Skip to main content

Advertisement

Log in

Identification of common core ion channel genes in epilepsy and Alzheimer’s disease

  • Review Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Background

Although available literature indicates that the incidence of dementia in the epilepsy population and the risk of seizures in the Alzheimer’s disease (AD) population are high, the specific genetic risk factors and the interaction mechanism are unclear, rendering rational genetic interpretation rather challenging.

Aims

Our work aims to identify the common core ion channel genes in epilepsy and AD.

Methods

In this study, we first integrated gene expression omnibus datasets (GSE48350 and GSE6834) on AD and epilepsy to identify differentially expressed genes (DEGs), performing Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs. The related protein–protein interaction (PPI) network was constructed for DEGs, and the hub gene was evaluated.

Results

A total of 2800 and 35 genes were identified in GSE48350 and GSE6834, and 12 DEGs were significantly differentially expressed between the datasets. KEGG pathway analysis showed that DEGs were primarily enriched in glutamatergic synapse and dopaminergic synapse pathways. SCN2A, GRIA1, and KCNJ9 were the hub genes with high connectivity.

Conclusions

The findings suggest that the three genes, SCN2A, GRIA1, and KCNJ9, may serve as potential targets for treating AD comorbid with epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article and its online suppl—material files. Further inquiries can be directed to the corresponding author.

References

  1. Maloney EM, Chaila E, O’Reilly ÉJ, Costello DJ (2020) Incidence of first seizures, epilepsy, and seizure mimics in a geographically defined area. Neurology 95:e576–e590. https://doi.org/10.1212/wnl.0000000000009980

    Article  PubMed  Google Scholar 

  2. Qi S, Yin P, Zhang H et al (2021) Prevalence of dementia in China in 2015: a nationwide community-based study. Frontiers in public health 9:733314. https://doi.org/10.3389/fpubh.2021.733314

  3. Hampel H, Hardy J, Blennow K et al (2021) The amyloid-β pathway in Alzheimer’s disease. Mol Psychiatry 26:5481–5503. https://doi.org/10.1038/s41380-021-01249-0[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang S, Colonna M (2019) Microglia in Alzheimer’s disease: a target for immunotherapy. J Leukoc Biol 106:219–227. https://doi.org/10.1002/JLB.MR0818-319R

    Article  CAS  PubMed  Google Scholar 

  5. Hall AM, Moore RY, Becker JT et al (2008) Basal forebrain atrophy is a presymptomatic marker for Alzheimer’s disease. Alzheimers Dement 4:271–279. https://doi.org/10.1016/j.jalz.2008.04.005

    Article  PubMed  Google Scholar 

  6. Carter TL, Rissman RA, Mishizen-Eberz AJ et al (2004) Differential preservation of AMPA receptor subunits in the hippocampi of Alzheimer’s disease patients according to Braak stage. Exp Neurol 187:299–309. https://doi.org/10.1016/j.expneurol.2003.12.010

    Article  CAS  PubMed  Google Scholar 

  7. Mrabet H, Mrabet A, Mansour M (2007) Epidemiological and medical aspects of epilepsy in the elderly. Tunis Med 85:67

    CAS  PubMed  Google Scholar 

  8. Vossel KA, Tartaglia MC, Miller BL et al (2017) Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol 16:311–322. https://doi.org/10.1016/S1474-4422(17)30044-3

    Article  PubMed  PubMed Central  Google Scholar 

  9. van Vliet EA, Marchi N (2022) Neurovascular unit dysfunction as a mechanism of seizures and epilepsy during aging. Epilepsia. https://doi.org/10.1111/epi.17210

    Article  PubMed  PubMed Central  Google Scholar 

  10. Johannesen KM, Nikanorova N, Marjanovic D et al (2020) Utility of genetic testing for therapeutic decision-making in adults with epilepsy. Epilepsia 61:1234–1239. https://doi.org/10.1111/epi.16533

    Article  PubMed  Google Scholar 

  11. Kang JQ, Shen W, Zhou C et al (2015) The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration. Nat Neurosci 18:988–996. https://doi.org/10.1038/nn.4024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. DiFrancesco JC, Tremolizzo L, Polonia V et al (2017) Adult-onset epilepsy in presymptomatic Alzheimer’s disease: a retrospective study. J Alzheimers Dis 60:1267–1274. https://doi.org/10.3233/JAD-170392

    Article  CAS  PubMed  Google Scholar 

  13. Kawakami O, Koike Y, Ando T et al (2018) Incidence of dementia in patients with adult-onset epilepsy of unknown causes. J Neurol Sci 395:71–76. https://doi.org/10.1016/j.jns.2018.09.010

    Article  PubMed  Google Scholar 

  14. Beghi E, Beghi M (2020) Epilepsy, antiepileptic drugs and dementia. Curr Opin Neurol 33:191–197. https://doi.org/10.1097/WCO.0000000000000802

    Article  PubMed  Google Scholar 

  15. Busche MA, Chen X, Henning HA et al (2012) Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 109:8740–8745. https://doi.org/10.1073/pnas.1206171109

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pooler AM, Phillips EC, Lau DH et al (2013) Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 14:389–394. https://doi.org/10.1038/embor.2013.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gourmaud S, Shou H, Irwin DJ et al (2020) Alzheimer-like amyloid and tau alterations associated with cognitive deficit in temporal lobe epilepsy. Brain 143:191–209. https://doi.org/10.1093/brain/awz381

    Article  PubMed  Google Scholar 

  18. Dejakaisaya H, Kwan P, Jones NC (2021) Astrocyte and glutamate involvement in the pathogenesis of epilepsy in Alzheimer’s disease. Epilepsia 62:1485–1493. https://doi.org/10.1111/epi.16918

    Article  CAS  PubMed  Google Scholar 

  19. Menezes LFS, Sabiá Júnior EF, Tibery DV et al (2020) Epilepsy-related voltage-gated sodium channelopathies: a review. Front Pharmacol 11:1276. https://doi.org/10.3389/fphar.2020.01276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang R, Reddy PH (2017) Role of glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimers Dis 57:1041–1048. https://doi.org/10.3233/JAD-160763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nixon RA (2020) The aging lysosome: an essential catalyst for late-onset neurodegenerative diseases. Biochimica et biophysica acta Proteins and proteomics 1868:140443. https://doi.org/10.1016/j.bbapap.2020.140443

  22. Venegas C, Heneka MT (2019) Inflammasome-mediated innate immunity in Alzheimer’s disease. FASEB J 33:13075–13084. https://doi.org/10.1096/fj.201900439

    Article  CAS  PubMed  Google Scholar 

  23. Rana A, Musto AE (2018) The role of inflammation in the development of epilepsy. J Neuroinflammation 15:144. https://doi.org/10.1186/s12974-018-1192-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dun C, Zhang Y, Yin J et al (2022) Bi-directional associations of epilepsy with dementia and Alzheimer’s disease: a systematic review and meta-analysis of longitudinal studies. Age Ageing 51. https://doi.org/10.1093/ageing/afac010

  25. Romoli M, Sen A, Parnetti L et al (2021) Amyloid-β: a potential link between epilepsy and cognitive decline. Nat Rev Neurol 17:469–485. https://doi.org/10.1038/s41582-021-00505-9

    Article  CAS  PubMed  Google Scholar 

  26. Liu J, Wang LN (2021) Treatment of epilepsy for people with Alzheimer’s disease. Cochrane Database Syst Rev 5:CD011922. https://doi.org/10.1002/14651858.CD011922.pub4

  27. Piccini A, Carta S, Tassi S et al (2008) ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci USA 105:8067–8072. https://doi.org/10.1073/pnas.0709684105

    Article  PubMed  PubMed Central  Google Scholar 

  28. O'Neill C, Cowburn RF, Bonkale WL et al (2001) Dysfunctional intracellular calcium homoeostasis: a central cause of neurodegeneration in Alzheimer’s disease. Biochem Soc Symp:177–194. https://doi.org/10.1042/bss0670177

  29. Gatz M, Reynolds CA, Fratiglioni L et al (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63:168–174. https://doi.org/10.1001/archpsyc.63.2.168

    Article  PubMed  Google Scholar 

  30. Bellenguez C, Charbonnier C, Grenier-Boley B et al (2017) Contribution to Alzheimer’s disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls. Neurobiol Aging 59:220 e221-220 e229. https://doi.org/10.1016/j.neurobiolaging.2017.07.001

    Article  CAS  Google Scholar 

  31. Kim M, Bezprozvanny I (2021) Conformational models of APP processing by gamma secretase based on analysis of pathogenic mutations. Int J Mol Sci 22. https://doi.org/10.3390/ijms222413600

  32. Zhao Y, Kiss T, DelFavero J et al (2020) CD82-TRPM7-Numb signaling mediates age-related cognitive impairment. Geroscience 42:595–611. https://doi.org/10.1007/10.1007/s11357-020-00166-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu R, Wang J, Tao R et al (2018) Reduced TRPC6 mRNA levels in the blood cells of patients with Alzheimer’s disease and mild cognitive impairment. Mol Psychiatry 23:767–776. https://doi.org/10.1038/mp.2017.136

    Article  CAS  PubMed  Google Scholar 

  34. Lu J, Zhou W, Dou F et al (2021) TRPV1 sustains microglial metabolic reprogramming in Alzheimer’s disease. EMBO Rep 22:e52013. https://doi.org/10.15252/embr.202052013

  35. Paumier A, Boisseau S, Jacquier-Sarlin M et al (2022) Astrocyte-neuron interplay is critical for Alzheimer’s disease pathogenesis and is rescued by TRPA1 channel blockade. Brain 145:388–405. https://doi.org/10.1093/brain/awab281

    Article  PubMed  Google Scholar 

  36. Hefter D, Ludewig S, Draguhn A, Korte M (2020) Amyloid, APP, and electrical activity of the brain. Neuroscientist 26:231–251. https://doi.org/10.1177/1073858419882619

    Article  PubMed  Google Scholar 

  37. Shu HF, Yu SX, Zhang CQ et al (2013) Expression of TRPV1 in cortical lesions from patients with tuberous sclerosis complex and focal cortical dysplasia type IIb. Brain Dev 35:252–260. https://doi.org/10.1016/j.braindev.2012.04.007

    Article  PubMed  Google Scholar 

  38. Günaydın C, Arslan G, Bilge SS (2020) Proconvulsant effect of trans-cinnamaldehyde in pentylenetetrazole-induced kindling model of epilepsy: the role of TRPA1 channels. Neurosci Lett 721:134823. https://doi.org/10.1016/j.neulet.2020.134823

  39. Griciuc A, Patel S, Federico AN et al (2019) TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer’s disease. Neuron 103:820-835 e827. https://doi.org/10.1016/j.neuron.2019.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Deming Y, Filipello F, Cignarella F et al (2019) The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer’s disease risk. Sci Transl Med 11. https://doi.org/10.1126/scitranslmed.aau2291

  41. Sala Frigerio C, Wolfs L, Fattorelli N et al (2019) The major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep 27:1293-1306 e1296. https://doi.org/10.1016/j.celrep.2019.03.099

    Article  CAS  PubMed  Google Scholar 

  42. Frank MG, Weber MD, Fonken LK et al (2016) The redox state of the alarmin HMGB1 is a pivotal factor in neuroinflammatory and microglial priming: a role for the NLRP3 inflammasome. Brain Behav Immun 55:215–224. https://doi.org/10.1016/j.bbi.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  43. Fujita K, Motoki K, Tagawa K et al (2016) HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer’s disease. Sci Rep 6:31895. https://doi.org/10.1038/srep31895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Choy M, Dubé CM, Patterson K et al (2014) A novel, noninvasive, predictive epilepsy biomarker with clinical potential. J Neurosci 34:8672–8684. https://doi.org/10.1523/JNEUROSCI.4806-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang XD, Liu S, Lu H et al (2021) Analysis of shared genetic regulatory networks for Alzheimer’s disease and epilepsy. Biomed Res Int 2021:6692974. https://doi.org/10.1155/2021/6692974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nabavi S, Fox R, Proulx CD et al (2014) Engineering a memory with LTD and LTP. Nature 511:348–352. https://doi.org/10.1038/nature13294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kang JQ (2021) Epileptic mechanisms shared by Alzheimer’s disease: viewed via the unique lens of genetic epilepsy. Int J Mol Sci 22. https://doi.org/10.3390/ijms22137133

  48. Gourmaud S, Stewart DA, Irwin DJ et al (2022) The role of mTORC1 activation in seizure-induced exacerbation of Alzheimer’s disease. Brain : a journal of neurology 145:324–339. https://doi.org/10.1093/brain/awab268

    Article  PubMed  Google Scholar 

  49. Huang K, Fingar DC (2014) Growing knowledge of the mTOR signaling network. Semin Cell Dev Biol 36:79–90. https://doi.org/10.1016/j.semcdb.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  50. Sanders SJ, Campbell AJ, Cottrell JR et al (2018) Progress in understanding and treating SCN2A-mediated disorders. Trends Neurosci 41:442–456. https://doi.org/10.1016/j.tins.2018.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hedrich UBS, Lauxmann S, Lerche H (2019) SCN2A channelopathies: mechanisms and models. Epilepsia 60(Suppl 3):S68–S76. https://doi.org/10.1111/epi.14731

    Article  CAS  PubMed  Google Scholar 

  52. Middleton SJ, Kneller EM, Chen S et al (2018) Altered hippocampal replay is associated with memory impairment in mice heterozygous for the Scn2a gene. Nat Neurosci 21:996–1003. https://doi.org/10.1038/s41593-018-0163-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Spratt PWE, Ben-Shalom R, Keeshen CM et al (2019) The autism-associated gene Scn2a contributes to dendritic excitability and synaptic function in the prefrontal cortex. Neuron 103:673-685 e675. https://doi.org/10.1016/j.neuron.2019.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Harutyunyan A, Jones NC, Kwan P, Anderson A (2022) Network preservation analysis reveals dysregulated synaptic modules and regulatory hubs shared between Alzheimer’s disease and temporal lobe epilepsy. Front Genet 13:821343. https://doi.org/10.3389/fgene.2022.821343

  55. Wolff M, Johannesen KM, Hedrich UBS et al (2017) Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 140:1316–1336. https://doi.org/10.1093/brain/awx054

    Article  PubMed  Google Scholar 

  56. Heinzen EL, Yoon W, Weale ME et al (2007) Alternative ion channel splicing in mesial temporal lobe epilepsy and Alzheimer’s disease. Genome Biol 8:R32. https://doi.org/10.1186/gb-2007-8-3-r32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sommer B, Keinänen K, Verdoorn TA et al (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249:1580–1585. https://doi.org/10.1126/science.1699275

    Article  CAS  PubMed  Google Scholar 

  58. Neuner SM, Wilmott LA, Hoffmann BR et al (2017) Hippocampal proteomics defines pathways associated with memory decline and resilience in normal aging and Alzheimer’s disease mouse models. Behav Brain Res 322:288–298. https://doi.org/10.1016/j.bbr.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  59. Kim JE, Lee DS, Park H et al (2021) Inhibition of AKT/GSK3β/CREB pathway improves the responsiveness to AMPA receptor antagonists by regulating GRIA1 surface expression in chronic epilepsy rats. Biomedicines 9. https://doi.org/10.3390/biomedicines9040425

  60. Hibino H, Inanobe A, Furutani K et al (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90:291–366. https://doi.org/10.1152/physrev.00021.2009

    Article  CAS  PubMed  Google Scholar 

  61. Kempermann G, Chesler EJ, Lu L et al (2006) Natural variation and genetic covariance in adult hippocampal neurogenesis. Proc Natl Acad Sci USA 103:780–785. https://doi.org/10.1073/pnas.0510291103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Heuser K, Nagelhus EA, Taubøll E et al (2010) Variants of the genes encoding AQP4 and Kir4.1 are associated with subgroups of patients with temporal lobe epilepsy. Epilepsy Res 88:55–64. https://doi.org/10.1016/j.eplepsyres.2009.09.023

    Article  CAS  PubMed  Google Scholar 

  63. Pravetoni M, Wickman K (2008) Behavioral characterization of mice lacking GIRK/Kir3 channel subunits. Genes Brain Behav 7:523–531. https://doi.org/10.1111/j.1601-183X.2008.00388.x

    Article  CAS  PubMed  Google Scholar 

  64. Kozell LB, Walter NA, Milner LC et al (2009) Mapping a barbiturate withdrawal locus to a 0.44 Mb interval and analysis of a novel null mutant identify a role for Kcnj9 (GIRK3) in withdrawal from pentobarbital, zolpidem, and ethanol. J Neurosci 29:11662–11673. https://doi.org/10.1523/JNEUROSCI.1413-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the Nursery Fund Project of the Second Affiliated Hospital of Fujian Medical University (No. 2021MP24) and grants from the Natural Science Foundation (Key Project) of Fujian Province, China (No. 2020J02022), Fujian Provincial Finance Special project (No. 2021XH009).

Author information

Authors and Affiliations

Authors

Contributions

Ting Tang: contributed to conceptualization, software, data curation, and writing—original draft. Xiaodong Pan: concept, planning of study design, and writing. Xiang Li, Man Li, and Yu Erhan reviewed and discussed the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Xiaodong Pan.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, T., Li, X., Yu, E. et al. Identification of common core ion channel genes in epilepsy and Alzheimer’s disease. Ir J Med Sci 193, 417–424 (2024). https://doi.org/10.1007/s11845-023-03447-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-023-03447-x

Keywords

Navigation