Skip to main content
Log in

On the equivalence of heat kernels of second-order parabolic operators

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Let P be a second-order, symmetric, and nonnegative elliptic operator with real coefficients defined on noncompact Riemannian manifold M, and let V be a real valued function which belongs to the class of small perturbation potentials with respect to the heat kernel of P in M. We prove that under some further assumptions (satisfied by large classes of P and M) the positive minimal heat kernels of P - V and of P on M are equivalent. Moreover, the parabolic Martin boundary is stable under such perturbations, and the cones of all nonnegative solutions of the corresponding parabolic equations are affine homeomorphic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agmon, On positive solutions of elliptic equations with periodic coefficients in Rd, spectral results and extensions to elliptic operators on Riemannian manifolds, in Differential Equations (Birmingham, 1983), North-Holland, Amsterdam, 1984, pp. 7–17.

    Google Scholar 

  2. A. Ancona, First eigenvalues and comparison of Green’s functions for elliptic operators on manifolds or domains, J. Analyse Math. 72 (1997), 45–92.

    Article  MathSciNet  Google Scholar 

  3. A. Ancona, Some results and examples about the behaviour of harmonic functions and Green’s functions with respect to second order elliptic operators, Nagoya Math. J. 165 (2002), 123–158.

    Article  MathSciNet  Google Scholar 

  4. D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (4), 22 (1968), 607–694; Addendum 25 (1971), 221-228.

    MathSciNet  MATH  Google Scholar 

  5. M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields 79 (1988), 543–623.

    Article  MathSciNet  Google Scholar 

  6. M. Berger, P. Gauduchon and E. Mazet, Le Spectre d’une Variété Riemannienne, Springer, Berlin, 1971.

    Book  Google Scholar 

  7. K. Bogdan, J. Dziubański and K. Szczpkowski, Sharp Gaussian estimates for heat kernels of Schrödinger operators, Integral Equations Operator Theory 91 (2019), article 3.

  8. K. Bogdan and K. Szczypkowski, Gaussian estimates for Schrödinger perturbations, Studia Math. 221 (2014), 151–173.

    Article  MathSciNet  Google Scholar 

  9. I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, Cambridge, 1984.

    MATH  Google Scholar 

  10. X. Chen, and A. Hassell, The heat kernel on asymptotically hyperbolic manifolds, arXiv:1612.06044v2 [math.AP].

  11. T. Coulhon and A. Grigor’yan, On-diagonal lower bound for heat kernels and Markov chains, Duke Math. J. 89 (1997), 133–199.

    Article  MathSciNet  Google Scholar 

  12. E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989.

    Book  Google Scholar 

  13. E. B. Davies, Non-Gaussian aspects of heat kernel behaviour, J. London Math. Soc. (2) 55 (1997), 105–125.

    Article  MathSciNet  Google Scholar 

  14. J. L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Springer, New York, 1984.

    Book  Google Scholar 

  15. M. Fraas, D. Krejčiřík and Y. Pinchover, On some strong ratio limit theorems for heat kernels, Discrete Contin. Dyn. Syst. Ser. A 28 (2010), 495–509.

    Article  MathSciNet  Google Scholar 

  16. A. Grigor’yan, Heat kernels on weighted manifolds and applications, in The Ubiquitous Heat Kernel, American Mathematical Society, Providence, RI, 2006, pp. 93–191.

    Google Scholar 

  17. A. Grigor’yan, Heat Kernel and Analysis on Manifolds, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2009.

    Google Scholar 

  18. A. Grigor’yan and A. Telcs, Two sided estimates of heat kernel on metric measure space, Ann. Probab. 40 (2012), 1212–1284.

    Article  MathSciNet  Google Scholar 

  19. G. Grillo, H. Kovařík and Y. Pinchover, Sharp two-sided heat kernel estimates of twisted tubes and applications, Arch. Ration. Mech. Anal. 213 (2014), 215–243.

    Article  MathSciNet  Google Scholar 

  20. P. Gyrya and L. Saloff-Coste, Neumann and Dirichlet heat kernels in inner uniform domains, Astérisque 336 (2011).

  21. Y. Kannai, Off diagonal short time asymptotics for fundamental solutions of diffusion equations, Comm. Partial Differential Equations 2 (1977), 781–830.

    Article  MathSciNet  Google Scholar 

  22. F. Ledrappier and S. Lim, Local limit theorem in negative curvature, arXiv:1503.04156 [math.DS].

  23. P. Li and S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153–201.

    Article  MathSciNet  Google Scholar 

  24. V. Liskevich and Y. Semenov, Two-sided estimates of the heat kernel of the Schrödinger operator, Bull. London Math. Soc. 30 (1998), 596–602.

    Article  MathSciNet  Google Scholar 

  25. P. J. Mendez-Hernandez and M. Murata, Semismall perturbations, semi-intrinsic ultracontractiv-ity, and integral representations of nonnegative solutions for parabolic equations, J. Funct. Anal. 257 (2009), 1799–1827.

    Article  MathSciNet  Google Scholar 

  26. P. D. Milman and Yu. A. Semenov, Heat kernel bounds and desingularizing weights, J. Funct. Anal. 202 (2003), 1–24.

    Article  MathSciNet  Google Scholar 

  27. S. Minakshisundaram and Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949). 242–256.

    Article  MathSciNet  Google Scholar 

  28. M. Murata, Semismall perturbations in the Martin theory for elliptic equations, Israel J. Math. 102 (1997), 29–60.

    Article  MathSciNet  Google Scholar 

  29. M. Murata, Integral representations of nonnegative solutions for parabolic equations and elliptic Martin boundaries, J. Funct. Anal. 245 (2007), 177–212.

    Article  MathSciNet  Google Scholar 

  30. J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931–954.

    Article  MathSciNet  Google Scholar 

  31. E. M. Ouhabaz, Analysis of Heat Equations on Domains, Princeton University Press, Princeton, NJ, 2005.

    MATH  Google Scholar 

  32. Y. Pinchover, On positive solutions of second order elliptic equations, stability results and classification, Duke Math J. 57 (1988), 955–980.

    Article  MathSciNet  Google Scholar 

  33. Y. Pinchover, Criticality and ground states for second-order elliptic equations, J. Differential Equations 80 (1989), 237–250.

    Article  MathSciNet  Google Scholar 

  34. Y. Pinchover, On criticality and ground states of second order elliptic equations. II, J. Differential Equations 87 (1990), 353–364.

    Article  MathSciNet  Google Scholar 

  35. Y. Pinchover, Maximum and anti-maximum principles and eigenfunctions estimates via perturbation theory of positive solutions of elliptic equations, Math. Ann. 314 (1999), 555–590.

    Article  MathSciNet  Google Scholar 

  36. Y. Pinchover, Large time behavior of the heat kernel, J. Funct. Anal. 206 (2004), 191–209.

    Article  MathSciNet  Google Scholar 

  37. Y. Pinchover, Some aspects of large time behavior of the heat kernel: an overview with perspectives, in Mathematical Physics, Spectral Theory and Stochastic Analysis, Birkhäuser/Springer, Basel, 2013, pp. 299–339.

    Chapter  Google Scholar 

  38. H. L. Royden and P. M. Fitzpatrick, Real Analysis, Prentice Hall, Boston, MA, 2010.

    MATH  Google Scholar 

  39. L. Saloff-Coste, The heat kernel and its estimates, in Probabilistic Approach to Geometry, Mathematical Society of Japan, Tokyo, 2010, pp. 405–436.

    Google Scholar 

  40. B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447–526.

    Article  MathSciNet  Google Scholar 

  41. K. Tintarev, Short time asymptotics for fundamental solutions of higher order parabolic equations, Comm. Partial Differential Equations 7 (1982), 371–39.

    Article  MathSciNet  Google Scholar 

  42. Q. S. Zhang, Gaussian bounds for the fundamental solutions of ∇(A∇u) + B∇u - ut = 0, Manuscripta Math. 93 (1997), 381–390.

    Article  MathSciNet  Google Scholar 

  43. Q. S. Zhang, A sharp comparison result concerning Schrödinger heat kernels, Bull. London Math. Soc. 35 (2003), 461–472.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor Baptiste Devyver and Professor Alexander Grigor’yan for valuable discussions. They acknowledge the support of the Israel Science Foundation (grants No. 970/15) founded by the Israel Academy of Sciences and Humanities. D. G. was supported in part at the Technion by a fellowship of the Israel Council for Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehuda Pinchover.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguly, D., Pinchover, Y. On the equivalence of heat kernels of second-order parabolic operators. JAMA 140, 549–589 (2020). https://doi.org/10.1007/s11854-020-0097-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-020-0097-4

Navigation