣ =
∣∣∣S
(1

2

)∣∣∣ + o(1) =
2
π

+ o(1),

while

|ϕ∗
n(zj1n)ϕn(ζne

±iπ/n)| =
∣∣∣Kn(zj1n, ζne±iπ/n)

Kn(ζn, ζn)

∣∣∣Kn(ζn, ζn)|1 − ζne±iπ/nzj1n| ≥ C.
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This and (#) show

(##)
∣∣∣ ϕn(ζn)
ϕn(ζne±iπ/n)

∣∣∣ = o(1),

contradicting the choice of ζn. �

Revised Proof of Theorem 1.2. Only the proof of (IV)⇒(I) requires
changes. From (4.8) and our hypothesis (1.8), we have (4.20), so from (4.9),

lim
n→∞,n∈S

Re
(ζnϕ

′
n(ζn)

nϕn(ζn)
− 1

)
= 0.

We also assumed (1.7), so that (4.19) follows from this last limit. Then we have the
first condition in (1.10). Next, (4.20) shows that |ϕn(ζn)| ≥ C3. Then the second
condition in (1.10) follows from the revised Lemma 4.3(d), provided we can show
that the closest zero zj1n of ϕn to ζn satisfies |zj1n − ζn| ≥ C4

n . If this fails for a
subsequence, then as in the proof of Theorem 1.1, (##) holds. This contradicts the
consequence of (4.19) and (4.12) that

ϕn(ζne±iπ/n)
ϕn(ζn)

= −1 + o(1).

So, the conditions (1.10) of Theorem 1.3 are fulfilled. By Theorem 1.3, from every
subsequence of S, we can extract a further subsequence S1, for which

(0.1) lim
n→∞,n∈S1

ϕn(ζn(1 + u
n ))

ϕn(ζn)
= eu;

recall that C given by (4.19) is 0. As the limit is independent of the subsequence S1

of S, we obtain (1.4). �
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