Skip to main content
Log in

Surface Improvement of Ti-6Al-4V Alloy by Deposition of AlCrCoFeMnNi High Entropy Alloy Using TIG Process

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A high entropy alloy layer from AlCrCoFeMnNi powders was formed on the surface of the Ti-6Al-4V alloy using the tungsten inert gas (TIG) cladding process to improve the surface properties of the alloy. The design of the experiments using the Taguchi method was used to estimate the surface hardness against the TIG process parameters like the welding current, scanning speed, and shielding gas flow rate. Optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were used to characterize the deposited layer. A Vickers hardness tester was used to evaluate the microhardness of the cladding layer. The results showed that the optimum level of the process parameters that produced high surface hardness was at a current of 50 A, a scanning speed of 0.8 mm/s, and an argon flow rate of 12 L/min. The XRD analysis of the cladding layers revealed that all the layers were composed of BCC and FCC. The examinations of OM and SEM showed that the cladding layers tend to have a dendritic structure consisting of FCC + BCC/B2 and weave-like BCC/B2 precipitates with a small amount of Cr/Fe-σ phase in the interdendritic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.E.G. González and J.C. Mirza-Rosca, J. Mater. Process. Technol. https://doi.org/10.1016/S0022-0728(99)00260-0 (1999).

    Article  Google Scholar 

  2. B.F. Lowenberg, S. Lugowski, M. Chipman, and J.E. Davies, J. Mater. Sci. Mater. Med. https://doi.org/10.1007/BF00058985 (1994).

    Article  Google Scholar 

  3. R. W. Schutz and D. E. Thomas, ASM Handbook, (ASM International, Ohio, 2003), pp. 669–706. http://isbndb.com/d/book/asm_handbook_corrosion.

  4. Y. Wang, S. Zhao, W. Gao, C. Zhou, F. Liu, and X. Lin, J. Mater. Process. Technol. https://doi.org/10.1016/j.jmatprotec.2013.12.009 (2014).

    Article  Google Scholar 

  5. A.F. Saleh, J.H. Abboud, and K.Y. Benyounis, Opt. Lasers Eng. https://doi.org/10.1016/j.optlaseng.2009.11.001 (2010).

    Article  Google Scholar 

  6. G. Celebi Efe, M. İpek, C. Bindal, and S. Zeytin, Acta Phys. Pol. https://doi.org/10.12693/APhysPolA.132.760 (2017).

    Article  Google Scholar 

  7. A. Yazdani, M. Soltanieh, and H. Aghajani, Eur. Phys. J. Appl. Phys. https://doi.org/10.1051/epjap/2014130095 (2014).

    Article  Google Scholar 

  8. B. Cantor, I. Chang, P. Knight, and A. Vincent, MSE. https://doi.org/10.3390/coatings11111402 (2004).

    Article  Google Scholar 

  9. W. Li, P. Liu, and P. Liaw, Mater. Res. Lett. https://doi.org/10.1080/21663831.2018.1434248 (2018).

    Article  Google Scholar 

  10. L.C. Tsao, C.S. Chen, and C.P. Chu, Mater. Des. https://doi.org/10.1016/j.matdes.2011.04.067 (2012).

    Article  Google Scholar 

  11. F. Otto, Y. Yang, H. Bei, and E.P. George, Acta Mater. https://doi.org/10.1016/j.actamat.2013.01.042 (2013).

    Article  Google Scholar 

  12. V. Soare, M. Burada, I. Constantin, D. Mitrică, V. Bădiliţă, A. Caragea, and M. Târcolea, Appl. Surf. Sci. https://doi.org/10.1016/j.apsusc.2015.07.142 (2015).

    Article  Google Scholar 

  13. J.T. Liang, K.C. Cheng, Y.C. Chen, S.M. Chiu, C. Chiu, J.W. Lee, and S.H. Chen, Surf. Coat. Technol. https://doi.org/10.1016/j.surfcoat.2020.126411 (2020).

    Article  Google Scholar 

  14. M. Löbel, T. Lindner, R. Hunger, R. Berger, and T. Lampke, Coating. https://doi.org/10.3390/coatings10070701 (2020).

    Article  Google Scholar 

  15. Q.L. Xu, Y. Zhang, S.H. Liu, C.J. Li, and C.X. Li, Surf. Coat. Technol. https://doi.org/10.1016/j.surfcoat.2020.126093 (2020).

    Article  Google Scholar 

  16. A. Mohanty, J.K. Sampreeth, O. Bembalge, J.Y. Hascoet, S. Marya, R.J. Immanuel, and S.K. Panigrahi, Surf. Coat. Technol. https://doi.org/10.1016/J.Surfcoat.2019.125028 (2019).

    Article  Google Scholar 

  17. R.M. Pohan, B. Gwalani, J. Lee, T. Alam, J.Y. Hwang, and S.H. Hong, Mater. Chem. Phys. 210, 62 (2018).

    Article  Google Scholar 

  18. W.Y. Huo, H.F. Shi, X. Ren, and J.Y. Zhang, Adv. Mater. Sci. Eng. https://doi.org/10.1155/2015/647351 (2015).

    Article  Google Scholar 

  19. C. Huang, Y. Zhang, J. Shen, and R. Vilar, Surf. Coat. Technol. https://doi.org/10.1016/j.surfcoat.2011.08.063 (2011).

    Article  Google Scholar 

  20. C. Huang, Y. Zhang, R. Vilar, and J. Shen, Mater. Des. https://doi.org/10.1016/j.matdes.2012.04.049 (2012).

    Article  Google Scholar 

  21. X.W. Qiu, Y.P. Zhang, and C.G. Liu, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2013.09.083 (2014).

    Article  Google Scholar 

  22. S.A. Adeleke and M.A. Maleque, Adv. Mate. Res. https://doi.org/10.4028/www.scientific.net/AMR.1115.234 (2015).

    Article  Google Scholar 

  23. Z.B. Cai, X.J. Pang, X.F. Cui, X. Wen, Z. Liu, M.L. Dong, Y. Li, and G. Jin, Mater. Sci. Forum. https://doi.org/10.4028/www.scientific.net/WenMSF.898.643 (2017).

    Article  Google Scholar 

  24. C. Panwariya and S. Gupta, AMIAMS. IEEE, 320-326 (2017). https://doi.org/10.1109/AMIAMS.2017.8069232

  25. F. Ye, Z. Jiao, S. Yan, L. Guo, L. Feng, and J. Yu, Vacuum. https://doi.org/10.1016/j.vacuum.2020.109178 (2020).

    Article  Google Scholar 

  26. M. Fereidouni, M.S. Khorrami, and M.H. Sohi, Surf. Coat. Technol. 402, 126331 https://doi.org/10.1016/j.surfcoat.2020.126331 (2020).

    Article  Google Scholar 

  27. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Act Mater. https://doi.org/10.1016/j.actamat.2013.09.037 (2014).

    Article  Google Scholar 

  28. Y. Ma, B. Jiang, C. Li, Q. Wang, C. Dong, P.K. Liaw, F. Xu, and L. Sun, Met. https://doi.org/10.1016/j.actamat.2018.01.050 (2017).

    Article  Google Scholar 

  29. M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, and J.W. Yeh, Mater. Res. Lett. https://doi.org/10.1080/21663831.2013.831382 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Aghajani.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alazzawi, F., Aghajani, H. & Kianvash, A. Surface Improvement of Ti-6Al-4V Alloy by Deposition of AlCrCoFeMnNi High Entropy Alloy Using TIG Process. JOM 76, 656–666 (2024). https://doi.org/10.1007/s11837-023-06314-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06314-3

Navigation