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Abstract. We prove the Cartan and Choquet properties for the fine topology
on a complete metric space equipped with a doubling measure supporting a p-
Poincaré inequality, 1 < p < ∞. We apply these key tools to establish a fine
version of the Kellogg property, characterize finely continuous functions by means
of quasicontinuous functions, and show that capacitary measures associated with
Cheeger supersolutions are supported by the fine boundary of the set.

1 Introduction

The aim of this paper is to establish the Cartan and Choquet properties for the
fine topology on a complete metric space X equipped with a doubling measure
μ supporting a p-Poincaré inequality, 1 < p < ∞. These properties are crucial
for deep applications of the fine topology in potential theory. As applications
of these key tools, we establish the fine Kellogg property and characterize finely
continuous functions by means of quasicontinuous functions. We also show that
capacitary measures associated with Cheeger p-supersolutions are supported by
the fine boundary of the set (not just by the metric boundary).

The classical fine topology is closely related to the Dirichlet problem for the
Laplace equation. Wiener [52] showed in 1924 that a boundary point of a domain
is irregular if and only if the complement is thin at that point in a certain capacity
density sense; cf. Definition 6.1. In 1939, Brelot [21], [22] characterized thinness
by a condition which is nowadays called the Cartan property. The reason for this
name is that Cartan (in a letter to Brelot in 1940, see [23, p. 14]) connected the
notion of thinness to the coarsest topology making all superharmonic functions
continuous. Cartan [25] coined the name fine topology for such a topology.
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Nonlinear potential theory associated with p-harmonic functions has been stud-
ied since the 1960s. For extensive treatises and notes on the history, see the mono-
graphs [1], [36] and [48]. Starting in the 1990s a lot of attention has been given to
analysis on metric spaces, see, e.g., [31], [34] and [37]. Around 2000, this initiated
studies of p-harmonic and p-superharmonic functions on metric spaces without a
differentiable structure; see, e.g., [9], [14], [42], [43] and [51].

The classical linear fine potential theory and fine topology (the case p = 2)
have been systematically studied since the 1960s. Let us here just mention [24],
[29], [30] and[47], which include most of the theory and the main references.
Some of these works are written in large generality including topological spaces,
general capacities and families of functions, and some results thus apply also to
the nonlinear theory. At the same time, many other results rely indirectly on a
linear structure, e.g., through potentials, integral representations and convex cones
of superharmonic functions, which are in general not available in the nonlinear
setting.

The nonlinear fine potential theory started in the 1970s on unweighted Rn;
see [36, notes to Chapter 12] and [48, Section 2.6]. For the fine potential theory
associated with p-harmonic functions on unweighted Rn, see [48] and [46]. The
monograph [36] is the main source for fine potential theory on weighted Rn (note
that Chapter 21, which is only in the second edition, contains some more recent
results). The study of fine potential theory on metric spaces is more recent; see,
e.g. [10], [11], [19], [41] and [44]. For further references to nonlinear and fine
nonlinear potential theory, see the introduction to [11].

Recently, in [11], we established the so-called weak Cartan property, which
says that if E ⊂ X is thin at x0 /∈ E , then there exist a ball B � x0 and super-
harmonic functions u, u′ on B such that v(x0) < lim infE�x→x0 v(x), where v =
max{u, u′}.

The superharmonic functions considered in [11] are based on upper gradients,
and because of the lack of a differential equation, we did not succeed in obtaining
the full Cartan property as in Rn, where v itself can be chosen superharmonic,
cf. Theorem 1.1 below. Indeed, the proof of the full Cartan property seems to be
as hard as the proof of the Wiener criterion, which is also open in the nonlinear
potential theory based on upper gradients, but is known to hold in the potential the-
ory based on Cheeger gradients; see [18]. Nevertheless, the weak Cartan property
in [11] was enough to enable us to conclude that the fine topology is the coarsest
one making all superharmonic functions continuous.

Here, we instead focus on Cheeger superharmonic functions based on
Cheeger’s theorem yielding a vector-valued Cheeger gradient. In this case, we
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do have an equation available, and this enables us to establish the following full
Cartan property.

Theorem 1.1 (Cartan property). Suppose that E is thin at x0 ∈ E \ E. Then
there is a bounded positive Cheeger superharmonic function u in an open neigh-
bourhood of x0 such that

u(x0) < lim inf
E�x→x0

u(x).

For a Newtonian function, the minimal p-weak upper gradient and the mod-
ulus of the Cheeger gradient are comparable. Thus the corresponding capacit-
ies are comparable to each other, and the fine topology, as well as thinness (and
thickness), is the same in both cases. Superminimizers, superharmonic and p-
harmonic functions are, however, different. Hence, using the Cheeger structure,
we can study thinness and the fine topology, but not e.g. the superharmonic and
p-harmonic functions based on upper gradients. Only Cheeger p-(super)harmonic
functions can be treated.

We use the Cartan property to establish the following important Choquet prop-
erty.

Theorem 1.2 (Choquet property). For any E ⊂ X and ε > 0, there is an open
set G containing all the points in X at which E is thin such that Cp(E ∩ G) < ε.

The Choquet property was first established by Choquet [27] in 1959. In the
nonlinear theory on unweighted Rn, it was later established by Hedberg [32] and
Hedberg–Wolff [33] in connections with potentials (also for higher-order Sobolev
spaces). The Cartan property for p-superharmonic functions on unweighted Rn

was obtained by Kilpeläinen–Malý [40] as a consequence of their pointwise Wolff-
potential estimates. In fact, Kilpeläinen and Malý used the Cartan property to es-
tablish the necessity in the Wiener criterion. In[48], Malý and Ziemer deduced the
Choquet property from the Cartan property. The proof of the Cartan property was
extended to weighted Rn by Mikkonen [49, Theorem 5.8] and can also be found in
[36, Theorem 21.26 (which is only in the second edition)]; in both places, however,
they refrained from deducing consequences such as the Choquet property.

Our proof of the Choquet property follows the one in [48], but we have some
extra complications due to the possible presence of some points with zero capacity
and others with positive capacity. Note that [29] contains a proof of the Choquet
property in an axiomatic setting, assuming Corollary 1.3 and Theorem 1.4(a). We
have a converse approach, since our proofs of Corollary 1.3 and Theorem 1.4 are
based on the Choquet property.
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Corollary 1.3 (Fine Kellogg property). For every E ⊂ X,

(1.1) Cp({x ∈ E : E is thin at x}) = 0.

The fine Kellogg property has close connections with boundary regularity; see
Remark 7.3. The “only if” implications in the following result were already ob-
tained in [11], but now we are able to complete the picture.

Theorem 1.4. (a) A set U ⊂ X is quasiopen if and only if U = V ∪ E for
some finely open set V and for a set E of capacity zero.

(b) An extended real-valued function on a quasiopen set U is quasicontinuous
in U if and only if u is finite q.e. and finely continuous q.e. in U.

It is pointed out in [2, Proposition 3] that (a) for unweighted Rn follows from
the Choquet property established in [33]. Also, (b) then follows by a modification
of the earlier axiomatic arguments of Fuglede [29, Lemma, p. 143]. The proof of
Theorem 1.4 in unweighted Rn is given in [48, p. 146]. For the reader’s conveni-
ence, we include the proof of Theorem 1.4 although the proof essentially follows
[48]. In Section 8, we use Theorem 1.4 to extend and simplify some recent results
from [10].

We end the paper with another application of the Cartan property in Section 9,
which contains results on capacitary measures related to Cheeger supersolutions;
see Theorem 9.1 and Corollaries 9.5 and 9.6. In particular, we show that the
capacitary measure only charges the fine boundary of the corresponding set. This
seems to be new also in unweighted Rn.

2 Notation and preliminaries

We assume hroughout the paper that 1 < p < ∞ and that X = (X, d, μ) is a metric
space equipped with a metric d and a positive complete Borel measure μ such
that 0 < μ(B) < ∞ for all (open) balls B ⊂ X . It follows that X is separable.
The σ-algebra on which μ is defined is obtained by the completion of the Borel
σ-algebra. We also assume that � ⊂ X is a nonempty open set.

We say that μ is doubling if there exists a doubling constant C > 0 such
that for all balls B = B(x0, r) := {x ∈ X : d(x, x0) < r},

0 < μ(2B) ≤ Cμ(B) < ∞.

Here and elsewhere, we let δB = B(x0, δr). A metric space with a doubling meas-
ure is proper (i.e., closed and bounded subsets are compact) if and only if it is
complete. See [34] for more on doubling measures.
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A curve is a continuous mapping from an interval, and a rectifiable curve is
a curve of finite length. We consider only curves which are nonconstant, compact
and rectifiable. Such a curve can be parameterized by its arc length ds. We follow
Heinonen and Koskela [37] in introducing upper gradients (they called them very
weak gradients) as follows.

Definition 2.1. A nonnegative Borel function g on X is an upper gradient
of an extended real-valued function f on X if for all nonconstant, compact and
rectifiable curves γ : [0, lγ] → X ,

(2.1) | f (γ(0)) − f (γ(lγ))| ≤
∫
γ
g ds,

where we follow the convention that the left-hand side is ∞ whenever at least one
of the terms therein is infinite.

If g is a nonnegative measurable function on X and if (2.1) holds for p-almost
every curve (see below), then g is a p-weak upper gradient of f .

Here we say that a property holds for p-almost every curve if it fails only
for a curve family � with zero p-modulus, i.e. there exists 0 ≤ ρ ∈ Lp(X) such that∫
γ ρ ds = ∞ for every curve γ ∈ �. Note that a p-weak upper gradient need not

be a Borel function; it is only required to be measurable. On the other hand, every
measurable function g can be modified on a set of measure zero to give a Borel
function, from which it follows that

∫
γ g ds is defined (with a value in [0,∞]) for

p-almost every curve γ. For proofs of these and all other facts in this section, we
refer to [9] and [38].

The p-weak upper gradients were introduced in [45]. It was also shown there
that if g ∈ Lp

loc(X) is a p-weak upper gradient of f , then one can find a sequence
{g j }∞j =1 of upper gradients of f such that g j − g → 0 in Lp(X). If f has an upper
gradient in Lp

loc(X), then it has a minimal p-weak upper gradient gf ∈ Lp
loc(X)

in the sense that for every p-weak upper gradient g ∈ Lp
loc(X) of f , gf ≤ g a.e.; see

[51]. The minimal p-weak upper gradient is well-defined up to a set of measure
zero in the cone of nonnegative functions in Lp

loc(X). Following [50], we define a
version of Sobolev spaces on the metric measure space X .

Definition 2.2. For measurable f , let

‖ f ‖N 1,p(X) =
(∫

X
| f |p dμ + inf

g

∫
X

gp dμ
)1/p

,

where the infimum is taken over all upper gradients of f . The Newtonian space
on X is

N 1,p(X) = { f : ‖ f ‖N 1,p(X) < ∞}.
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The space N 1,p(X)/∼, where f ∼ h if and only if ‖ f − h‖N 1,p(X) = 0, is a
Banach space and a lattice; see [50]. In this paper, we assume that functions in
N 1,p(X) are defined everywhere (with values in R := [−∞,∞]), not just up to
an equivalence class in the corresponding function space. For a measurable set
E ⊂ X , the Newtonian space N 1,p(E) is defined by considering (E, d |E , μ|E ) as a
metric space in its own right. We say that f ∈ N 1,p

loc (E) if, for every x ∈ E , there
exists a ball Bx � x such that f ∈ N 1,p(Bx ∩ E). If f, h ∈ N 1,p

loc (X), then gf = gh

a.e. in {x ∈ X : f (x) = h(x)}; in particular, gmin{ f,c} = gf χ{ f<c} for c ∈ R.

Definition 2.3. The Sobolev capacity of an arbitrary set E ⊂ X is

Cp(E) = inf
u

‖u‖p
N 1,p(X),

where the infimum is taken over all u ∈ N 1,p(X) such that u ≥ 1 on E .

The Sobolev capacity is countably subadditive. We say that a property holds
quasieverywhere (q.e.) if the set of points for which the property does not
hold has Sobolev capacity zero. The Sobolev capacity is the correct gauge for
distinguishing between two Newtonian functions. If u ∈ N 1,p(X), then u ∼ v if
and only if u = v q.e. Moreover, [50, Corollary 3.3] shows that if u, v ∈ N 1,p(X)
and u = v a.e., then u = v q.e.

A set U ⊂ X is quasiopen if for every ε > 0 there is an open set G ⊂ X
such that Cp(G) < ε and G ∪ U is open. A function u defined on a set E ⊂ X
is quasicontinuous if for every ε > 0 there is an open set G ⊂ X such that
Cp(G) < ε and u|E\G is finite and continuous. It is easily verified that if u is
quasicontinuous on a quasiopen set U , then the sets {x ∈ U : u(x) < a} and
{x ∈ U : u(x) > a} are quasiopen for all a ∈ R.

Definition 2.4. We say that X supports a p-Poincaré inequality if there
exist constants C > 0 and λ ≥ 1 such that for all balls B ⊂ X , all integrable
functions f on X and all upper gradients g of f ,

(2.2)
∫

B
| f − fB | dμ ≤ C diam(B)

(∫
λB

gp dμ
)1/p

,

where fB :=
∫
B f dμ :=

∫
B f dμ/μ(B).

In the definition of Poincaré inequality, we can equivalently assume that g is a
p-weak upper gradient.

In Rn equipped with a doubling measure dμ = w dx (dx denotes Lebesgue
measure), the p-Poincaré inequality (2.2) is equivalent to the p-admissibility of the
weight w in the sense of [36], cf. [36, Corollary 20.9] and [9, Proposition A.17].
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If X is complete and supports a p-Poincaré inequality and μ is doubling, then
Lipschitz functions are dense in N 1,p(X); see [50]. Moreover, all functions in
N 1,p(X) and those in N 1,p(�) are quasicontinuous; see [15]. This means that in the
euclidean setting, N 1,p(Rn) is the refined Sobolev space as defined in [36, p. 96];
see [9, Appendix A.2] for a proof of this fact in weighted Rn. This is the main
reason that, unlike in the classical euclidean setting, we do not need to require the
functions competing in the definitions of capacity to be 1 in a neighbourhood of
E . For recent related progress on the density of Lipschitz functions, see [3] and
[4].

In Section 6, the fine topology is defined by means of thin sets, which in turn
use the variational capacity capp. To be able to define the variational capacity,
we first need a Newtonian space with zero boundary values. For an arbitrary set
A ⊂ X , we let

N 1,p
0 (A) = { f |A : f ∈ N 1,p(X) and f = 0 on X \ A}.

One can replace the assumption “ f = 0 on X\A” with “ f = 0 q.e. on X\A” without
changing the obtained space N 1,p

0 (A). Functions from N 1,p
0 (A) can be extended by

zero in X \ A, and we regard them in that sense if needed.

Definition 2.5. The variational capacity of E ⊂ � with respect to � is

capp(E,�) = inf
u

∫
X

gp
u dμ,

where the infimum is taken over all u ∈ N 1,p
0 (�) such that u ≥ 1 on E .

If Cp(E) = 0, then capp(E,�) = 0. The converse implication is true if μ is
doubling and supports a p-Poincaré inequality, � is bounded, and Cp(X \�) > 0.

We need the following simple lemma in Section 9. For the reader’s conveni-
ence, we provide the short proof.

Lemma 2.6. If u, v ∈ N 1,p(X) are bounded, then uv ∈ N 1,p(X).

Proof. We can assume that |u| and |v | are bounded by 1. Then |uv | ≤ |u|, and
hence uv ∈ Lp(X). By the Leibniz rule ([9, Theorem 2.15]), g := |u|gv + |v |gu is a
p-weak upper gradient of uv . As g ≤ gv +gu ∈ Lp(X), we see that uv ∈ N 1,p(X).�

Throughout the paper, the letter C denotes various positive constants whose
value may vary even within a line. We also write A � B if C−1A ≤ B ≤ CA.



66 A. BJÖRN, J. BJÖRN AND V. LATVALA

3 Cheeger gradients

Throughout the rest of the paper, we assume that X is complete and supports a
p-Poincaré inequality and that μ is doubling.

In addition to upper gradients, we also use Cheeger gradients. Their existence
is based on the following deep result of Cheeger.

Theorem 3.1 ([26, Theorem 4.38]). There exist N and a countable collection
(Uα,Xα) of pairwise disjoint measurable sets Uα and Lipschitz “coordinate” func-
tions Xα : X → Rk(α), 1 ≤ k(α) ≤ N, such that μ

(
X \ ⋃

α Uα

)
= 0 and for every

Lipschitz function f : X → R there exist unique bounded vector-valued functions
dα f : Uα → Rk(α) such that for a.e. x ∈ Uα,

lim
r→0

sup
y∈B(x,r)

| f (y) − f (x) − dα f (x) · (Xα(y) − Xα(x))|
r

= 0,

where · denotes the usual inner product in Rk(α).

Cheeger (see [26, p. 460]) further shows that for a.e. x ∈ Uα, there is an inner
product norm | · |x on Rk(α) such that for all Lipschitz f ,

(3.1)
1
C

gf (x) ≤ |dα f (x)|x ≤ Cgf (x),

where C is independent of f and x. As Lipschitz functions are dense in N 1,p(X),
the “gradients” dα f extend uniquely to the whole N 1,p(X), by [28, Theorem 10]
or [39]. Moreover, (3.1) holds even for functions in N 1,p(X).

From now on, we drop α and set Df := dα f in Uα.
There is some freedom in choosing the Cheeger structure on a metric space.

However, on Rn we always make the natural choice Df = ∇ f and let the in-
ner product norm in (3.1) be the euclidean norm. Here, ∇ f denotes the Sobolev
gradient from [36], which equals the distributional gradient if the weight on Rn is
a Muckenhoupt Ap weight. In this case, |Df | = gf , by [9, Proposition A.13].

4 Supersolutions and superharmonic functions

In the literature on potential theory on metric spaces, one usually studies the fol-
lowing (super)minimizers based on upper gradients.

Definition 4.1. A function u ∈ N 1,p
loc (�) is a (super)minimizer on � if∫

{ϕ �=0}
gp

u dμ ≤
∫

{ϕ �=0}
gp

u+ϕ dμ for all (nonnegative) ϕ ∈ Lipc(�).

A p-harmonic function is a continuous minimizer.
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Here Lipc(�) = {ϕ ∈ Lip(X) : suppϕ � �} and E � � if E is a compact
subset of �.

Minimizers were first studied by Shanmugalingam [51], and superminimizers
by Kinnunen–Martio [42]. For various characterizations of minimizers and super-
minimizers, see [6]. If u is a superminimizer, then its lsc-regularization

(4.1) u∗(x) := ess lim inf
y→x

u(y) = lim
r→0

ess inf
B(x,r)

u

is also a superminimizer and u∗ = u q.e.; see [42] or [13]. If u is a minimizer, then
u∗ is continuous (by [43] or [16]), and thus p-harmonic. For further discussion
and references on the topics in this section, see [9].

In this paper, we consider Cheeger (super)minimizers and Cheeger p-
harmonic functions, defined by replacing gu and gu+ϕ in Definition 4.1 by |Du|
and |D(u + ϕ)|, respectively, where | · | is the inner product norm in (3.1). Due
to the vector structure of the Cheeger gradient, one can also make the following
definition. (There is no corresponding notion for upper gradients.)

Definition 4.2. A function u ∈ N 1,p
loc (�) is a (super)solution on � if∫

�
|Du|p−2Du · Dϕ dμ ≥ 0 for all (nonnegative) ϕ ∈ Lipc(�),

where · is the inner product giving rise to the norm in (3.1).

It can be shown that a function is a (super)solution if and only if it is a Cheeger
(super)minimizer; the proof is the same as for [36, Theorem 5.13]. In weighted
Rn, with the choice Df = ∇ f , we have gf = |Df | = |∇ f | a.e., which implies that
(super)minimizers, Cheeger (super)minimizers and (super)solutions coincide and
are the same as in [36].

We consider the following obstacle problem.

Definition 4.3. Let � ⊂ X be a nonempty bounded open set such that
Cp(X \�) > 0. For f ∈ N 1,p(�) and ψ : � → R, let

Kψ, f (�) = {v ∈ N 1,p(�) : v − f ∈ N 1,p
0 (�) and v ≥ ψ q.e. in �}.

A function u ∈ Kψ, f (�) is a solution of the Kψ, f (�)-Cheeger obstacle prob-
lem if ∫

�
|Du|p dμ ≤

∫
�

|Dv |p dμ for all v ∈ Kψ, f (�).

If Kψ, f (�) �= ∅, then there is a solution u of the Kψ, f (�)-Cheeger obstacle
problem, and this solution is unique up to equivalence in N 1,p(�). Moreover, u∗ is
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the unique lsc-regularized solution. Conditions for Kψ, f (�) �= ∅ can be found in
[10]. If the obstacle ψ is continuous, as a function with values in [−∞,∞), then
u∗ is also continuous. These results were obtained for the upper gradient obstacle
problem by Kinnunen–Martio [42], where superharmonic functions based on up-
per gradients were also introduced. As with most of the results in the metric theory,
their proofs work verbatim for the Cheeger case considered here. Since most of
the theory has been developed in the setting of upper gradients, we often just refer
to the upper gradient equivalents of results for Cheeger (super)minimizers.

Definition 4.4. The Cheeger capacitary potential uE of a set E ⊂ � in
the bounded open set � with Cp(X \ �) > 0 is the lsc-regularized solution of
the KχE ,0(�)-Cheeger obstacle problem. The Cheeger variational capacity of
E ⊂ � is defined as

(4.2) Ch-capp(E,�) =
∫

X
|DuE |p dμ = inf

u

∫
X

|Du|p dμ,

where the infimum is taken over all u ∈ N 1,p
0 (�) such that u ≥ 1 on E .

By (3.1), we have

(4.3) Ch-capp(E,�) � capp(E,�).

For f ∈ N 1,p(�), we denote by H� f the continuous solution of the K−∞, f (�)-
Cheeger obstacle problem. This function is Cheeger p-harmonic in � and has the
same boundary values (in the Sobolev sense) as f on ∂�, and hence is also called
the solution of the (Cheeger) Dirichlet problem with Sobolev boundary values.

A solution of the Kψ, f (�)-Cheeger obstacle problem is easily seen to be a
Cheeger superminimizer (i.e. a supersolution) on�. Conversely, a supersolution u
on any open � is a solution of the Ku,u(�′)-Cheeger obstacle problem for all open
�′ � � with Cp(X \�′) > 0.

Definition 4.5. Let � ⊂ X be an open set. A function u : � → (−∞,∞] is
Cheeger superharmonic in � if

(i) u is lower semicontinuous;
(ii) u is not identically ∞ in any component of �;
(iii) for every nonempty open set �′ � � with Cp(X \�′) > 0 and all functions

v ∈ Lip(X), we have H�′v ≤ u in �′ whenever v ≤ u on ∂�′.

This definition of Cheeger superharmonicity is equivalent to the one in [36];
see [5]. A locally bounded Cheeger superharmonic function is a supersolution,
and all Cheeger superharmonic functions are lsc-regularized. Conversely, any lsc-
regularized supersolution is Cheeger superharmonic; see [42].
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5 Supersolutions and Radon measures

In this section, we assume that � is a nonempty bounded open set and that
Cp(X \�) > 0.

A Radon measure is a positive complete Borel measure which is finite on
every compact set. It was shown in [20, Propositions 3.5 and 3.9] that there is a
one-to-one correspondence between supersolutions on � and Radon measures in
the dual N 1,p

0 (�)′.

Proposition 5.1. For every supersolution u on �, there is a Radon measure
ν ∈ N 1,p

0 (�)′ such that for all ϕ ∈ N 1,p
0 (�),

(5.1) Tu(ϕ) :=
∫
�

|Du|p−2Du · Dϕ dμ =
∫
�
ϕ dν,

where · is the inner product giving rise to the norm in (3.1). Conversely, if
ν ∈ N 1,p

0 (�)′ is a Radon measure on �, then there exists a unique lsc-regularized
u ∈ N 1,p

0 (�) satisfying Tu = ν in the sense of (5.1) for all ϕ ∈ N 1,p
0 (�). Moreover,

u is a nonnegative supersolution on �.

Remark 5.2. The conclusion of Proposition 5.1 is false without the assump-
tion Cp(X \ �) > 0. Indeed, if u is a nonnegative lsc-regularized supersolu-
tion on �, then u is Cheeger superharmonic on �. If Cp(X \ �) = 0, then u
has a Cheeger superharmonic extension to X , by [7, Theorem 6.3] (or [9, Theo-
rem 12.3]), which must be constant, by [9, Corollary 9.14]. (Note that if � is
bounded and Cp(X \ �) = 0, then X must also be bounded.) On the other hand,
there are nonzero Radon measures in N 1,p

0 (�)′, so the existence of a corresponding
supersolution fails.

Proof of Proposition 5.1. In [20, Propositions 3.5 and 3.9], the result is
stated under stronger assumptions than here, but the proof of this result is valid
under our assumptions. In particular, since Cp(X \ �) > 0, the coercivity of the
map T follows from the Poincaré inequality for N 1,p

0 (also called the p-Friedrichs
inequality), whose proof can be found, e.g., in [9, Corollary 5.54].

In [20], the uniqueness was shown up to equivalence between supersolutions.
The pointwise uniqueness for lsc-regularized supersolutions then follows from
(4.1). That u is nonnegative follows from Lemma 5.3 below, as u ≡ 0 is the
lsc-regularized supersolution corresponding to the zero measure. �

We need the following comparison principle.

Lemma 5.3. Let ν1, ν2 ∈ N 1,p
0 (�)′ be Radon measures such that ν1 ≤ ν2. If

u1, u2 ∈ N 1,p
0 (�) are the corresponding lsc-regularized supersolutions given by

Proposition 5.1, then u1 ≤ u2 on �.
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Proof. Inserting ϕ = (u1 − u2)+ ∈ N 1,p
0 (�) into (5.1) for u1 and u2 gives

0 ≤
∫
�
ϕ dν2 −

∫
�
ϕ dν1 =

∫
�
(|Du2|p−2Du2 − |Du1|p−2Du1) · Dϕ dμ

=
∫

{u1>u2}
(|Du2|p−2Du2 − |Du1|p−2Du1) · (Du1 − Du2) dμ.

(5.2)

Since ξ �→ |ξ |p−2ξ is strictly monotone, the integrand is nonpositive. Thus
Du1(x) = Du2(x) for a.e. x such that u1(x) > u2(x), and hence Dϕ = 0 a.e. in
�. The Poincaré inequality for N 1,p

0 (e.g. [9, Corollary 5.54]) then yields∫
�
ϕp dμ ≤ C�

∫
�

|Dϕ|p dμ = 0.

Hence ϕ = 0 a.e. in �, i.e. u1 ≤ u2 a.e. on �. As u1 and u2 are lsc-regularized,
u1 ≤ u2 everywhere in �. �

Definition 5.4. Let uE be the Cheeger capacitary potential of E in �, given
by Definition 4.4. Then νE = TuE is the capacitary measure of E on �, where
T is the operator defined by (5.1).

Remark 5.5. Note that the Cheeger capacitary potential uE is the lsc-regular-
ized solution of the Kψ,0(�)-Cheeger obstacle problem, where ψ = 1 on E and
ψ = −∞ otherwise. Hence, for every ϕ ∈ N 1,p

0 (� \ E) and every t > 0, the
function uE + tϕ ∈ Kψ,0(�) and thus

0 ≤
∫
�
(|DuE + tDϕ|p − |DuE |p) dμ.

Dividing by t and letting t → 0 shows that

(5.3)
∫
�

|DuE |p−2DuE · Dϕ dμ ≥ 0;

see [48, (2.8)]. Applying this also to −ϕ shows that equality must hold in (5.3).
Consequently, the capacitary measure νE = TuE satisfies

(5.4)
∫
�
ϕ dνE = 0 for every ϕ ∈ N 1,p

0 (� \ E).

We need the following lemma when proving the Cartan property (Theorem 1.1).
Later, in Theorem 9.1, we generalize this lemma to quasiopen sets and, as a con-
sequence, obtain that the capacitary measure νE is supported on the fine boundary
∂pE ; that it is supported on the boundary ∂E is well known.
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Lemma 5.6. Let E ⊂ � be such that capp(E,�) < ∞, and let uE be the
Cheeger capacitary potential of E on � and νE = TuE be the corresponding ca-
pacitary measure. If G ⊂ � is open and v ∈ N 1,p(�) is bounded and such that
v = 1 q.e. on G ∩ E, then

(5.5)
∫

G
v dνE =

∫
G

uE dνE .

In particular, νE (G) =
∫
G uE dνE; and if Cp(G∩E) = 0, then νE (G) = 0. Moreover,

νE (�) = Ch-capp(E,�).

Proof. For every η ∈ Lipc(G) with 0 ≤ η ≤ 1, η(v − uE ) ∈ N 1,p
0 (� \ E).

Thus, (5.4) yields ∫
G
η(v − uE ) dνE = 0.

Since v − uE and G are bounded, dominated convergence and letting η ↗ χG

imply (5.5). For the second statement, apply this to v = 1 and v = 0, respectively.
The last identity is obtained by inserting ϕ = uE into (5.1). �

6 Thinness and the fine topology

We now define the fine topological notions which are central in this paper.

Definition 6.1. A set E ⊂ X is thin at x ∈ X if

(6.1)
∫ 1

0

(
capp(E ∩ B(x, r),B(x, 2r))

capp(B(x, r),B(x, 2r))

)1/(p−1) dr
r
< ∞.

A set U ⊂ X is finely open if X \ U is thin at each point x ∈ U .

It is easy to see that the finely open sets give rise to a topology, called the fine
topology. Every open set is finely open, but the converse is not true in general.

In the definition of thinness, we make the convention that the integrand is 1
whenever capp(B(x, r),B(x, 2r)) = 0. This happens, e.g., if X = B(x, 2r), but
never if r < 1

2 diamX . Note that thinness is a local property. Because of (4.3), thin-
ness can equivalently be defined using the Cheeger variational capacity Ch-capp.

Definition 6.2. A function u : U → R, defined on a finely open set U , is
finely continuous if it is continuous when U is equipped with the fine topology
and R with the usual topology.

Since every open set is finely open, the fine topology generated by the finely
open sets is finer than the metric topology. By [19, Theorem 4.4], [44, Theo-
rem 4.3] and [11, Theorem 1.1], it is the coarsest topology making all (Cheeger)
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superharmonic functions finely continuous. See [9, Section 11.6] and [11] for
further discussion on thinness and the fine topology.

7 The Cartan, Choquet and Kellogg properties

We start this section by proving the Cartan property (Theorem 1.1). The proof
combines arguments in [40, p. 155] with those in [48, Section 2.1.5]. As in [40],
the pointwise estimate (7.1) is essential here. However, in [40], to obtain the esti-
mate νk(Bj ) ≤ cap(Ej ,Bj−1), the authors used the dual characterization of capa-
city as the supremum of measures on Ej with potentials bounded by 1. A similar
estimate also follows from [48, Theorem 2.45]. Here, we instead use a direct
derivation of νk(Bj ) ≤ cap(Ej ,Bj−1) based on (5.1), Remark 5.5, and Lemma 5.6.

Proof of Theorem 1.1. By [11, Lemma 4.7], we may assume that E is
open. Let Bj = B(x0, r j ), r j = 2− j , Ej = E ∩Bj , and u j be the Cheeger capacitary
potential of Ej with respect to Bj−1, j = 1, 2, . . .. As Ej is open, u j = 1 in Ej .
Let k ≥ 1 be an integer to be specified later but so large that diamBk <

1
6 diamX ,

and let νk = Tuk be the Radon measure in N 1,p
0 (Bk−1)′, given by Proposition 5.1.

Since uk = 1 in Ek, it remains to show that uk(x0) < 1 for some k. By [42,
Remark 5.4] (or [9, Proposition 8.24]), x0 is a Lebesgue point of uk. Hence, [20,
Proposition 4.10] shows that

(7.1) uk(x0) ≤ c
(∫

Bk

up
k dμ

)1/p

+ c
∞∑

j =k−1

(
rp

j
νk(Bj )
μ(Bj )

)1/(p−1)

.

The first term on the right-hand side can be estimated using the Sobolev inequality
[9, Theorem 5.51] and the fact that capp(Bk,Bk−1) � r−p

k μ(Bk) (by [17, Lem-
ma 3.3] or [9, Proposition 6.16]) as

(7.2)
∫

Bk

up
k dμ ≤ 1

μ(Bk)

∫
Bk−1

up
k dμ ≤ Crp

k

μ(Bk)

∫
Bk−1

|Duk|p dμ � capp(Ek,Bk−1)

capp(Bk,Bk−1)
.

Here we have also used (4.2) and (4.3).

As for the second term in (7.1), let v j be the lsc-regularized solution of Tv j =
νk|Bj in Bk−1, j ≥ k. Lemma 5.3 shows that v j ≤ uk ≤ 1 in Bk−1. Thus, with v j as
a test function in (5.1), we have

(7.3)
∫

Bk−1

|Dv j |p dμ =
∫

Bj

v j dνk ≤
∫

Bj

uk dνk.

Using Lemma 5.6 (for the first equality below) and (5.1) with u j as a test function
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(for the third equality), we obtain∫
Bj

uk dνk =
∫

Bj

u j dνk =
∫

Bk−1

u j dνk|Bj =
∫

Bk−1

|Dv j |p−2Dv j · Duj dμ

≤
(∫

Bk−1

|Dv j |p dμ
)1−1/p(∫

Bk−1

|Duj |p dμ
)1/p

.

(7.4)

Together with (7.3), this implies that∫
Bk−1

|Dv j |p dμ ≤
∫

Bk−1

|Duj |p dμ = Ch-capp(Ej ,Bj−1),

where Ch-capp denotes the Cheeger variational capacity. Inserting this into (7.4)
yields

∫
Bj

uk dνk ≤ Ch-capp(Ej ,Bj−1) which, together with the last part of Lem-
ma 5.6 and (4.3), shows that

νk(Bj ) =
∫

Bj

uk dνk ≤ Ch-capp(Ej ,Bj−1) � capp(Ej ,Bj−1).

Hence, using capp(Bj ,Bj−1) � r−p
j μ(Bj ) again, we obtain

(7.5)
∞∑

j =k−1

(
rp

j
νk(Bj )
μ(Bj )

)1/(p−1)

≤ C
∞∑

j =k−1

(
capp(Ej ,Bj−1)

capp(Bj ,Bj−1)

)1/(p−1)

.

Since E is thin at x0, both (7.2) and (7.5) can be made arbitrarily small by choosing
k large enough. Thus uk(x0) < 1 for large enough k. �

We now turn to the proof of the Choquet property (Theorem 1.2). The follow-
ing notation is common in the literature. The base bpE of a set E ⊂ X consists
of all points x ∈ X at which E is thick, i.e., not thin. Using this notation, we can
formulate the Choquet property as follows.

Theorem 7.1 (Choquet property). For each E ⊂ X and ε > 0, there exists
an open set G such that G ∪ bpE = X and Cp(E ∩ G) < ε.

Proof. Let {Bj }∞j =1 be a countable covering of X by balls such that every point
is covered by arbitrarily small balls. Such a covering exists as X is separable.
Choose ε > 0. For each j , let u j be the Cheeger capacitary potential of E ∩ Bj

with respect to 2Bj . Since each u j is quasicontinuous, there is an open set G′
j with

Cp(G′
j ) < 2− jε such that the set

(7.6) Gj := {x ∈ Bj : u j (x) < 1} ∪ G′
j

is open. We set G :=
⋃∞

j =1 Gj and show that G ∪ bpE = X .
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Choose z ∈ X \ bpE . If dist(z,E \ {z}) > 0, there exists Bj � z such that
Bj ∩ E = ∅ or Bj ∩ E = {z}. If Bj ∩ E = ∅, then u j ≡ 0. If Bj ∩ E = {z}, then
the thinness of E at z, together with [11, Proposition 1.3], shows that Cp({z}) = 0,
and hence u j ≡ 0. In both cases, z ∈ Bj ⊂ Gj ⊂ G.

We can therefore assume that z ∈ E \ {z}. By Theorem 1.1 (applied to
E \ {z}), there is a bounded positive Cheeger superharmonic function v in an open
neighbourhood of z such that v(z) < 1 < lim infE�x→z v(x). Hence we may fix a
ball Bj � z such that v is Cheeger superharmonic in 3Bj and v ≥ 1 in Bj ∩ E .
Since v is the lsc-regularized solution of the Kv,v (2Bj )-Cheeger obstacle problem
and u j is the lsc-regularized solution of the KχB j ∩E ,0(2Bj )-Cheeger obstacle prob-
lem, the comparison principle [8, Lemma 5.4] (or [9, Lemma 8.30]) yields u j ≤ v

in 2Bj . It follows that u j (z) < 1, and thus z ∈ Gj ⊂ G.

It remains to prove that Cp(E ∩ G) < ε. For any j , we have u j ≥ 1 q.e. in
E ∩ Bj , and thus (7.6) implies

Cp(E ∩ Gj ) ≤ Cp({x ∈ E ∩ Bj : u j (x) < 1}) + Cp(G
′
j ) = Cp(G

′
j ) < 2− jε.

By the countable subadditivity of the capacity, we obtain Cp(E ∩ G) < ε. �
We can now deduce Corollary 1.3 as a consequence of the Choquet property.

Corollary 7.2 (Fine Kellogg property). For every E ⊂ X,

Cp(E \ bpE) = 0.

Proof. For every ε > 0, Theorem 7.1 provides us with an open set G such
that G ∪ bpE = X and Cp(E ∩ G) < ε. Then E \ bpE ⊂ E ∩ G, and therefore
Cp(E \ bpE) < ε. Letting ε → 0 concludes the proof. �

Remark 7.3. Let � ⊂ X be a bounded open set with Cp(X \�) > 0. Choos-
ing E = X \� in Corollary 7.2 gives

(7.7) Cp(∂� \ bp(X \�)) ≤ Cp((X \�) \ bp(X \�)) = 0.

On the other hand, a boundary point x0 ∈ ∂� is regular (both for p-harmonic
functions defined through upper gradients and for Cheeger p-harmonic functions)
whenever X \� is thick at x0, by the sufficiency part of the Wiener criterion; see
[20], [18], and [19] (or [9, Theorem 11.24]). Hence (7.7) yields that the set of
irregular boundary points of � is of capacity zero. This result was obtained by a
different method (and called the Kellogg property) in [14, Theorem 3.9]. Thus it
is quite natrual to call Corollary 7.2 the Kellogg property.
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To clarify that the above proof of the Kellogg property is not using circular
reasoning, let us explain how the results we use here are obtained in [9]. Here,
we need only results up to Chapter 9 and the results in Sections 11.4 and 11.6.
They, in turn, rely only on results up to Chapter 9 and the implication (b) ⇒ (a)
in Theorem 10.29, which can easily be obtained just using comparison. Hence we
are not relying on the Kellogg property obtained in [9, Section 10.2].

8 Finely open and quasiopen sets

We start this section by using the Choquet property to prove Theorem 1.4; i.e.,
we characterize quasiopen sets and quasicontinuity by means of the correspond-
ing fine topological notions. We then give several immediate applications of this
characterization.

Note that if Cp({x}) = 0, then {x} is quasiopen, but not finely open. Thus the
zero capacity set in Theorem 1.4(a) cannot be dropped.

Proof of Theorem 1.4. (a) That each quasiopen set U is of the form U =
V ∪ E for some finely open set V and for a set E of capacity zero, was recently
shown in [11, Theorem 4.9].

For the converse, assume that U = V ∪ E , where V is finely open and Cp(E) =
0. Let ε > 0. By the Choquet property (Theorem 7.1), applied to X \ V , there is
an open set G such that G ∪ bp(X \ V ) = X and Cp(G \ V ) < ε. The capacity Cp

is an outer capacity, by [15, Corollary 1.3] (or [9, Theorem 5.31]), so there is an
open set G̃ ⊃ (G \ V ) ∪ E such that Cp(G̃) < ε. Since V is finely open, we have
V ⊂ X \ bp(X \ V ) ⊂ G, and thus U ∪ G̃ = V ∪ G̃ = G ∪ G̃ is open, i.e. U is
quasiopen.

(b) If u is quasicontinuous, then it is finite q.e., by definition, and finely con-
tinuous q.e., by [11, Theorem 4.9].

Conversely, assume that there is a set Z with Cp(Z) = 0 such that u is finite and
finely continuous on V := U \ Z . By (a), we can assume that V is finely open.
Let ε > 0, let {(a j , b j )}∞j =1 be an enumeration of all open intervals with rational
endpoints, and set Vj := {x ∈ V : a j < u(x) < b j }. By the fine continuity of
u, the sets Vj are finely open. Hence by (a), Vj are quasiopen, and thus there are
open sets Gj and GU with Cp(Gj ) < 2− jε and Cp(GU ) < ε such that Vj ∪ Gj and
U ∪ GU are open. Also, as Cp is an outer capacity, there is an open set GZ ⊃ Z
with Cp(GZ ) < ε. Then G := GZ ∪ GU ∪⋃∞

j =1 Gj is open, Cp(G) < 3ε, and u|U\G
is continuous, since Vj ∪ G are open sets. �
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Theorem 1.4 leads directly to the following improvements of the results in
[10]. A set U is p-path open if for p-almost every curve γ : [0, lγ] → X , the set
γ−1(U) is (relatively) open in [0, lγ].

Corollary 8.1. Every finely open set is quasiopen, measurable, and p-path
open.

Proof. By Theorem 1.4(a), every finely open set is quasiopen. Hence the
result follows from [51, Remark 3.5] and [10, Lemma 9.3]. �

An important consequence is that the restriction of a minimal p-weak upper
gradient to a finely open set remains minimal. This was shown for measurable p-
path open sets in [10, Corollary 3.7]. We restate this result in view of Corollary 8.1.
In order to do so in full generality, we need to introduce some more notation.

We define the Dirichlet space

Dp(X) = {u : u is measurable and has an upper gradient in Lp(X)}.
As with N 1,p(X), we assume that functions in Dp(X) are defined everywhere (with
values in R := [−∞,∞]). For a measurable set E ⊂ X , the spaces Dp(E) and
Dp

loc(E) are defined similarly. For u ∈ Dp
loc(E), we denote the minimal p-weak

upper gradient of u taken with E as the underlying space by gu,E . Its existence is
guaranteed by [9, Theorem 2.25].

Corollary 8.2. Let U be quasiopen and u ∈ Dp
loc(X). Then gu,U = gu a.e. in

U. In particular, gu,U = gu a.e. in U if U is finely open.

Proof. By [51, Remark 3.5] and [10, Lemma 9.3], every quasiopen set is p-
path open and measurable, whereas Theorem 1.4(a) shows that every finely open
set is quasiopen. Hence the result follows from [10, Corollary 3.7]. �

In [10], the fine topology turned out to be important for analyzing obstacle
problems on nonopen measurable sets, i.e., when minimizing the p-energy integral

(8.1)
∫

E
gu,E dμ

on an arbitrary bounded measurable set E among all functions

u ∈ Kψ1,ψ2, f (E) := {v ∈ Dp(E) : v − f ∈ N 1,p
0 (E) and ψ1 ≤ v ≤ ψ2 q.e. in E}.

Knowing that finely open sets are measurable and p-path open, we are now able to
improve and simplify some of the results therein. We summarize these improve-
ments in the following theorem, which follows directly from [10, Theorems 1.2
and 8.3, and Corollaries 3.7 and 7.4] and Corollary 8.1. We denote the fine interior
of E by fine-intE .



CARTAN, CHOQUET AND KELLOGG PROPERTIES 77

Theorem 8.3. Let E ⊂ X be a bounded measurable set such that
Cp(X \ E) > 0, and let f ∈ Dp(E) and ψ j : E → R, j = 1, 2, be such that
Kψ1,ψ2, f (E) �= ∅. Also let E0 = fine-intE. Then Kψ1,ψ2, f (E) = Kψ1,ψ2, f (E0), and
the solutions of the minimization problem for (8.1) with respect to Kψ1,ψ2, f (E) and
Kψ1,ψ2, f (E0) coincide. Moreover, gu,E0 = gu,E a.e. in E0; and if μ(E \ E0) = 0,
then the p-energies associated with these two minimization problems also coin-
cide. Furthermore, if f ∈ Dp(�) for some open set � ⊃ E, then gu,E0 = gu,E = gu

a.e. in E0 and the above solutions coincide with the solutions of the correspond-
ing Kψ′

1,ψ
′
2, f (�)-obstacle problem, where ψ′

j is the extension of ψ j to � \ E by f ,
j = 1, 2.

We also obtain the following consequence of [10, Lemma 3.9 and Theorem 7.3],
which generalizes [48, Theorem 2.147 and Corollary 2.162] to metric spaces and
to arbitrary sets; see also [48, Remark 2.148] for another description of W 1,p

0 (�)
in Rn.

Proposition 8.4 ( cf. [10, Proposition 9.4]). Let E ⊂ X be arbitrary and
u ∈ N 1,p(E

p
), where E

p
is the fine closure of E. Then u ∈ N 1,p

0 (E) if and only if
u = 0 q.e. on the fine boundary ∂pE := E

p \ fine-intE of E.

9 Support of capacitary measures

We can now bootstrap Lemma 5.6 to quasiopen sets and, in particular, show that
the capacitary measure νE only charges the fine boundary ∂pE := E

p \ fine-intE
of E , where E

p
is the fine closure of E . This observation seems to be new, even in

unweighted Rn; see also Corollary 9.6.

Theorem 9.1. Let � be a nonempty bounded open set with Cp(X \ �) > 0.
Let E ⊂ �, uE and νE = TuE be as in Lemma 5.6. Let U ⊂ � be quasiopen and
v ∈ N 1,p(�).

(a) If u ∈ N 1,p(�) and either u is bounded from below or belongs to L1(νE ), and
u = v q.e. in U ∩ E, then

(9.1)
∫

U
u dνE =

∫
U
v dνE .

(b) If v = 1 q.e. in U ∩ E, then

νE (U) =
∫

U
v dνE =

∫
U

uE dνE .

(c) If Cp(U ∩ E) = 0, then νE (U) = 0.
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To prove Theorem 9.1 we need the following quasi-Lindelöf principle, whose
proof in unweighted Rn is given in [35, Theorem 2.3]. The proof there, which
relies on the fine Kellogg property, extends to metric spaces; see [12].

Theorem 9.2 (Quasi-Lindelöf principle). For each family V of finely open
sets, there is a countable subfamily V′ such that

Cp

( ⋃
V∈V

V \ ⋃
V ′∈V′

V ′
)

= 0.

We also need the following lemmas.

Lemma 9.3. Let U be finely open, and let x0 ∈ U. Then there exists a finely
open set V � U containing x0 and a function v ∈ N 1,p

0 (U) such that v = 1 on V
and 0 ≤ v ≤ 1 everywhere.

Proof. Since U is finely open, E := X \ U is thin at x0. By the Cartan prop-
erty (Theorem 1.1), there are a ball B � x0 and a lower semicontinuous finely
continuous u ∈ N 1,p(B) such that 0 ≤ u ≤ 1 in B, u(x0) < 1 and u = 1 on
E ∩ B. Let η ∈ Lipc(B) be such that 0 ≤ η ≤ 1 on B and η = 1 on 1

2B.
Then w := η(1 − u) ∈ N 1,p

0 (U) is upper semicontinuous and finely continuous
on X , and w(x0) = 1 − u(x0) > 0. Let v = min{1, 2w/w(x0)} ∈ N 1,p

0 (U) and
V =

{
x ∈ U : w(x) > 1

2w(x0)
}
. The fine continuity and upper semicontinuity of

w imply that V is finely open and V � U . Moreover, x0 ∈ V and v = 1 on V . �

Lemma 9.4. Let U ⊂ X be quasiopen. Then

(9.2) U = W1 ∪ E1 = W2 \ E2,

where W1 and W2 are Borel sets and E1 and E2 are of capacity zero. Moreover, we
may choose W1 to be of type Fσ and W2 to be of type Gδ .

Not all finely open sets are Borel. For instance, V = G \ A, where G is open
and A ⊂ G is a non-Borel set with Cp(A) = 0, is a non-Borel finely open set. To
be more specific, we may let A ⊂ G ⊂ Rn be any non-Borel set of Hausdorff
dimension < n − p.

Proof. By definition, for each j = 1, 2, . . ., there is an open set Gj such that
U ∪ Gj is open and Cp(Gj ) < 1/ j . Then

U =
(

U \
∞⋂
j =1

Gj

)
∪
(

U ∩
∞⋂
j =1

Gj

)
=

∞⋃
j =1

(U \ Gj ) ∪
∞⋂
j =1

(U ∩ Gj )

=
∞⋃
j =1

((U ∪ Gj ) \ Gj ) ∪
∞⋂
j =1

(U ∩ Gj ) =: W1 ∪ E1.
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The second equality in (9.2) follows by choosing W2 =
⋂∞

j =1(U ∪ Gj ) and E2 =
W2 \ U . The last two claims follow from the choices above. �

Proof of Theorem 9.1. By Theorem 1.4, we can find a finely open set
V ⊂ U such that Cp(U \ V ) = 0. For every x ∈ V , Lemma 9.3 provides us
with a finely open set Vx � V containing x and a function vx ∈ N 1,p

0 (V ) such that
vx = 1 on Vx and 0 ≤ vx ≤ 1 everywhere. By the quasi-Lindelöf principle and
the fact that Cp(U \ V ) = 0, we can choose out of these Vj = Vxj and v j = vx j ,
j = 1, 2, . . ., such that U =

⋃∞
j =1 Vj ∪ Z , where Cp(Z) = 0. For k = 1, 2, . . ., set

ηk = χX\Z max
j =1,2,...,k

v j ∈ N 1,p
0 (U).

Since νE is a complete Borel measure which, by Lemma 5.6 (or [20, Lem-
ma 3.8]), is absolutely continuous with respect to the capacity Cp, it follows from
Lemma 9.4 that U is νE -measurable and νE (Z) = 0. We are now ready to prove
(a)–(c).

(a) First assume that u and v are bounded. Then ηk(u − v) ∈ N 1,p(U), by
Lemma 2.6, and [9, Lemma 2.37] shows that ηk(u − v) ∈ N 1,p

0 (U). Since u = v
q.e. on U ∩ E , it follows that ηk(u − v) ∈ N 1,p

0 (U \ E). Hence (5.4) yields that∫
U
ηk(u − v) dνE = 0.

Since ηk ↗ χU\Z on U , dominated convergence and the fact that νE (Z) = 0 imply
that ∫

U
(u − v) dνE =

∫
U\Z

(u − v) dνE = 0,

and (9.1) follows.
Next, assume that u and v are bounded from below. Then, by monotone con-

vergence and the bounded case,∫
U

u dνE = lim
k→∞

∫
U

min{u, k} dνE = lim
k→∞

∫
U

min{v, k} dνE =
∫

U
v dνE .

Finally, applying this to the positive and negative parts of u and v gives∫
U

u+ dνE =
∫

U
v+ dνE and

∫
U

u− dνE =
∫

U
v− dνE ,

and hence∫
U

u dνE =
∫

U
u+ dνE −

∫
U

u− dνE =
∫

U
v+ dνE −

∫
U
v− dνE =

∫
U
v dνE ,

where the assumptions on u guarantee that the subtractions are well-defined (i.e.,
not ∞ − ∞).
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(b) Applying a to u = uE and v , we have
∫
U v dνE =

∫
U uE dνE . Choosing

v ≡ 1 yields νE (U) =
∫
U uE dνE .

(c) This follows by applying b to v ≡ 0.

Corollary 9.5. Let �, E, uE and νE be as in Theorem 9.1. Then

νE (� \ ∂pE) = 0,

i.e. νE is supported on the fine boundary ∂pE := E
p \ fine-intE of E.

Proof. First, observe that the fine exterior V = � \ E
p

is finely open and
V ∩ E = ∅, whence νE (V ) = 0 by Theorem 9.1(c).

Next, observe that the fine interior E0 := fine-intE is finely open, and, as in the
proof of Theorem 9.1, we can use the quasi-Lindelöf principle to find nonnegative
ηk ∈ N 1,p

0 (E0) such that

ηk ↗ χE0\Z as k → ∞,

where Cp(Z) = 0. Since uE = 1 q.e. in E , we have DuE = 0 a.e. in E ; and hence,
by (5.1), ∫

�
ηk dνE =

∫
�

|DuE |p−2DuE · Dηk dμ = 0.

Dominated convergence then shows that νE (E0 \ Z) = 0. Since νE (Z) = 0 by
Lemma 5.6 (or [20, Lemma 3.8]), the proof is complete. �

Using Corollary 9.5, we can now obtain the following result, similar to Theo-
rem 9.1, but with U ∩ E replaced by U ∩ ∂pE .

Corollary 9.6. Let �, E ⊂ �, uE and νE = TuE be as in Lemma 5.6. Let
U ⊂ � be quasiopen.

(a) If u is a function on � such that
∫
U∩∂pE u dνE is well-defined and v is a

function on U such that v = u q.e. in U ∩ ∂pE, then∫
U
v dνE =

∫
U

u dνE .

(b) If v = 1 q.e. in U ∩ ∂pE, then

νE (U) =
∫

U
v dνE =

∫
U

uE dνE .

(c) If Cp(U ∩ ∂pE) = 0, then νE (U) = 0.

Proof. (c) This follows directly from Corollary 9.5 and the fact that νE is
absolutely continuous with respect to the capacity Cp (by Lemma 5.6).
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(a) By Corollary 9.5 and the absolute continuity of νE with respect to Cp again,
we see that ∫

U
v dνE =

∫
U∩∂pE

v dνE =
∫

U∩∂pE
u dνE =

∫
U

u dνE .

(b) This follows from (a), by choosing u ≡ 1 and u = uE , respectively. �
We conclude this paper with a simple example showing that the fine boundary

can be much smaller than the metric boundary. A much more involved example in
the same spirit is given in [10, Section 9].

Example 9.7. Let B be an open ball in Rn, 1 < p ≤ n, and let E = B \ Qn.
The set E is finely open and has fine closure E

p
= B. Hence ∂pE = ∂B ∪ (B ∩Qn),

while ∂E = B.
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