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Abstract
This paper examines the interactions between selected coordination modes and 
dynamic team composition, and their joint effects on task performance under different 
task complexity and individual learning conditions. Prior research often treats dynamic 
team composition as a consequence of suboptimal organizational design choices. The 
emergence of new organizational forms that consciously employ teams that change 
their composition periodically challenges this perspective. In this paper, we follow the 
contingency theory and characterize dynamic team composition as a design choice that 
interacts with other choices such as the coordination mode, and with additional contex-
tual factors such as individual learning and task complexity. We employ an agent-based 
modeling approach based on the NK framework, which includes a reinforcement learn-
ing mechanism, a recurring team formation mechanism based on signaling, and three 
different coordination modes. Our results suggest that by implementing lateral com-
munication or sequential decision-making, teams may exploit the benefits of dynamic 
composition more than if decision-making is fully autonomous. The choice of a proper 
coordination mode, however, is partly moderated by the task complexity and individual 
learning. Additionally, we show that only a coordination mode based on lateral commu-
nication may prevent the negative effects of individual learning.
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1  Introduction

The traditional perspective on dynamic team composition—i.e., the periodic sub-
stitution of team members with different individuals—characterizes it as a negative 
outcome of suboptimal organizational design choices (Carley 1992; Davis 1973). 
This perspective connects dynamic team composition to the concept of organiza-
tional turnover, leading to the common assumption that dynamic team composition 
results in detrimental effects for organizations (Tannenbaum et  al. 2012). Specifi-
cally, prior research (Edmondson et al. 2003; Gardner 2010; Harrison et al. 2003) 
argues that changing the composition of a team disrupts the development of autono-
mous coordination among team members—meaning the flow and exchange of infor-
mation between individuals regarding their potential actions (Burton and Obel 2005; 
Galbraith 1973; Nadler and Tushman 1997; Leitner and Wall 2020). This reduced 
coordination, in turn, leads to a decline in task performance—i.e., in the effective-
ness with which a task is completed (Carley 1992; Lin and Carley 1992; Littlepage 
et al. 1997; Reagans et al. 2005).

The emergence of new organizational forms in recent years, however, challenges 
this traditional understanding of dynamic team composition. During the past dec-
ades, many countries have experienced a process of transition from an industrial 
towards a knowledge-based economy (Lin et al. 2023). Furthermore, these last dec-
ades have witnessed the unstoppable advance of digitalization, impacting almost 
every facet of our everyday lives (Calderon-Monge and Ribeiro-Soriano 2023). Con-
sequently, organizations and the environment in which they operate have changed 
substantially. Since the tasks and problems faced by organizations have become 
more complex, teams experience higher uncertainty when handling them (Rojas-
Córdova et  al. 2023). This increased complexity and uncertainty require teams to 
be more flexible, adaptative and agile (Burton and Obel 2018; Spanuth et al. 2020), 
decentralize decision-making (Robertson 2015), self-organize, be autonomous 
(Büyükboyaci and Robbett 2019; Mollet and Kaudela-Baum 2023; Puranam et al. 
2014), and establish fluid boundaries among them (Bell and Outland 2017). These 
requirements often result in highly dynamic teams whose composition changes fre-
quently, with their members periodically moving in and out (Bell and Outland 2017; 
Tannenbaum et al. 2012). Many organizations have significantly altered their struc-
ture to adapt their internal operations to these demands, leading to the emergence of 
new organizational forms (Burton and Obel 2018). For instance, virtual or distrib-
uted organizations employ communication technologies to connect their members 
even when they are geographically dispersed (Squicciarini et al. 2011). This reliance 
on communication technologies allows them to quickly alter their teams’ structure 
in response to present and future demands (Squicciarini et  al. 2011). Conversely, 
holacracies are decentralized organizations that favour autonomous team forma-
tion and shifts in composition based on the team members’ self-assessment of their 
capabilities (Robertson 2015). Similarly, platform-based organizations combine the 
use of communication technologies with self-organization, functioning as a series 
of autonomously-formed teams that change their composition in response to what 
the organization requires (Burton and Obel 2018). Finally, organizations structured 
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around project-based teams emphasize the creation of temporal groups of people 
that disband upon completing a specific task or one part of it, with its members 
moving on to other teams afterwards (Lundin and Söderholm 1995). Consequently, 
we may argue that these new organizational forms often emphasize dynamic team 
composition as a conscious design element (Burton and Obel 2018; Tannenbaum 
et al. 2012).

Burton and Obel (2018) define organizational design as “a systemic approach 
to aligning structures, processes, leadership, culture, people, practices, and metrics 
to enable organizations to achieve their mission and strategy.” Each formal design 
element—or choice—is a configuration of these components. While prior research 
often overlooks the role of dynamic team composition as a design choice, there has 
been a growing interest in investigating how dynamic team composition can be a 
structural feature of organizations and how it may relate to other design choices and 
task performance (Bell and Outland 2017; Mathieu et al. 2014; Tannenbaum et al. 
2012). For instance, prior research suggests that organizations employ dynamic team 
composition to broaden the knowledge base of their teams and members (Bell and 
Outland 2017; March 1991; Simon 1991), ensure that teams are well-adapted to the 
task requirements (Bell and Outland 2017; Mathieu et al. 2014; Spanuth et al. 2020; 
Tannenbaum et  al. 2012), become more innovative (Bell and Outland 2017; Spa-
nuth et al. 2020), and improve team-building efficiency over time (Bell and Outland 
2017; Mathieu et al. 2014; Tannenbaum et al. 2012). Moreover, there is evidence of 
the effects of dynamic team composition that contradicts the traditional perspective 
on the matter. For instance, Spanuth et al. (2020) argues that dynamic team com-
position may have a positive impact on task performance. These positive effects, 
however, may only manifest themselves if team members properly coordinate their 
actions (Spanuth et al. 2020).

This conflicting evidence between the rather traditional and modern branches of 
organizational research shows that shifts in the characterization of dynamic team 
composition may alter our understanding of its relationship with coordination and 
task performance. Given this conflicting evidence, our aim is to clarify how these 
factors—dynamic team composition, coordination, and task performance—inter-
relate. To achieve this objective, we characterize dynamic team composition as a 
design element consciously implemented by organizations and examine how it inter-
acts with selected coordination modes, influencing task performance. From a practi-
cal standpoint, this paper aims at providing practical advice for teams and organiza-
tions regarding their coordination mode choices based on our results.

Design elements—such as dynamic team composition and coordination modes—
have different effects depending on the organizational context, i.e., on a multidi-
mensional set of components related to the organization such as its goals, strategies, 
structure, external environment, tasks faced, and human resources (Burton and Obel 
2005, 2018). This argument follows the contingency theory, which suggests that 
there are no universally optimal organizational structures (Galbraith 1973). There-
fore, to properly characterize dynamic team composition as a design element and 
examine its interrelations with coordination, it is essential to consider the various 
contextual factors that may be related to them.
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The interrelations between dynamic team composition and coordination and 
their joint effects on task performance may be contingent on contextual factors that 
do not form part of the organization’s design, such as individual learning (Burton 
and Obel 2018; Carley 1992; Carley and Svoboda 1996). We understand individ-
ual learning as the process by which individuals discover new solutions and forget 
redundant solutions to a task over time (Roth and Erev 1995; Miller and Martignoni 
2016). According to the traditional perspective on dynamic team composition, shifts 
in team composition trigger adaptation, forcing teams and their members to adapt 
their knowledge to these changing conditions (Carley 1992; Lin and Carley 1992; 
Lin et al. 2006). Conversely, dynamic team composition may be employed by teams 
to acquire previously unavailable knowledge (Bell and Outland 2017; March 1991; 
Savelsbergh et  al. 2015; Simon 1991). According to prior research, teams acquire 
new knowledge either through changes in their composition or the individual learn-
ing process of their members (March 1991; Simon 1957). Therefore, given stand-
ard categorizations of learning, dynamic team composition can be regarded as an 
adaptation process similar to learning at the team level. Since both individual learn-
ing and dynamic team composition appear to be highly relevant for the adaptation 
process of the organization, investigating how these two processes may interact 
becomes crucial. Furthermore, prior research suggests interrelations between coor-
dination and learning (Edmondson et  al. 2001; Reagans et  al. 2005). Specifically, 
researchers suggest that when team members coordinate properly, learning routines 
emerge, improving their knowledge acquisition process (Edmondson et  al. 2001; 
Reagans et al. 2005).

Task complexity is also a contextual factor that may influence the effects of 
dynamic team composition and coordination on task performance (Burton and Obel 
2018; Rivkin and Siggelkow 2003; Siggelkow and Rivkin 2005; Wall 2018). Task 
complexity refers to the interdependencies among the several decisions which form 
an overall task (Giannoccaro et al. 2019; Wall 2016). According to prior research, 
interdependencies increase uncertainty in decision-making and decrease task per-
formance (Levinthal 1997; Lin and Carley 1992; Wall 2016, 2018). To reduce this 
uncertainty, the mirroring hypothesis argues that an organization’s design should fit 
these interdependencies (Galbraith 1973; Wall 2018). From a team’s perspective, 
prior research suggests that team composition should be chosen according to the 
interdependencies among the decisions of the task (Hsu et al. 2016). Additionally, 
proper coordination among team members should be assured to further reduce this 
uncertainty (Galbraith 1973). Thus, task complexity, coordination, and team compo-
sition appear to be interrelated.

In summary, our objective is to clarify the relationship between dynamic team 
composition, coordination, and task performance. Furthermore, and building on 
prior research (Blanco-Fernández et  al. 2023b, c), we consider two factors that 
might influence this relationship: individual learning (March 1991; Simon 1991) 
and task complexity (Siggelkow and Rivkin 2005; Wall 2018). To achieve our 
objective, we have implemented an agent-based modeling approach. Agent-based 
modeling approaches are particularly helpful for studying organizational design, 
as they allow researchers to simultaneously model and study numerous design ele-
ments that interact with each other and other factors (Burton and Obel 2018; Leitner 
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2021; Rivkin and Siggelkow 2003; Siggelkow and Rivkin 2005; Wall 2018). Fur-
thermore, simulations are especially valuable when data is unavailable or difficult to 
obtain (Burton and Obel 2018; Leitner and Wall 2015; Wall and Leitner 2021). Spe-
cifically, we follow previous research on organizational design by implementing a 
simulation model based on the NK framework (Leitner 2021; Rivkin and Siggelkow 
2003; Siggelkow and Rivkin 2005; Wall 2018). In our approach, a population of 
human decision-makers with limited capabilities—the agents of the model—must 
form a team to solve tasks that we assume to differ in their level of complexity. This 
team may change its composition periodically. Additionally, the team members may 
employ a specific coordination mode when making their decisions to solve the com-
plex task (Siggelkow and Rivkin 2005). Furthermore, we assume that the agents of 
the model may learn about the complex task over time, adapting their knowledge to 
its conditions.

We believe the NK framework is appropriate for answering our research ques-
tions for several reasons. First, at its core, the NK framework involves simulating 
and observing over time the behavior of learning agents concerning specific interde-
pendent elements (Levinthal 1997; Leitner and Wall 2015; Wall 2018)—in our case, 
the decisions of a complex task. Second, the NK framework can be employed to sim-
ulate and observe decision-making in small-scale teams over an extended period—
see, for instance, Giannoccaro et al. (2018); Hsu et al. (2016); Rivkin and Siggelkow 
(2007); Siggelkow and Rivkin (2005) and Wall (2018). Finally, the model is flexible 
enough to introduce variations in team composition (Blanco-Fernández et al. 2023b, 
c, 2022).

2 � Background

2.1 � Dynamic team composition and organizational design

Prior research on dynamic team composition may be divided into two diverg-
ing traditions that lead to seemingly contradictory insights and suggestions. In 
the branch of research concerned with more traditional organizations, teams are 
assumed to be stable units that aim at maintaining the same composition over time 
(Tannenbaum et al. 2012). This line of research usually associates dynamic team 
composition to organizational turnover, which is often interpreted as a cause of 
organizational crises and stress (Lin and Carley 1992; Lin et al. 2006). This nega-
tive characterization of dynamic team composition is partly supported by prior 
findings. Simulation-based research suggests that the performance of teams expe-
riencing turnover is significantly lower than that of stable teams (Carley 1992; Lin 
and Carley 1992). These insights are also supported by experimental studies (Har-
rison et al. 2003; Kim and McLean 2014; Littlepage et al. 1997; Rao and Argote 
2006) and in survey-based research in the consulting (Gardner 2010), healthcare 
(Reagans et al. 2005), and software development (Mortensen 2014) sectors. Addi-
tionally, simulation experiments in this branch of research suggest a negative asso-
ciation between dynamic team composition and organizational learning (Carley 
1992). Evidence coming from surveys in Dutch firms (Savelsbergh et  al. 2015) 
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and the US healthcare sector (Edmondson et al. 2001; Reagans et al. 2005) is in 
line with these insights.

The main mechanism that drives these negative effects is the increased uncer-
tainty in decision-making brought by shifting team composition. According to 
Lin et  al. (2006), increased turnover may disrupt the organizations’ operating 
conditions, intensifying uncertainty. This increased uncertainty forces decision-
makers to act under suboptimal conditions (Lin and Carley 1992) and severely 
restricts the team’s ability to preplan and anticipate future needs (Galbraith 
1973). This reduces the team members’ decision-making capacity, decreasing 
task performance (Galbraith 1973; Lin et al. 2006).

This branch of research, however, fails to acknowledge that dynamic team 
composition may be a conscious design element implemented by organiza-
tions rather than a consequence of suboptimal design choices. Tannenbaum 
et al. (2012) argue that the emergence of new organizational forms implies that 
research should depart from the traditional understanding of dynamic team com-
position. According to their arguments, many modern organizations—such as 
holacracies, virtual organizations, or project-based teams—rely on self-organized 
teams (Mollet and Kaudela-Baum 2023) with decentralized decision-making and 
shifting roles, functions, and personnel (Robertson 2015). They also emphasize 
periodical changes in team composition as a crucial design element (Tannenbaum 
et al. 2012; Webber and Klimoski 2004). This dynamic team composition allows 
organizations to learn how to configure the most effective possible team over time 
(Bell 2007; Mathieu et al. 2014) and enables teams to adapt to the task’s condi-
tions at any given time by changing their composition (Savelsbergh et al. 2015). 
This helps teams to integrate new members with previously unavailable knowl-
edge within their ranks (Simon 1991).

The research branch that follows these suggestions provides findings that chal-
lenge the traditional perspective on dynamic team composition and its supporting 
evidence. For instance, prior simulation-based results in small-scale teams sug-
gest that task performance might increase when teams change their composition 
periodically (Blanco-Fernández et  al. 2023b, c). These insights are supported by 
experimental studies. For instance, Choi and Levine (2004) and Choi and Thomp-
son (2005) show that shifts in team composition enhance innovativeness in deci-
sion-making, increasing task performance. Survey-based research of German firms 
(Spanuth et al. 2020) and Australian R &D teams (Hirst 2009) confirm these find-
ings. This increase in innovativeness may result from faster learning (Sergeeva and 
Roehrich 2018) and from better transfer of knowledge between team members (Choi 
and Thompson 2005; Sergeeva and Roehrich 2018). Thus, dynamic team compo-
sition can be understood as an exploratory process by which teams acquire new 
knowledge (March 1991; Mortensen 2014; Simon 1991). Exploratory processes are 
particularly valuable for enhancing the performance of complex tasks, particularly 
during the initial stages of decision-making (Levinthal 1997).

In summary, both branches of research have brought forward the main advantages 
and disadvantages of dynamic team composition. On the one hand, dynamic team 
composition may be associated with enhanced innovativeness (Choi and Thompson 
2005) and knowledge transfer (Sergeeva and Roehrich 2018), which may lead to 
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improvements in performance (Blanco-Fernández et al. 2023b, 2023). On the other 
hand, periodical shifts in team composition may increase uncertainty in decision-
making, reducing task performance (Lin et  al. 2006). Modern organizations that 
rely on dynamic team composition might seek to capitalize on these advantages 
while adopting design elements that aim at reducing its associated uncertainty. For 
instance, prior research argues that implementing effective coordination mechanisms 
among team members may successfully counteract uncertainty in decision-making 
(Galbraith 1973).

2.2 � Organizational design and coordination modes

Galbraith (1973) suggests that organizations should alter their design when facing 
significant uncertainty, either by enhancing their information processing capacity or 
by decreasing the demand for it. Organizational design elements are often divided 
into structure and coordination choices (Burton and Obel 2018; Leitner 2021, 
2023b). Structure choices are those related to the division of labor (Burton and Obel 
2018), and they are typically used to reduce the information processing demands of 
the organization (Galbraith 1973). Generally, organizations perform better if their 
structural features eliminate the interdependencies among different decision-makers 
or reduce them to their greatest possible extent (Wall 2018). This objective is rela-
tively easy to achieve for simple tasks with few concentrated interdependencies. If 
tasks are complex—i.e., interdependencies are numerous and widespread through-
out the task—achieving this objective becomes much more difficult (Burton and 
Obel 2018; Siggelkow and Rivkin 2005; Wall 2018).

Hence, organizations might resort to coordination choices to overcome the limi-
tations caused by task complexity (Burton and Obel 2018). Coordination choices 
encompass the actions taken to facilitate the flow and exchange of information 
between individuals, thereby increasing the organization’s information processing 
capacity (Burton and Obel 2005; Galbraith 1973; Leitner and Wall 2020). Accord-
ing to Nadler and Tushman (1997), coordination choices include informal coordi-
nation through the establishment of incentive schemes and formal coordination 
through the implementation of coordination modes,1 i.e., through the implementa-
tion of rules and procedures which organize individual decision-making and assure 
open communication between decision-makers (Burton and Obel 2018; Leitner and 
Wall 2022; Siggelkow and Rivkin 2005; Wall 2018).

Prior research has highlighted the importance of implementing a particular coor-
dination mode—i.e., of establishing formal links, procedures and communication 
channels—to formally coordinate the team members’ actions (Galbraith 1973; Mint-
zberg and Romelaer 1979; Nadler and Tushman 1997). Each coordination mode 
has its specific functioning and characteristics. For instance, Nadler and Tushman 
(1997) argue that when decisions are taken sequentially, decision-makers require 

1  Coordination choices and coordination modes are two separate concepts. Coordination choices are 
part of organizational design and refer to those elements which ensure that organizations combine their 
resources efficiently. The choice of a proper coordination mode is a design problem in itself and part of 
the coordination choices of the organization (Burton and Obel 2018).
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substantial information about the preceding actions to act properly. Previous simula-
tion-based research tested this hypothesis by studying a coordination mode labeled 
as sequential decision-making, suggesting that it may improve performance if tasks 
are sufficiently complex (Wall 2017, 2018).

Conversely, establishing communication channels among team members is 
also emphasized as an effective tool for achieving coordination (Galbraith 1973; 
Siggelkow and Rivkin 2005). Specifically, Mintzberg and Romelaer (1979) highlight 
two different ways of achieving coordination following this approach. First, coordi-
nation may be achieved by mutual adjustment, i.e., by establishing direct, unmoder-
ated lateral communication between team members. According to Galbraith (1973), 
this direct interaction ensures that team members make their decisions together. 
Siggelkow and Rivkin (2005) label this coordination mode lateral communication. 
Their results suggest that, for complex tasks, lateral communication counteracts 
the uncertainty associated with task complexity better than any other coordination 
mode, improving task performance (Siggelkow and Rivkin 2005). Second, coordi-
nation may be achieved by assuring direct, moderated communication between team 
members through the establishment of liaison devices (Galbraith 1973; Mintzberg 
and Romelaer 1979; Nadler and Tushman 1997). Liaison devices encompass various 
roles which, while having no decision-making capacity of their own, are tasked with 
assuring that information flows properly between team members (Mintzberg and 
Romelaer 1979; Nadler and Tushman 1997). Team members act autonomously and 
fully retain their decision-making capacity, while the liaison device ensures that they 
maintain communication (Nadler and Tushman 1997; Siggelkow and Rivkin 2005). 
Although they may effectively achieve their objective, prior simulation-based results 
suggest that a liaison coordination mode may slow down decision-making, reducing 
task performance in the long run (Siggelkow and Rivkin 2005).

2.3 � Dynamic team composition and coordination

Prior research often addresses the interrelations between dynamic team composi-
tion and coordination (Edmondson et al. 2001, 2003; Gardner 2010; Harrison et al. 
2003; Mortensen 2014; Reagans et al. 2005). There are, however, diverging inter-
pretations of the interactions between dynamic team composition and coordination. 
Evidence coming from one branch of research suggests that dynamic team composi-
tion is negatively associated with coordination. For instance, experimental findings 
suggest that shifts in composition reduce coordination among team members and, in 
turn, task performance (Harrison et al. 2003). Survey-based findings in the fields of 
healthcare (Edmondson et al. 2001, 2003; Reagans et al. 2005), software develop-
ment (Mortensen 2014), and consulting (Gardner 2010) support these experimen-
tal results. These findings, however, may be constrained by the traditional perspec-
tive on dynamic team composition, which associates it to organizational turnover 
(Mathieu et al. 2014).

As dynamic team composition gains significance as an organizational design ele-
ment, it is likely that new insights will be found if research departs from the tra-
ditional perspective on dynamic team composition, interpreting it rather as part of 
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organizational design (Tannenbaum et al. 2012). For instance, the investigation of 
German firms carried out by Spanuth et al. (2020) leads to an alternative interpre-
tation on the relationship between dynamic team composition and coordination. 
Specifically, their results suggest that dynamic team composition enhances crea-
tivity and innovation within teams and improves task performance. Nevertheless, 
proper coordination among team members needs to be ensured if teams want to fully 
exploit these advantages (Spanuth et al. 2020).

3 � The model

In this paper, we build on the NK framework (Levinthal 1997) and propose an agent-
based model to study the effect of coordination modes and dynamic team composi-
tion on task performance. In contrast to experimental and empirical research, our 
proposed model does not rely on observing real-life data (Wall and Leitner 2021). 
Instead, we aim to better understand the variables of interest by employing a sim-
ulation approach that develops the insights found in prior research (see Sect.  2). 
Three factors influence our choice of the research method. First, the NK frame-
work provides an opportunity for creating an artificial organization that we can use 
to change its design choices and examine their effects on task performance (Wall 
2016; Wall and Leitner 2021). Additionally, our adaptation of the NK framework 
helps us explore the long-term dynamics of team composition (Wall and Leitner 
2021), which is in line with the suggestions given in prior research (Mathieu et al. 
2014). Second, we can modify the NK framework to model aspects such as learn-
ing, task complexity, and agent interaction (Wall and Leitner 2021). Finally, the NK 
framework is a standardized approach employed in related research (Baumann et al. 
2019; Wall 2016) and contrasted with other methods (Billinger et al. 2014; Giannoc-
caro et al. 2018). Consequently, we believe that this model is the best choice for our 
research.

1. Task environment
and agents:

Initialization of the
performance landscape
of the complex task and 

the 30 agents
(Sec 3.1)

2. Team composition:
Three agents form a 

team following a 
signaling mechanism for 

team formation
(Sec 3.2)

3. Decision-making 
and coordination:

Team members agree on 
an overall solution to 

the task and update their 
beliefs on discovering 

and forgetting
(Sec 3.3)

4. Individual learning:
The agents of the model, 

according to their
beliefs, discover new 

solutions to the complex 
task or forget solutions

(Sec 3.4)

End?

Yes

No

Start

End

Team
formation?

No

Yes
Next 
step

Fig. 1   Sequence of the model
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The following four subsections correspond to the four building blocks of the 
model and follow the sequence of events during each simulation (see Fig.  1). In 
this agent-based model, several human decision-makers are entrusted with solving 
a complex task (see Sect. 3.1). These agents must form a team to solve this complex 
task; the process of team formation is repeated periodically to account for dynamic 
team composition (see Sect.  3.2). Once the team is formed, team members fol-
low a specific coordination mode to implement a solution to the complex task (see 
Sect.  3.3). At the end of each period, all agents update their knowledge by going 
through a learning process (see Sect. 3.4). Subsequently, depending on the param-
eter configuration, the process returns to either team formation or the decision-mak-
ing phase.

Section 3.5 discusses the parameter settings. Appendix A provides a discussion 
on the technical aspects of the model and the simulation.

3.1 � Task environment and agents

We model the complex task as a vector of N = 12 binary decisions. Each decision, 
denoted by dn , contributes cn to the overall task performance, which we calculate as 
the average of all contributions (see Eq. A1 and Appendix A.1). Each vector of 12 
binary values is a solution to the complex task and has an associated task perfor-
mance. The mapping of each of the 212 = 4, 096 possible solutions to their associ-
ated performance is the performance landscape (Levinthal 1997) (see Appendix A.1 
for additional details). Following the NK framework, we incorporate task complexity 
by making the decisions interdependent (Giannoccaro et al. 2019; Levinthal 1997; 
Wall 2016). Thus, the contribution to task performance cn depends on the decision 
itself dn and K other decisions. A larger value of K indicates more interdepend-
encies and, thus, a higher task complexity. When there are no interdependencies, 
i.e., K = 0 , only one optimal solution to the complex task exists, which is easily 
achievable. As K increases and approaches N − 1 = 11 , several suboptimal solutions 
appear, making it increasingly challenging to reach the optimal solution (Levinthal 
1997; Rivkin and Siggelkow 2007).

Furthermore, task complexity has significant implications for the decision-mak-
ing agents. To solve a complex task, it is often necessary to combine different com-
plementary skills that are typically not found in a single individual (Hsu et al. 2016). 
Consequently, a single agent cannot solve a complex task by themselves, as they 
have limited capabilities concerning the complex task they face (Funke and Frensch 
1995). Instead, complex tasks are usually solved by teams of different experts (Gian-
noccaro et al. 2019; Hsu et al. 2016; Rivkin and Siggelkow 2003). To account for 
these limited capabilities, we divide the 12-dimensional task into M = 3 subtasks, 
each consisting of four decisions. Each subtask corresponds to an area of expertise 
(Hsu et al. 2016). We randomly assign each agent of the model to one of these areas 
of expertise, i.e., they can only solve one of the three subtasks. Additionally, agents 
are not aware of the complete set of solutions to their assigned subtask from the 
beginning. Instead, we initially endow each agent with one random solution to their 
assigned subtask. This characterization of limited capabilities follows the difficulty 
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assumption as described by LiCalzi and Surucu (2012), ensuring that agents do not 
have the complete set of solutions to their assigned subtask at their disposal from the 
beginning.

There are P = 30 agents in our model. Agents are utility-maximizing, and they 
experience utility by participating in the team and solving the complex task. A 
team member’s utility is the average of their own performance contributions and 
the remaining members’ performance contributions—i.e., the performance contri-
butions of the residual decisions. (see Eq. A2 and Appendix A.2) In addition to the 
aforementioned limited capabilities, agents also have restricted cognitive capacities, 
which prevent them from pursuing long-term objectives. Instead, agents are myopic 
and aim at maximizing their immediate utility.2

3.2 � Team composition

We assume that one team of three members—one per area of expertise—is suffi-
cient to solve the entire complex task.3 Following the increasing reliance on self-
organization that characterizes modern organizations (Puranam et al. 2014; Robert-
son 2015), we set up a team formation mechanism in which agents autonomously 
come together to create the team. As Robertson (2015) notes in his study of hol-
acracies, members of modern organizations often decide autonomously whether to 
join and leave teams by assessing their own expertise and potential contributions. 
Additionally, team members often take a proactive stance towards self-improvement 
and the upgrade of the team’s operations (Ngo et al. 2023). To apply this modern 
approach to self-organization, the agents in our model follow a signaling mechanism 
for team formation that aims at integrating the best available experts within the team 
(Blanco-Fernández et al. 2023b, 2023).

We work on certain assumptions about the agents’ behavior to avoid any strategic 
behavior. First, we assume that agents know perfectly how the team composition is 
chosen. Additionally, we assume that agents do not cheat during team formation. 
Finally, we omit any communication between agents during the team formation 
process.

Team formation works as follows: Each agent, who knows a specific set of solu-
tions, estimates the utility associated with these solutions (see Eq. A3 and Appen-
dix A.3). Agents cannot, however, anticipate the residual decisions for the incom-
ing period or communicate to obtain information on them, since these decisions are 
located outside their area of expertise. Instead, they assume that the residual deci-
sions from the previous period will not change for the incoming period. Further-
more, agents may commit small miscalculations which range between 1 and 10 per-
cent, reflecting the average error rate in reporting according to prior research (Tee 

2  This ensures that agents behave analogously to a hill-climbing process on the performance landscape. 
This is a defining feature of the NK framework, see Appendix A for additional details.
3  Team member 1 deals with decisions 1 to 4, member 2 with decisions 5 to 8, and team member 3 with 
decisions 9 to 12.
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et al. 2007). Each agent then sends a signal equivalent to the highest estimated util-
ity available. The agent with the highest signal for each subtask joins the team.4 
Consequently, the team is formed by the three agents who are supposed to be the 
best-available experts in their respective subtasks.5

The team is always formed in the first period. Afterwards, agents periodically 
change the team composition by repeating the team formation process every � peri-
ods. � is a design parameter that can be understood in terms of the team’s lifetime: 
A higher (lower) value of � indicates that team formation occurs less (more) fre-
quently, which implies a long-term (short-term) team composition.

3.3 � Decision‑making and coordination modes

Once the team is formed, the three team members propose solutions to their 
assigned subtasks. These proposals are combined to create an overall joint solution 
to the complex task. Following prior research (Siggelkow and Rivkin 2005; Wall 
2018), we define three coordination modes. The choice of the coordination mode 
determines how team members evaluate their solutions, which criteria they follow 
to make their proposals, how these proposals are shared between team members, 
how proposals are combined to form candidate solutions, and how team members 
agree on implementing an overall task solution (Burton and Obel 2018; Siggelkow 
and Rivkin 2005; Wall 2018). These coordination modes differ in three aspects 
(Siggelkow and Rivkin 2005): The team members might

•	 evaluate their solutions privately before making proposals.
•	 control in which order their proposals are considered.
•	 have veto power over the remaining members’ proposals.

Additionally, we define a benchmark scenario without coordination. In this bench-
mark scenario, we study a fully autonomous team in which decision-making is 
entirely decentralized, without communication between team members (Siggelkow 
and Rivkin 2005; Wall 2018). This highly decentralized structure corresponds to a 
congregation of loosely connected individuals with mutual interests (Horling and 
Lesser 2004) that can be found, for example, in professional bureaucracies like 
schools (Mintzberg and Romelaer 1979). Furthermore, this fully autonomous team 
reflects the need for rapid action and innovation that drives many organizations. 
It also reflects their strong reliance on full self-organization and decentralization 
(Nadler and Tushman 1997). In this scenario, each team member estimates the util-
ity of each solution they know as outlined in Sect. 3.2 (see Eq. A3 and Appendix 
A.3). Then each member chooses the solution to their subtask which reports the 
highest estimated utility, and the overall task solution for the current period is the 
concatenation of all members’ proposals.

4  In the case of a draw, the team member is randomly chosen from the top signalers.
5  Non-members wait on the sidelines until the next team formation process, earning utility equal to 0.
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Teams often attempt at simplifying the process of solving complex tasks by par-
titioning them into multiple steps and addressing them sequentially (Burton and 
Obel 2005; Mintzberg and Romelaer 1979). When there are corresponding interde-
pendencies among team members, this creates a sequential reliance among them, as 
they must be aware of prior decisions to act accordingly (Mintzberg and Romelaer 
1979; Nadler and Tushman 1997). This is evident, for instance, in ass production 
factories (Mintzberg and Romelaer 1979) or in activities such as the processing of 
checks in banks (Nadler and Tushman 1997). Following Wall (2018), we transfer 
these insights onto the sequential coordination mode. In this coordination mode, 
the proposals are made successively according to the subtask order (Wall 2018). 
This coordination mode, thus, includes individual evaluation, but members cannot 
veto other proposals or control the order of choice. The team member associated 
with the first subtask makes a proposal and reports it to the following members, 
who update their residual decisions accordingly. This process is repeated for each 
member until they all have made their proposals. Thus, the team member associ-
ated with the first subtask chooses according to previous period residual decisions, 
while the remaining team members choose according to their updated residual 
decisions. The overall solution is then the concatenation of all these sequential 
proposals.

Organizations that rely on decentralized decision-making and self-organization 
often encounter challenges when establishing communication channels among their 
members (Mintzberg and Romelaer 1979). Consequently, liaison devices are par-
ticularly relevant in modern organizations such as holacracies (Robertson 2015) and 
adhocracies (Siggelkow and Rivkin 2005). A liaison device involves establishing a 
mediator which handles communication among team members, who in turn retain 
their decision-making power (Galbraith 1973). Liaison devices rely on direct meet-
ings between team members to discuss their current information and future inten-
tions (Mintzberg and Romelaer 1979). We follow Siggelkow and Rivkin (2005) and 
model these insights in the liaison coordination mode, which retains decentralized 
decision-making while introducing direct communication between the team mem-
bers. The liaison coordination mode includes individual evaluation, veto power, 
and control of the order in which proposals are considered, and works as follows 
(Siggelkow and Rivkin 2005). Each member ranks each solution known in terms 
of their estimated utility. Then they present their two highest-ranked proposals in 
a coordination session.6 Two candidate solutions are formed, one by concatenat-
ing the team members’ preferred proposals and other by concatenating their sec-
ond-preferred proposals.7 Each team member evaluates the two candidate solutions 
according to their estimated utility. Team members accept the candidate solution if 
its estimated utility is higher than the last achieved utility. Otherwise, they veto the 

6  As Siggelkow and Rivkin (2005) show, the number of proposals selected by decision-makers does not 
improve performance significantly for a liaison coordination mode.
7  Siggelkow and Rivkin (2005) show that increasing the number of candidate solutions that decision-
makers evaluate improves performance significantly for a liaison coordination mode. We keep the candi-
date solutions restricted to two to retain the same processing power for the liaison and lateral communi-
cation coordination modes, see footnote 8 later on.
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candidate solution. If both candidate solutions are vetoed, the overall solution from 
the previous period remains unchanged. Conversely, if all team members accept one 
candidate solution, it becomes the overall solution for the upcoming period.

Since fast decision-making and innovation is often demanded in organizations, 
teams may reject the establishment of liaison devices while retaining broad com-
munication among their members (Nadler and Tushman 1997). Thus, team members 
may coordinate their actions by mutual adjustment, i.e., by communicating directly 
and without moderation (Mintzberg and Romelaer 1979). Mutual adjustment implies 
that team members retain their decision-making capacity, but they must exchange 
information before taking any action (Mintzberg and Romelaer 1979). According 
to Galbraith (1973) this results in team members jointly agreeing on decisions. 
These insights are transferred onto the lateral communication coordination mode 
(Siggelkow and Rivkin 2005). This coordination mode retains the team members’ 
veto power, but they cannot evaluate their solutions privately or consider the propos-
als in their preferred order (Siggelkow and Rivkin 2005). The lateral communica-
tion mode works as follows: Each member randomly chooses two solutions to their 
assigned subtask from the set of known solutions.8 The team members take their 
two proposals to a coordination session. In this session, two candidate solutions are 
formed by randomly concatenating the team members’ proposals.9 Similarly to the 
liaison mode, team members then veto or accept the candidate solutions depending 
on their estimated utility. The team implements a candidate solution if all members 
accept it. Conversely, if the members veto both candidate solutions, the overall solu-
tion remains unchanged from the previous period.

3.4 � Individual learning

Recall that, due to their limited capabilities, agents do not know the complete set of 
solutions to their assigned subtask from the beginning (see Sect. 3.1). Instead, agents 
gradually learn about the complex task and adapt their knowledge—i.e., their set of 
available solutions—over time (Funke and Frensch 1995).10 According to Miller and 
Martignoni (2016), learning is a process limited by the amount of knowledge that 
individuals can retain. Thus, as agents discover new things, they tend to forget prior 
knowledge which was not considered relevant in that particular time frame (Miller and 
Martignoni 2016). As Roth and Erev (1995) argue, forgetting is a process in which the 
agents’ knowledge gradually deteriorates. Hence, prior research suggests that learning 
should be considered the combination of multiple interrelated processes, including dis-
covering, forgetting, and recalling, rather than just discovering (Miller and Martignoni 

8  According to Siggelkow and Rivkin (2005), the number of proposals selected by team members does 
not impact performance significantly for a lateral communication mode.
9  In contrast to the liaison mode, the number of candidate solutions evaluated by team members does 
not impact performance significantly for a lateral communication mode (Siggelkow and Rivkin 2005). 
We keep the number of candidate solutions evaluated to two to retain the same processing power for the 
lateral communication and liaison coordination modes, see footnote 6 earlier on.
10  Learning occurs for all agents, team members or others.
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2016). Our characterization of individual learning follows the insights given by Roth 
and Erev (1995) and Miller and Martignoni (2016) and consists of two processes: dis-
covering and forgetting (Blanco-Fernández et al. 2023b, 2023).11

Each agent may discover a solution to their assigned subtask at the end of every 
period with probability ℙ . This solution is chosen randomly from all unknown solu-
tions. Each solution has a certain likelihood of being discovered that is influenced 
by the agent’s beliefs about it (see Appendix A.5 for additional technical details). 
These beliefs are periodically updated according to their experience and following a 
Bayesian updating rule (Leitner 2021; Tošić and Vilalta 2010).

The updating process works as follows. Each time a team member implements 
a solution to their assigned subtask, they experience a particular utility. Then, the 
team member compares this utility with the utility experienced in the previous 
period. If this solution represents an improvement in their utility compared to the 
previous period, its likelihood of being discovered will increase. Conversely, this 
likelihood will decrease if it reduces the team member’s utility compared to the pre-
vious period. We formalize this process in Eqs. A5a and A5b in Appendix A.5.12

Thus, a belief is only updated when an agent knows and implements a solution 
to their assigned subtask. Beliefs, however, specifically affect the likelihood with 
which solutions are discovered and are only relevant to unknown solutions.

Agents may forget one known solution at the end of each period with the same 
value of probability ℙ . The forgotten solution is randomly selected from the set of 
known solutions. Again, agents form beliefs regarding these solutions that deter-
mine their likelihood of forgetting. This likelihood may change as time passes 
and agents update their beliefs. Each time a team member implements a solution 
to their assigned subtask, they update their associated belief by comparing the util-
ity experienced in the current and the previous period. The likelihood of forgetting 
this solution will increase if it reduces their utility compared to the previous period. 
Conversely, if this solution improves the team member’s utility, the likelihood of 
forgetting it decreases.

Additionally, forgetting is related to the passing of time (Brenner 2006). We 
introduce a memory factor in the agents’ updating process, which reflects that agents 
tend to forget solutions because they have stored them in their memory for too long 
(Roth and Erev 1995). In our model, all agents—team members or not—update the 
beliefs of the solutions they know at the end of every period, increasing the likeli-
hood of forgetting each solution as time passes. We provide the general updating 
rule for all beliefs regarding forgetting in Eqs. A7a and A7b in Appendix A.5.

In conclusion, by implementing solutions and updating their beliefs, agents 
ensure that they retain those solutions perceived as beneficial and discard those per-
ceived as harmful or irrelevant.

11  Agents may forget and rediscover the same solution multiple times during a simulation.
12  Non-member agents cannot update their solutions regarding the discovery process, as they cannot 
implement them.
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3.5 � Parameters and scenarios

As outlined in Sect. 3.1, we study a task formed by N = 12 binary decisions divided 
into M = 3 subtasks of length S = N∕M = 4 . The group is formed by three team 
members out of a population of P = 30 agents. Regarding task complexity, we con-
sider two levels: Low ( K = 3 ) and moderate complexity ( K = 5 ). Additionally, we 
take into account six different interdependence structures. These structures reflect 
which contributions depend on which decisions and, thus, the degree of task decom-
posability (Rivkin and Siggelkow 2007) (see Appendix A.1 for additional details). 
According to prior research, the interdependence structure also determines the per-
formance landscape’s shape and, consequently, the team’s performance (Rivkin and 
Siggelkow 2007). We represent the six interdependence structures studied in Fig. 2:
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•	 Block diagonal: We allocate the interdependencies in squares of size K + 1 . For 
low complexity, this structure reflects a perfectly decomposable task in which 
there are no cross-interdependencies between subtasks.

•	 Centralized: Interdependencies are located within the first K + 1 decisions. In 
low-complexity tasks, only the first team member influences the other members’ 
contributions. In tasks of medium complexity, the power to influence others is 
shared between the first and the second member.

•	 Dependent: This structure reverses the idea of the centralized structure: instead 
of making one team member very influential, we make one member highly 
dependent on the other members’ decisions.

•	 Hierarchical: Each decision influences the N − n following contributions but not 
the preceding n − 1.

•	 Local: Each decision affects the following K contributions. If there are no fol-
lowing contributions, interdependencies fall back to the beginning of the task 
(see Fig. 2, Local).

•	 Random: We randomly allocate the interdependencies throughout the task. Con-
sequently, each member partly affects the other members’ contributions.

Regarding dynamic team composition, we define � in Sect. 3.2 as the number of 
periods between each instance of team formation. There are three scenarios depend-
ing on �:

•	 A team with a long-term composition maintains the same composition during 
the observation period. We represent this scenario by � = ∞.

•	 A team with a medium-term composition changes its composition every � = 10 
periods.

Table 1   Parameters

Type Variables Notation Values

Independent variables Task complexity K {3, 5}
Interdependence structure Matrix See Fig. 2
Team composition � {∞, 1, 10}
Learning probability ℙ {0 ∶ 0.1 ∶ 1}

Time period t {1 ∶ 1 ∶ 100}

Coordination mode – See Sect. 3.3
Dependent variable Task performance C(�

�
) [0, 1]

Other parameters Number of decisions N 12
Population of agents P 30
Number of subtasks M 3
Simulation round � {1 ∶ 1 ∶ 1, 500}

Error term e e ∼ N(0, 0.1)
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•	 A team with a short-term composition changes its composition in every period, 
so � = 1.

Concerning individual learning, we set equal probabilities for discovering and for-
getting. This reflects the agents’ limited capabilities and ensures that they discover 
and forget solutions at the same rate. This reduces the likelihood that each agent 
simultaneously knows all available solutions to their assigned subtask.13 In our anal-
ysis, we study probabilities between ℙ = 0 and ℙ = 1 in intervals of 0.1.

We summarize the main parameters of the model and their values in Table 1. For 
our analysis, we simulate 1,584 scenarios, each consisting of 1,500 simulation rounds 
of 100 periods.14 The dependent variable in our analysis is the observed task perfor-
mance at each period. To assure comparability between scenarios, we normalize this 
observed task performance by the maximum achievable performance in each simula-
tion round. We then calculate the mean normalized performance at each period for the 
1,500 simulation rounds. This measure is formalized in Eq. A8 in Appendix A.6.

4 � Results

This paper aims at examining the interrelations between selected coordination modes 
and dynamic team composition. Additionally, we investigate whether there are mod-
erating effects of task complexity and individual learning. We present the results in 
the following three subsections. In Sect. 4.1 we outline the general effects of dynamic 
team composition on task performance and its interrelations with the coordination 

Table 2   General effects of dynamic team composition

Italics are used to represent the confidence interval at a 99% level, bold is used to highlight the best per-
forming scenarios

Mean performance Final performance

Long Medium Short Long Medium Short

Fully autonomous 0.8296 0.8531 0.8792 0.8435 0.8680 0.8921
(±0.0029) (±0.0030) (±0.0026) (±0.0029) (±0.0030) (±0.0026)

Sequential 0.8390 0.8668 0.8982 0.8510 0.8794 0.9095
(±0.0022) (±0.0026) (±0.0022) (±0.0022) (±0.0026) (±0.0022)

Liaison 0.7601 0.7835 0.8120 0.7689 0.7987 0.8283
(±0.0024) (±0.0028) (±0.0032) (±0.0024) (±0.0028) (±0.0032)

Lateral 0.8504 0.8774 0.9075 0.8816 0.9189 0.9410
(±0.0019) (±0.0020) (±0.0018) (±0.0019) (±0.0020) (±0.0018)

14  We fix the number of simulations following an analysis of the variance of the results; see Lorscheid 
et al. (2012).

13  This is based on the difficulty assumption. More details are provided in LiCalzi and Surucu (2012).
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mode implemented. In Sect. 4.2 we differentiate our results by task complexity and 
the interdependence structure and, finally, by individual learning in Sect. 4.3.

4.1 � General effects of dynamic team composition

In this subsection, we report two performance measures: The mean performance of 
the 100 periods of each simulation—see Eq. A9 and Appendix A.6—and the final 
performance, denoting the performance achieved on average at t = 100 . Table  2 
reports the mean and final performances for each team composition and coordina-
tion mode studied. We also report the confidence limits below each performance at 
a 0.01% confidence level and highlight in bold the highest performance achieved for 
each team composition considered.

The results of Table  2 suggest that more frequent team formation is generally 
associated with higher mean and final performances. Depending on the scenario 
studied, each decrease in � generally increases mean performance by approximately 
2 to 3 percentage points and final performance by approximately 3 to 4 percent-
age points. These differences, although small, are statistically significant at a 0.01% 
confidence level. Hence, our results are closer to the modern view of dynamic team 
composition (Bell and Outland 2017; Tannenbaum et  al. 2012) than to the tradi-
tional perspective on the matter (Carley 1992; Carley and Svoboda 1996; Davis 
1973; Lin et al. 2006). Specifically, these results suggest that dynamic team com-
position is not a negative consequence of suboptimal design choices, as we find no 
negative effects of increasing the frequency of team formation. Instead, our findings 
support the characterization of dynamic team composition as a design element con-
sciously implemented by organizations (Tannenbaum et al. 2012). Team composi-
tion becomes more efficient when it is periodically reorganized, as Bell (2007) and 
Mathieu et al. (2014) argue. The mechanism behind this improved efficiency lies in 
the increased exploration of the solution space attributed to dynamic team composi-
tion (March 1991; Simon 1991). As prior research argues, this enhaced exploration 
increases the number of solutions available to the team, thus resulting in the team 
being more innovative (Choi and Levine 2004; Choi and Thompson 2005; Hirst 
2009; Sergeeva and Roehrich 2018; Spanuth et al. 2020). Our results show that this 
increased innovation improves both mean and long-term performance. From a prac-
tical standpoint, these findings suggest that organizations should consider incorpo-
rating dynamic team composition in their design. As a design element that promotes 
exploration, this guidance may be particularly relevant for organizations seeking to 
generate new value, establish a competitive advantage in a particular area, or mod-
ernize their structure (Rojas-Córdova et al. 2023).

Regardless of the frequency of team formation, our results suggest that the high-
est mean and final performances are associated with the lateral communication 
mode, followed by the sequential coordination mode, the fully autonomous team, 
and, finally, the liaison coordination mode (see Table 2). Differences in performance 
between the lateral communication, sequential and fully autonomous modes are 
quite small, ranging approximately from 1 to 2 percentage points for mean perfor-
mance and from 3 to 5 percentage points for final performance. All these differences 
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are significant at a 0.01% confidence level. Conversely, there are significantly larger 
performance gaps between the lateral communication and liaison coordination 
modes. Specifically, this gap is of approximately 9 percentage points for mean per-
formance and 12 percentage points for final performance.

These findings follow prior insights into coordination and task performance (Bur-
ton and Obel 2018; Rivkin and Siggelkow 2003; Siggelkow and Rivkin 2005). In 
particular, previous results suggest that a proper coordination mode should achieve 
a balance between autonomy with stability in decision-making (Burton and Obel 
2018; Rivkin and Siggelkow 2003). Autonomous decision-making allows team 
members to intensively explore their available solution space (Siggelkow and Rivkin 
2005), and reflects the demand for rapid change and decision-making often encoun-
tered in organizations (Nadler and Tushman 1997). In contrast, stability redirects 
the team members’ focus toward exploiting their available solutions (Siggelkow and 
Rivkin 2005), which allows them to fully take advantage of their knowledge (Rojas-
Córdova et al. 2023). Excessive autonomy, however, might result in overexploration 
(Rojas-Córdova et al. 2023), reducing task performance in the long run (Siggelkow 
and Rivkin 2005). This is exemplified in our results by the fully autonomous team. 
Conversely, excessive stability might slow down decision-making (Nadler and Tush-
man 1997), which also decreases task performance (Siggelkow and Rivkin 2005). 
Our results show that this occurs in the case of the liaison coordination mode. 
Conversely, the lateral communication and sequential coordination modes balance 
autonomy and stability in decision-making. The lateral communication mode, for 
instance, puts more weight on stability but retains a certain degree of autonomous 
decision-making in the form of the veto power (see Sect. 3.3). The sequential coor-
dination mode, in contrast, focuses more on autonomy but retains some stability in 
the form of successive decision-making. This balance explains why for these two 
coordination modes, performance is generally higher than in the fully autonomous 
team. Consequently, our results suggest that organizations should consider how their 
coordination choices balance autonomy and stability in decision-making before tak-
ing any action.

Additionally, our results suggest that coordination somewhat helps teams exploit 
the potential positive effects of dynamic composition on task performance. We can 
observe this by comparing the mean and final performances between a long- and a 
short-term team composition in Table 2. Differences in mean and final performances 
between a short- and a long-term team composition are slightly higher for a sequen-
tial and a lateral communication mode, approximately amounting to 6 percentage 
points, than for the fully autonomous team, with around 5 percentage points. This 
implies that the positive effects of the lateral communication and sequential coor-
dination modes on task performance increase modestly with the frequency of team 
formation. Rather than dynamic team composition reducing coordination, as prior 
research often suggests (Edmondson et  al. 2001, 2003; Gardner 2010; Harrison 
et al. 2003; Mortensen 2014; Reagans et al. 2005), our results indicate a positive—
though modest—correlation between these two design elements. Thus, our results 
are partly in line with those provided by Spanuth et al. (2020), suggesting an alterna-
tive interpretation of the relationship between dynamic team composition and coor-
dination that departs from the traditional perspective on the matter. From a practical 
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standpoint, our results indicate that organizations should ensure that team members 
effectively coordinate their actions when changes in team composition are frequent, 
even if the gains in performance are modest.

4.2 � Moderating effects of task complexity

In general, our results suggest that both task complexity and the interdependence 
structure influence the choice of a proper coordination mode, similarly to the results 
reported in Siggelkow and Rivkin (2005). When subtasks are not interdependent 
(for low complexity and a block diagonal structure, see Fig. 2, Block diagonal (A)), 

Table 3   Differentiated effects - Low complexity

Italics are used to represent the confidence interval at a 99% level, bold is used to highlight the best per-
forming scenarios

Block Centralized Dependent Hierarchical Local Random

Long-term Fully autono-
mous

0.9344 0.8813 0.8573 0.8591 0.8431 0.7970

(± 0.0029) (±0.0036) (±0.0019) (±0.0031) (±0.0026) (±0.0029)
Sequential 0.9343 0.9156 0.8548 0.8650 0.8483 0.8089

(±0.0029) (±0.0035) (±0.0018) (±0.0029) (±0.0027) (±0.0027)
Liaison 0.8427 0.7736 0.8134 0.7698 0.7765 0.7474

(±0.0028) (±0.0017) (±0.0020) (±0.0016) (±0.0016) (±0.0019)
Lateral 0.9156 0.8706 0.8877 0.8656 0.8522 0.8322

(±0.0025) (±0.0038) (±0.0028) (±0.0038) (±0.0027) (±0.0045)

Medium-
term

Fully autono-
mous

0.9572 0.9104 0.8876 0.8858 0.8720 0.8187

(±0.0034) (±0.0035) (±0.0024) (±0.0030) (±0.0030) (±0.0027)
Sequential 0.9571 0.9156 0.8863 0.8928 0.8806 0.8361

(±0.0034) (±0.0034) (±0.0025) (±0.0029) (±0.0031) (±0.0028)
Liaison 0.8822 0.8110 0.8448 0.7988 0.8059 0.7664

(±0.0030) (±0.0029) (±0.0027) (±0.0026) (±0.0026) (±0.0023)
Lateral 0.9435 0.9039 0.9166 0.8960 0.8843 0.8576

(±0.0033) (±0.0042) (±0.0035) (±0.0042) (±0.0042) (±0.0046)

Short-term Fully autono-
mous

0.9694 0.9327 0.9057 0.9087 0.9010 0.8502

(±0.0033) (±0.0031) (±0.0025) (±0.0027) (±0.0029) (±0.0026)
Sequential 0.9695 0.9375 0.9059 0.9155 0.9123 0.8732

(±0.0033) (±0.0030) (±0.0025) (±0.0027) (±0.0030) (±0.0027)
Liaison 0.9266 0.8570 0.8810 0.8396 0.8413 0.7893

(±0.0032) (±0.0028) (±0.0029) (±0.0025) (±0.0028) (±0.0023)
Lateral 0.9631 0.9334 0.9419 0.9266 0.9189 0.8910

(±0.0035) (±0.0040) (±0.0037) (±0.0040) (±0.0043) (±0.0045)
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neither of the three coordination modes improves task performance significantly 
(see the first column of Table 3). We report similar results for tasks of low com-
plexity, centralized structure, and teams with a medium- and short-term composition 
(see the second column of Table 3); and for low complexity, hierarchical structure 
in teams with a long-term composition (see the fourth column of Table 3). When 
interdependencies are concentrated in one subtask (see Fig. 2, Centralized (A) and 
Hierarchical (A)), the demand for coordination with the remaining team members 
decreases, as they have no control of the interdependencies.

As interdependencies spread throughout the task, the demand for coordina-
tion increases, as reported in prior research (Siggelkow and Rivkin 2005). Spe-
cifically, employing either lateral communication or sequential decision-making 

Table 4   Differentiated effects - Medium complexity

Italics are used to represent the confidence interval at a 99% level, while bold is used to highlight the 
bestperforming scenarios

Block Centralized Dependent Hierarchical Local Random

Long-term Fully autono-
mous

0.8150 0.8191 0.7817 0.8254 0.7783 0.7638

(±0.0037) (±0.0040) (±0.0027) (±0.0036) (±0.0032) (±0.0031)
Sequential 0.8283 0.8332 0.7931 0.8369 0.7965 0.7835

(±0.0033) (±0.0035) (±0.0024) (±0.0033) (±0.0028) (±0.0029)
Liaison 0.7490 0.7233 0.7422 0.7266 0.7319 0.7249

(±0.0022) (±0.0015) (±0.0022) (±0.0014) (±0.0022) (±0.0021)
Lateral 0.8348 0.8391 0.8326 0.8398 0.8182 0.8163

(±0.0049) (±0.0050) (±0.0050) (±0.0046) (±0.0049) (±0.0051)

Medium-
term

Fully autono-
mous

0.8384 0.8460 0.8030 0.8504 0.7950 0.7723

(±0.0034) (±0.0038) (±0.0025) (±0.0033) (±0.0027) (±0.0025)
Sequential 0.8576 0.8634 0.8205 0.8661 0.8225 0.8026

(±0.0033) (±0.0027) (±0.0026) (±0.0033) (±0.0029) (±0.0027)
Liaison 0.7660 0.7392 0.7560 0.7496 0.7471 0.7344

(±0.0023) (±0.0019) (±0.0022) (±0.0022) (±0.0022) (±0.0020)
Lateral 0.8618 0.8657 0.8558 0.8668 0.8419 0.8348

(±0.0049) (±0.0050) (±0.0048) (±0.0046) (±0.0048) (±0.0048)

Short-term Fully autono-
mous

0.8698 0.8800 0.8326 0.8800 0.8307 0.7895

(±0.0032) (±0.0014) (±0.0024) (±0.0031) (±0.0028) (±0.0025)
Sequential 0.8937 0.9012 0.8585 0.8979 0.8676 0.8457

(±0.0031) (±0.0032) (±0.0025) (±0.0030) (±0.0029) (±0.0027)
Liaison 0.7846 0.7617 0.7720 0.7794 0.7648 0.7462

(±0.0023) (±0.0022) (±0.0022) (±0.0023) (±0.0023) (±0.0018)
Lateral 0.8941 0.8953 0.8870 0.9010 0.8746 0.8631

(±0.0047) (±0.0047) (±0.0047) (± 0.0045) (±0.0048) (±0.0047)
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becomes more advantageous in terms of task performance. In columns three to 
six of Table 3 we observe that coordination by sequential decision-making or lat-
eral communication slightly improves task performance in 11 out of the 12 struc-
tures. Differences range between approximately 0.5 percentage points for the local 
interdependence structure and 5 percentage points for the random structure, and 
increase modestly with the frequency of changing composition. These differences 
are significant at a 0.01% confidence level. Among these 11 scenarios, the lateral 
communication mode is the sole best performer in seven of them. This result is 
reinforced if we look at tasks of medium complexity, in which there are always 
interdependencies between subtasks (see Fig. 2). Regarding the 18 scenarios of 
Table 4, the lateral communication mode shares the highest performer status with 
the sequential mode in 10 out of them and is the sole highest performer in the 
remaining eight. Overall, performance increases approximately from 1 percentage 
point for the hierarchical interdependence structure to 7.5 percentage points for 
the random interdependence structure. Furthermore, these improvements in task 
performance are slightly higher for more frequent changes in team composition, 
and significant at a 0.01% confidence level. Overall, our findings suggest that lat-
eral communication is the best option for improving task performance when there 
are interdependencies between subtasks, although in some specific cases sequen-
tial decision-making is also an efficient choice.

Prior findings suggest that the interdependence structure has important impli-
cations for task performance, as it shapes the performance landscape (Rivkin and 
Siggelkow 2007). We build on these insights by showing that the interdependence 
structure also affects the choice of the coordination mode. To explain this result, 
we shall go back to the balance between stability and autonomy in decision-mak-
ing (Rivkin and Siggelkow 2003). As outlined in Sect.  2, as interdependencies 
spread throughout the task, uncertainty in decision-making increases, which in turn 
harms task performance (Levinthal 1997; Lin and Carley 1992; Wall 2016, 2018). 
Decision-makers need to counteract this uncertainty by making design choices 
that ensure stability, i.e., by focusing on coordination choices (Galbraith 1973; 
Siggelkow and Rivkin 2005). Among these, lateral communication is usually the 
most efficient, although sequential decision-making may also be an optimal choice 
in certain cases. From a practical perspective, our results imply that organizations 
should carefully review the nature of the tasks they face and evaluate how different 
coordination modes may fit their demands.

These differentiated results also reinforce the insights discussed in Sect.  4.1 
regarding the interrelations between coordination and dynamic team composition. 
Specifically, while both task complexity and the interdependence structure moder-
ate the demand for coordination, they do not affect the fundamental relationship 
between coordination and dynamic team composition. Again, to illustrate this we 
examine the performances for the fully autonomous team and compare it to the three 
coordination modes, both for a long- and a short-term composition. Results show 
that for all kinds of tasks considered teams that follow a specific coordination mode 
gain slightly more from changing their composition periodically than fully auton-
omous teams. Thus, the results of Sect.  4.1 regarding the interrelations between 
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coordination and dynamic team composition are robust to variations in task com-
plexity and the interdependence structure.

4.3 � Moderating effects of individual learning

In Fig. 3, we plot the mean performances achieved by each team depending on the 
coordination mode and the learning probability, i.e., ℙ . Additionally, we differenti-
ate the results by team composition. In general, increasing the learning probability 
has more significant effects the less frequently teams change their composition. For 
example, task performance in a fully autonomous team with a long-term composition 
increases from 0.7617 at ℙ = 0 to 0.8381 at ℙ = 1 (see Fig.  3(A)). When the fully 
autonomous team has a short-term composition, however, performance increases from 

Fig. 3   Mean performance for each probability of learning and team composition
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0.8680 only to 0.8827 (see Fig. 3(C)). This pattern is robust to all coordination modes 
and consistent with prior results (Blanco-Fernández et al. 2023b, 2023).

For the lateral communication mode, the sequential coordination mode, and 
the fully autonomous team, Fig. 3 shows how performance increases significantly 
when agents start to learn, i.e., when ℙ increases from 0 to 0.1. For instance, 
in the lateral communication mode, performance increases by approximately 
6.5, 4, and 3 percentage points for a long-, medium-, and short-term composi-
tion, respectively. These differences in performance are statistically significant 
at a 0.01% confidence level. An increase in the learning probability beyond 0.1 
improves task performance with decreasing marginal effects. Once the learning 
probability reaches a certain threshold, performance slightly falls if team com-
position is dynamic for the sequential coordination mode and the fully autono-
mous team (see Fig.  3B and C). The cumulative negative effects are around 1 
percentage point and lack statistical significance at a 0.01% confidence level. 
Although these negative effects are not significant, it is worth noting that they do 
not appear in the lateral communication mode. Instead, we can observe a slightly 
steady increase in performance—approximately 1 percentage point in total—as 
the learning probability increases above ℙ = 0.1.

Conversely, we can observe a different relationship between individual learn-
ing and task performance in the liaison coordination mode. For a long-term team 
composition, there is an increase in task performance when agents start learn-
ing (see Fig.  3A). As the learning probability increases further, however, per-
formance declines steadily. In total, performance declines around 3 percentage 
points between ℙ = 0.1 and ℙ = 1 , which is statistically significant at a 0.01% 
level. This steady decline in task performance is also observable for a medium-
term composition (see Fig.  3B), also adding up to approximately 3 percentage 
points. For a short-term team composition (see Fig.  3C), we observe a slight 
decrease in performance when agents start to learn. The performance then stabi-
lizes as the learning probability increases. Finally, performance declines once the 
probability reaches ℙ = 1 . Overall, performance declines by approximately 1.25 
percentage points, which is statistically significant at a 0.01% level.

Our findings show that coordination choices influence the interrelations 
between individual learning and dynamic team composition, and their effects on 
task performance. The impact of learning is lower in dynamic teams because, 
as Simon (1991) notes, dynamic team composition and individual learning are 
exploratory processes with similar effects. Specifically, they are both mechanisms 
that increase the number of solutions available to the team. Thus, if one is already 
present, the marginal effect on performance of the other is reduced (Blanco-
Fernández et  al. 2023b, 2023). Furthermore, excessive individual learning may 
result in decreases in task performance. As Rojas-Córdova et  al. (2023) note, 
overexploration may result in long-term problems for organizations. For instance, 
financial resources may be reduced if innovation is not associated with signifi-
cant improvements in performance (Rojas-Córdova et  al. 2023). From a practi-
cal perspective, this means that organizations should consider the balance among 
the different exploration processes that take place—i.e., individual learning and 
dynamic team composition—as our results show that this is a highly relevant 
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issue. Organizations in which dynamic team composition is prevalent may not 
gain from investing in individual learning, and vice versa.

To prevent this overexploration, prior research suggests various methods to shift 
resources towards the exploitation of current knowledge (Håkonsson et  al. 2016; 
Rojas-Córdova et  al. 2023). Among all methods, prior research emphasizes the 
establishment of coordination among decision-makers as one of the most relevant 
methods (Håkonsson et al. 2016; Rojas-Córdova et al. 2023). Our results are consist-
ent with these insights, as they show that teams (i) employing either lateral com-
munication or sequential decision-making and (ii) maintaining a long-term team 
composition experience greater advantages from individual learning. Coordination, 
thus, may enable teams to exploit the beneficial effects of individual learning on task 
performance. This exploitation is particularly relevant for stable teams, although 
dynamic teams may also benefit from implementing coordination (see Fig. 3C). Not 
all coordination choices, however, have the same effects. Suboptimal coordination 
choices can decrease task performance, as results for the liaison coordination mode 
suggest. Conversely, lateral communication eliminates the decline in task perfor-
mance associated with excessive learning, even when teams change their composi-
tion very frequently (see Fig. 3A–C).

5 � Conclusion

In this paper, we employ an agent-based modeling approach to study the interrela-
tions of dynamic team composition, coordination, and task performance. Further-
more, we investigate the moderating role of task complexity and individual learning. 
Our results depart from the traditional perspective on dynamic team composition, 
which interprets it as a result of suboptimal design choices that reduce coordination 
and decrease task performance. Instead, we show that dynamic team composition 
may be characterized as a design element that improves the innovative capacity of 
teams. According to our results, this improves task performance.

Characterizing dynamic team composition as a design element enables us to 
study how it interacts with another design element, namely the coordination mode. 
Departing from the traditional perspective on dynamic team composition allows 
us to find new insights regarding these elements and their interplay. According to 
our results, coordination helps teams to exploit the positive effects of dynamic team 
composition on task performance. This is particularly relevant for complex tasks, as 
coordination reduces the uncertainty in decision-making associated with complex-
ity. Specifically, we find that both lateral communication and sequential decision-
making improve task performance, while liaison devices reduce it.

Based on our results, we can argue that organizations increasingly rely on 
dynamic team composition because it allows teams to adapt to the task environ-
ment over time, improving task performance in the process. Thus, we can study 
how dynamic team composition interrelates with other adaptation processes, such 
as individual learning. Our results suggest that combining dynamic team compo-
sition with individual learning may lead to overexploration, and performance may 
not increase significantly. To reduce these effects, organizations may resort to 
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coordination choices. For instance, our results indicate that lateral communication 
may successfully prevent the negative effects of excessive exploration.

Nevertheless, our research is not without limitations. First, we work under the 
implicit assumption of zero coordination costs (Siggelkow and Rivkin 2005; Wall 
2018). Future research could consider them. Second, we do not study the potential 
effects of changing the agents’ incentives and the interrelations between these incen-
tives and the coordination mode (Siggelkow and Rivkin 2005). Finally, we employ 
a classic approach to organizational design, taking the design choices as given and 
studying their effects over time. Further extensions of our research could employ an 
evolutionary perspective to organizational design in which design choices emerge 
over time (Leitner 2023a; Wall 2018).

Appendix A Technical aspects of the model

A.1 Task environment and performance landscape

We model a complex task as an N-dimensional binary vector such that 
d =

(
d1,… , dN

)
 . Each decision dn contributes cn to the overall task performance 

C(d) . Task performance is the average of all contributions, such that:

There are 2N different solutions to the complex task, each with an associated per-
formance. The mapping of each of the 2N solutions to its associated performance is 
the performance landscape. The performance landscape can be conceptualized as a 
multidimensional space in which the N decisions are represented in the horizontal 
axis and their associated performances in the vertical axis (Rivkin and Siggelkow 
2007). The concept of performance landscape is analogous to that of the fitness 
landscape of evolutionary biology (Kauffman 1993). In its original formulation, 
Kauffman (1993) sought to explain the population dynamics of a certain organism 
and the fitness of its characteristics to a particular environment. In this formulation, 
an organism is formed by N interdependent genes that evolve over time. Periodically, 
the organisms below a certain fitness threshold are assumed to have not survived 
the environmental conditions. As an agent-based modeling approach, the original 
formulation of the NK framework examines how the different behavior of multiple 
individuals—in this case, assumed to be organisms formed by a set of genes—lead 
to emergent properties at the collective level—in this case, the population dynam-
ics of the organism in a particular environment (Kauffman 1993). Levinthal (1997) 
adapted the idea of the NK framework and the fitness landscapes to explain the pop-
ulation dynamics of organizations and their evolution based on each organization’s 
initial conditions, whereby N represents the different design elements of an organi-
zation rather than genes. Thus, the overall fitness achieved by an organization deter-
mines its likelihood of survival. Similarly to its biological counterpart, Levinthal 

(A1)C(d) =
1

N

N∑
n=1

cn.
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(1997) examines how the different design choices of each individual organization 
eventually lead up to alterations in their population.

Further adaptations of the NK framework have abandoned this emphasis on 
population dynamics and focus on aspects such as departmental decision-making 
(Siggelkow and Rivkin 2005; Wall 2018), incentive systems (Leitner 2021), and 
decision-making in teams (Billinger et  al. 2014; Blanco-Fernández et  al. 2023b, 
2023; Giannoccaro et al. 2019). Rather than modeling and observing the behavior of 
large organizations that operate in an environment, the scope is reduced to examine 
human decision-makers—the agents of the model—that operate in a team or in an 
organization and face a complex task. In these adaptations, the term fitness land-
scape is often replaced by the term performance landscape to emphasize that their 
primary focus is not on population dynamics. We follow these further adaptations, 
characterizing N as the interdependent decisions of a task that have an associated 
task performance.

The core concept underlying the NK framework is the investigation of adap-
tive search processeses (Wall 2016). This implies that studies employing the NK 
framework normally model a set of agents who engage in a neighborhood search 
process on the performance landscape, looking for new solutions to the complex 
task that improve task performance (Levinthal 1997; Rivkin and Siggelkow 2007). 
The neighborhood search process works as follows (Levinthal 1997). Agents ran-
domly change the value of one of the N decisions and observe its associated perfor-
mance. This new decision is adopted if it improves task performance compared to 
the previous period. Conversely, this decision is rejected if performance declines. 
As this development continues, the agents follow a hill-climbing process on the per-
formance landscape. This process stops when none of the immediate alternatives 
improve task performance, i.e., when agents reach a peak. Depending on the shape 
of the performance landscape, this peak may be global—i.e., the optimal decision—
or local—i.e., a suboptimal decision.

The shape of the performance landscape is influenced by task complex-
ity (Levinthal 1997; Rivkin and Siggelkow 2007). Each contribution cn 
depends on its associated decision dn and, due to the existence of interdepend-
encies, on K other decisions. This means that cn = f (dn, di1 ,… , diK ) , where 
{i1,… , iK} ⊆ {1,… , n − 1, n + 1,… ,N} and 0 ≤ K ≤ N − 1 . If there are no interde-
pendencies, i.e., K = 0 , the performance landscape is single-peaked. The landscape 
becomes more rugged as K increases and approaches N − 1 (Levinthal 1997; Rivkin 
and Siggelkow 2007). Rugged landscapes are characterized by several local optima 
where agents might get stuck (Levinthal 1997; Rivkin and Siggelkow 2007). This 
characterization of complexity is a crucial feature of the NK framework. Specifi-
cally, the NK framework allows for the the control and manipulation of task com-
plexity (Wall 2016). This, in turn, allows the modeler to observe the changes in 
behavior of individual agents that result from altering K—and, thus, the shape of the 
performance landscape.

Furthermore, Rivkin and Siggelkow (2007) argue that not only the number of 
interdependencies—i.e., K—influences the shape of the performance landscape, but 
also the interdependence structure. The interdependence structure is reflected in the 
interdependence matrix, which is a N × N matrix that represents contributions in 
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one axis and decisions on the other. Interdependencies are usually marked with an 
x (see Fig. 2 in Sect. 3.5). The interdepedence structure often varies depending on 
the task’s nature (Rivkin and Siggelkow 2007). As prior results show, the number of 
local peaks decreases when interdependencies concentrate on few decisions, making 
the global peak more accessible for agents (Blanco-Fernández et al. 2023b; Rivkin 
and Siggelkow 2007).

A.2 Agents

Approaches based on the NK framework usually assume that agents have limited capa-
bilities and are thus rationally bounded (Wall 2016; Wall and Leitner 2021). Specifi-
cally, it is often assumed that the agents’ information processing-power and their access 
to it are limited (Simon 1957). This assumption implies that, rather than looking imme-
diately for an optimal solution, agents search locally and step-wise on the performance 
landscape (Wall 2016; Wall and Leitner 2021). Furthermore, it is often assumed that 
agents are heterogeneous in one or more aspects (Wall 2016; Wall and Leitner 2021). 
To reflect the limited capabilities of agents and their heterogeneity, we partition the 
N-dimensional task into M subtasks of equal size S = N∕M and randomly assign each 
agent to one of them. Each subtask is denoted by dm = (dS⋅(m−1)+1,… , dS⋅m) . Addition-
ally, agents do not start with full knowledge of the solution space. Instead, we endow 
each agent with one random solution to their assigned subtask dm , and they learn new 
solutions over time (see Sect. 3.4 and Appendix A.5).

The P agents of the model are utility-maximizers and myopic, experiencing utility 
only when they are part of the team. Specifically, a team member assigned to subtask m 
maximizes the following utility function:

where C(dmt) is the performance contribution coming from the agent m’s own area 
of expertise. Additionally, C(drt) , where r = {1,… ,M} ⊂ ℕ and r ≠ m , is the con-
tribution from the residual decisions Dmt = (d1t,… , d{m−1}t, d{m+1}t,… , dMt) , i.e., 
the contribution of the decisions located outside subtask m.

A.3 Team formation

Agents self-organize in a team to solve the complex task. They follow a signal-
ing mechanism for team formation that works as follows. Agent m knows a set of 
solutions denoted by Sm = {d̂m1,… , d̂mI} where d̂mi is a solution to subtask dm , 
i = {1,… , I} ⊂ ℕ and 1 ≤ I ≤ 2S . Each agent estimates the utility associated with each 
solution they know, i.e., ∀d̂mi ∈ Sm . Since agents cannot predict the residual decisions 

(A2)U(dmt,Dmt) =
1

2
⋅

⎛
⎜⎜⎜⎜⎜⎝

C(dmt) +
1

M − 1

M�
r = 1

r ≠ m

C(drt)

⎞
⎟⎟⎟⎟⎟⎠

,
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for the next period, they assume that the residual decisions from the previous period 
Dm{t−1} will not change. Agent m’s estimated utility is then:

where e is an error term that reflects the miscalculations that agents might make. 
Prior research estimates that, on average, error rates range between 1 and 10 percent 
(Tee et al. 2007). To reflect this, the error term follows a normal distribution with 
a standard deviation of 0.1, i.e., e ∼ N(0, 0.1) . This formulation is consistent with 
the NK framework. Specifically, Levinthal (1997) assumes in his adaptation of the 
NK framework that the agents of the model—i.e., the organizations—are able to 
identify the fitness value of each solution. Levinthal (1997) introduces and examines 
the concept of noisy search, which occurs when agents can commit errors in the 
identification of the fitness values. We follow a similar approach in our formulation 
by assuming that the agents are able to estimate the utility each solution reports, 
although they may commit small errors.

Each agent then sends a signal equivalent to the highest estimated utility availa-
ble, i.e., their signal is U(d̂

∗

mt
,Dm{t−1}) , where d̂

∗

mt
∶= argmax

d
�∈Smt

U(d�,Dm{t−1}) . The 

agent with the highest signal for subtask dm joins the team. Consequently, the team 
is formed by M agents.

A.4 Decision‑making and coordination

We model three coordination modes and one benchmark scenario without coor-
dination. In this benchmark scenario we model a fully autonomous team in which 
decision-making is completely decentralized and team members do not commu-
nicate. Each team member estimates the utility for each solution they know, i.e., 
∀d̂mi ∈ Smt , following Eq.  A3. Then, each member proposes the solution to their 
subtask associated to the highest estimated utility, d̂

∗

mt
 . The overall task solution 

for the current period is the concatenation of all members’ proposals, denoted by 
dt ∶= d̂

∗

1t
⌢ ⋯ ⌢ d̂

∗

Mt
.

In the sequential coordination mode, the proposals are successively made. The 
team member associated with subtask m chooses a solution to their subtask and 
reports it to the M − m following members, who update their residual decisions 
accordingly. They repeat this process until the M members have made their propos-
als. The team member associated with the first subtask makes their proposal accord-
ing to previous period residual decisions D1{t−1} , while the other team members 
make their proposal using their updated residual decisions as a basis for their esti-
mations Dm = (d1t,… , d{m−1}t, d{m+1}{t−1},… , dM{t−1}) , where m ≠ 1 . The concat-
enation of all the sequentially-made proposals forms the overall solution to the com-
plex task, i.e., dt ∶= d̂

∗

1t
⌢ ⋯ ⌢ d̂

∗

Mt
.

(A3)EU(dmt,Dm{t−1}) =
1

2
⋅

⎛
⎜⎜⎜⎜⎜⎝

C(dmt) +
1

M − 1

M�
r = 1

r ≠ m

C(dr{t−1})

⎞
⎟⎟⎟⎟⎟⎠

⋅ (1 + e) ;
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The liaison coordination mode works as follows: Each member ranks each solution 
known in terms of their estimated utility. Then, they choose their two highest-ranked 
proposals, d̂

(1)

mt
 and d̂

(2)

mt
 , taking them to a coordination meeting. During this meeting, 

two candidate solutions are created: the first by concatenating the team members’ 
top-choice proposals and the second by combining their second-choice proposals, 
such that d(j)t ∶= d̂

(j)

1t
⌢ ⋯ ⌢ d̂

(j)

Mt
 where d̂

(j)

mt
 is agent m’s jth preferred choice. These 

candidate solutions are evalutated by the team members according to their estimated 
utility. Team members accept the candidate solution if they estimate that their utility 
will increase, i.e., if EUm(d

(j)
t ) > Um(dt−1) . Otherwise, they veto the candidate solu-

tion. In case both candidate solutions are vetoed, the overall solution does not change 
from the prior period, so dt = dt−1 . Conversely, if one candidate solution is accepted, 
it is implemented in the upcoming period, such that dt = d

(j)
t .

Finally, in the lateral communication mode each member randomly picks two 
solutions to their assigned subtask from the set of known solutions Smt and brings 
them to a coordination session, i.e., picking d̂

(1)

mt
, d̂

(2)

mt
∼ U(Smt) . Then, two candidate 

solutions are formed by randomly concatenating the team members’ picks, i.e., 
d
(j)
t ∶= d̂1t ⌢ ⋯ ⌢ d̂Mt where d̂mt ∼ U

(
d̂
(1)

mt
, d̂

(2)

mt

)
 . Then, each team member 

accepts or vetoes the candidate solutions based on their estimated utility, i.e., 
depending on whether EUm(d

(j)
t ) > Um(dt−1) or not. The candidate solution is imple-

mented if all members accept it. Conversely, if both candidate solutions are vetoed, 
the overall solution remains the same as in the previous period.

A.5 Learning

Following the principles of the NK framework, our agents cannot observe the com-
plete set of solutions to their assigned subtask dm from the beginning. Instead, they 
learn step-wise, adapting their set of known solutions Smt over time. Individual 
learning consists of two processes: discovering and forgetting. Agent m discovers a 
solution to their subtask with probability ℙ . This solution is randomly picked from 
all unknown solutions. The distribution of the probabilities with which the solutions 
are discovered is based on agent m’s beliefs. Agent m updates these beliefs accord-
ing to a Bayesian updating rule.We denote agent m’s belief about solution d̂mi by:

where �(i)

m1
= �

(i)

m1
= 1 so that p(i)

m1
= 0.5 . This means that, in the beginning, all solu-

tions have equal beliefs, i.e., that the initial probability distribution with which solu-
tions are discovered is uniform. Beliefs, however, may change as time passes, alter-
ing this probability distribution. Each time agent m implements solution d̂mi , they 
experience utility Um(dt) . Then, they assess this utility and compare it to the util-
ity they experienced in the previous period Um(dt−1) . If solution d̂mi improves agent 
m’s utility compared to the previous period, �(i)

m
 will increase by one. This, in turn, 

increases the probability of discovering solution d̂mi . Conversely, �(i)
m

 will increase 
by one if solution d̂mi decreases agent m’s utility compared to the previous period. 

(A4)p
(i)
mt =

�
(i)
mt

�
(i)
mt + �

(i)
mt

,
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The probability of discovering solution d̂mi decreases as a result. We formalize this 
process in Eqs. A5a and A5b. 

Thus, a belief p(i)mt is only updated when agent m knows and implements solution 
d̂mi.

Agents may forget one known solution with probability ℙ . The forgotten solution is 
picked randomly from the pool of known solutions Smt . The corresponding probability 
distribution with which solutions are forgotten is based on agent m’s beliefs. Specifi-
cally, agent m’s belief about solution d̂mi follows:

Initially, at t = 1 , all solutions have equal beliefs, such that �(i)
m1

= �
(i)

m1
= 1 and 

q
(i)

m1
= 0.5 . This means that agents forget solutions with a uniform probability distri-

bution. This probability distribution, however, may change as time passes and agents 
update their beliefs. Each time agent m proposes solution d̂mi , they update belief q(i)mt 
by evaluating the current utility and comparing it to the one experienced in the pre-
vious period. �(i)

m
 will decrease by one if solution d̂mi reduces agent m’s utility com-

pared to the previous period. Consequently, the probability of forgetting solution d̂mi 
increases. Conversely, if solution d̂mi improves agent m’s utility, �(i)

m
 increases by one, 

and the probability of forgetting solution d̂mi decreases.
Additionally, we incorporate a memory factor into the agents’ updating process, tak-

ing into account that agents tend to forget solutions that have been stored in their mem-
ory for an extended period. This means that the probability of forgetting each solution 
increases as time passes, i.e., ∀d̂mi ∈ Smt ∶ 𝜆

(i)
mt = 𝜆

(i)

m{t−1}
+ 1.

Thus, if agent m implements solution d̂mi and their utility decreases, �(i)mt will increase 
by two. �(i)mt increases by one because one period has passed and, additionally, by one 
because utility has decreased. This double increase makes it more likely to forget d̂mi . 
We provide the general updating rule for belief q(i)mt in Eqs. A7a and A7b. 

(A5a)�
(i)
mt

{
�
(i)

m{t−1}
+ 1 if Um(dt) ≥ Um(dt−1),

�
(i)

m{t−1}
otherwise.

(A5b)𝛽
(i)
mt

{
𝛽
(i)

m{t−1}
+ 1 if Um(dt) < Um(dt−1),

𝛽
(i)

m{t−1}
otherwise.

(A6)q
(i)
mt =

�
(i)
mt

�
(i)
mt + �

(i)
mt

.

(A7a)𝜆
(i)
mt

{
𝜆
(i)

m{t−1}
+ 2 if Um(dt) < Um(dt−1),

𝜆
(i)

m{t−1}
+ 1 otherwise.

(A7b)𝛿
(i)
mt

{
𝛿
(i)

m{t−1}
+ 1 if Um(dt) > Um(dt−1),

𝛿
(i)

m{t−1}
otherwise.
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A.6 Performance measures

Our dependent variable is the observed task performance at each period, C(�
��
) , where 

� ∈ [0, ...,Φ] corresponds to the current simulation round. To compare the different 
scenarios, we normalize C(�

��
) by the maximum achievable performance in each simu-

lation round, i.e., C∗
�
 . We calculate the mean normalized performance at each period for 

the 1500 simulation rounds, C̄t . This measure is formalized in Eq. A8.

In our results (see Sect. 4), we report two performance measures. The first perfor-
mance measure corresponds to the mean performance of the 100 periods of each 
simulation, and it follows:

where Ct comes from Eq. A8 and T = 100 is the last observable period. The second 
performance measure is the final performance, which is the performance achieved 
on average by a team at t = 100 , i.e., C100.

A.7 Other technical details

We implemented and ran the model in Python 3.7.4. using the Spyder software, ver-
sion 5.0.0. Two laptops were employed in the simulations: One with 16GB of RAM 
and a 1.90 GHz Intel Core i7 Processor and the other with 8GB of RAM and a 3.30 
GHz AMD Ryzen 5 5600 H with Radeon Graphics processor. Each simulation takes 
between 10 and 40 min, depending on the device and the settings.
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dt�
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