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Abstract
Eutrophication episodes are common in freshwater and coastal environments, causing significant damage to drinking water 
and aquaculture. Predictive models are efficient approaches for anticipating eutrophication or algal blooms because ecolo-
gists and environmentalists can estimate water pollution levels and take appropriate precautionary steps ahead of time. In 
aquatic ecosystems, chlorophyll-a (Chl-a) can be employed as a water quality indicator, revealing information on man-made 
physical, chemical, and biological changes variations or seasonal interventions. In the present study, a Seasonal AutoRegres-
sive Integrated Moving Average (SARIMA) model was developed to forecast monthly Chl-a concentrations in the North 
Lagoon of Tunis, a Ramsar site, and one of the most important lagoons in Tunisia, using approximately three decades of 
historical data, starting from January 1989 to April 2018. SARIMA (2,0,2)(2,0,2)12 was found to be the best-fitting model 
for Chl-a forecasting in the North Lagoon of Tunis. The resulting SARIMA model was validated with actual monthly Chl-a 
concentrations from our last observations. Furthermore, with only one input variable, the SARIMA model showed greater 
applicability as a eutrophication early warning system using actual past Chl-a data. Finally, the SARIMA model was uti-
lized to anticipate Chl-a levels from May 2018 to December 2025 as an early warning system for ecosystem managers and 
decision-makers for next generations.
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Introduction

Eutrophication of coastal ecosystems is a global problem, 
especially in coastal lagoons (Nixon 1995; Cloern 2001). 
Increased nutrient inputs amplified by urbanization, agricul-
ture or industry, lead to complex direct and indirect natural 
ecosystem responses (Schramm 1999; Viaroli et al. 2008). 

Anoxic crises, toxic algal blooms, loss of biodiversity, and, 
more broadly, deterioration of ecosystem functions and ser-
vices are all consequences of anthropogenic eutrophication 
(Cloern 2001; Zaldívar et al. 2008a,b).

For decades, Mediterranean coastal lagoons have been 
exposed to anthropogenic eutrophication and are among the 
most vulnerable systems to such pressures (Viaroli et al. 
2005; Zaldívar et al. 2008a, b; Souchu et al. 2010). They 
are influenced by intensively farmed and densely popu-
lated watersheds, particularly during the summer, when the 
Mediterranean Sea becomes a major tourist attraction across 
the world (Vogiatzakis et al. 2006). In addition to urban 
pressure, these ecosystems are particularly vulnerable to 
eutrophication due to their transitional condition (de Jonge 
et al. 2002; Newton et al. 2014), The Palavasian complex, 
for example, is composed of eight lagoons located along 
the French Mediterranean coast that have seen extensive 
eutrophication over the last four decades, owing mostly to 
nutrient over-enrichment from constant sewage discharges 
(Leruste et al. 2016). According to García-Ayllón (2017), 
the Mar Menor lagoon, located in the east of Spain’s Region 
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of Murcia, has undergone a considerable process of severe 
anthropization during the preceding five decades. The rapid 
population increase of new jellyfish species, which reached 
over 100 million specimens every summer, was one of the 
most surprising indicators (Robledano et al. 2011). Thau 
Lagoon is another interesting example of Mediterranean 
coastal lagoon eutrophication. Thau lagoon is a coastal envi-
ronment located on the Mediterranean French coast that is 
recognized for sustaining traditional shellfish farming in 
France. It has been subjected to eutrophication, which has 
resulted in large anoxic occurrences linked with enormous 
shellfish mortalities (Derolez et al. 2020). The Ghar el Melh 
lagoon, located on Tunisia’s north Mediterranean coast, is 
an excellent model for studying the eutrophication process 
in coastal Mediterranean lagoons. According to Shili et al. 
(2002), this lagoon had many dystrophic crises between 
1994 and 1996. Furthermore, Turki et al. documented the 
proliferation of toxic algae species in the lagoon in 2007, 
including Kryptoperidinium foliaceum, Prorocentrum 
micans, and Anabaena sp.

Despite the availability of a large number of studies on 
eutrophication processes in natural aquatic habitats (García-
Pintado et al. 2007; Trabelsi-Bahri et al. 2013; Derolez et al. 
2020), very little progress has been made in anticipating 
and preventing eutrophication and its consequences in these 
ecosystems.

Targeted monitoring of major water pollution indicators 
can detect episodes of eutrophication in coastal areas. For 
example, chlorophyll-a (Chl-a) is the most significant pig-
ment in aerobic photosynthetic species, and its measurement 
is used to evaluate the quantity of phytoplankton biomass 
in the water, the potential of algal bloom events, and, as a 
result, the degree of environmental eutrophication (Yu et al. 
2019).

Traditionnaly, Chl-a in-situ sampling and measurement 
statetgies have necessitated regular monitoring and labora-
tory studies (Oh et al. 2007). Due to several constraints, 
such as (i) field monitoring costs, (ii) staff availability and 
resources, (iii) field safety issues, and (iv) long time intervals 
between data collection, reporting, and public notification, 
these programs have limited capacity for environmental 
managers to adequately monitor and respond to eutrophi-
cation episodes (Oh et al. 2007). As a result, in order to 
decrease the cost and time required for in-situ monitoring 
and laboratory studies, an early-warning proactive approach 
to Chl-a is required to avoid or mitigate the incidence of 
eutrophication and, ultimately, to reduce its risk on water 
bodies (Oh et al. 2007).

Forecasting potential algal bloom occurrences is a criti-
cal emergency management tool for monitoring water qual-
ity and protecting the aquatic system (Villanoy et al. 2005; 
Dippner et al. 2011; Recknagel et al. 2013, Recknagel et al. 
2014). This has piqued ecologists’ curiosity, resulting in the 

creation of eutrophication or algal bloom predictive mod-
eling techniques (Chen et al. 2015).

In general, these models are classified into two types: 
physical-based approaches and data-driven approaches. 
Physical-based simulations reveal the fundamental mech-
anisms for algae growth and outbreak (Hood et al. 2006; 
Zhang et al. 2013). Many physical, chemical, and biological 
processes, however, remain unknown due to the complexity 
of marine ecosystems and the wide variety of factors that 
require calibration. Such models are mostly used for sce-
nario analysis rather than prediction (Recknagel et al. 2014).

Data-driven models based on autoregression, multivari-
ate regression, piecewise regression, or Artificial Neural 
Networks (ANN) have been rapidly developed and applied 
to eutrophication and algal bloom forecasting as an alterna-
tive. When an explicit function to characterize the modeled 
system is not provided, ANNs are effective in predicting data 
(Chen et al. 2015). In 2007, Oh et al. have applied two ANN 
models to identify temporal phytoplankton community pat-
terns in the Daechung reservoir (Korea). Wang et al. built an 
ANN model in 2010 to forecast cyanobacterial blooms based 
on meteorological variables for use in early warning systems 
in Dianchi Lake (China). However, because the construction 
of an ANN model is still based on trial and error, it lacks 
generic direction (Chen et al. 2015). Furthermore, ANN 
models are prone to falling into a local optimum (Hecht-
Nielsen 1989). Regression models are set to identify govern-
ing factors and establish their approximate relationship to 
dependent variables (Cui et al. 2007; Onderka 2007; Davis 
et al. 2009; Wilhelm et al. 2011). In 1982, Ouchi had applied 
principle component analysis to develop a multivariate pre-
diction model for algal biomass in the Northern Hiroshima 
Bay (Japan). In 2007, Lui et al. developed a vector-based 
autoregression model for algal bloom forecasting in Hong 
Kong waters. These models often have a good prediction 
performance for stationary systems. Eutrophication, on the 
other hand, is event-driven and characterized by non-station-
ary characteristics (Hasting 2001; Onderka 2007; Paerl and 
Huisman 2008; Recknagel et al. 2013). More significantly, 
aquatic ecological data are typically sparse and incomplete, 
with either hydro-environmental or biological factors miss-
ing (Donner 1982). Despite the availability of tools for deal-
ing with missing and noisy data, such data makes developing 
multivariate regression models challenging (Donner 1982).

The Box and Jenkins (1976) method has been used widely 
in a variety of disciplines. The method is a dynamic, com-
puter-based iterative process that generates an autoregres-
sive, integrated moving average model (ARIMA), optimized 
for seasonal and trend factors (Gaynor and Kirkpatrick 
1994).

The Box and Jenkins method is known for: 1) its capac-
ity to deal with complex processes; 2) its adaptability in 
processing dependent time series data; 3) its advanced 
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mathematical and statistical techniques and 4) the ease with 
which it is implemented. Box and Jenkins methodologies 
often provide the most reliable forecasting models for any 
data collection (Gaynor and Kirkpatrick 1994).

Armstrong’s (1985) comparative test on the ranking of 
extrapolation methods (from the highest rank as 1 to the 
lowest rank as 5) for both short and long range rated Box and 
Jenkins methods as 1.5 for short-range forecast accuracy and 
2 for long-range forecast accuracy (Lu and Abou Rizk 2008).

Box and Jenkins approaches often start with the most 
recent observations and then examine recent forecasting 
errors to make appropriate modifications for future periods 
(Lu and Abou Rizk 2008). In doing so, they allow timely 
adjustments of error levels and provide a more flexible imi-
tation of a particular complex trend or seasonality (Lu and 
Abou Rizk 2008). In addition, Box and Jenkins models are 
capable of dealing with those dependent time-series data 
which are not considered suitable for other methods. For 
example, a regression model has a standard assumption that 
the error term should be statistically independent. In reality, 
many time series related data are dependent or are correlated 
with each other (Lu and Abou Rizk 2008).

The method begins with the assumption that the pro-
cess that created the time series may be estimated using an 
ARMA model if it is stationary, or an ARIMA model if 
non-stationary (Lu et al. 2008).

Time series analysis is a powerful tool for assessing water 
quality indicators and predicting future changes. Several 
studies have used ARIMA model. For instance, for predict-
ing water levels in Lake Malawi (Makwinja et al. 2017), or 
water salinity in Apalachicola bay in Florida (Sun and Koch 
2001) and for forecasting sulphur dioxide in Tehran (Has-
sanzadeh et al. 2009). Chen et al. (2015) have designed and 
proved the efficiency of an ARIMA model for predicting 
daily Chl-a concentrations in Taihu Lake (China) in com-
parison to a multivariate linear regression model (MVLR). 
Seasonal changes are common in natural systems generat-
ing variations in biomass and ecosystems structures (Prista 
et al. 2011). The seasonal, autoregressive, integrated moving 
average (SARIMA) model is composed of ARIMA model, 
including a seasonal component of the time series data. 
SARIMA is very frequently used for monthly time series 
that exhibit a seasonal pattern (Prista et al. 2011). Chl-a is 
a parameter known to be related to temperature (Tizro et al. 
2014), which have seasonal characteristics. For that reason, a 
SARIMA model is implemented to handle the characteristics 
of seasonal variations, which improves the prediction accu-
racy (Tizro et al. 2014). In this context, the North Lagoon of 
Tunis is particularly an interesting case for a Mediterranean 
coastal lagoon eutrophication study. It is a South Mediter-
ranean shallow coastal lagoon located in the north of Tuni-
sia. This environment has a long history of pollution and 
was formerly one of the world’s most contaminated lagoons 

(Harbridge et al. 1976; Afli et al. 2008; Armi et al. 2008). 
To limit the anthropogenic input, the lagoon has been the 
subject of a restoration project that has been effective in 
greatly decreasing environmental deterioration. This opera-
tion was implemented in 1985. Before this project was con-
ducted, the above-mentioned lagoon was the main outlet for 
solid waste and domestic/industrial wastewaters stemming 
from the city of Tunis (the capital of Tunisia). Dystrophic 
events, anoxia, fish mortality, and red waters were reported 
in the environment of the North Lagoon of Tunis (Shili et al., 
2002). This coastal area remains relatively sensitive and its 
environmental monitoring is necessary to ensure the sustain-
ability of its proper ecological functioning. In the light of 
this, the North Lagoon of Tunis was considered as the study 
case. Time series predictive modeling of key environmental 
parameters are good decision-making tools for sustainable 
management of this vulnerable coastal area in the center of 
an urban agglomeration.

The objective of this present study was indeed to inves-
tigate the applicability of a SARIMA model in algal bloom 
forecasting using Chl-a concentrations as a eutrophication 
indicator and a period of approximately three decades (Jan-
uary 1989–April 2018) of retrospective Chl-a data in the 
North Lagoon of Tunis.

Materials and methods

Study area

The North Lagoon of Tunis is located in the Southern Medi-
terranean Sea to the east of the city of Tunis (36°45′-36°52′ 
N and 10°10′-10°20′ E). Water is exchanged with the Medi-
terranean Sea via the Kheireddine canal, which is 800 m 
long, 40 m wide, and has a mean depth of roughly 2.5 m 
(Ben Charrada 1992). To reduce the eutrophication, the 
hydrological system was changed by installing a supplemen-
tal separation dam (Fig. 1), which led in a significant gain in 
biodiversity (Ben Charrada 1992; Shili et al. 2002; Rezgui 
et al. 2008). The North Lagoon of Tunis was designated 
a Ramsar Wetland of International Importance in January 
2013 (Mdaini et al. 2019).

However, The North lagoon of Tunis is currently a com-
pletely artificial environment as a result of the human inter-
vention, and the ecological follow-up is a necessity to ensure 
the proper ecological functioning of this ecosystem located 
in the center of the city.

Data collection

In this study, the monthly Chl-a data from January 1989 
to April 2018 in the North Lagoon of Tunis were obtained 
from sampling campaigns carried out by Al-Buhaira Invest 
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company that is in charge of the lagoon ecological stability, 
as a part of the monitoring program.

Box and Jenkins methodology

Time series data is a collection of measurements recorded 
sequentially and equally spaced across a discrete time inter-
val. The fundamental assumption in time series modeling is 
that past characteristics will continue to occur in the future 
(Raman et al. 2018). The autoregressive integrated mov-
ing average (ARIMA) model developed by Box and Jenkins 
(1976) is the most widely used approach for time series anal-
ysis. The box and Jenkins approach rely on a mathematical 
model developed to characterize the time series data based 
on autocorrelation analysis (Chen et al. 2015). Following 
the creation of the model, it is utilized to anticipate future 
values using historical and current time series data (Chen 

et al. 2015). A major characteristic of time series models 
is the assumption of some form of statistical equilibrium 
(Hyndman and Athanasopoulos 2013). An assumption of 
this kind is that of stationarity (Pai and Lin 2005). Forecast-
ing is based on a linear combination of past observations, 
which necessitates a stable time series with no visible trend 
(Pai and Lin 2005). The ARIMA model presumes that the 
process remains in statistical equilibrium with constant prob-
ability features across time (Box et al. 2008). If the mean or 
variance changes over time, the series may need to be trans-
formed to make it stationary before modeling (Allard 1998).

Time series data are frequently non-stationary, with mean 
and variance fluctuations across time. Previously, research-
ers discovered that by differencing the time series, they could 
remove trend components in the mean (Helfenstein 1991). 
Typically, one or two orders of differencing are sufficient to 
prepare data for the technique (Dindarloo 2015). In addition to 

Fig. 1  Location of the study area.
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the trend components, time series related to the ecology field 
often show seasonal patterns. Box and Jenkins have developed 
a method to handle time series that contain seasonality (Box 
et al. 2008). In this case, the model is known as SARIMA 
model with S observations per period. It is represented by 
SARIMA (p,d,q) (P,D,Q)S, which has the following form:

With

Where p is the autoregressive order, d is the number of dif-
ferencing operations, q is the moving average order and P, D, 
and Q are the corresponding seasonal orders.

To build an ARIMA or SARIMA model for a time series, 
Box and Jenkins (1976) proposed an iterative approach (Tiao 
2001) involving four steps: stationarity check, identification 
and estimation, diagnostic and residual check and prediction 
(Fig. 2).

This technique has gained popularity, allowing for the prac-
tical use of time series models for forecasting. The stationar-
ity check step entails appropriate time series differencing. It 
is carried out to attain stationarity and normality; the time 
series’ stationarity is evaluated using the Augmented Dickey 
Fuller (ADF) test. This test’s null hypothesis is that the data is 
non-stationary. If the null hypothesis is rejected, that implies 
stationary data with a p value of equal to or less than 0.05.

The transformed data correlation structure is identified by 
studying its autocorrelation (ACF) and partial autocorrelation 
(PACF) functions (Mishra and Desai 2005). The goal is to 
restrict the field of parsimonious models worthy of further 
research (Tiao 2001). The ACF and PACF graphs are used to 
identify the six parameters (p, d, q, P, D, Q) of the SARIMA 
model and various models’ parameters can be selected. The 
lowest Aikake information criterion (AIC) and Bayesian 
information criterion (BIC) proposed by Akaike (1973) and 
Schwartz (1978), respectively, are used to select the best-fit 
model (Fraley and Raftery 1998) among the candidate ones 
that were created in the previous step.

AIC estimates the relative amount of information lost by a 
given model: the less information a model loses, the greater 
the quality of that model (Aho et al. 2014).
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The BIC is a model selection criteria that is closely con-
nected to the AIC. It is preferable to use the model with the 
lowest BIC (Aho et al. 2014).

Where, σr
2 is the maximum likelihood estimate of the 

innovation variance, r is the number of parameters in the 
model and T is the size of the sample series.

After an appropriate model is chosen, several tests are 
required (model fitness and residual checking) to verify 
whether the model is adequate for describing the studied 
process.

To do so, the ACF and quantile-to-quantile (Q-Q) figures 
of residuals are plotted. In addition, the forecast accuracy 
of the model is evaluated by splitting the data into two sets. 
The last observations in our data set are used to compare 
between simulated values and actual ones. Finally, the cho-
sen SARIMA model is applied to predict the monthly Chl-a 
future values. The long time series, which covers approxi-
mately three decades of monthly Chl-a historical data, ena-
bled us to perform multiple time steps ahead (Wei 1990) 
from May 2018 to December 2025.

The modeling of the SARIMA model was performed 
using Econometrics toolbox in the MATLAB software 
MATLAB® software (version 7,860,349 (R2020b), The 
Mathworks, MA, USA).

Results and discussion

The time series of monthly Chl-a values are shown in Fig. 3. 
The autocorrelation properties of the Chl-a time series in the 
North Lagoon of Tunis (Fig. 4) shows that the autocorrela-
tion coefficients declined relatively quickly. It was preferable 
to do an ADF test to ensure the stationarity of the Chl-a 
concentration data (Table 1).

The ADF test confirmed the stationarity of the Chl-a 
time series with a p value <0.05. According to that, the time 
series does not need transformation. It was not necessary to 
transform the data by differencing. Instead, we used the data 
on the original scale. Fitting a SARIMA model directly is 
advantageous for forecasting because forecasts are returned 
on the original scale.

Based on the PACF (Fig. 4), all SARIMA (p, d, q, P, D, 
Q)S models in which the autocorrelation delay p and sea-
sonal autocorrelation delay P was less than or equal to 4 and 
the moving average q and seasonal moving average Q was 
less than or equal to 4, were tested. As mentioned above, 
Chl-a time series data contain a seasonal component. To 
analyze its time series from January 1989 through April 
2018, we defined S = 12 because we have 12 observations 
per year.

BIC = ln
(

�r
2
)

+ rn(T)∕T
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STEP 1. Sta�onarity check
Start

Input The Chlorophyll-a concentrations 

time series

Determine the order of nonseasonal differencing (d) 

an seasonal differencing (D)

Stationarity

STEP 2. Iden�fica�on and es�ma�on

Conduct the identification and estimation of the 

order of seasonal AR(P) and seasonal MA (Q) 

Conduct the identification and estimation of the 

order of AR(p) and MA (q) 

STEP 3. Diagnosis and residual check SARIMA model 

diagnosis

STEP 4. Predic�on Prediction using the chosen SARIMA 

model

End

Fig. 2  The prediction process using the SARIMA model
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It was found the minimal AIC and BIC values when per-
forming a SARIMA (2,0,2)(2,0,2)12. With AIC = 628.91, 
BIC = 666.78 and  R2 = 0.52. To avoid making remarkable 
changes in the original data, it is better to keep the number 
of parameters to a minimum, so that the values of p, P, q, Q, 
d, and D selected are less than or equal to 2 (Hintze 2007).

It was observable that the SARIMA (2,0,2)(2,0,2)12 
developed in this study outperformed the SARIMA (1,0,0)
(2,0,0)12 with AIC = 1593, BIC = 1612 and  R2 = 0.46 
reported by Raman et al. (2018).

In addition, the developed model performed better than 
the SARIMAX (1,0,0)(2,0,0)12 with AIC = 1114.2,

BIC = 1141.0 and  R2 = 0.52 reported by Raman et al. 
(2018). Even though the two models have the same coef-
ficient of determination  (R2), the AIC and BIC of our 
SARIMA (2,0,2)(2,0,2)12 are the lowest.

It is important to mention, that SARIMAX is composed 
of a SARIMA model with external factors derived using 
PCA analysis.

Fig. 3  Temporal distribution 
of Chl-a concentrations in the 
North lagoon of Tunis

Fig. 4  ACF (a) and PACF (b) of the monthly Chl-a variations in the North Lagoon of Tunis

Table 1  ADF test results applied to the Chl-a original time series.

Null Rejected P value Statistics 
Tests

Critical value Significance 
level

True 0.001 −4.599 −1.941 0.0500
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Estimation of the SARIMA (2,0,2)(2,0,2)12 model 
parameters and their testing results are presented in 
Table 2  All estimated coefficients are statistically signifi-
cant (p value <0.05).

The ACF of SARIMA (2,0,2)(2,0,2)12 residuals are pre-
sented in Fig. 5. ACF residuals suggested autocorrelations 
near 0. This indicates that the residuals did not deviate 
significantly from a 0 mean. In other words, it means that 
the residuals are not correlated.

The residual Q-Q plot (Fig. 6) suggests that the residu-
als are approximately normally distributed, with a slightly 
heavier tail. Given that, we can conclude that residuals of 
the SARIMA (2,0,2)(2,0,2)12 model are uncorrelated and 
normally distributed.

Comparison of observed Chl-a data with the fitted ones 
by the SARIMA (2,0,2)(2,0,2)12 model is presented in Fig. 7. 
There is a fairly good match between the observed values 
and the fitted values. To check the forecasting accuracy, 
Table 3, shows a comparison between the predicted values 
and the observed ones for the period from January 2017 to 
April 2018.

In this study, we have applied a SARIMA (p, d, q) (P, D, 
Q)S model to analyze Chl-a variations of monthly collected 
data in the North Lagoon of Tunis from 1989 through 2018, 
with the purpose of assessing and forecasting eutrophication 
and contributing to prevent any deterioration in the studied 
ecosystem. We have developed a SARIMA that closely fits 
Chl-a observed data. According to our results, the SARIMA 
model developed in this study was reliable with high valid-
ity, which suggests that our model could be an appropri-
ate statistical tool to predict the future changing trends of 
Chl-a values or other key parameters, thus preventing high 

Table 2  Parameter estimates and their testing results of the SARIMA 
(2, 0, 2) (2, 0, 2)12 model

Parameter Coefficient Standard Error T statistics p value

Constant 0.0448 0.0031 2.4357 0.01511
AR (1) 0.0896 0.0400 1.9890 0.03227
AR (2) 0.0812 0.0333 2.2383 0.02156
SAR (12) 0.0967 0.0435 2.2250 0.02156
SAR (24) 0.6763 0.0342 19.7782 4.5892e-87
MA (1) −0.0686 0.3935 −0.0217 0.0382
MA (2) −0.3391 0.1912 −1.7739 0.0491
SMA (12) −0.0983 0.0577 1.7045 0.0488
SMA (24) −0.6917 0.0578 −11.6159 5.3588e-33
Variance 0.3302 0.0225 14.6879 7.7121e-41

Fig. 5  ACF of residuals

Fig. 6  Residuals (Q-Q) plot

Table 3  Comparison of 
predicted and observed monthly 
Chl-a variations using the 
SARIMA (2, 0, 2)(2, 0, 2)12 
model for the data from January 
2017 to April 2018

Month Pre-
dicted 
Values

Observed 
Values

January 1.44 1.2
February 1.22 1.3
March 1.15 0.5
April 0.84 0.54
May 0.68 0.72
June 0.74 0.58
July 0.57 0.48
August 0.91 0.76
September 0.74 0.82
October 1.52 1.8
November 0.87 1.06
December 0.62 0.78
January 1.23 1.48
February 0.98 1.3
March 0.76 0.80
April 0.63 0.5
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eutrophication scenarios in the North Lagoon of Tunis or 
other ecosystems. SARIMA offers various advantages over 
other prediction methods, such as moving average, expo-
nential smoothing, neural networks, and fuzzy logic, owing 
to its forecasting power, particularly over long time periods, 
and its richer information on time-related changes (Linthi-
cum et al. 1999; Box et al. 2008). Once we obtained the sat-
isfactory model, we have used it to forecast future values of 
the Chl-a in the ecosystem. Fig. 8 shows the forecast results 
of Chl-a concentrations in the North Lagoon of Tunis. The 
model seems to provide realistic predictions for the future.

To the best of our knowledge, this is the first study that 
has applied the SARIMA model to fit and forecast monthly 
Chl-a concentrations in the North Lagoon of Tunis.

Forecasting is essential in the creation and implemen-
tation of policies, particularly in the management of fish-
eries and aquatic resources. Accordingly, multiple time 
series model have been developed for forecasting purposes, 
including ARIMA model, Neural Networks, multiple linear 

regression (MLR), nonlinear regression (NLR), smoothing 
models, generalised auto regressive conditional heterosce-
dasticity (GARCH), Gaussian autoregressive models (Ster-
giou 1991; Stergiou et al. 1997; Romilly 2005). According 
to the studies, ARIMA validation errors are substantially 
smaller and it is a superior forecasting model (Raman et al. 
2018).

Similarly, ARIMA model has been used in various studies 
in lagoons, such as on modeling of the great lakes freeze for 
ferrous scrap (Albertson and Aylen 1996), and on simulating 
spatio-temporal behaviour of atmospheric temperature data 
of the great lakes US (Agrawal 2011). ARIMA’s reliable 
forecasts with sufficient precision demonstrated an essential 
role for managers of aquatic natural environments (Raman 
et al. 2018).

It is known that the SARIMA modeling process needs a 
large amount of data. An early study suggested that a mini-
mum of 50 observations are needed to build a reasonable 
SARIMA model (Wei 1990), understanding the majority 

Fig. 7  SARIMA (2,0, 2) (2,0,2)12 model fit of Chl-a content time series in the North Lagoon of Tunis from January 1989 through April 2018

Fig. 8  Time series plot of Chl-a concentrations in the North Lagoon of Tunis with forecasts at 75% confidence interval
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of its variation and accurately predicting the data’s season-
ality and correlation structure (Stergiou 1991; Pajuelo and 
Lorenzo 1995). To obtain a stable and precise SARIMA 
model, we had to collect over 350 observations of Chl-a 
data during the past three decades without interruption to 
be mentioned. We can state that the results of our study 
are robust enough.

It is important to mention that, using SARIMA model is 
money and time-saving for researchers, because it needs only 
one input variable and provides predictions with acceptable 
accuracy, which facilitates its applicability for algal blooms 
early warning use, especially, in vulnerable ecosystems.

Conclusion

Thanks to its biological stability, the North Lagoon of Tunis 
has a significant social and ecological value. Tourism (water 
sports), fishing, and marine bird conservation are only a few 
of the benefits provided by this ecosystem. As a result, in 
order to apply long-term management and conservation stra-
tetgies, we must maintain a close eye on the eutrophication 
process and potential algal blooms episodes.

Forecasting Chl-a levels as eutrophication indicator is 
widely used in coastal ecosystems, as it gives the ability to 
the managers to identify future problems before they arise, 
make informed management decisions, develop data-driven 
strategies and evidence-based conservation programs.

In our study, we have used the SARIMA model to fore-
cast future values of Chl-a in the North Lagoon of Tunis 
as a eutrophication indicator. This model was applied for 
a time window of approximately three decades. Different 
SARIMA (p, d, q) (P, D, Q)S models were implemented. 
The chosen one, a SARIMA (2,0,2) (2,0,2)12 with the low-
est AIC and BIC, was used for forecasting. The goodness 
of fit was analyzed by comparing with the actual data 
from the last observations and checking the residuals. The 
residual diagnostic indicated that they are uncorrelated and 
normally distributed.

The forecasting results are quite satisfactory since the 
forecasting period seems to reproduce relatively well the 
normal Chl-a monthly content in the lagoon. Despite the 
fact that the restored North Lagoon of Tunis was classified 
as a Wetland of International Importance (Ramsar site), 
given its history and importance, this ecosystem is still 
fragile. The SARIMA model applied to historical data of 
Chl-a or any other key parameter could be an important 
tool to providing evidence that guides prevention and con-
trol interventions for the ecosystem.
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