Skip to main content
Log in

Microstructural Analysis of the Improved Strength–Ductility Combination in Titanium Alloy with Bi-modal Structure

  • The Role of Microstructure on the Mechanical Behavior of Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Metastable β titanium alloy with bi-modal structure usually exhibits excellent Strength–ductility combination. However, the origin of this improved mechanical properties on the dislocation level has not been thoroughly investigated. An improved Strength–ductility combination is exhibited in a metastable β titanium alloy Ti-5Al-4Zr-8Mo-7V with bi-modal structure. High ultimate tensile strength (UTS) ~ 1390 MPa with considerable elongation ~ 10.2% is acquired. A novel core-shell structure in primary α was found for the first time to our knowledge during tensile deformation. High density of geometrically necessary dislocations consisting of pyramidal a + c type and a type dislocation is displayed in the hard-shell layer, while low density of statistically stored dislocations consisting of a type dislocation is exhibited in the core area. The improved ductility originates from this core-shell structure. The hard shell improves the plastic compatibility between soft primary α and hard transformed β matrix, which alleviates stress concentration and postpones crack nucleation along primary α phase (αp)/β matrix interface. Meanwhile, the soft core sustains uniform deformation effectively, which ensures the ductility. In addition, the origin of high strength is attributed to fine-scale α platelets (αs) with highly defected substructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Banerjee and J.C. Williams, Acta Mater. 61, 844 https://doi.org/10.1016/j.actamat.2012.10.043 (2013).

    Article  ADS  CAS  Google Scholar 

  2. G.T. Terlinde, T.W. Duerig, and J.C. Williams, Metall. Trans. A 14, 2101 https://doi.org/10.1007/BF02662377 (1983).

    Article  Google Scholar 

  3. S. Hémery and P. Villechaise, MSEA 697, 177 https://doi.org/10.1016/j.msea.2017.05.021 (2017).

    Article  CAS  Google Scholar 

  4. G. Srinivasu, Y. Natraj, A. Bhattacharjee, T.K. Nandy, and G.V.S. Nageswara Rao, Mater. Des. 47, 323 https://doi.org/10.1016/j.matdes.2012.11.053 (2013).

    Article  CAS  Google Scholar 

  5. J.K. Fan, J.S. Li, H.C. Kou, K. Hua, and B. Tang, Mater. Charact. 96, 93 https://doi.org/10.1016/j.matchar.2014.07.018 (2014).

    Article  CAS  Google Scholar 

  6. S. Shekhar, R. Sarkar, S.K. Kar, and A. Bhattacharjee, Mater. Des. 66, 596 https://doi.org/10.1016/j.matdes.2014.04.015 (2015).

    Article  CAS  Google Scholar 

  7. W. Zhu, Q. Sun, C. Tan, P. Li, L. Xiao, and J. Sun, J. Alloy Compd. https://doi.org/10.1016/j.jallcom.2020.154311 (2020).

    Article  Google Scholar 

  8. D. Qin, Y. Li, S. Zhang, and L. Zhou, J. Alloy Compd. 663, 581 https://doi.org/10.1016/j.jallcom.2015.12.158 (2016).

    Article  CAS  Google Scholar 

  9. S.A. Mantri, D. Choudhuri, T. Alam, G.B. Viswanathan, J.M. Sosa, H.L. Fraser, and R. Banerjee, Scripta Mater. 154, 139 https://doi.org/10.1016/j.scriptamat.2018.05.040 (2018).

    Article  CAS  Google Scholar 

  10. A. Settefrati, M. Dehmas, G. Geandier, B. Denand, E. Aeby-Gautier, B. Appolaire, G. Khelifati and J. Delfosse, In World Conference Titanium, (2011).

  11. E. Aeby-Gautier, A. Settefrati, F. Bruneseaux, B. Appolaire, B. Denand, M. Dehmas, G. Geandier, and P. Boulet, J. Alloy Compd. 577, S439 https://doi.org/10.1016/j.jallcom.2012.02.046 (2013).

    Article  CAS  Google Scholar 

  12. A. Settefrati, E. Aeby-Gautier, B. Appolaire, M. Dehmas, G. Geandier, and G. Khelifati, Mater. Sci. Forum. 738, 97–102 (2013).

    Article  Google Scholar 

  13. W. Zhu, J. Lei, B. Su, and Q. Sun, MSEA 782, 139248 https://doi.org/10.1016/j.msea.2020.139248 (2020).

    Article  CAS  Google Scholar 

  14. L.C. Campanelli, P.S.C.P. da Silva, and C. Bolfarini, MSEA 658, 203 https://doi.org/10.1016/j.msea.2016.02.004 (2016).

    Article  CAS  Google Scholar 

  15. L. Ren, W. Xiao, H. Chang, Y. Zhao, C. Ma, and L. Zhou, MSEA 711, 553 https://doi.org/10.1016/j.msea.2017.11.029 (2018).

    Article  CAS  Google Scholar 

  16. W. Zhu, J. Lei, Z. Zhang, Q. Sun, W. Chen, L. Xiao, and J. Sun, MSEA 762, 138086 https://doi.org/10.1016/j.msea.2019.138086 (2019).

    Article  CAS  Google Scholar 

  17. R.K. Nalla, R.O. Ritchie, B.L. Boyce, J.P. Campbell, and J.O. Peters, Metall. Mater. Trans. A 33, 899 https://doi.org/10.1007/s11661-002-0160-z (2002).

    Article  Google Scholar 

  18. S. Sadeghpour, S.M. Abbasi, M. Morakabati, and S. Bruschi, Mater Des. 121, 24 https://doi.org/10.1016/j.matdes.2017.02.043 (2017).

    Article  CAS  Google Scholar 

  19. J.O. Peters, G. Lütjering, M. Koren, H. Puschnik, and R.R. Boyer, MSEA 213, 71 https://doi.org/10.1016/0921-5093(96)10225-2 (1996).

    Article  Google Scholar 

  20. Z. Du, S. Xiao, L. Xu, J. Tian, F. Kong, and Y. Chen, Mater. Des. 55, 183 (2014).

    Article  CAS  Google Scholar 

  21. S.K. Kar, S. Suman, S. Shivaprasad, A. Chaudhuri, and A. Bhattacharjee, MSEA 610, 171 https://doi.org/10.1016/j.msea.2014.04.113 (2014).

    Article  CAS  Google Scholar 

  22. J. Fan, J. Li, H. Kou, K. Hua, B. Tang, and Y. Zhang, J. Alloy Compd. 682, 517 https://doi.org/10.1016/j.jallcom.2016.04.303 (2016).

    Article  CAS  Google Scholar 

  23. D. Lunt, X. Xu, T. Busolo, J. Quinta da Fonseca, and M. Preuss, Scripta Mater. 145, 45 https://doi.org/10.1016/j.scriptamat.2017.10.012 (2018).

    Article  CAS  Google Scholar 

  24. S. Zhang, W. Zeng, Q. Zhao, L. Ge, and M. Zhang, MSEA 708, 574 https://doi.org/10.1016/j.msea.2017.10.028 (2017).

    Article  CAS  Google Scholar 

  25. P. Castany, F. Pettinari-Sturmel, J. Crestou, J. Douin, and A. Coujou, Acta Mater. 55, 6284 https://doi.org/10.1016/j.actamat.2007.07.032 (2007).

    Article  ADS  CAS  Google Scholar 

  26. C. Tan, Q. Sun, L. Xiao, Y. Zhao, and J. Sun, MSEA 725, 33 https://doi.org/10.1016/j.msea.2018.03.123 (2018).

    Article  CAS  Google Scholar 

  27. P. Castany, F. Pettinari-Sturmel, J. Douin, and A. Coujou, MSEA 680, 85 https://doi.org/10.1016/j.msea.2016.10.020 (2017).

    Article  CAS  Google Scholar 

  28. G.B. Viswanathan, E. Lee, D.M. Maher, S. Banerjee, and H.L. Fraser, Acta Mater. 53, 5101 https://doi.org/10.1016/j.actamat.2005.07.030 (2005).

    Article  ADS  CAS  Google Scholar 

  29. S.L. Raghunathan, A.M. Stapleton, R.J. Dashwood, M. Jackson, and D. Dye, Acta Mater. 55, 6861 https://doi.org/10.1016/j.actamat.2007.08.049 (2007).

    Article  ADS  CAS  Google Scholar 

  30. O.M. Ivasishin, P.E. Markovsky, Y.V. Matviychuk, S.L. Semiatin, C.H. Ward, and S. Fox, J. Alloy Compd. 457, 296 https://doi.org/10.1016/j.jallcom.2007.03.070 (2008).

    Article  CAS  Google Scholar 

  31. B. He, J. Li, X. Cheng, and H.-M. Wang, MSEA 699, 229 https://doi.org/10.1016/j.msea.2017.05.050 (2017).

    Article  CAS  Google Scholar 

  32. W. Zhu, C. Tan, R. Xiao, Q. Sun, and J. Sun, J. Mater. Sci. Technol. https://doi.org/10.1016/j.jmst.2020.03.053 (2020).

    Article  Google Scholar 

  33. Y. Chen, Z. Du, S. Xiao, L. Xu, and J. Tian, J. Alloy Compd. 586, 588 https://doi.org/10.1016/j.jallcom.2013.10.096 (2014).

    Article  CAS  Google Scholar 

  34. W.-G. Zhu, P. Li, X. Sun, W. Chen, H.-L. Zhang, Q.-Y. Sun, B. Liu, L. Xiao, and J. Sun, TNMSC 29, 1242 https://doi.org/10.1016/S1003-6326(19)65031-4 (2019).

    Article  CAS  Google Scholar 

  35. K. Hua, Y. Zhang, H. Kou, J. Li, W. Gan, J.-J. Fundenberger, and C. Esling, Acta Mater. 132, 307 https://doi.org/10.1016/j.actamat.2017.04.051 (2017).

    Article  ADS  CAS  Google Scholar 

  36. D. Qin, Y. Lu, D. Guo, L. Zheng, Q. Liu, and L. Zhou, MSEA 587, 100 https://doi.org/10.1016/j.msea.2013.08.055 (2013).

    Article  CAS  Google Scholar 

  37. J. Huang, Z. Wang, and J. Zhou, Metall. Mater. Trans. A 42, 2868 https://doi.org/10.1007/s11661-011-0705-0 (2011).

    Article  CAS  Google Scholar 

  38. J. Huang, Z. Wang, and K. Xue, MSEA 528, 8723 https://doi.org/10.1016/j.msea.2011.08.045 (2011).

    Article  CAS  Google Scholar 

  39. L. Lan, M. Yu, and C. Qiu, MSEA 742, 442 https://doi.org/10.1016/j.msea.2018.11.011 (2019).

    Article  CAS  Google Scholar 

  40. N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, and T. Furuhara, Acta Mater. 83, 383 https://doi.org/10.1016/j.actamat.2014.10.010 (2015).

    Article  ADS  CAS  Google Scholar 

  41. C. Herrera, D. Ponge, and D. Raabe, Acta Mater. 59, 4653 https://doi.org/10.1016/j.actamat.2011.04.011 (2011).

    Article  ADS  CAS  Google Scholar 

  42. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto, Acta Mater. 59, 4387 https://doi.org/10.1016/j.actamat.2011.03.062 (2011).

    Article  ADS  CAS  Google Scholar 

  43. M.F. Ashby, Philos. Mag. 21, 399 https://doi.org/10.1080/14786437008238426 (1970).

    Article  ADS  CAS  Google Scholar 

  44. H. Ghassemi-Armaki, R. Maaß, S.P. Bhat, S. Sriram, J.R. Greer, and K.S. Kumar, Acta Mater. 62, 197 https://doi.org/10.1016/j.actamat.2013.10.001 (2014).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Engineer Fang Song at Instrumental Analysis Center, Xi’an University of Architecture and Technology, for her help with SEM/EBSD characterization. We appreciate the support from BAOTI Group Co., Ltd., for material preparation and processing. This work was supported by the National Natural Science Foundation of China (grant nos. 52275161, 52201134) and International Science and Technology Cooperation Projects of Shaanxi Province, China (grant no. 2021KW27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conghui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Zhang, P., He, Y. et al. Microstructural Analysis of the Improved Strength–Ductility Combination in Titanium Alloy with Bi-modal Structure. JOM 76, 1659–1668 (2024). https://doi.org/10.1007/s11837-023-06013-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06013-z

Navigation