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Abstract
Purpose  The privatization of space travel is opening civilian spaceflight to an unprecedented number of individuals now 
and in the immediate future. The increase in the number and diversity of space travelers will mean increased exposure to 
both physiologic and pathologic changes observed during acute and prolonged microgravity.
Aims  In this paper, we describe the anatomic, physiologic, and pharmacologic factors to consider that impact acute angle-
closure glaucoma risk during spaceflight.
Conclusions  Based on these factors, we elaborate upon areas of medical considerations and provide future recommendations 
that may aid in reducing the risk of acute angle-closure glaucoma in the next era of spaceflight.
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Introduction

The privatization of space travel is opening civilian space-
flight to an unprecedented number of individuals now and 
in the immediate future [1]. The increase in the number and 
diversity of space travelers will mean increased exposure 
to both physiologic and pathologic changes observed dur-
ing acute and prolonged microgravity [2]. Rare terrestrial 
ocular emergency conditions including acute angle-closure 
glaucoma pose special and unique challenges in space flight. 
Chronic spaceflight exposure to radiation leading to radia-
tion cataract is another potential risk for precipitating angle 
closure.

In this paper, we describe the anatomic, physiologic, 
and pharmacologic factors to consider that impact acute 

angle-closure glaucoma risk during spaceflight. Based on 
these factors, we elaborate upon areas of medical consid-
erations and provide future recommendations that may aid 
in reducing the risk of acute angle-closure glaucoma in the 
next era of spaceflight.

Several physiological mechanisms have been proposed 
to explain ocular findings seen in spaceflight. The cephalad 
redistribution of bodily fluids, particularly the cephalad cir-
culation of cerebral spinal fluid (CSF), that astronauts on 
the International Space Station (ISS) experience in a micro-
gravity setting is a major factor. Numerous physiological 
and anatomical alterations are possibly caused by confine-
ment into ocular interstitial spaces. Cerebral edema, a con-
sequence of diverse types of brain tissue injuries, has been 
used as a paradigm to try to further understand the etiology 

 *	 Ethan Waisberg 
	 ethan.waisberg@ucdconnect.ie

1	 University College Dublin School of Medicine, 
Belfield, Dublin, Ireland

2	 Michigan Medicine, University of Michigan, Ann Arbor, 
USA

3	 Center for Space Medicine, Baylor College of Medicine, 
Houston, TX, USA

4	 Department of Ophthalmology, Blanton Eye Institute, 
Houston Methodist Hospital, Houston, TX, USA

5	 The Houston Methodist Research Institute, Houston 
Methodist Hospital, Houston, TX, USA

6	 Departments of Ophthalmology, Neurology, 
and Neurosurgery, Weill Cornell Medicine, New York, NY, 
USA

7	 Department of Ophthalmology, University of Texas Medical 
Branch, Galveston, TX, USA

8	 University of Texas MD Anderson Cancer Center, Houston, 
TX, USA

9	 A&M College of Medicine, Bryan, TX, USA
10	 Department of Ophthalmology, The University of Iowa 

Hospitals and Clinics, Iowa City, IA, USA
11	 Vance Thompson Vision, Sioux Falls, SD, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11845-023-03407-5&domain=pdf
http://orcid.org/0000-0001-8999-0212


506	 Irish Journal of Medical Science (1971 -) (2024) 193:505–508

1 3

of the neuro-ocular findings unique to spaceflight. These 
findings are collectively known as spaceflight associated 
neuro-ocular syndrome (SANS) and have been hypothesized 
to occur due to cephalad fluid shift [3, 4]. This constellation 
of neuro-ophthalmic findings have been noted to be one of 
the large physiologic barriers to exploration spaceflight such 
as the mission to Mars [5, 6]. Choroidal expansion occurring 
in SANS could potentially lead to AACG [7].

Spaceflight or simulated microgravity may also affect a 
number of other variables related to cerebral autoregula-
tion, including decreases in blood volume and perhaps vas-
cular characteristics [8]. The mechanism most often cited 
to explain orthostatic sensitivity after spaceflight is the 
decrease in cerebral blood flow autoregulation brought-on 
by the lack of the gravitational field [8]. In one rodent study, 
cerebral arteries demonstrated hypertrophy (media layer) in 
microgravity [9].

AACG occurs when aqueous humor outflow is inter-
rupted in the trabecular meshwork, leading to an increase in 
intraocular pressure (Fig. 1). AACG can be divided into four 
subtypes: pupillary block, anterior lens subluxation, plateau 
iris syndrome, and crowded angle which will be described 
below.

Pupillary block

The most frequent cause of AACG is called “pupillary 
block,” which develops when the pupillary portion of the 
iris and lens becomes functionally blocked between the ante-
rior and posterior chambers [10]. Typically, the iris bends 

forward (iris bombe) as a result of increased intraocular 
pressure in the posterior chamber and accompany pupillary 
block [10].

Crowded angle

Patients with a crowded angle have thicker iris tissue at the 
base, leaving less room for the trabecular meshwork to drain. 
The iris is dragged peripherally and moved into the iridoc-
orneal angle as a result of the contraction of the iris dilator 
muscles in mydriasis. Pupillary block often happens while 
the iris is returning to its resting undilated stage after being 
dilated, which might come from this crowding of tissue and 
obstruction of the trabecular meshwork [10].

Anterior lens subluxation

When the anterior lens subluxes, the lens protrudes and 
either contacts the iris or enters the anterior chamber. 
Because the zonules anchoring the lens in place are naturally 
prone to laxity, this might arise. Many conditions (e.g., pseu-
doexfoliation syndrome, Marfan syndrome, homocystinuria, 
Ehlers-Danlos syndrome, and Weill-Marchesani syndrome) 
can lead to zonular laxity, which may all affect ocular struc-
tures [10]. Similar to pupillary block, aqueous fluid is unable 
to drain via the trabecular meshwork because the anterior 
and posterior chambers are connected but blocked.

Plateau iris syndrome

An anterior chamber depth that is generally normal, a 
crowded angle, and a flat iris are all indicative of plateau iris 
syndrome (PIS). The peripheral iris base of the iris inserts 
more anteriorly on the ciliary body, resulting in PIS. The 
iridocorneal angle becomes smaller as a consequence, mak-
ing it more likely to get blocked during mydriasis. Patients 
with PIS thus remain at risk for AACG despite having a 
patent iridotomy.

It is important to note that the greatest anatomical risk 
factor for angle closure is depth of the anterior chamber 
[11]. Other risk factors for AACG include an anteriorly 
positioned lens, short axial length, thick lens, and plateau 
iris configuration [10]. The risk of drug-induced AACG in 
space is increased as many of the anticholinesterase or cho-
linergic medications used by NASA to manage space motion 
sickness (such as scopolamine and promethazine) cause 
mydriasis which increases the risk of AACG, due to ante-
rior displacement of lens-iris diaphragm [12]. With space 
tourism, individuals traveling to space may also be taking a 
variety of medications which are known as possible AACG 

Fig. 1   a Anterior segment OCT of an angle closure glaucoma with 
narrow angles (circled). b Anterior segment OCT showing wide 
angles (circled). Both circles contain the trabecular meshwork. 
Reprinted with permission from Angmo D, Nongpiur ME, Sharma R, 
Sidhu T, Sihota R, and Dada T. Clinical utility of anterior segment 
swept-source optical coherence tomography in glaucoma. Oman J 
Ophthalmol. Under Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 License
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precipitants, including α1-adrenergic agonists, β2 adrener-
gic agonists, sulfonamides, serotonergic agents, and anti-
histamines [10]. In addition to these risk factors, a dimly lit 
environment can also precipitate AACG, which may occur 
during spaceflight.

Ionizing radiation during long-duration spaceflight may 
cause cataracts, from exposure to galactic comic radiation or 
solar particle events. Radiation-induced cataract is a dose-
dependent phenomena, and as the ionizing radiation dos-
age is increased, the lens becomes more opaque [13]. Local 
changes in the organized arrangement of lens cells caused 
by oxidation of protein sulfhydryl groups and the creation 
of high-molecular-weight complexes can lead to phacolytic 
glaucoma. Thus, cataract is a known risk factor for AACG. 
Although there have been no reported cases of astronauts 
developing AACG during or post-spaceflight, one addi-
tional rational for protective countermeasures against radia-
tion exposure includes reduced risk for radiation-induced  
cataracts [14].

While the risks of AACG are rare with an estimated 
prevalence of 0.5–0.8% and have yet to be clearly defined 
in spaceflight, if AACG were to occur, the resulting visual 
loss and ocular pain could impact critical astronaut function 
and the mission [15]. Secondary optic nerve damage and 
visual loss if not rapidly treated aggressively and early can 
be permanent in AACG.

In the case of AACG in space, an immediate reduction 
in intra-ocular pressure via medical management would be 
the first step but on Earth depending on etiology a bilateral 
laser or surgical peripheral iridotomy may be necessary. As 
laser iridotomy is not available, medication to lower the IOP 
including topical ophthalmic beta blockers and muscarinic 
agonists is absolutely critical for future spaceflight.

Lower-body negative pressure (LBNP) is an emerging 
countermeasure for SANS by mitigating the cephalad fluid 
shifts in microgravity. However acute usage of LBNP in 
spaceflight did not impact choroidal thickness, which sug-
gests that choroidal engorgement may occur secondary to 
cerebral venous congestion [16]. Gonioscopy is the gold 
standard method to examine the drainage angles and assess 
AACG risk, which can be performed quickly and with little 
patient discomfort. For objective measurement of the angle, 
ultrasound biomicroscopy or Visante OCT (Zeiss, Germany) 
can also be used for imaging. Further studies are required on 
the structural and functional effects on ocular structure on 
long-duration spaceflight [17–19].

Based on these considerations, we recommend that 
assessment of the angle be included in any ophthalmic 
screening prior to spaceflight in the era of civilian space-
flight and SANS. This includes a detailed medical history 
(including risk factors and current medications), optic nerve 
examination [20], and gonioscopy to identify for anatomi-
cal AACG risk factors. As we prepare for a future where 

spaceflight is more accessible to a civilian population with 
diverse physiology and anatomy, it becomes increasingly 
important to take into the considerations to reduce the 
risk of acute medical risks such as acute, sight-threatening 
glaucoma.
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